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Abstract—Covering option discovery has been developed to im-4
prove the exploration of reinforcement learning in single-agent5
scenarios, where only sparse reward signals are available. It aims to6
connect the most distant states identified through the Fiedler vector7
of the state transition graph. However, the approach cannot be8
directly extended to multiagent scenarios, since the joint state space9
grows exponentially with the number of agents, thus prohibiting10
efficient option computation. Existing research adopting options in11
multiagent scenarios still relies on single-agent algorithms and fails12
to directly discover joint options that can improve the connectivity13
of the joint state space. In this article, we propose a new algorithm to14
directly compute multiagent options with collaborative exploratory15
behaviors while still enjoying the ease of decomposition. Our key16
idea is to approximate the joint state space as the Kronecker17
product of individual agents’ state spaces, based on which we can18
directly estimate the Fiedler vector of the joint state space using19
the Laplacian spectrum of individual agents’ transition graphs.20
This decomposition enables us to efficiently construct multiagent21
joint options by encouraging agents to connect the subgoal joint22
states, which are corresponding to the minimum or maximum23
of the estimated joint Fiedler vector. Evaluation on multiagent24
collaborative tasks shows that our algorithm can successfully iden-25
tify multiagent options and significantly outperforms prior works26
using single-agent options or no options, in terms of both faster27
exploration and higher cumulative rewards.28

Impact Statement—Multiagent reinforcement learning (MARL)29
has become increasingly important due to growing complexity of30
real-world decision making problems. A key performance bottle-31
neck for MARL is the lack of efficient coordinated exploration32
among multiple agents. The proposed multiagent option discovery33
approach addresses this problem by alleviating the exponential34
complexity involved in multi-agent explorations. The approach35
achieves significantly improved exploration and higher cumulative36
rewards in challenging multi-agent decision making scenarios.37

Index Terms—Kronecker product, multiagent reinforcement38
learning (MARL), option discovery.39
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I. INTRODUCTION 40

R EINFORCEMENT learning (RL) has achieved impressive 41

performance in a variety of scenarios, such as robotic con- 42

trol [1], [2] and games [3]–[5]. However, most of its applications 43

rely on carefully crafted task-specific reward signals to drive 44

exploration and learning, limiting its use in real-life scenarios 45

often with sparse or no rewards. To this end, acquiring skills 46

from the experience in a task-agnostic manner by extracting 47

temporal action-sequence abstractions, i.e., option discovery [6], 48

to support efficient exploration can be essential. The acquired 49

skills/options can then be employed by a metacontroller to solve 50

downstream tasks more effectively. For instance, in a robotic 51

navigation task, the robot can first learn locomotion skills in the 52

environment, and then, an agent only needs to learn a controller 53

to give out point-to-point navigation commands, which would 54

be implemented through these skills. Thus, given useful skills, 55

the downstream task can be greatly simplified from a continuous 56

control task to a discrete one. Among recent developments on 57

option discovery, covering option discovery [7], [8] has been 58

shown to be effective to accelerate the exploration in sparse 59

reward environments. In particular, it first computes the second 60

smallest eigenvalue and the corresponding eigenvector (i.e., 61

Fiedler vector [9]) of the Laplacian matrix extracted from the 62

state transition process in RL. Then, options are built to connect 63

the states corresponding to the minimum or maximum in the 64

Fiedler vector, which has been proven to greedily improve the 65

algebraic connectivity of the state space [10]. With these options, 66

the accessibility from each state to the others will be enhanced, 67

due to which the exploration in the state space can be accelerated 68

a lot. 69

In this article, we consider the problem of constructing and 70

utilizing covering options in multiagent reinforcement learn- 71

ing (MARL). Due to the exponentially large state space in 72

multiagent scenarios, a commonly adopted way to solve this 73

problem [11]–[15] is to construct the single-agent options as if 74

in a single-agent environment first and, then, learn to collectively 75

leverage these individual options to tackle multiagent tasks. 76

This method fails to consider the coordination among agents 77

in the option discovery process and, thus, can suffer from very 78

poor behavior in multiagent collaborative tasks. To this end, 79

in our work, we propose a framework that makes novel use 80

of Kronecker product of factor graphs to directly construct 81

the multiagent options in the joint state space and adopt them 82

to accelerate the joint exploration of agents in MARL. We 83

show through experiments that agents leveraging our multia- 84

gent options significantly outperform agents with single-agent 85
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options or no options in MARL tasks. For some challenging86

