
Live Gradient Compensation for Evading Stragglers
in Distributed Learning

Jian Xu∗, Shao-Lun Huang∗, Linqi Song†, Tian Lan‡
∗Tsinghua-Berkeley Shenzhen Institute, Tsinghua University

†City University of Hong Kong, ‡George Washington University
xujian20@mails.tsinghua.edu.cn, shaolun.huang@sz.tsinghua.edu.cn, linqi.song@cityu.edu.hk, tlan@gwu.edu

Abstract—The training efficiency of distributed learning sys-
tems is vulnerable to stragglers, namely, those slow worker nodes.
A naive strategy is performing the distributed learning by incor-
porating the fastest K workers and ignoring these stragglers,
which may induce high deviation for non-IID data. To tackle
this, we develop a Live Gradient Compensation (LGC) strategy
to incorporate the one-step delayed gradients from stragglers,
aiming to accelerate learning process and utilize the stragglers
simultaneously. In LGC framework, mini-batch data are divided
into smaller blocks and processed separately, which makes the
gradient computed based on partial work accessible. In addition,
we provide theoretical convergence analysis of our algorithm for
non-convex optimization problem under non-IID training data
to show that LGC-SGD has almost the same convergence error
as full synchronous SGD. The theoretical results also allow us to
quantify a novel tradeoff in minimizing training time and error
by selecting the optimal straggler threshold. Finally, extensive
simulation experiments of image classification on CIFAR-10
dataset are conducted, and the numerical results demonstrate
the effectiveness of our proposed strategy.

Index Terms—Straggler, Distributed Learning, Non-IID, Gra-
dient Compensation

I. INTRODUCTION

Distributed implementations of gradient-based methods [1],
[2] have been essential for training large machine learning
models on massive datasets, e.g., deep neural networks for
image classification and speech recognition [3], [4]. Typical
distributed learning architecture consists of a parameter server
(PS) and distributed worker nodes – the workers compute
and send local gradients to PS in parallel, while the PS
aggregates the gradients and then broadcasts back to workers
to update local parameters [5]. In synchronous settings, the
time overhead of each iteration in such system architecture is
subject to the stragglers, i.e., slow or unresponsive workers that
are caused by performance variability as well as unexpected
incidents like network congestion and hardware failures. It
has been shown that mitigating stragglers is crucial for fully
capitalizing on the benefits of distributed learning [6]–[9].

Much research attention has recently focused on mitigating
stragglers either by leveraging coding-theoretic techniques
[10]–[14] or by utilizing partial work completed by stragglers
[15], [16]. In particular, it is possible to collect gradients
from only the fast workers and discard the computations on
stragglers, while still achieving convergence [8], [17], [18]. We
refer to this naive strategy as K-SGD. However, this approach

𝒙𝑡 𝒙𝑡+1 𝒙𝑡+2

(b) (c)

(a)

Parameter Server

Global Average

𝑔 =
1

𝑁
 𝑔(𝑖)

𝑁

𝑖=1

Worker 1

Worker 2 Worker N ……

𝑔(1)

𝑔(2)
𝑔(𝑁)

𝑔

𝑔

𝑔

𝒙𝑡 𝒙𝑡+1 𝒙𝑡+2

1

2

1.2

1.5

1.5

2 2.5

1.3

1.3

1.2

1.5

1.5

2 2.5

1.3

1.3

1

2

Fig. 1. Distributed learning with a parameter server. (a) System architecture.
(b) Full-SGD method. (c) LGC-SGD method. LGC-SGD can significantly
reduce training time overhead while maintaining convergence, by evading
and compensating for stragglers.

relies on the IID assumption1 of training data and is shown
to induce gradient/sampling bias in more general settings.
Another line of work leverages gradient coding to obtain the
exact gradient value despite of the stragglers [7], [9], [19]–
[21]. However in such approaches, a certain amount of over-
head (computation/data duplication) must always be present, in
order to successfully address the worst-case stragglers. Further,
gradient coding schemes are brittle in the sense that they work
perfectly only up to a fixed number of stragglers.

In this paper, we propose a novel Live Gradient Compensa-
tion (LGC) framework for mitigating stragglers in distributed
learning, which is built on top of K-SGD with partial work
tolerance and gradient bias compensation mechanisms. The
central idea can be seen through a simple example shown in
Fig. 1 with one PS and three workers. In full synchronous
SGD (Full-SGD), the training time overhead of each iteration
is determined by the worst performing worker, which results
in a total training time of 2 + 2 + 2.5 = 6.5 for all three
iterations. On the other hand, we can bypass the slowest
worker in each iteration (thus collecting the results only from
the K = 2 fastest workers) and then compensate for the impact
by performing a combined gradient update in the next iteration.
This reduces the total training time to 1.2 + 1.5 + 1.3 = 4,

1Training data among workers are independent and identically distributed
(IID), so that local gradient is an unbiased estimation of global gradient.

albeit minor gradient noise introduced due to the one-step
delay of compensation. This motivates the design of LGC-
SGD and its theoretical analysis. In particular, we quantify
the convergence speed of LGC-SGD for arbitrary choice of
K and prove that the learning algorithm is guaranteed to
converge to a critical point even with non-convex objectives
and non-IID training data. We would like to emphasize that in
contrast to the gradient coding approach, LGC-SGD does not
require any extra computation or data storage overhead. While
gradient compensation has been developed as a technique in
gradient compression [22]–[26], we make novel use of that to
mitigate stragglers in distributed learning. We also note that
asynchronous methods need extra assumption for theoretically
ensuring convergence and often generates relatively high and
uncertain training errors [8], [27]–[30], thus we focus on
synchronous distributed learning in this paper.

To the best of our knowledge, this is the first work to
use gradient compensation for mitigating stragglers on the
fly. In contrast to existing approaches like directly ignoring
stragglers and gradient coding, our proposed LGC framework
guarantees training convergence with non-convex objectives
and non-IID training data, while introducing no additional
overhead for computation or data duplication. In particular, for
a system with N workers and any threshold K, we quantify
the gradient bias and variance induced by ignoring N−K slow
workers and show that their negative impact on convergence
can be successfully alleviated by choosing an appropriate,
one-step delayed gradient compensation that can be integrated
into the next update. We show that the bias-compensated
parameters enjoy a similar update rule with Full-SGD, thus
the convergence analysis could be performed similarly and
the same O(1/

√
NT) convergence rate can be achieved.

