
HotDedup: Managing Hot Data Storage at Network
Edge through Optimal Distributed Deduplication

Shijing Li, Tian Lan
ECE, George Washington University

{shijing, tlan}@gwu.edu

Abstract—The rapid growth of computing capabilities at
network edge calls for efficient management frameworks that
not only considers placing hot data on edge storage for best
accessibility and performance, but also makes optimal utilization
of edge storage space. In this paper, we solve a joint optimization
problem by exploiting both data popularity (for optimal data
access performance) and data similarity (for optimal storage
space efficiency). We show that the proposed optimization is NP-
hard and develop a 2d2Γe − 1 + ε-approximation algorithm by
(i) making novel use of δ-similarity graph to capture pairwise
data similarity and (ii) leveraging the k-MST algorithm to solve a
Prize Collecting Steiner Tree problem on the graph. The proposed
algorithm is prototyped using an open-source distributed storage
system, Cassandra. We evaluate its performance extensively on
a real-world testbed and with respect to real-world IoT datasets.
The algorithm is shown to achieve over 55% higher edge service
rate and reduces request response time by about 30%.

I. INTRODUCTION

As data processing capabilities rapidly shift toward network
edge in the era of edge computing, efficient management of
edge storage becomes important, especially under explosive
growth of Internet of Things (IoT) data. Placing hot data (i.e.,
popular files with frequent requests) at network edge helps
increasing performance of edge applications by making hot
data locally accessible, while partitioning similar files with
high redundancy into the same storage tier helps improving
space efficiency. These two optimizations are traditionally
carried out separately, yet they are clearly coupled and need
to be solved jointly to yield the best management policy.
We tackle this combinatorial problem of joint optimization,
and develop a novel approximation algorithm with provable
performance guarantee.

Edge storage needs novel optimization for both performance
and space efficiency. It is predicted that 45% of IoT-created
data will be stored, processed, and acted upon at the edge
of the network[1]. Modern storage systems often employ
deduplication [2], [3], [4], [5], [6], [7] to substantially reduce
data redundancy, e.g., for up to 70% in multimedia and traffic
IoT data [8], [9]. It has recently been applied to distributed and
edge systems in [3], [6]. However, these solutions only take
space efficiency into account and are oblivious of data pop-
ularity and future request rates, which may vary significantly
in practice. On the other hand, caching hot data at network
edge have been well studied to optimize various performance
objectives such as hit ratio, throughput and congestion [10],
[11], [12], [13]. They aim to improve system performance but
not necessarily achieves good space efficiency which is crucial

Fig. 1. An illustrative example of HotDedup at network edge.

for limited edge storage. Previous work has investigated how to
place hot data at network edge, or select similar files for space
efficiency through deduplication, but not both. Optimizing on
any one dimension alone is too restrictive. Yet it remains
unclear how to optimally select data that are not only popular
but also amenable for space efficiency. Our paper is driven by
this question.

In this paper, we propose a novel solution, HotDedup, which
focuses on optimizing edge storage by exploiting both data
popularity (for optimal data access performance) and similarity
(for optimal storage space efficiency). The motivation of our
problem is illustrated in Figure 1. Consider 5 files that are
divided into fixed size chunks and have different request rates
λi, and a distributed edge storage with a capacity of 4 chunks.
To optimize the space efficiency, we can store a maximum
number of 3 files {F1, F2, F3} (with a total number of 4
unique chunks after deduplication) in edge storage, whereas
another policy giving higher priority to more popular (hotter)
files would place only F5 in edge storage. However, both these
two solutions only serve 4 or 5 out of 13 requests per second
from the network edge, i.e., λ1+λ2+λ3 = 4 and λ5 = 5, while
the remaining requests must be served by the remote cloud. We
show that an optimal solution of placing {F1, F4} on network
edge can serve the maximum of λ1 + λ4 = 6 requests, thus
achieving both space efficiency and best performance.

While exploiting both degrees of freedom is undoubtedly
appealing, it also presents great technical challenge. It is
easy to see that even without deduplication, the problem of
maximizing edge service rate (defined as the total request
rate served by edge storage) under edge capacity constraint

is equivalent to the knapsack problem, which is known to
be NP-hard. However, the use of deduplication further intro-
duces a combinatorial constraint, since in order to find the
best partition of files, the deduplicated storage size must be
measured on every possible subset of files, yet with no closed-
form characterization available. In this paper, we propose
a 2d2Γe − 1 + ε-approximation algorithm for the problem,
where Γ is the storage capacity divided by actual storage
usage(Section V). Our solution leverages two key ideas: First,
for any set of files, the storage space requirement after
deduplication can be effectively approximated through a δ-
similarity graph G = {V,E}, in which each vertex represents
a file Fi and an edge weight between vertices i to j measures
the number of common chunks shared by Fi and Fj (i.e.,
capturing pairwise file similarity). Second, we note that the
partitioning problem now on δ-similarity graph is closely
related to a class of problems known as the Quota version of
the Prize Collecting Steiner Tree problem [14]. To this end, we
make novel use of the k-Minimum-Spanning-Tree (k-MST)
algorithm [15] to iteratively compute an optimal solution. The
approximation ratio of our proposed algorithm is derived in
closed form. The performance is evaluated using prototype
implementation and real-world IoT datasets.