tasks, the adoption of multiagent options can improve the con-87

vergence speed by two orders of magnitude and the episodic88

cumulative reward by about 100%. Also, instead of directly89

adopting the covering option discovery to the joint state space90

since its size grows exponentially with the number of agents, we91

build multiagent options based on the individual state transition92

graphs, making our method much more scalable.93

Specifically, the main contributions are as follows.94

1) We propose multiagent covering option discovery—it ap-95

proximates the joint state transition graph as a Kronecker96

product of the individual ones, so that we can estimate97

the Fiedler vector of the joint state space based on the98

Laplacian spectrum of the individual state spaces to en-99

joy the ease of decomposition. Then, the joint options100

composed of multiple agents’ temporal action sequences101

can be directly constructed to connect the joint states102

corresponding to the minimum or maximum in the Fiedler103

vector, resulting in a greedy improvement of the joint state104

space’s algebraic connectivity.105

2) We propose that the multiagent options can be adopted to106

MARL in either a decentralized or centralized manner and107

present the comparisons between these two approaches.108

For the centralized manner, different agents jointly decide109

on their options. In contrast, for the decentralized manner,110

agents can choose their options independently and select111

different options to execute simultaneously.112

II. RELATED WORK113

Option discovery: Temporal abstraction allows representing114

knowledge about courses of action at different time scales, which115

is key to scaling up learning and planning in RL. The temporal116

abstraction in RL can be modeled with the option framework117

proposed in [6], which extends the usual notion of actions to118

include options—the closed-loop policies for taking actions over119

a period of time. While planning with options is well understood120

in research about semi-Markov decision process (MDP) [16],121

[17] and hierarchical RL [18], [19], constructing options au-122

tonomously from data, i.e., option discovery, has remained123

challenging. Literature on option discovery is summarized as124

follows.125

Some works, such as [20]–[23], are based on task-related126

reward signals. Specifically, they directly define or learn through127

gradient descent the options that can lead the agent to the128

rewarding states in the environments and, then, utilize these129

trajectory segments (options) to compose the completed trajec-130

tory toward the goal state. These methods rely on dense reward131

signals, which are usually hard to acquire in real-life tasks.132

Other works define the subgoal states (i.e., termination states133

of the options) based on the visitation frequency of the states.134

For example, in [24]–[26], they discover the options by recog-135

nizing the bottleneck states in the environment, through which136

the agent can transfer between the subareas that are loosely137

connected in the state space, which are denoted as betweenness138

options. Recently, there have been some state-of-the-art (SOTA)139

option generation methods based on the Laplacian spectrum of140

the state-transition graph, such as in [7], [8], [27], and [28], 141

since the eigenvectors of the Laplacian of the state space can pro- 142

vide embeddings in lower dimensional space, based on which we 143

can obtain good measurements of the accessibility/connectivity 144

from one state to another. Through adding options between states 145

with poor connectivity, the exploration in the state space can be 146

accelerated a lot. Note that all the approaches mentioned above 147

are for single-agent scenarios, and in this article, we will extend 148

the construction and adoption of options to MARL. 149

Adopting options in multiagent scenarios: Current research 150

works on adopting options in MARL, such as [11]–[15] and 151

[29], try to first learn the options for each individual agent 152

with the option discovery methods we mentioned above and 153

then learn to collaboratively utilize these individual options. 154

Therefore, the options they use are still single-agent options, 155

and the coordination in the multiagent system can only be 156

shown/utilized in the option-choosing process while not the 157

option discovery process. We can classify these works by the 158

option discovery methods they use: the algorithms in [11] and 159

[12] directly define the options based on their task without the 160

learning process; the algorithms in [13]–[15] learn the options 161

based on the task-related reward signals from the environment; 162

the algorithm in [29] trains the options based on a reward 163

function that is a weighted sum of the environment reward and 164

information-theoretic reward proposed in [30]. 165

To the best of our knowledge, we are the first to propose 166

multiagent covering option discovery. Specifically, we propose 167

algorithms for directly constructing multiagent options based 168

on the Laplacian spectrum of the individual state transition 169

graphs to encourage efficient exploration in the joint state space, 170

and explore how to utilize the multiagent options in MARL 171

effectively, so as to leverage the coordination among the agents 172

in both the option discovery and adoption process. 173

III. BACKGROUND 174

A. Basic Conceptions and Notations 175

In this section, we will introduce the necessary conceptions 176

and corresponding notations used in this article. We provide a 177

table of predefined symbols in Appendix A. 178

MDP: The RL problem can be described with an MDP, 179

denoted by M = (S,A,P,R, γ), where S is the state space, 180

A is the action space, P : S ×A× S → [0, 1] is the state tran- 181

sition function, R : S ×A → R1 is the reward function, and 182

γ ∈ (0, 1] is the discount factor. 183

State transition graph in an MDP: The state transitions inM 184

can be modeled as a state transition graphG = (VG, EG), where 185

VG is a set of vertices representing the states in S , and EG is a 186

set of undirected edges representing state adjacency inM. We 187

note the following. 188

Remark 1: There is an edge between state s and s′ (i.e., s and 189

s′ are adjacent) if and only if ∃ a ∈ A, s.t. P(s, a, s′) > 0 OR 190

P(s,′ a, s) > 0. 191

The adjacency matrix A of G is an |S| × |S| matrix, whose 192

(i, j) entry is 1 when si and sj are adjacent, and 0 otherwise. |S| 193

denotes the cardinality of S . The degree matrix D is a diagonal 194

matrix whose entry (i, i) equals the number of edges incident 195
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to si. The Laplacian matrix of G is defined as L = D −A.196

Its second smallest eigenvalue λ2(L) is called the algebraic197

connectivity of the graph G, and the corresponding eigenvector198

is called the Fiedler vector [9]. Furthermore, the normalized199

Laplacian matrix is defined as L = D−
1
2LD−

1
2 .200

Kronecker product of graphs [31]: Let G1 = (VG1
, EG1

) and201

G2 = (VG2
, EG2

) be two state transition graphs, correspond-202

ing to the individual state space S1 and S2, respectively. The203

Kronecker product of them denoted by G1 ⊗G2 is a graph204

defined on the set of vertices VG1
× VG2

, such that we have205

the following.206

Remark 2: Two vertices of G1 ⊗G2, namely, (g, h) and207

(g,′ h′), are adjacent if and only if g and g′ are adjacent in G1208

and h and h′ are adjacent in G2.209

Thus, the Kronecker product graph can capture the joint210

transitions of the agents in their joint state space very well. In211

Section IV-B, we propose to use the Kronecker product graph212

as an effective approximation of the joint state transition graph,213

so that we can discover the joint options based on the factor214

graphs. Furthermore, A1 ⊗A2 is an |S1||S2| × |S1||S2| matrix215

with elements defined by (A1 ⊗A2)(I, J) = A1(i, j)A2(k, l)216

with (1), where A1 and A2 are the adjacency matrices of G1217

and G2, A1(i, j) is the element lies on the ith row and the jth218

column of A1 (indexed from 1)219

I = (i− 1)× |S2|+ k, J = (j − 1)× |S2|+ l. (1)

B. Covering Option Discovery220

As defined in [6], an option ω consists of three components:221

an intraoption policy πω : S ×A → [0, 1], a termination condi-222

tion βω : S → {0, 1}, and an initiation set Iω ⊆ S . An option223

< Iω, πω, βω > is available in state s if and only if s ∈ Iω. If224

the option ω is taken, actions are selected according to πω until225

ω terminates according to βω (i.e., βω = 1). In order to get an226

option, we need to learn the intraoption policy and define the227

termination condition and initiation set.228

Jinnai et al. [8] propose covering option discovery—229

discovering options by minimizing the upper bound of the230

expected cover time of the state space. First, they compute the231

Fiedler vector F of the Laplacian matrix of the state transition232

graph. Then, they collect the states si and sj with the largest233

(Fi − Fj)
2 (Fi is the ith element in F ), based on which they234

construct two symmetric options:235

ωij = 〈Iωij
= {si}, πωij

, βωij
= {sj}〉

ωji = 〈Iωji
= {sj}, πωji

, βωji
= {si}〉 (2)