To minimize the training error, our analysis illuminates an
interesting design tradeoff between efficiency and accuracy,
since selecting less workers leads to more iterations under
a limited training time budget while the estimated gradient
value can become more accurate if more workers are allowed
to finish. We quantify this tradeoff and find the “sweet spot”
of optimal K (i.e., the optimal number of workers to finish
in each iteration) for minimizing training error within a fixed
training time budget t. This result gives us some insights to
adjust K for different time budgets.

The proposed LGC framework is evaluated on CIFAR-10
dataset with various cases by changing the level of non-
IID and the straggling period length, which verify the ef-
fectiveness in speeding up training while keeping a high
model generalization ability. Our simulation results show that
∼35% saving in training time can be obtained with only
slight accuracy loss. Moreover, the tradeoff by designing K is
numerically characterized and compared. To summarize, the
main contributions of this paper are as follows:
• A new distributed training strategy based on one-step

delayed gradient compensation, namely LGC-SGD, is
proposed for evading stragglers and utilizing partial work.

• We quantify the convergence property of LGC-SGD by
characterizing the gradient bias and through order statistic

analysis, which illuminates a new design tradeoff.
• Theoretical convergence analysis of proposed algorithm

for non-convex optimization on non-IID data is provided.
• The effectiveness of proposed LGC-SGD is verified on

CIFAR-10 dataset, where LGC-SGD can significantly re-
duce training time while converging to the same training
error compared with Full-SGD.

II. RELATED WORK

In [8], [17], the K-SGD is directly employed to mitigate
the impact of stragglers. In contrast to fixed K, distributed
SGD with adaptive K is also investigated in [8], [18], in
which the value of K gradually increased throughout the
training process. However, they do not consider persistent
stragglers nor deal with non-IID data. In [8], [21], it’s pointed
out that if training data is IID among workers, ignoring
stragglers is less harmful, otherwise it would have a negative
impact on convergence. As to distributed learning on non-IID
data, related work include the federated learning [23], [31],
[32]. In [32], the well-known FedAvg method is theoretically
proved to work for federated learning on non-IID data, but
the assumption of unbiased device sampling and parameter
averaging scheme are essential for obtaining the results. In this
paper we consider both IID and non-IID cases in distributed
learning with stragglers through a novel LGC-SGD method.

In [15], a scheme called Anytime Minibatch is designed to
exploit the partial work completed by slow worker nodes. In
this manner local gradient is averaged over the actually com-
puted stochastic gradients within the constrained computation
time. However, the fixed computation time is empirical and
varies with task and mini-batch size, and the non-convex and
non-IID cases were not studied. Partial work combining coding
is also explored in [16] through multi-message communication
strategy, where each worker is assigned with multiple data
partitions and would send a couple of recently calculated gra-
dients for multiple times in a communication round. Though
it can utilize the stragglers but data redundancy is still needed,
notably increasing the learning overhead. Our solution is partly
motivated by these work but a live compensation strategy with
provable convergence without adding computation/storage re-
dundancy.

III. THE PROPOSED LGC FRAMEWORK

A. System Model for Distributed Learning

We focus on distributed optimization of a non-convex
problem on non-IID data. We assume that training data are
distributed over multiple worker nodes in a network, and
all workers jointly optimize a shared model based on local
data. Mathematically, the underlying distributed optimization
problem can be formalized as follows:

min
x∈Rd

F (x) =
1

N

N∑
i=1

Eξi∼Di
[F (x; ξi)] (1)

where N is the number of workers, Di denotes the local
dataset of i-th worker and could have different distribution

from other workers (which means the IID assumption is
relaxed), and F (x; ξi) denotes the local loss function given
shared model parameters x and training data ξi (one sample
point or a mini-batch) sampled from Di of the i-th worker.

We make all workers initialized to the same point x0,
then Full-SGD can be employed to solve the problem. At
each iteration, the i-th worker randomly draws a mini-batch
samples ξi from Di, and computes local stochastic gradient
with respect to global shared parameter xt:

g
(i)
t = g(xt; ξi) =

1

|ξi|

|ξi|∑
j=1

∇F (xt; ξ
(j)
i) (2)

The parameter server aggregates all the local gradients to get
a global gradient:

g̃t =
1

N

N∑
i=1

g
(i)
t (3)

Then the result will be broadcast to all worker nodes to update
their local models and start a new iteration. This process will
repeat until the model converges.

Split Mini-batch and gradient accumulation

Iteration t Iteration t+1 Iteration t+2

…… Send

Send

PS PS
tg tg 1

𝒙𝑡 𝒙𝑡+1 𝒙𝑡+2

Fig. 2. Illustration of the workflow of proposed LGC-SGD. Mini-batch data
are divided into multiple blocks and processed in order.

B. Our Proposed Solution

The proposed LGC framework is described in Algorithm 1
and the training process is illustrated in Fig. 2. Specifically,
for each worker, mini-batch of data are divided into s smaller
blocks and computed incrementally. Slow worker may not be
able to completely finish its task by next iteration, but perhaps
it has processed r of s blocks and can send an approximate
result afterwards. At each iteration, the server collects the
fastest K fresh gradients that evaluated on entire mini-batch
as well as any delayed gradients from the previous iteration,
and obtains a parameter update by combining average fresh
gradient and a proper compensation for gradient bias of the
previous iteration. The gradient bias induced by ignoring strag-
glers is quantified by Eq. (7). Meanwhile, the remaining slow
workers are allowed to continue computing until the entire
mini-batch are evaluated or new global update is received,
after which the delayed gradients are sent to the server for
bias compensation. It is worth noting that the delayed gradients
could be computed based on full mini-batch data or a portion,
depending on the computation speed of stragglers. Suppose the
i-th worker computed r blocks of samples within an iteration

Algorithm 1 Live Gradient Compensation SGD
1: Input: learning rate η, total iteration T , partition number
s, mini-batch size m, total workers N , threshold K

2: Initial: x0 ∈ Rd; e−1 = 0
3: for t = 0, 1, ..., T − 1 do
4: On each worker i :
5: divide mini-batch samples ξi into s partitions
6: g

(i)
t = 0, r

(i)
t = 1

7: while r(i)t ≤ s and update not received do

8: g
(i)
t = g

(i)
t + g(xt; ξi[r

(i)
t])