Our contributions are as follows:
• To manage hot data storage at network edge, we formalize

a joint optimization problem to maximize edge service
rate and storage space efficiency with deduplication. The
problem is shown to be NP-hard.

• We propose a 2d2Γe − 1 + ε-approximation algorithm
by making novel use of δ-similarity graph to capture
pairwise file similarity and leveraging k-MST to solve
a Prize Collecting Steiner Tree problem on the graph.

• The proposed algorithm is prototyped using a distributed
storage system, Cassandra, and evaluated with real-world
IoT datasets. It achieves over 55% higher edge service
rate and reduces request response time by about 30%.

II. RELATED WORK

IoT data such as multimedia and traffic video image se-
quences have high similarities due to their temporal and/or
geographical correlation, which could result in more than 70%
redundancy[8], [9]. Space-efficient mechanisms for managing
IoT data include clustering algorithms based on data similar-
ity that could save 55% storage space and improve system
resource utilization[2], and methods leveraging temporal/geo-
graphical pattern in IoT time series data[3]. The notion of
clustered deduplication [5], [4] has also been considered in
general cloud storage, where systems like HYDRAstor [5]
perform coarse-grained deduplication with larger chunk size
and then distribute the data using DHTs or load balancers to
multiple servers that perform more fine-grained deduplication.
However, these work mainly focus on improving space effi-
ciency with deduplicaiton, while not taking into account data
popularity in edge processing.

Caching hot data at network edge have been well studied
to optimize the hit ratio of data requests. A lazy eviction

cache algorithm for cloud block storage is proposed in [10]
to efficiently mitigate large reuse distances in cache blocks.
Cache replacement policies for maximizing hit ratio or total
throughput under the uncertainty of data arrivals are consid-
ered in [11], [12], [13], by considering peak hour characteris-
tics [11], estimating the distribution and characteristics of Web
proxy traces [12], and incorporating data locality to optimize
multiple objectives including hit ratios, latency reduction and
network cost reduction[13]. In contrast, our work considers
not only selecting hot data for edge storage to optimize system
performance, but also edge-based deduplication of IoT data to
eliminate substantial redundancy and improve space efficiency
of edge storage.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the era of edge computing, an increasing amount of data
that are produced at network edge (e.g., by smart phones and
IoT sensors) will be accessed by computing nodes or edge
devices that are also located at network edge. We consider a
distributed storage system consisting of two-tiers - a set of n
distributed edge nodes that are located close to data producers
and consumers and a remote cloud with larger storage capacity
and yet higher service latency.

Given a set of m files (or data objects) F =
{F1, F2, . . . , Fm} with known request arrival rates λ =
{λ1, λ2, . . . , λm}, we consider the problem of optimally plac-
ing the files on edge and cloud storage, with the goal of
maximizing the probability of serving requests from edge (or
equivalently, minimizing the need to forward request to remote
cloud). In order words, we partition F into two disjoint subsets
- P for edge storage and Q for cloud storage - such that
the amount of requests that are served by edge storage (i.e.,∑
i∈P λi) is maximized.
Since data generated by IoT and edge applications often

exhibits significant amount of redundancy, we employ a dis-
tributed storage system with edge-based deduplication similar
to [6]. In particular, we maintain a distributed hash-chunk table
among the edge nodes, which stores the hash value of each
unique chunk as the key and can be accessed by all edge nodes
to identify and deduplicate redundant chunks in new files. To
store the deduplicated chunks, we also create another file-hash
table to maintain an association between file names and the
position indexes of corresponding chunks, while the chunks
are evenly distributed among all edge nodes. To reconstruct a
file, we will use the file-hash table to get the position index
of each chunk, and use the hash value to link to the actual
chunk in hash-chunk table. We consider each file Fi as a set of
chunks, such that |Fi| defines its size. We use D(P) = |∪iFi|
to denote the space required for all edge files after distributed
deduplication.