to connect these two subgoal states bidirectionally, where πω236

is defined as the optimal path between the initiation and termi-237

nation states. This whole process is repeated until they get the238

required number of options. The intuition is as follows.239

Ghosh and Boyd [10] prove that (Fi − Fj)
2 gives the first-240

order approximation of the increase in λ2(L) (i.e., algebraic241

connectivity) by connecting (si, sj). Based on that, they propose242

a greedy heuristic to improve the algebraic connectivity of a243

graph: adding a certain number of edges one at a time, and each244

time connecting (si, sj) corresponding to the largest (Fi − Fj)
2.245

Thus, applying this greedy heuristic to the state transition graph 246

can effectively improve its connectivity, leading to a smaller up- 247

per bound of the expected cover time and accelerated exploration 248

of the state space, as shown in [8]. 249

IV. PROPOSED ALGORITHM 250

A. System Model 251

In this article, we consider to compute covering options 252

in multiagent scenarios, with n being the number of agents, 253

S̃ = S1 × S2 × · · · × Sn being the set of joint states, Ã = 254

A1 ×A2 × · · · × An being the set of joint actions, and Si and 255

Ai being the individual state space and action space of agent i. 256

Apparently, the size of the joint state space, i.e., |S̃| = ∏n
i=1 |Si|, 257

grows exponentially with n. Thus, it is prohibitive to directly 258

compute the covering options based on the joint state transition 259

graph using the approach introduced in Section III-B for a 260

large n. 261

A natural method to tackle this challenging problem is to 262

compute the options for each individual agent by considering 263

only its own state transitions and then learn to collaboratively 264

leverage these individual options. However, it fails to directly 265

recognize joint (i.e., multiagent) options composed of multiple 266

agents’ temporal action sequences for encouraging the joint 267

exploration of all the agents. In this case, the connectivity of the 268

joint state space may not be improved with these single-agent 269

options. We illustrate this with a simple example. 270

Illustrative example: Fig. 1(a) shows a joint state transition 271

graph G̃ of two agents, where agent 1 has two states S1 = {1, 2} 272

and agent 2 has four states S2 = {1, 2, 3, 4}. In order to com- 273

pute the individual options, we can restrict our attention to the 274

state transition graph of each agent, namely, G1 and G2, with 275

Laplacian given by L1 and L2, respectively (refer to Appendix 276

C for derivation) 277

L1 =

[
1 −1
−1 1

]
, L2 =

⎡⎢⎢⎣
1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

⎤⎥⎥⎦ . (3)

To compute the options for each agent, we first compute the 278

Fiedler vectors of G1 and G2 (i.e., the eigenvectors correspond- 279

ing to the second smallest eigenvalues of L1 and L2), namely, 280

F1 and F2 281

F1 =
1√
2

[−1
1

]
, F2 =

1√
8− 4

√
2

⎡⎢⎢⎣
−1

−√2 + 1√
2− 1
1

⎤⎥⎥⎦ . (4)

Then, according to the option discovery approach described 282

in Section III-B, we can get the individual options for agent 1 283

to connect its state 1 (minimum) and state 2 (maximum), and 284

individual options for agent 2 to connect its state 1 (minimum) 285

and state 4 (maximum). With these options, the joint transition 286

from (1, 1) to (2, 4) (i.e., (1, 1)→ (2, 4): agent 1 going from 287

1 to 2 and agent 2 going from 1 to 4) is possible, so are the 288

transitions: (2, 4)→ (1, 1) and (2, 1)↔ (1, 4). The newly up- 289

dated transitions are shown as the green dashed lines in Fig. 1(b). 290
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Fig. 1. Illustrative example showing the limitations of utilizing single-agent options alone for MARL. (a) Joint state transition graph of agents 1 and 2. (b) Joint
state transition graph after adding individual options.

These options fail to create a connected graph. It implies that291

utilizing the single-agent options alone may not be sufficient for292

encouraging efficient joint exploration.293

Therefore, we propose to build multiagent covering options to294

enhance the connectivity of the joint state space and accelerate295

the joint exploration of the agents within the scenario. We can296

represent it as a tuple: 〈Iω, πω, βω〉, where Iω ⊆ S̃ is the set297

of initiation joint states, βω : S̃ → {0, 1} indicates the joint298

states to terminate,πω = (π1
ω, . . . , π

n
ω)(π

i
ω : Si ×Ai → [0, 1]),299

is the joint intraoption policy that can lead the agents from the300

initiation states to the termination states. The key challenge is301

to calculate the Fiedler vector of the joint state space according302

to which we can define 〈Iω, πω, βω〉 like Section III-B. Given303

that |S̃| grows exponentially with n, we propose to estimate the304

joint Fiedler vector based on the individual state spaces in the305

next section.306

B. Theory Results307

We propose to use the Kronecker product graph to decompose308

the eigenfunction calculation to single-agent state spaces, mak-309

ing our approach much more scalable. This decomposition is310

based on the facts: 1) the Kronecker product of individual state311

transition graphs ⊗n
i=1Gi = G1 ⊗ · · · ⊗Gn provides a good312

approximation of the joint state transition graph G̃; and 2) the313

Fielder vector of ⊗n
i=1Gi can be estimated with the Laplacian314

spectrum of Gi(i = 1, . . . , n).315

We note that the use of⊗n
i=1Gi as a factorized approximation316

of G̃ introduces noise, since G̃ = ⊗n
i=1Gi becomes exact only317

in the case where agents’ transitions are not influenced by the318

others. However, for the purpose of option discovery, we only319

need to identify areas in the state space with relatively low or320

high values in the Fielder vector, so an exact calculation of321

G̃ and its Fiedler vector is not necessary. Moreover, the state322

transition influence among agents, e.g., collisions and blocking,323

would most likely result in local perturbations of the transition324

graph and, thus, is inconsequential to global properties of G̃,325

like its algebraic connectivity and Fiedler vector. Therefore,326

approximating G̃ by⊗n
i=1Gi allows efficient options discovery.327

Furthermore, in Section V-B, we empirically show in Fig. 10 that328

superior exploration can still be achieved under such approxima-329

tion noise, numerically validating the robustness of our proposed330

approach to the approximation error. Moreover, we provide a331

quantitative study on the approximation error in Section V-B,332

showing that ⊗n
i=1Gi can be used as a simple yet powerful333

approximation of G̃ for option discovery.334

Next, we show how to effectively approximate the Fiedler 335

vector of⊗n
i=1Gi based on the Laplacian spectrum of the factor 336

graphs, which enables an effective decomposition of multiagent 337

option discovery. Inspired by Basic et al. [32] who proposed an 338

estimation of the Laplacian spectrum of the Kronecker product 339

of two factor graphs, we have the following theorem. 340

Theorem 1: For graph G̃ = ⊗n
i=1Gi, we can approximate the 341

eigenvalues λ and eigenvectors v of its Laplacian L by 342

λk1,...,kn
=

{[
1−

n∏
i=1

(1− λ
Gi

ki
)