9: r
(i)
t = r

(i)
t + 1

10: end while
11: send g(i)t = g

(i)
t /s to server

12: wait for global update g̃t from server
13: update local model: xt+1 = xt − ηg̃t
14: On server:
15: collect fastest K gradients from workers

16: average: g̃t′ =
1

K

∑
i∈St

g
(i)
t

17: if t ≥ 1 then
18: collect delayed (N −K) gradients from stragglers
19: calculate compensation:

20: et−1 =
1

N

∑
i/∈St−1

g
(i)
t−1 −

N −K
N

g̃′t−1

21: end if
22: obtain the global update: g̃t = g̃t

′ + et−1
23: send g̃t to all workers
24: end for

and the mini-batch size is m, the variance of local stochastic
gradient evaluated on a sample point is bounded by σ2. Then
the expectation and variance of gradient satisfy the following2:

E
[
g
(i)
t

]
= ∇Fi(xt) (4)

E
[∥∥∥g(i)t −∇Fi(xt)∥∥∥2] ≤ s

r
· σ

2

m
(5)

It means that the gradient based on partial work is still a
reliable estimation, equivalent to that obtained by scaling down
mini-batch size. Therefore, if gradients of stragglers could
be measured and compensated, the training performance can
be guaranteed. That is the main motivation of the proposed
strategy. Considering the enlarged variance may influence the
training process, we adopt a linear scaling rule on the gradient
to address this issue as Eq. (6), which is similar to the linear
scaling rule on the learning rate as [33]. The scaling operation
may reduce the magnitude of gradient, but not affect the
estimation of direction, having the effect of variance reduction.

g
(i)
t =

r

s
· 1

r

r∑
k=1

g(xt; ξi[k]) (6)

2In this paper, ‖ · ‖ denotes the `2 norm.

Let g̃t and g̃′t denote the average gradient of N and K
workers respectively, and St the set of fastest K workers. Then
the gradient bias caused by ignoring stragglers can be obtained
as follows:

et = g̃t − g̃′t =
1

N

N∑
i=1

g
(i)
t −

1

K

∑
k∈St

g
(k)
t

=
N −K
N

 1

N −K
∑
k/∈St

g
(k)
t −

1

K

∑
k∈St

g
(k)
t

 (7)

The first term in parentheses in the last step yields the
average gradient of stragglers, and the second term is the
aforementioned average gradient of fastest K workers.

IV. THEORETICAL ANALYSIS OF LGC

In this section, we provide the theoretical analysis of the
proposed LGC-SGD for non-convex optimization problem,
jointly considering the non-IID training data and persistent
straggling behavior. We investigate the convergence properties
of both K-SGD and LGC-SGD by iteratively analyzing the
sequence of gradient update. Besides, we quantify a novel
tradeoff in minimizing training error under given training time
budget by selecting different straggler threshold K. We collect
all theorem proofs in the Appendix.

A. Preliminaries

We first make the following basic assumption, which is
commonly used in the literature [25], [34], [35] for conver-
gence analysis of distributed optimization.

Assumption 1. Assume that problem (1) satisfies:

1. Smoothness: The objective function F (·) is smooth with
Lipschitz constant L > 0, which means ‖∇F (x)−∇F (y)‖ ≤
L ‖x− y‖ ,∀x,∀y. It implies that:

F (x)− F (y) ≤ ∇F (x)T (y − x) +
L

2
‖x− y‖2 (8)

2. Unbiased local gradient: For each worker with local
data, the stochastic gradient is locally unbiased:

Eξi∼Di
[∇F (x; ξi)] = ∇Fi(x) (9)

3. Bounded variances: The stochastic gradient evaluated
on a sample point of each worker has a bounded variance
uniformly, satisfying:

Eξi∼Di [‖∇F (x; ξi)−∇Fi(x)‖2] ≤ σ2 (10)

and the deviation between local and global gradient satisfies:

‖∇Fi(x)−∇F (x)‖2 ≤ β2 (11)

The above assumptions are valid for both IID and non-IID
cases. We do not assume that the worker nodes can access
the same dataset and thus consider the non-IID problem in
particular. The β2 in third assumption quantifies the deviation
between local and global gradient, and we consider that β2 =
0 for IID case and β2 > 0 for non-IID case.

B. Convergence Analysis

We first provide the following useful lemma to characterize
the gradient bias caused by initially ignoring computations of
stragglers, which can help analyze convergence properties of
both K-SGD and LGC-SGD under non-IID training data. We
note that the analysis of K-SGD provides the basis as well as
valuable insights for analyzing LGC-SGD.

Lemma 1. Suppose the training data among workers are
non-IID under Assumption 1, then the deviation between the
average gradient of all workers and the average gradient of
any K workers can be characterized as follows:

E[‖g̃ − g̃′‖2] ≤ δ2 +
N −K
NK

σ2 (12)

and if the global gradient is estimated based on the results on
K workers, the variance can be bounded as:

E
[
‖g̃′ −∇F (x)‖2

]
≤ δ2 +

1

K
σ2 (13)

where δ2 = min{β2, (N−K)2

K2 β2} depends on the value of K.

Proof. Detailed proof of Lemma 1 is in Appendix A.

Remark 1. The extra term δ2 in Lemma 1 arises from non-
IID, which is the main reason for obtaining a different gradient
variance than in IID case. It is worth noting that when K = N
we always have δ2 = 0, and that is the reason why Full-SGD
still works well for non-IID problem. We recommend choosing
K > 0.5N for non-IID problem to reduce the δ2. When the
problem is optimized by mini-batch SGD with batch-size m, it
is not hard to show that σ2 can be substituted by σ2/m but
the δ2 remains unchanged.

The notations in Lemmas 1 will be directly used later in this
paper to perform the convergence analysis. For basic K-SGD,
if we assume that the stragglers are random and independent
across iterations, extending the analysis technique for IID case
in [8], [35] we can characterize the convergence of K-SGD
by Theorem 1.

Theorem 1. For problem (1) under Assumption 1, suppose
that the fastest K workers are random and independent at
each iteration, and that the K-SGD method employs a fixed
learning rate η ≤ 1/L and F ∗ = minx F (x), then we have
the following convergence result:

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤ 2(F (x0)− F ∗)
ηT

+ Lη(δ2 +
σ2

K
)

(14)

Proof. Detailed proof of Theorem 1 is in Appendix B.