Our objective is to maximize the amount of requests that
are served by edge storage, which is denoted as the edge
service rate in this paper, by optimally partitioning the files.
Let Ck be the storage capacity of edge node k, so that the

F A set of m files
Fi File i with file size |Fi|
λi Request arrival rate for file i
R(t) Chunk popularity density function

B =
∑

k Ck Edge storage capacity constraint
G = (V,E) δ-similarity graph
D(T) Deduplicated storage size of files in T
S(T) Total edge plus vertex cost of T
Q(T) Total vertex prize of T
µi Cost assigned to vertex i
ve Cost assigned to edge e = (i, j)

TABLE I
TABLE OF KEY NOTATIONS

total edge storage capacity is B =
∑
k Ck. We need to solve

an partitioning problem:

max
∑
i∈P

λi (1)

s.t. D(P) ≤ B =
∑
k

Ck, (2)

var. P ⊆ F . (3)

where Equation (2) is a storage capacity constraint for the edge
nodes under deduplication D(P). Despite its straightforward
formulation, this problem turns out to be challenging, since the
storage space requirement D(P) depends on the redundancy
existing in files P and does not have a closed-form quantifi-
cation. Next, we will show that the problem is NP-hard even
if there is no redundancy between the files and D(P) reduces
to a linear function.

Theorem 1. The partitioning problem is NP hard.

Proof. We prove that the problem is NP-hard by showing that
the knapsack problem (which is known to be NP-hard) can
be transformed into a version of the proposed partitioning
problem with zero redundancy between any pair of files. More
precisely, we consider a set of m items, each of size si
and associated with a reward ri for i = 1, . . . ,m, and a
knapsack of size C. The knapsack problem aims to find a
subset P of items that have a total size no greater than C and
achieves maximum reward, i.e., to maximize

∑
i∈P ri under∑

i∈P si ≤ C.
Now we construct a set of m files, each with si unique

chunks and a request rate of λi = ri. Since there is no chunks
shared by any pair of files, for any subset P of files we have
D(P) =

∑
i∈P si. When B =

∑
k Ck = C, it is easy to

see that the knapsack problem is exactly a special case of the
proposed partitioning problem with zero redundancy between
any pair of files. Thus, we conclude that any solutions to
the partitioning problem solves the knapsack problem, which
implies the NP-hardness.

IV. OUR ALGORITHM USING DELTA STEINER TREE

Our algorithm makes novel use of two key ideas. First, for
a set of files P , the space requirement after deduplication -
i.e., D(P) - can be effectively estimated via a δ-similarity
graph G = {V,E}, in which each vertex represents a file

in F and an edge exists between vertices i to j if the two
files Fi and Fj share at least one common chunk. We also
assign a vertex cost µi = D(Fi) (which is the size of file
Fi) to each vertex i and an edge cost v(i,j) = −D(Fi ∩ Fj)
(which is the negative of the size of common chunks shared
by files Fi and Fj) to each edge (i, j) ∈ E. It has been shown
that such δ-similarity graphs - while only capturing pairwise
file similarities - provide an simple yet effective model for
estimating the space requirement of deduplicating any subset
of files [7]. Thus, we can consider an alternative problem
of finding a subgraph on G with respect to an estimate of
storage space constraint B =

∑
k Ck. Second, we note that

this problem now is related to a class of problems known
as the Quota version of the Prize Collecting Steiner Tree
problem[14], a.k.a., the quota problem. Given the δ-similarity
graph G, we consider a quota problem with both vertex and
edge costs µi and v(i,j) in , respectively, and vertex prizes λi.
For a given prize quota Q > 0, the goal of the quota problem is
to find a tree T in G of minimum vertex plus edge cost, which
spans a total prize of at least Q. We will show that the proposed
partitioning problem can be efficiently solved by computing
a sequence of quota problems on the δ-similarity graph and
finding a proper prize quota Q under estimated storage space
constraint. In particular, the vertex plus edge cost provides
an estimate on the storage space required to store files in the
optimal tree T , while the prize on T gives the corresponding
edge service rate. Our proposed algorithm is denoted as the
Delta Steiner Tree Partitioning (DSTP) in this paper.

A. Illustrative Example

We will first give an illustration of our DSTP algorithm
using the example in Fig.1 with m = 5 files and edge storage
capacity B =

∑
k Ck = 4. First, we construct the δ-similarity

graph G = (V,E) as shown in Fig .2(a). For instance, vertex 1
is assigned a cost µ1 = D(F1) = 3 (chunks) and a prize λ1 =
2, while edge (1, 2) is assigned a cost v(1,2) = −D(F1∩F2) =
−3. There is no edge between vertices 1 and 5 because files
F1 and F5 do not share any common chunk. Intuitively, for
any subgraph of G, the sum of edge and vertex costs provide
an estimate on the required storage space using deduplication,
by considering only pairwise similarities. Now we start by
considering a quota problem on the δ-similarity graph G =
(V,E) in Fig .2(a), with an initial prize quota Q = 8. The
optimal tree that achieves the minimum vertex plus edge cost
while spanning a total prize of at least Q = 8 is shown in
Fig .2(b). We note that the vertex plus edge cost of this optimal
tree - that is

∑4
i=1 µi + v(1,2) + v(2,3) + v(1,4) = 5 - coincide

with the required storage space using deduplication, which
is D({F1, F2, F3, F4}) = 5. In general, such estimates using
δ-similarity graph G may not be precise, but still provide a
simple yet effective model for optimizing storage systems with
deduplication, as proven later in this paper.