]
n∏

i=1

dGi

ki

}
(5)

vk1,...,kn
= ⊗n

i=1 v
Gi

ki
(6)

where λ
Gi

ki
and vGi

ki
are the kith smallest eigenvalue and corre- 343

sponding eigenvector of LGi
(normalized Laplacian matrix of 344

Gi), and dGi

ki
is the kith smallest diagonal entry of DGi

(degree 345

matrix of Gi). 346

The proof of Theorem 1 is provided in Appendix B. Through 347

enumerating (k1, . . . , kn), we can collect the eigenvalues of 348

⊗n
i=1Gi by (5) and the corresponding eigenvectors by (6). Then, 349

the eigenvector vk̂1,...,k̂n
corresponding to the second smallest 350

eigenvalue λk̂1,...,k̂n
is the estimated Fiedler vector of the joint 351

state transition graph, namely,F
˜G. Based on it, we can define the 352

joint states corresponding to the maximum or minimum inF
˜G as 353

the initiation or termination joint states, which can be connected 354

with joint options. As discussed in Section III-B, connecting 355

these two joint states with options can greedily improve the 356

algebraic connectivity of the joint state space and accelerate the 357

joint exploration within it. 358

Illustrative example: Now, we consider again the example 359

in Fig. 1(a), where G̃ = G1 ⊗G2. We can approximate the 360

Fiedler vector of G̃ using Theorem 1. As a result, we get two 361

approximations of the Fiedler vector (refer to Appendix C for 362

computing details) 363

F 1
˜G
=

1√
6

[
1√
2
, 1, 1,

1√
2
,

1√
2
, 1, 1,

1√
2

]T
(7)

F 2
˜G
=

1√
6

[
− 1√

2
, 1, −1, 1√

2
,

1√
2
, −1, 1, − 1√

2

]T
. (8)

Based on the two approximations and the indexing rela- 364

tionship between G̃ and its factor graphs [see (1)], we can 365

get two sets of multiagent options: {Iω1
= {(1, 2), (1, 3), 366

(2, 2), (2, 3)}, βω1
= {(1, 1), (1, 4), (2, 1), (2, 4)}} and 367

{Iω2
= {(1, 2), (2, 3)}, βω2

= {(1, 3), (2, 2)}}, where we set 368

the joint states corresponding to the maximum and minimum as 369

the initiation and termination states, respectively. For example, 370
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Fig. 2. Joint state transition graph updated with the detected multiagent options. (a) Joint state transition graph updated with option ω1. (b) Joint state transition
graph updated with option ω2.

Algorithm 1: Multiagent Covering Option Discovery.
1: Input: number of agents n, list of adjacency matrices

A1:n, number of options to generate tot_num
2: Output: list of multiagent options Ω
3: Ω← ∅, cur_num← 0
4: while cur_num < tot_num do
5: Collect the degree list of each individual state

transition graph D1:n according to A1:n

6: Obtain the list of normalized Laplacian matrices
L1:n corresponding to A1:n

7: Calculate the eigenvalues Ui and corresponding
eigenvectors Vi for each Li and collect them as U1:n

and V1:n

8: Obtain the Fielder vector F
˜G of the joint state space

using Theorem 1 based on D1:n, U1:n and V1:n

9: Collect the list of joint states corresponding to the
minimum or maximum in F

˜G, named MIN and
MAX respectively

10: Convert each joint state sjoint in MIN and MAX to
(s1, . . . , sn), where si is the corresponding
individual state of agent i, based on the equation:
ind(sjoint) = ((ind(s1) ∗ dim(A2) + ind(s2)) ∗

dim(A3) + · · ·+ ind(sn−1)) ∗ dim(An) + ind(sn)
where dim(Ai) is the dimension of Ai, ind(si) is the

index of si (indexed from 0) in the state space of agent i
11: Generate a new list of options Ω′ through

Algorithm 2
12: Ω← Ω ∪ Ω′, cur_num← cur_num+ len(Ω′)
13: Update A1:n through Algorithm 3
14: end while

in F 1
˜G

[see (7)], the seventh element (indexed from 1) is a maxi-371

mum, so the seventh joint state is within the initiation set Iω1
and372

denoted as (2,3) according to (1), i.e., 7 = (2− 1)× |S2|+ 3,373

where |S2| = 4. As shown in Fig. 2, the green-dashed lines374

represent the joint options, which connect the states in the375

initiation and termination set bidirectionally. It can be observed376

that both of the two options can lead to a connected graph377

when applied to G̃. Thus, the adoption of multiagent options378

has the potential to encourage efficient exploration of the joint379

state space by improving its algebraic connectivity, and we can380

discover multiagent options based on individual agents’ state381

spaces, so that we can enjoy the ease of decomposition. Next,382

we will formalize our algorithm.383

Algorithm 2: Generate Multiagent Options.
1: Input: MIN,MAX: list of joint states corresponding

to the minimum or maximum in the Fielder vector
2: Output: list of multiagent options Ω′

3: Ω′ ← ∅
4: for s = (s1, . . . , sn) in (MIN ∪MAX) do
5: Define the initiation set Iω as the joint states in the

known region of the joint state space
6: Define the termination condition: βω(scur)←

{1 if (scur == s) or (scur is unknown)
0 otherwise

where scur is the current joint state
7: Train the intraoption policy πω = (π1

ω, . . . , π
n
ω),

where πi
ω maps the individual state of agent i to its

action aiming at leading agent i from any state in its
initiation set to its termination state si