The above theorem shows that given enough training itera-
tion T and small learning rate η, the algorithm converges to a
critical point. When the training data among workers are IID,
the result is straightforward and holds even when the fastest
K workers are not random due to persistent stragglers. But
for non-IID training data, the assumption of random selection

of K workers is essentially needed. However, in practice it
is possible for some worker nodes to remain as stragglers for
an extended period of time. Thus, we relax this assumption to
further investigate the convergence under persistent stragglers
and non-IID training data. Based on Lemma 1, we can revise
the error bound in Theorem 1 and get the following result.

Proposition 1. For problem (1) under Assumption 1, sup-
pose that the K-SGD method employs a fixed learning rate
η ≤ 1/4L and F ∗ = minx F (x). Then we have the following
convergence result:

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤2(F (x0)− F ∗)
ηT

+ 2Lη(δ2 +
σ2

K
)

+ 2(δ2 +
N −K
NK

σ2) (15)

Proof. Detailed proof of Proposition 1 is in Appendix C.

Comparing the results of Theorem 1 and Proposition 1, it
can be seen that K-SGD may result in higher training error
after convergence when stragglers are persistent. Because there
exists extra constant term on the right hand side of Proposition
1, which does not diminish even under small learning rate. To
address this issue, we utilize the delayed gradients of stragglers
to generate compensation in the next round of global update.
We provide the following convergence theorem for LGC-SGD.

Theorem 2. For problem (1) under Assumption 1 and let
F ∗ = minx F (x), if LGC-SGD emplys a fixed learning rate
η ≤ 1/2L, then we have the following convergence result:

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤2(F (x0)− F ∗)
ηT

+
Lησ2

N

+ 2L2η2(δ2 +
N −K
NK

σ2) (16)

Proof. Detailed proof of Theorem 2 is in Appendix D.

Based on Theorem 2, We can obtain the O(1/
√
NT)

convergence rate by appropriately choosing the learning rate,
as illustrated in the following corollary. When T is sufficiently
large, O(1/

√
NT) dominates O (N/T), so the acceleration of

convergence rate is almost free from the influence of K.

Corollary 1. For problem (1) under Assumption 1 and let
F ∗ = minx F (x), if LGC-SGD employs a fixed learning rate
η =

√
N√
T

, then for any T ≥ 4NL2, we have the following
convergence result:

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] = O

(
1√
NT

)
+O

(
N

T

)
(17)

Theorem 2 shows that the last term in the upper bound in
Eq. (16) is proportional to the squared learning rate, which
makes it different from K-SGD result in Proposition 1. It
means that deviation in the learned model parameters due to
gradient bias can be made arbitrarily small when choosing a
sufficiently small learning rate, enabling LGC-SGD to achieve
the same convergence error as Full-SGD. At this point, the

above convergence analysis theoretically demonstrates that the
improved algorithm can overcome the drawbacks of naive
K-SGD by taking advantage of live gradient compensation
completed by stragglers.

C. Tradeoff by Selecting Threshold K

The selection of threshold K illuminates a new trade-off
in training time and convergence error, which is crucial in
distributed learning. Intuitively, under the same conditions,
smaller values of K make each iteration complete more quickly
but result in higher gradient bias while bigger values of K
lead to longer per-iteration time but lower gradient bias. Thus
there exists a “sweet spot” of the choice of K to achieve the
smallest training error under fixed training time budget. In
the previous analysis, we have obtained the training error for
given number of iterations T . As to training time analysis, we
need to find the per-iteration time distribution through order
statistics [8], [18], [36]. Suppose that the wall-clock time to
complete each iteration can be described by random variable
Xi for worker i, where Xi’s are i.i.d. across iterations and
workers. Then, the expected time spent at each iteration for
the fastest K workers is the expectation of the Kth order
statistic of N i.i.d. random variables X1, X2, ..., XN , denoted
by E

[
X(K)

]
. We consider the shifted exponential distribution,

which have been widely used in the literature [6], [8], [16] to
model the per-iteration computation time. Let µ̄ and µK denote
the expectation of single variable and the Kth order statistic
respectively, and let τ denote the averaged communication
latency, t the total training time constraint. Substituting the
iteration number T with t/(τ+µK) and choosing K > 0.5N ,
then δ2 ≤ (N−K)2

K2 β2 ≤ N−K
K β2 and the bound in Theorem

2 can be rewritten as the following function of K:

B(K) =
2(F (x0)− F ∗)

ηt
µK +

2L2η2
(
Nβ2 + σ2

)
K

+ const

(18)

Before finding the optimal K to minimize training error,
we propose two basic constraints on the selection of K as
follows:

µK ≤ (1 + λ)µ̄, 0 < λ < 1 (19)
µN
s
≤ µK + τ, 1 < s ≤ m (20)

The first constraint ensures the per-iteration computation time
would not exceed the average execution time of single worker
by λµ. The second constraint means that stragglers should
have computed at least one data block before parameters are
updated. This is needed because otherwise the gradient from
slowest worker would be unattainable.

Take shifted exponential distribution Xi ∼ ∆ + Exp(µ)
and further mathematical analysis on the threshold selection
strategy can be carried out. For large value of N , we have the
following approximations of expected order statistic [8]:

E[X(K)] = ∆ + µ log
N

N −K
(K < N) (21)

E[X(N)] = ∆ + µ logN (22)

Since the communication latency and shift ∆ are not known in
advance, here we obtain the feasible lower- and upper-bounds
of appropriate K:

max
{

0.5, 1− e−(log N
s)
}
≤ K

N
≤ 1− e−(1+λ) (23)

Empirical results in [20], [37] show that in large cluster of
workers, only around 2% nodes require much longer com-
putation time than the median. Therefor, the upper bound of
K controlled by small λ is sufficient to evade stragglers. To
minimize the B(K) with respect to K, take its derivative and
we have:
dB(K)

dK
=

2µ(F (x0)− F ∗)
ηt(N −K)

− 2L2η2(β2 + σ2/N)N

K2
(24)

Setting the derivative to 0, we get a quadratic function :

1− p
p2

=
µ(F (x0)− F ∗)

L2η3t(β2 + σ2/N)
(25)

where p = K
N is constrained as in (23). It’s obvious that the

second order derivative of B(K) is positive, so the optimal
selection of K is unique.