8: Ω′ ← Ω′ ∪ {< Iω, πω, βω >}
9: end for

Algorithm 3: Update Adjacency Matrices.
1: Given: list of adjacency matrices A1:n, MIN,MAX
2: for smin = (s1min, . . . , s

n
min) in MIN do

3: for smax = (s1max, . . . , s
n
max) in MAX do

4: for i = 1 to n do
5: Ai[ind(s

i
min)][ind(s

i
max)] = 1

6: Ai[ind(s
i
max)][ind(s

i
min)] = 1

7: end for
8: end for
9: end for

C. Multiagent Covering Option Discovery 384

In this article, we adopt Algorithm 1 to construct multia- 385

gent options, based on the individual state transition graphs 386

of each agent, which are represented as a list of adjacency 387

matrices A1:n. First, in lines 5–9 of Algorithm 1, we acquire 388

the estimation of the Fielder vector F
˜G of the joint state space 389

through Theorem 1 based on A1:n, so that we can collect the 390

joint states corresponding to the minimum or maximum of F
˜G. 391

Then, in line 10 of Algorithm 1, we split each joint state into 392

a list of individual states. For example, after getting a pair of 393

joint states (smin, smax), we convert them into ((s1min, . . . , s
n
min), 394

(s1max, . . . , s
n
max)), so that we can connect (smin, smax) in the joint 395

state space by connecting each (simin, s
i
max) in the corresponding 396
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individual state space. After decentralizing the joint states, we397

can define the multiagent options as follows. For each option ω,398

we define Iω as the explored joint states and βω as a joint state399

in MIN ∪MAX or the unexplored area. Option ω is available in400

state s if and only if s ∈ Iω . Therefore, instead of constructing401

a point option between (smin, smax), e.g., setting {smin} as Iω402

and {smax} as βω , we extend Iω to the known area to increase403

the accessibility of ω. As for the intraoption policy πω used for404

connecting the initiation and termination joint state, we divide405

it into a list of single-agent policies πi
ω (i = 1, . . . , n), where406

πi
ω can be trained with any single-agent RL algorithm aiming at407

leading agent i from its own initiation state to the termination408

state simin (simax). At last, before entering the next loop, we adopt409

Algorithm 3 to update the individual state transition graphs410

with the newly discovered options. This whole process (lines411

5–13 in Algorithm 1) is repeated until we get a certain number of412

options.413

To sum up, the proposed algorithm first discovers the joint414

states that need to be explored most and then build multiagent415

options to encourage agents to visit these subgoals. More pre-416

cisely, we project each subgoal joint state into its corresponding417

individual state spaces and train the intraoption policy for each418

agent to visit the projection of the subgoal state in its individual419

state space.420

At last, we give out the computational complexity of our421

approach. Consider an MDP with n agents and r states for each422

agent. To compute the Fiedler vector directly from the joint423

state transition graph would require time complexity O(r3n),424

since there are in total rn joint states and the time complexity425

of eigenvalue decomposition (line 7 in Algorithm 1) is cubic426

with the size of the joint state space. With our Kronecker factor427

graph approach, we can decompose the original problem into428

computing eigenvectors of the individual state transition graphs,429

of which the overall time complexity isO(nr3). Thus, our solu-430

tion significantly reduces the problem complexity fromO(r3n)431

toO(nr3) for multiagent problems. Also, note that for problems432

with continuous or large state space (i.e., r is large), our approach433

could be directly integrated with sample-based techniques for434

eigenfunction estimation (line 7 in Algorithm 1), like [33] and435

[34]. Hence, the bottleneck on computational complexity can436

be overcome. More precisely, the Laplacian spectrum of the437

factor graphs can be estimated using neural networks and then438

leveraged by our proposed algorithm to find the Fiedler vector439

of the joint state transition graph, which is considered as future440

work.441

D. Adopting multiagent Options in MARL442

In order to take advantage of options in the learning process,443

we adopt a hierarchical algorithm framework, shown in Fig. 3.444

When making decisions, the RL agent first decides on which445

option ω to use according to the high-level policy (the primitive446

actions can be viewed as one-step options) and then decides on447

the action to take based on the corresponding intraoption policy448

πω . The agent does not decide on a new option with the high-level449

policy until the current option terminates.450

Fig. 3. Hierarchical algorithm framework: When making decisions, the agent
first decides on which optionω to use according to the high-level policy and then
decides on the primitive action to take based on the corresponding intraoption
policy πω . The agents can decide on their options independently (the left side)
or jointly (the right side).

For a multiagent option ω : 〈Iω = 451

{the explored joint states}, πω = (π1
ω, . . . , π

n
ω), βω = 452

{(s1, . . . , sn)}〉, it can be adopted either in a decentralized or 453

in a centralized way. As shown by the purple arrows in Fig. 3, 454

the agents choose their own options independently, and they 455

may choose different options to execute in the meantime. If 456

agent i selects option ω, it will execute πi
ω until it reaches 457

its termination state si or an unknown individual state. On 458

the other hand, we can force the agents to execute the same 459

multiagent option simultaneously. To realize this, as shown by 460

the blue arrows in Fig. 3, we view the n agents as a whole, 461

which takes the joint state as the input and chooses primitive 462

actions or the same multiagent option to execute at a time. Once 463

a multiagent option ω is chosen, agent 1 : n will execute π1:n
ω 464

until they reach the termination joint state (s1, . . . , sn) or an 465

unexplored joint state. Note that if there are j primitive actions 466

and k multiagent options, the size of the search space would 467

be (j + k)n for the decentralized approach and jn + k for the 468

centralized approach. Therefore, the decentralized manner is 469

more flexible but has a larger search space, while the centralized 470

way fails to consider all the possible solutions but makes it 471

easier for the agents to visit the subgoal joint states, since the 472

agents simultaneously select the same joint option, which will 473

not terminate until the agents reach the subgoal. In this article, 474

we use independent Q-learning [35] (adopting Q-learning [36] 475

to each individual agent) to train the decentralized high-level 476

policy, and centralized Q-learning (viewing the n agents as a 477

whole and adopting Q-learning to it) to train the centralized 478

high-level policy. We present comparisons in Section V. 479

Furthermore, we note that the centralized high-level policy 480

may not be applicable when the number of agentsn is large, since 481

both the input space (i.e., joint states) will grow exponentially 482

with n. Thus, we propose to partition the agents into some 483

subgroups first and then learn the joint options within each 484

subgroup. The intuition behind this is as follows. In practice, 485

a multiagent task can usually be divided into some subtasks, 486

each of which can be completed by a subgroup of the agents. 487

For each subgroup, we can learn a list of multiagent options, 488

and then, the agents within this group can make use of these 489

options in a decentralized or centralized way as mentioned 490
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Fig. 4. Simulators for evaluation. All the agents (triangles) must reach the
goal area (circles) simultaneously to complete the task, based on only their
current locations. In (b) and (d), agents are assigned with different goals. The
agents and their corresponding goals are labeled with the same color. (a) n-
agent four-room task. (b) (m× n)-agent four-room task. (c) n-agent maze task.
(d) (m× n)-agent maze task.