While the exact value of optimal K cannot be readily
computed using Eq. (25), it depends on the optimal value of
objective, Lipschitz constant and gradient variance that are not
known in advance, we can still get some important insights
from Eq. (25). It is not hard to show that the optimal p will
increase with larger the time budget t and for IID problems
with β2 = 0, and will decrease with growing system size N .
The result also reveals that the optimal value of p increases
as the objective function gets closer to the optimal value. If
dividing the total training process into multiple phases, then
the best strategy would be to gradually increase the value of p
(and thus K) over time. This makes sense since in the initial
phase small K helps to reduce the gap between initial value
and optimal value of objective function quickly, and in the later
phase big K should be used to aim for smaller convergence
error. This analysis result provides a theoretical support for the
heuristic algorithms previously developed in [8], [18]. It can
be leveraged to construct more advanced strategies for tuning
K and N with respect to training time/error objectives.

V. SIMULATION

The proposed LGC-SGD approach and theoretical results
are evaluated on the CIFAR-10 dataset [38]. We implemented
the learning task in a non-IID distributed manner. Since data
duplication and coded computation may be unfeasible in some
cases, such as federated learning, we only evaluate the Full-
SGD and naive K-SGD as baselines for comparison.

A. Experimental Setup

Dataset and Model. The well-known CIFAR-10 dataset
contains 10 object classes with 50,000 training samples and
10,000 testing samples. Here we use the notation non-IID(c)
to mean that each worker is allocated with c categories of
samples. We constructed our model based on VGG-11 [39],

where we adjusted the neural network to fit the input size and
kept only one fully connected layer without dropout layer.

Simulation Setting. To simulate the straggling behaviors,
we use shifted exponential distribution to generate the per-
iteration computation time, on which the stragglers are iden-
tified. The mini-batch size is set to 32 and each training
algorithm is run for total 60 epochs. The initial learning rate is
set to 0.1 and divided by 10 after 30 epochs. The momentum
is set to 0.9 and weight decay is set to 0.0005. For K-SGD
and LGC-SGD, the first 2 epochs are run in Full-SGD fashion
as warmup. All algorithms are implemented in PyTorch.

Metrics. We trained the model for a fixed number of epochs
and use the training loss curve as well as model test accuracy
to evaluate the training performance. Specifically, loss value
after training and time consumption are utilized as metrics to
evaluate training efficiency. Average test accuracy of last 5
epochs is used to assess the model generalization ability.

B. Numerical Results

We conduct simulations for N = 10 workers and choose
K = 7 as the straggler threshold value. As [21] we introduce
dependency between stragglers across iterations by fixing per-
iteration computation time for h iterations, after which the
computation time for each worker will be generated randomly
and independently again. To begin with, we simply assume
that the stragglers can complete all computations before the
beginning of next iteration. We repeated each experiment for
three times and reported the average result. Fig. 3 shows the
main results of model test accuracy under different level of
non-IID for different straggling behaviors.

c = 1 c = 2 c = 3 c = 5 c = 10
86

87

88

89

90

91

Non−IID(c): classes per worker

T
es

t A
cc

ur
ac

y
(%

)

K−SGD LGC−SGD Full−SGD

(a) Straggling Period h = 1

c = 1 c = 2 c = 3 c = 5 c = 10
86

87

88

89

90

91

Non−IID(c): classes per worker

T
es

t
A

cc
ur

ac
y

(%
)

K−SGD LGC−SGD Full−SGD

X

(b) Straggling Period h = 10

c = 1 c = 2 c = 3 c = 5 c = 10
86

87

88

89

90

91

Non−IID(c): classes per worker

T
es

t
A

cc
ur

ac
y

(%
)

K−SGD LGC−SGD Full−SGD

X

(c) Straggling Period h = 50

c=1 c=2 c=3 c=5 c=10
86

87

88

89

90

91

Non−IID(c): classes per worker

T
es

t A
cc

ur
ac

y
(%

)

K−SGD LGC−SGD Full−SGD

X

(d) Straggling Period h = 150

Fig. 3. Test accuracy comparison of training methods under various level
of non-IID and different straggling period length. LGC-SGD outperforms K-
SGD and catches up with Full-SGD.

1) Robustness to Non-IID: We reduce the value of c to
generate data distributions with increasing non-IID level and
test the robustness of LGC-SGD. It can be found that Full-
SGD performs well despite of data skewness among workers.
However, the K-SGD has lower test accuracy, especially
under large data skewness and persistent straggling behavior,
such as non-IID(2) and non-IID(3) in Fig. 3(b)(c)(d), and
even diverges under non-IID(1). In contrast, the proposed

0 2000 4000 6000 8000
0

0.5

1.0

1.5

2.0

2.5

Iterations

T
ra

in
in

g
 L

os
s

K−SGD

LGC−SGD

Full−SGD

(a) Training loss v.s. iterations

0 200 400 600 800 1000
0

0.5

1.0

1.5

2.0

2.5

Time (seconds)

T
ra

in
in

g
 L

os
s

K−SGD

LGC−SGD

Full−SGD

(b) Training loss v.s. time

Fig. 4. The convergence of training loss over iterations and time. LGC-SGD
has faster training speed and comparable convergence error than Full-SGD.

LGC-SGD can effectively leverage gradient compensation to
eliminate gradient bias during the training process, achieving
comparable model generalization ability as Full-SGD after the
same number of training iterations.

2) Robustness to Straggling Period: We also change the
h to simulate different straggling behavior to investigate the
impact on training. Fig. 3 provides the test results of 3
cases, where h = 1 means the stragglers are random and
independent every iteration while h = 10 means that stragglers
are randomly selected every 10 iterations. It’s interesting to see
that when h = 1, the test result of K-SGD is less affected by
non-IID, verifying our result in Theorem 1. As we increase
the value of h, the model trained by K-SGD results in lower
test accuracy due to gradient bias induced by discarding the
computation of stragglers. However, the model trained by
LGC-SGD still achieves nearly equal test result to Full-SGD.

3) Efficiency Improvement: Take the case of c = 3 and
h = 10, the convergence of training loss in terms of the
number of iterations and generated wall-clock time are plotted
in Fig. 4, where we use Xi ∼ 0.05 + Exp(0.02) to generate
and simulate per-iteration time. The Full-SGD can achieve
lowest convergence error at the cost of longer overall training
time, while K-SGD can save per-iteration time but result in
higher convergence error. However, the LGC-SGD can have
the best of both worlds by significantly reduce training time
as K-SGD while achieving almost the same training loss as
Full-SGD. The simulation result demonstrates that LGC-SGD
can reduce training time by up to ∼35% compared with the
Full-SGD, while achieving nearly the same convergence error.

C. Discussions

Finally, we perform analysis on other factors that may affect
the performance of LGC-SGD. Specifically, we evaluate the
behaviors of LGC-SGD with different choices of K, different
percentages of the mini-batch data that are processed by
stragglers for each iteration as well as different system sizes.
In this part, we fix c = 3 and h = 10 while the results are
similar for other values of c and h.

1) Tradeoff through K: As mentioned previously, the selec-
tion of threshold K is non-trivial and highlights an important
tradeoff between minimizing training error and training time.
We gradually increased the value of K from 5 to 10 for fixed
number of iterations to plot the optimal frontier of training
time and training loss as Fig. 5, in which different colors
represent different values of K and the red digital labels denote

500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

80.37

86.06

87.24 87.92

89.3988.78

89.35
89.27 89.17 89.23

Training Time (seconds)

Tr
ai

ni
ng

 L
os

s

89.59

5

6

7

8

9

10

K−SGD

LGC−SGD

Fig. 5. Training loss and training time as well as test accuracy for various
value of K under fixed training iterations.

Random 0.25 0.75 1.0
87

88

89

90

0.50
Percentage (r/s)

T
es

t A
cc

ur
ac

y
(%

)

LGC−SGD w/o scaling
LGC−SGD w/ scaling
Full−SGD
K−SGD

Fig. 6. Tolerating partial work by linear scaling on the gradient of stragglers.

test accuracy. It can be found that as K decreases, the model
test accuracy of K-SGD degrades substantially while LGC-
SGD only has slight accuracy loss. It experimentally reveals
that the selection of K is an explicit tradeoff bewteen training
time and model accuracy. And the optimal frontier achieved
by LGC-SGD significantly improves that of K-SGD.

2) Partial Work: We artificially make the slow workers only
process different percentages of mini-batch data to study the
influence of tolerating partial work of stragglers. We keep
the batch-size as m = 32 and set the number of blocks as
s = 4, then simulations are conducted under fixed and random
amount of partial work (r = 1 ∼ 4). Particularly, we compare
the results of LGC-SGD with and without linear scaling on
the delayed gradients of stragglers as shown in Fig. 6. It can
be seen that LGC-SGD with linear scaling on delayed gradient
can effectively utilize the partial work of stragglers.

3) Scalability: To further verify the effectiveness, we com-
pare the results of three different system sizes, where we set
N = 10, 20, 40 with K = 0.7N respectively and adjust the
batch-size to keep mN = 320. It is observed that LGC-
SGD consistently achieves nearly optimal test accuracy (i.e.,
89.27, 89.22, 89.28 vs. 89.59, 89.49, 89.43 in Full-SGD for
N = 10, 20, 40) and significant saving in training time over
Full-SGD (i.e., ∼35%, ∼40%, ∼45% for N = 10, 20, 40),
which indicate the resilience of LGC-SGD.

VI. CONCLUSION

In this work, we proposed a live gradient compensation
framework to evade stragglers in distributed learning system.
It can overcome the drawbacks of naively ignoring stragglers
in synchronous SGD and unlike gradient coding approaches
does not require any extra computation/storage overhead. We
particularly investigated the performance of LGC-SGD on
non-IID training data, providing theoretical analysis on the
convergence error and quantifying the tradeoff by selecting dif-
ferent straggler threshold value. Simulation results on CIFAR-
10 dataset verified our theoretical findings and demonstrated
the effectiveness of proposed LGC-SGD. Future work includes
developing strategies to dynamically adjust different hyper-
parameters in LGC-SGC in practical distributed systems.

ACKNOWLEDGMENT

Prof. Shao-Lun Huang is supported by the National Natural
Science Foundation of China (61807021), Shenzhen Science
and Technology Program (KQTD20170810150821146), Inno-
vation and Entrepreneurship Project for Overseas High-Level
Talents of Shenzhen (KQJSCX20180327144037831). Prof.
Linqi Song is supported by the Hong Kong RGC grant ECS
21212419, and Guangdong Basic and Applied Basic Research
Foundation under Key Project 2019B1515120032.

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[2] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems (NIPS), 2012, pp. 1223–1231.

[3] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems (NIPS), 2012.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition,”
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[5] M. Li, D. G. Andersen, A. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” Advances in
Neural Information Processing Systems (NIPS), vol. 1, pp. 19–27, 2014.

[6] J. Dean and L. A. Barroso, “The tail at scale,” Communications of The
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[7] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning (ICML), 2017.

[8] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed
sgd,” in AISTATS, 2018.

[9] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Redundancy techniques for
straggler mitigation in distributed optimization and learning,” Journal of
Machine Learning Research, vol. 20, no. 72, pp. 1–47, 2019.

[10] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 5434–5442.

[11] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi,
“Near-optimal straggler mitigation for distributed gradient methods,”
in IEEE International Parallel and Distributed Processing Symposium
Workshops(IPDPS), 2018, pp. 857–866.

[12] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[13] H. Park, K. W. Lee, J.-Y. Sohn, C. Suh, and J. Moon, “Hierarchical
coding for distributed computing,” in IEEE International Symposium on
Information Theory (ISIT), 2018, pp. 1630–1634.

[14] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr,
“Polynomially coded regression: Optimal straggler mitigation via data
encoding,” arXiv:1805.09934, 2018.

[15] N. Ferdinand, H. Al-Lawati, S. Draper, and M. Nokleby, “Anytime
minibatch: Exploiting stragglers in online distributed optimization,” in
International Conference on Learning Representations (ICLR), 2019.

[16] E. Ozfatura, D. Gündüz, and S. Ulukus, “Speeding up distributed gradi-
ent descent by utilizing non-persistent stragglers,” in IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 2729–2733.

[17] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv:1604.00981, 2016.

[18] S. Kas Hanna, R. Bitar, P. Parag, V. Dasari, and S. El Rouayheb,
“Adaptive distributed stochastic gradient descent for minimizing delay
in the presence of stragglers,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020.