above. Furthermore, if there is no way to divide the (identical)491

agents based on subtasks, we can still group them randomly to492

a list of two-agent or three-agent subgroups. Agents within the493

same subgroup will co-explore their joint state space using the494

algorithm framework shown in Fig. 3. In Section V, we show495

that the adoption of grouping techniques can not only accelerate496

the exploration but also greatly improve the scalability of our497

algorithm.498

V. EVALUATION AND RESULTS499

A. Simulation Setup500

As shown in Fig. 4, the proposed approach is evaluated on501

four multiagent goal-achieving tasks.502

1) For tasks shown in Fig. 4(b) and (d), n (2–8) agents503

(triangles) must reach the goal area (circles) at the same504

time to complete this task, without going through the walls505

(squares). If some agents have reached the goal and the506

others have not, the n agents will continue to move until507

all of them reach the goal in the meantime.508

2) For tasks shown in Fig. 4(c) and (e), there are m groups509

of agents, and each group contains n agents. Each group510

of agents has a special goal area labeled with the same511

color.512

Note that all the m× n agents should get to their related goal513

areas at the same time to complete this task, and the agents514

do not know which goal area is related to them at first. We515

only show the four-agent and (3× 2)-agent cases for the four-516

room task in Fig. 4. For the illustrations of other cases used517

in the following evaluations, refer to Appendix D. For all the518

four tasks, different agents can share the same grid, and only 519

when the agents complete the task can they receive a reward 520

signal r = 1.0, which is shared by all the agents; otherwise, 521

they will receive r = 0.0. In the following experiments, we use 522

the episodic cumulative reward as the metric, which is defined 523

as
∑l

i=0 λir. λ = 0.99 is the discount factor of the MDP, and l 524

is the horizon of each episode of which the maximum is set as 525

200. 526

Note that these evaluation tasks are multiagent versions of 527

the simulators used in [8] (i.e., one of our baselines), which 528

are quite challenging. On the one hand, the agents need to 529

make decisions based on only their current locations (i.e., 530

without knowing where the goal area is). On the other hand, 531

the reward space is very sparse: for example, in the eight- 532

agent four-room task, there are in total 104 states (i.e., non- 533

wall grids) for each agent and four of them are the rewarding 534

states (i.e., goals), so the ratio of the rewarding joint states 535

is (4/104)8 ≈ 4.8× 10−12, which is also the probability that 536

the eight agents can complete this task through the random 537

walk [38]. Hence, agents without highly efficient exploration 538

strategies cannot complete these tasks. In Section V-B, we eval- 539

uate on tasks of increasing complexity (e.g., Fig. 6 and 8). The 540

more difficult the task is, the more advantageous our approach 541

becomes. 542

We compare our approach—agents with multiagent options, 543

with two baselines. 544

1) Agents without options: the high-level policy is directly 545

used to choose primitive actions, rather than choosing the 546

option first and then choosing the primitive action with the 547

corresponding intraoption policy. Comparisons with this 548

baseline can show the effectiveness of using options to aid 549

the exploration. 550

2) Recent works on adopting options in MARL: As men- 551

tioned in Section II, these works [11]–[15], [29] first 552

construct single-agent options for each agent based on 553

their individual state spaces and then learn to collab- 554

oratively utilize them in MARL, so we denote these 555

methods as agents with single-agent options in the fol- 556

lowing. However, they either rely on predefined options 557

or adopt the option discovery methods that depend on 558

dense task-related reward signals and suffer from poor 559

performance in environments with only sparse rewards 560

like ours. In this case, we adopt the SOTA algorithm 561

proposed in [8] to replace the option discovery algorithm 562

component in these methods, which claims to outperform 563

previous option discovery algorithms, including [26], [27], 564

and [30], for sparse reward scenarios. Comparisons with 565

this baseline can show the superiority of our approach 566

to directly identify and adopt joint options in multiagent 567

scenarios. To be fair, we set the number of single-agent and 568

multiagent options for each agent to select as the same. 569

Also, we extend the initiation set of each single-agent 570

option to the known area to increase their accessibility, 571

like what we do with multiagent options. 572

There are two kinds of policies in Fig. 3: the high-level 573

policy for selecting among options, and the low-level policy 574
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TABLE I
COMPARISONS AMONG DIFFERENT HIGH-LEVEL POLICY ALGORITHMS

Fig. 5. Comparisons on the two-agent four-room task. (a)–(e) show the results of using different algorithms as the high-level policy. No matter which algorithm
we adopt, agents with multiagent options can converge faster than the baselines. Also, our approach converges to a higher cumulative reward. (a) Random.
(b) Independent Q-learning. (c) Distributed Q-learning. (d) Centralized Q-learning. (e) Centralized Q-learning + force.