[19] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in International Conference on Machine Learning (ICML),
2018, pp. 5606–5615.

[20] H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “Erasurehead:
Distributed gradient descent without delays using approximate gradient
coding,” arXiv:1901.09671, 2019.

[21] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient cod-
ing for straggler mitigation in distributed learning,” IEEE Journal on
Selected Areas in Information Theory, vol. 1, no. 1, pp. 277–291, 2020.

[22] S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,”
in Advances in Neural Information Processing Systems (NIPS), 2018.

[23] F. Sattler, S. Wiedemann, K. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–14, 2019.

[24] S. Zheng, Z. Huang, and J. T. Kwok, “Communication-efficient dis-
tributed blockwise momentum sgd with error-feedback,” in Advances in
Neural Information Processing Systems (NIPS), 2019.

[25] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “DoubleSqueeze:
Parallel stochastic gradient descent with double-pass error-compensated
compression,” in International Conference on Machine Learning
(ICML), 2019, pp. 6155–6165.

[26] S. U. Stich and S. P. Karimireddy, “The error-feedback framework: Sgd
with delayed gradients,” Journal of Machine Learning Research, vol. 21,
no. 237, pp. 1–36, 2020.

[27] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild! a lock-free
approach to parallelizing stochastic gradient descent,” in Advances in
Neural Information Processing Systems (NIPS), 2011, pp. 693–701.

[28] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asynchronous
stochastic gradient descent for dnn training,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

[29] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2015, pp. 2737–2745.

[30] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “An asynchronous
mini-batch algorithm for regularized stochastic optimization,” IEEE
Trans. Automat. Contr., vol. 61, no. 12, pp. 3740–3754, 2016.

[31] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv:1806.00582, 2018.

[32] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations (ICLR), 2020.

[33] P. Goyal, P. Dollár, R. B. Girshick, and P. Noordhuis, “Accurate, large
minibatch SGD: training imagenet in 1 hour,” arXiv:1706.02677, 2017.

[34] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex op-
timization,” in International Conference on Machine Learning (ICML),
vol. 97, 2019, pp. 7184–7193.

[35] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, 2018.

[36] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proceedings of
Machine Learning and Systems (MLSys), 2019.

[37] V. Gupta, D. Carrano, Y. Yang, V. Shankar, T. A. Courtade, and
K. Ramchandran, “Serverless straggler mitigation using local error-
correcting codes,” arXiv:2001.07490, 2020.

[38] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, 2009.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015.

APPENDIX

A. Proof of Lemma 1

Given a arbitrary subset of workers St, which represents the
fastest K workers, then

E[
∥∥g̃t − g̃t′∥∥2]

= E


∥∥∥∥∥∥ 1

N

N∑
i=1

g
(i)
t −

1

K

∑
j∈St

g
(j)
t

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥N −KN

1

N −K

N∑
i/∈St

g
(i)
t −

N −K
N

1

K

∑
j∈St

g
(j)
t

∥∥∥∥∥∥
2


Let A =
∑
i/∈St

(
g
(i)
t −∇F (xt)

)
, B =

∑
j∈St

(
g
(j)
t −∇F (xt)

)
,

then A and B are independent. We have E[A + B] = 0 and

E[
∥∥g̃t − g̃t′∥∥2] =

(N −K)2

N2
E

[∥∥∥∥ 1

N −K
A− 1

K
B

∥∥∥∥2
]

Recall that σ2 is the bounded local variance for local gradient
and β2 is bounded deviation between local and global gradient.
Applying the Jensen inequality, we have

‖E [A]‖2 ≤ (N −K)
∑
i/∈St

‖∇Fi(xt)−∇F (xt)‖2 ≤ (N −K)2β2

‖E [B]‖2 ≤ K
∑
i∈St

‖∇Fi(xt)−∇F (xt)‖2 ≤ K2β2

Notice that E[A] = −E[B], thus

‖E [A]‖2 = ‖E [B]‖2 ≤ min{(N −K)2β2,K2β2}

Using the basic relation between expectation and variance, we
have

E ‖A‖2 = ‖E[A]‖2 + var[A] ≤ ‖E[A]‖2 + (N −K)σ2

E ‖B‖2 = ‖E[B]‖2 + var[B] ≤ ‖E[B]‖2 +Kσ2

Based on the above relations, we have

E

[∥∥∥∥ 1

N −K
A− 1

K
B

∥∥∥∥2
]

= E
∥∥∥∥ 1

N −K
A

∥∥∥∥2 + E
∥∥∥∥ 1

K
B

∥∥∥∥2 − 2E
〈

1

N −K
A,

1

K
B

〉
≤
[

1

N −K
+

1

K

]2
‖E [A]‖2 +

[
1

N −K
+

1

K

]
σ2

≤ N2

(N −K)2K2
‖E [A]‖2 +

N

(N −K)K
σ2

Combining the above results together, we get

E[
∥∥g̃t − g̃t′∥∥2] =

1

K2
‖E [A]‖2 +

N −K
NK

σ2

≤

{
β2 + N−K

NK σ2, K ≤ 0.5N
(N−K)2

K2 β2 + N−K
NK σ2, K > 0.5N

Since

E ‖B‖2 = min{(N −K)2β2,K2β2}+Kσ2

we directly have

E
[∥∥g̃t′ −∇F (xt)

∥∥2] =
1

K2
E ‖B‖2

≤ min{β2,
(N −K)2

K2
β2}+

1

K
σ2

≤

{
β2 + 1

Kσ
2, K ≤ 0.5N

(N−K)2

K2 β2 + 1
Kσ

2, K > 0.5N

It completes the proof of Lemma 1.