for selecting among primitive actions. In the following ex-575

periments, we evaluate the performance of agents with five576

different algorithms as the high-level policy: random policy,577

independent Q-learning [35], distributed Q-learning [37] (each578

agent decides on their own option based on the joint state),579

centralized Q-learning, and centralized Q-learning + force, to580

make sure that the performance improvement is not specific to a581

certain algorithm. Table I shows the comparisons among these582

algorithms.583

1) If adopting “independent Q-learning” as the high-level584

policy, agents need to make decisions based on only their585

local states; otherwise, agents within the same subgroup586

can share their views and make decisions based on their587

joint states.588

2) For “centralized Q-learning + force,” agents are589

forced to choose the same multiagent option at a590

time (centralized), while, for the others, agents can591

choose different options to execute simultaneously592

(decentralized).593

As for the low-level policy, we adopt value iteration [39]594

to find the optimal path between each pair of initiation and595

termination state for each agent i as πi
ω . Compared with baseline596

2), our approach does not cost additionally for learning the597

low-level policy, since the number of single and multiagent598

options is the same for each agent.599

B. Main Results 600

For each experiment, we present comparisons among the per- 601

formance of agents with multiagent options (blue line), agents 602

with single-agent options (red line), and agents without options. 603

We run each experiment five times with different random seeds 604

and plot the change of the mean (the solid line) and standard 605

deviation (the shadow area) of the episodic cumulative reward 606

during the training process (1000 episodes). 607

1) Two-Agent Four-Room Task: As shown in Fig. 5, we 608

present comparisons on the two-agent four-room task, with 609

different algorithms (listed in Table I) as the high-level policy. It 610

can be observed that no matter which algorithm we adopt as the 611

high-level policy, agents with multiagent options can converge 612

faster than the baselines. However, when using independent 613

Q-learning to train the high-level policy, the performance of our 614

approach and the baselines is very close. Thus, in the follow-up 615

experiments, we compare these approaches on more challenging 616

tasks with independentQ-learning as the high-level policy to see 617

if there will be more significant performance increase. Also, we 618

will adopt centralized Q-learning + force to train the high-level 619

policy in the following experiments, to compare the two manners 620

(decentralized or centralized) to utilize the multiagent options. 621

2) N -Agent Four-Room Task: In Fig. 6(b)–(d), we test these 622

methods on n-agent four-room tasks (n = 3–5), using inde- 623

pendent Q-learning as the high-level policy. We can observe 624
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Fig. 6. Evaluation on n-agent four-room tasks. (a)–(c) Using independent Q-learning as the high-level policy. The performance improvement of our approach
is more and more significant as the number of agents increases. (d)–(f) Using centralized Q-learning + force as the high-level policy. Agents with single-agent
options start to fail due to the three-agent case. Also, it can be observed that the centralized way to utilize the n-agent options leads to faster convergence.
(a) Three-agent four-room task. (b) Four-agent four-room task. (c) Five-agent four-room task. (d) Three-agent four-room task. (e) Four-agent four-room task.
(f) Five-agent four-room task.

that the performance improvement brought by our approach is625

more and more significant as the number of agents increases.626

When n = 5, both the baselines fail to complete the task, while627

agents with five-agent options can converge within 200 episodes.628

Furthermore, in Fig. 6(e)–(g), we show the results of using629

centralized Q-learning + force as the high-level policy on the630

same tasks. We can see that the centralized way to utilize the631

n-agent options leads to faster convergence since the joint output632

space of the agents is pruned. As mentioned in Section IV-D, the633

size of the joint output space is (j + k)n for the decentralized634

manner and jn + k for the centralized manner if there are635

j primitive actions and k options for the n agents to select.636

Note that when the number of agents is three, the agents with637

single-agent options already fail to complete the four-room task.638

We do not include the results of agents with single-agent options639

in Fig. 6(f)–(g), because it takes a tremendously long time to run640

those experiments and it can be predicted that the results will be641

the same as Fig. 6(e).642

3) Four-Room Task With Subtask Grouping: The size of the643

joint state space grows exponentially with the number of agents,644

making it infeasible to directly construct n-agent options and645

adopt centralized Q-learning for a large n. However, in real-life646

scenarios, a multiagent task can usually be divided into subtasks,647

and the agents can be divided into subgroups based on the648

subtasks they are responsible for. Thus, we test our proposed649

method on the m× n four-room tasks shown in Fig. 4(c), where650

we divide the agents into m subgroups, each of which contains651

n agents with the same goal area. Fig. 7 shows comparisons652

between our method and the baselines on m× n four-room653

tasks. Note that, in the 2× 2 (3× 2) four-room task, we use654

two-agent (pairwise) options rather than four-agent (six-agent)655

options, and when using centralizedQ-learning + force, we only656

use the joint state space of the two agents as input to decide on657

Fig. 7. Comparisons on the m× n four-room tasks with subtask grouping.
(a) and (b) Independent Q-learning. (c) and (d) Centralized Q-learning + force.
Agents with pairwise options can learn these tasks much faster than the baselines,
even when both the baselines fail on the 3× 2 four-room task. Also, agents
trained with centralized Q-learning + force have faster convergence speed and
higher convergence value. (a) (2× 2)-agent four-room task. (b) (3× 2)-agent
four-room task. (c) (2× 2)-agent four-room task. (d) (3× 2)-agent four-room
task.

their joint option choice. We can see that agents with pairwise 658

options can learn to complete the tasks much faster than the 659

baselines (e.g., improved by about two orders of magnitude in 660

the 2× 2 four-room task), even when both the baselines fail 661

to complete the 3× 2 four-room task. Note that the red line is 662

covered by the yellow line in Fig. 7(d). Also, we see that agents 663
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Fig. 8. Comparisons on the n-agent four-room tasks with random grouping. (a)–(c) Independent Q-learning. (d)–(f) Centralized Q-learning + force. When
n-agent options are not available, we can still get a significant performance improvement with only pairwise options. (a) Four-agent four-room task. (b) Six-agent
four-room task. (c) Eight-agent four-room task. (d) Four-agent four-room task. (e) Six-agent four-room task. (f) Eight-agent four-room task.

Fig. 9. Performance change of the agents as the number of options increases, evaluated on the eight-agent four-room task with random grouping. As the number of
options increases, the performance of agents with centralized Q-learning + force as the high-level policy can be improved further, while for independent Q-learning,
the agents’ performance would go worse. (a) Independent Q-learning. (b) Centralized Q-learning + force.

trained with centralizedQ-learning + force [see Fig. 7(c) and (d)]664

have faster convergence speed and higher convergence value.665

4) Four-Room Task With Random Grouping: Our method666

also works with random grouping when subtask grouping may667

not work. The intuition is that adopting two-agent or three-agent668

options can encourage the joint exploration of the agents in669

small subgroups, which can increase the overall performance670

compared with only utilizing single-agent explorations. As671

shown in Fig. 8, we compare the performance of agents with672

pairwise options, single-agent options, and no options on the673

n-agent four-room tasks (n = 4, 6, 8). We can observe that when674

n = 6 or 8, agents with single-agent options or no options675

cannot complete this task, while we can get a significant perfor-676

mance improvement with only pairwise options. On the other677

hand, agents with pairwise options cannot complete the most678

challenging eight-agent four-room task, if we use independent679

Q-learning to train the high-level policy, shown as Fig. 8(c).680

However, if we adopt centralized Q-learning + force, agents681

with pairwise options can still complete this challenging task682

with satisfaction, shown in Fig. 8(f).683

Furthermore, in Fig. 9, we show how the performance of 684

agents using pairwise options would change with the number 685

of options, based on the eight-agent four-room tasks (the orange 686

line: number of steps to complete the task; the blue line: episodic 687

cumulative reward). Note that for each step, every agent will 688

make a decision to move one grid in any of the four directions 689

(i.e., up, down, left, or right), and the maximum of the decision 690

steps for each episode is 200. When increasing the number of 691

options, the performance of agents with pairwise options and 692

using centralized Q-learning + force as the high-level policy 693

can be improved further. If using the independent Q-learning 694

as the high-level policy, the agents’ performance would go 695

worse as the number of options increases. The reason is that, as 696

mentioned in Section IV-D, the joint output space of the agents 697

will grow exponentially with the number of options if we utilize 698

the multiagent options in a decentralized way. In contrast, the 699

size of the joint output space is linear with the number of options 700

when we use multiagent options in a centralized manner. 701

5) Four-Room Task With Random Grouping and Dynamic 702

Influences Among Agents: Furthermore, we show that even if in 703
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Fig. 10. Comparisons on the n-agent four-room tasks with random grouping where agent’s state transitions can be influenced by the others, using centralized
Q-learning + force as the high-level policy. On this setting, we can still obtain good approximations of the multiagent options based on the theory introduced in
Section IV-B and use them to get superior performance. (a) Four-agent four-room task. (b) Six-agent four-room task. (c) Eight-agent four-room task.

TABLE II
QUALITY OF THE ESTIMATED JOINT TRANSITION GRAPH

environments where an agent’s state transitions can be strongly704

influenced by the others, we can still obtain good approximations705

of the multiagent options to encourage joint exploration using706

Theorem 1. For this new setting, we make some modifications707

based on the n-agent four-room task [see Fig. 4(b)]—different708

agents cannot share the same grid so that an agent may be709

blocked by others when moving ahead, and this influence is710

highly dynamic. We use the centralizedQ-learning + force as the711

high-level policy, of which the results are shown in Fig. 10. We712

can see that although this modification affects the performance713

of agents with single-agent options, we can still get significant714

performance improvement with pairwise options discovered715

with Theorem 1.716

As mentioned in Section IV-B, the approximation error occurs717

when the state transitions of an agent are influenced by others.718

In Fig. 10, we have evaluated on the case where an agent’s state719

transitions will be influenced by others’ states (i.e., blocking720

by other agents when going ahead). However, the transition721

influence for an agent may also come from the action choices of722

other agents. Thus, we further evaluate on a modified two-agent723

four-room task. We set agent 1 as the leading agent and agent 2724

will follow the moving direction of agent 1 with the probability725

α, so the state transition of agent 2 can be influenced by the726

action choice of agent 1. With a certain α, we collect a million727

state transitions (i.e., (s, a, s′)) through Monte Carlo sampling,728

based on which we can build the joint state transition graph729

G̃ and the individual state transition graphs Gi (i = 1, 2) and730

then get ⊗2
i=1Gi. Then, as shown in Table II, we compare731

the algebraic connectivity and Fiedler vector of G̃ (i.e., λ2,732

F ) and ⊗2
i=1Gi (i.e., λ̂2, F̂ ) as α increases, which are closely733

related to the covering option discovery. We can see that the734

approximation error on these global properties of G̃ caused by735

the transition influence among the agents is inconsequential.736

Thus, approximating G̃ with ⊗n
i=1Gi allows accurate option737

Fig. 11. Comparisons on the more challenging maze tasks using centralized
Q-learning + force as the high-level policy, where (a) and (b) are with random
and subtask grouping, respectively. Although both the baselines fail to complete
the tasks, our approach can converge within 500 episodes with high rewards.
(a) Six-agent maze task. (b) (3× 2)-agent maze task.

discovery. There are in total 1042 joint states, which is also the 738

size of F and F̂ , and the complexity for the eigendecomposition 739

is already O(1012) (i.e., (1042)3), so we limit the number of 740

agents to 2. 741

6) Maze Task With Random Grouping or Subtask Grouping: 742

Finally, in order to show the effectiveness of our approach on 743

more challenging tasks, we compare it with the baselines on 744

the maze tasks shown in Fig. 4(d) and (e), of which the results 745

are shown in Fig. 11(a) and (b), respectively. Compared with the 746

four-room task, the state space of the maze task is larger and the 747

path finding toward the goal area is much more difficult. Again, 748

both the baselines fail to complete the tasks, while our approach 749

can converge within 500 episodes with a fairly high cumulative 750

reward. Note that, for both the tasks, we first group the agents 751

based on subtasks [see Fig. 4(e)] or randomly [see Fig. 4(d)] and, 752

then, learn the pairwise options for each subgroup and utilize 753

these options in a centralized manner to aid the exploration. 754

To further show the difficulty of this task and significance of 755

our algorithm, we apply SOTA MARL algorithms, including 756

COMA [40], Weighted QMIX [41], and MAVEN [42], on the 757
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TABLE III
PERFORMANCE OF SOTA MARL BASELINES

six-agent maze task, each of which is repeated three times with758

different random seeds. The mean and standard deviation of the759

cumulative rewards in the training process (50 000 episodes)760

of these baselines are shown in Table III, showing that none761

of these algorithms can learn to complete this task. The reason762

is that as a challenging cooperative search problem, the reward763

space is highly sparse since only when the six agents arrive at the764

goal area at the same time can they receive the reward signal, so765

efficient exploration strategies in the joint state space like ours is766

required. The code for reproducibility of these results has been767

made available in [43].768

VI. CONCLUSION769

In this article, we propose to approximate the joint state space770

in MARL as a Kronecker graph and estimate its Fiedler vector771

using the Laplacian spectrum of the individual agents’ state772

transition graphs. Based on the approximation of the Fiedler773

vector, multiagent covering options are constructed, containing774

multiple agents’ temporal action sequence toward the subgoal775

joint states, which are usually infrequently visited, so as to776

accelerate the joint exploration in the environment. Furthermore,777

we propose algorithms to adopt these options in MARL, using778

centralized, decentralized, and group-based strategies, respec-779

tively. We empirically show that agents with multiagent options780

have significantly superior performance than agents relying on781

single-agent options or no options.782

A future direction would be to scale our algorithm for real-783

life applications with SOTA representation learning techniques,784

such as in [33] and [34]. On the other hand, there will be785

nonnegligible differences between ⊗n
i=1Gi and the joint state786

transition graph G̃, if the state transitions of an agent are hugely787

influenced by the others. Therefore, mechanisms to detect these788

situations in a task scenario and integrate them with⊗n
i=1Gi for789

a better approximation of G̃ will also be an interesting future790

direction.791
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