B. Proof of Theorem 1

The averaged gradient of fastest K workers is unbiased
estimation of global gradient under Assumption 1, whether
for IID or non-IID training data. Taking the total expectations
of averaged gradient on local sampling and workers selection,
we have

E
[
g̃t
′] = E

[
1

K

∑
i∈St

g
(i)
t

]
=

1(
N
K

) (N
K)∑
j=1

E

 1

K

∑
i∈Sj

g
(i)
t


=

1

K ·
(
N
K

) N∑
i=1

(
N − 1

K − 1

)
E
[
g
(i)
t

]
=
N ·

(
N−1
K−1

)
K ·

(
N
K

) 1

N

N∑
i=1

E
[
g
(i)
t

]
= ∇F (xt)

Then, by the smoothness of objective function F , we have

Et[F (xt+1)]− F (xt)

≤ ∇F (xt)
TEt[xt+1 − xt] +

L

2
Et
[
‖xt+1 − xt‖2

]
= −η 〈∇F (xt),Et [g̃′t]〉+

Lη2

2
Et
[
‖g̃′t‖

2
]

= −η ‖∇F (xt)‖2 +
Lη2

2
‖∇F (xt)‖2

+
Lη2

2
Et

∥∥∥∥∥ 1

K

∑
i∈St

g
(i)
t −∇F (xt)

∥∥∥∥∥
2


= −η(1− Lη

2
) ‖∇F (xt)‖2 +

Lη2

2
(δ2 +

σ2

K
)

Taking total expectation and rearrange the terms, we have

η(1− Lη

2
)E[‖∇F (xt)‖2]

≤ E[F (xt)− F (xt+1)] +
Lη2

2
(δ2 +

σ2

K
)

Assume that η ≤ 1

L
, thus 1 − Lη

2
≥ 1

2
. Taking summation

and dividing by η(1− Lη

2
)T , then we get

1

T

T−1∑
t=0

E[‖∇F (xt)‖2]

≤
∑T−1
t=0 E[F (xt)− F (xt+1)]

η(1− Lη
2)T

+
Lη

2(1− Lη
2)

(δ2 +
σ2

K
)

≤ 2(F (x0)− F ∗)
ηT

+ Lη(δ2 +
σ2

K
),

which completes the proof.

C. Proof of Proposition 1

Similar to the proof of Theorem 1, we have

Et[F (xt+1)]− F (xt)

≤ −η 〈∇F (xt),Et [g̃′t]〉+
Lη2

2
Et
[
‖g̃′t‖

2
]

= −η 〈∇F (xt),Et [g̃t]〉+ η 〈∇F (xt),Et [g̃t − g̃′t]〉

+
Lη2

2
Et
[
‖g̃′t −∇F (xt) +∇F (xt)‖

2
]

≤ −η ‖∇F (xt)‖2 +
ηρ

2
‖∇F (xt)‖2 +

η

2ρ
E[‖g̃t − g̃′t‖

2
]

+ Lη2 ‖∇F (xt)‖2 + Lη2Et
[
‖g̃′t −∇F (xt)‖

2
]

≤ −η
2

(2− ρ− 2Lη) ‖∇F (xt)‖2

+
η

2ρ
(δ2 +

N −K
NK

σ2) + Lη2(δ2 +
σ2

K
)

where the Young’s inequality with ρ > 0, the basic inequality
(a + b)2 ≤ 2(a2 + b2) and Lemma 1 are applied. Choosing
ρ = 0.5, taking total expectation and rearranging the terms,
we get

η(
3− 4Lη

4
)E[‖∇F (xt)‖2] ≤ E[F (xt)− F (xt+1)]

+ Lη2(δ2 +
σ2

K
) + η(δ2 +

N −K
NK

σ2)

Assume that η ≤ 1/4L, thus
3− 4Lη

4
≥ 1

2
. Taking summa-

tion and dividing by η
(3− 4Lη)

4
T , then we get

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤
4
∑T−1
t=0 E[F (xt)− F (xt+1)]

η(3− 4Lη)T

+
4(Lη(δ2 + σ2

K) + (δ2 + N−K
NK σ2))

3− 4Lη

≤ 2(F (x0)− F ∗)
ηT

+ 2Lη(δ2 +
σ2

K
) + 2(δ2 +

N −K
NK

σ2)

which completes the proof.

D. Proof of Theorem 2

We first show that a modified parameter sequence x̂t = xt−
ηet−1 satisfies x̂t+1 = x̂t − ηg̃t, where et−1 = g̃t−1 − g̃′t−1.
According to the algorithm, we have

xt+1 = xt − η(g̃′t + et−1)

= xt − η(g̃t − (g̃t − g̃′t))− ηet−1
= xt − ηet−1 − ηtg̃t + ηet

therefore, we get

(xt+1 − ηet) = (xt − ηet−1)− ηg̃t

Based on above result and by the smoothness, we have

Et[F (x̂t+1)]− F (x̂t)

≤ ∇F (x̂t)
TEt[x̂t+1 − x̂t] +

L

2
Et
[
‖x̂t+1 − x̂t‖2

]
= −η 〈∇F (x̂t),Et [g̃t]〉+

Lη2

2
Et
[
‖g̃t‖2

]
≤ −η 〈∇F (x̂t),∇F (xt)〉+

Lη2

2

[
‖∇F (xt)‖2 +

σ2

N

]
Applying Young’s inequality with ρ > 0 and by the smooth-
ness, we have

− η 〈∇F (x̂t),∇F (xt)〉
= −η 〈∇F (xt),∇F (xt)〉+ η 〈∇F (xt)−∇F (x̂t),∇F (xt)〉

≤ −η(1− ρ

2
) ‖∇F (xt)‖2 +

η

2ρ
‖∇F (xt)−∇F (x̂t)‖2

≤ −η(1− ρ

2
) ‖∇F (xt)‖2 +

L2η

2ρ
‖xt − x̂t‖2

= −η(1− ρ

2
) ‖∇F (xt)‖2 +

L2η3

2ρ
‖et−1‖2

Choosing ρ = 0.5, taking total expectation and rearranging
the terms, we get

η(
3− 2Lη

4
)E[‖∇F (xt)‖2]

≤ E[F (x̂t)− F (x̂t+1)] +
Lη2σ2

2N
+ L2η3(δ2 +

N −K
NK

σ2)

Choosing a fixed learning rate η ≤ 1/2L, thus
3− 2Lη

4
≥ 1

2
.

Taking summation and dividing by η
(3− 2Lη)

4
T , then we get

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤
4
∑T−1
t=0 E[F (x̂t)− F (x̂t+1)]

η(3− 2Lη)T

+
4(Lησ

2

2N + L2η2(δ2 + N−K
NK σ2))

3− 2Lη

≤ 2(F (x0)− F ∗)
ηT

+
Lησ2

N
+ 2L2η2(δ2 +

N −K
NK

σ2)

which completes the proof.