Next, we adjust the prize quota Q until the resulting
solution to the quota problem has a vertex plus edge cost
satisfying the storage capacity constraint B = 4. This can
be achieved through a bisection search. Since the current

(a) δ-similarity graph constructed for
the example in Fig.1.

(b) Optimal solution (cost=6 > B) to
the quota problem with Q = 8.

(c) Optimal solution (cost=3 < B) to
the quota problem with Q = 4

(d) Optimal solution (cost= 4 = B)
to the quota problem with Q = 6

Fig. 2. An illustration of our proposed DSTP algorithm. It finds a solution with the highest prize Q = 6 under a cost constraint B = 4, by leveraging a
bisection search on Q and solving a sequence of quota problems accordingly. Files P = {1, 4} are placed at edge storage in the optimal solution.

cost exceeds capacity constraint, we reduce the prize quota
to Q = (8 + 0)/2 = 4. A solution to this new quota problem
on the δ-similarity graph G = (V,E) is computed and the
result is shown in Fig .2(c). Now, since the vertex plus edge
cost is only µ4 = 3 and falls below the capacity constraint,
we make another adjustment to consider Q = (4 + 8)/2 = 6.
We show the resulting optimal tree in Fig .2(d) with cost
µ4+µ1+v(1,4) = 4. It is easy to see that any higher prize quota
will lead to a solution violating the storage capacity constraint.
Thus, we stop the bisection search, and get an optimal solution
P = {F1, F4} to the partitioning problem in (1)-(3), i.e., to
store files F1 and F4 on network edge. In the following we
will show that this DSTP algorithm is guaranteed to find a
feasible solution to the partitioning problem despite using an
estimate of storage space via the δ-similarity graph. Further,
we will drive a closed-form approximation ratio for the DSTP
algorithm.

B. The Proposed DSTP Algorithm

Given a set of m files F , we construct a δ-similarity
graph G = dupGraph(F) = (V,E). This can be computed
efficiently with complexity O(m2) by generating a hash table
for all chunks of each file Fi and comparing the hash tables
of each pair of files to find the edge costs. Thus, we can run
a bisection search on prize quota Q and solve a sequence of
quota problems on the δ-similarity graph, until we find a value
Q∗ such that the tree produced by solving the quota problem
for prize quota Q∗ costs no more than B =

∑
k Ck and any

tree output by the algorithm for quota value Q∗(1 + ε) costs
more than B for some ε > 0. We note that a bisection search
to finite precision suffices, since there exists an exponentially
small η such that any two trees of graph G must have vertex
plus edge cost greater than η (as there are only a finite number
of trees). The bisection search is also guaranteed to converge
since the minimum cost is monotonically non-decreasing over
prize quota Q.

Now we only need to develop an efficient algorithm to solve
the quota problem with given Q on the δ-similarity graph.
To this end, we leverage the method in [14] to transform
the quota problem into an equivalent k-Minimum-Spanning-

Tree problem (k-MST), which finds a k-vertex, minimum edge
cost spanning tree in G and is known to have quadratic-time
algorithms with an approximation ratio of (2 + ε) [15]. We
note that the method in [14] just works for graphs which
only containing non-negative edge costs, whereas our quota
problem has both edge and vertex costs, and the edge costs
are negative. Without loss of generality, we assume that all
vertex prizes have integer values. This holds because without
changing the problem, we can always scale λi by some
sufficiently large factor S, such that the quantization error due
to ceiling function dλiSe can be sufficiently small as relative
to the scaled prize λiS.

Fig. 3. An illustration of our transformation by substituting each
vertex i of graph G = (V,E) into 2 vertices of graph G′, in which
only edge costs exist. The vertex prizes are then scaled up by λ̂s =
2|V |λs + 1 for all vertex s of G′.

Our key idea is to transform graph G into G′ (that only has
edge costs) by substituting every vertex i by a vertex i′ of zero
prize and attaching a new node i′0 with prize λi to vertex i′.
The process is illustrated in Fig 3. If we further assign edge
cost µi to (i′, i′0), it is easy to verify that the original quota
problem on G with both edge and vertex costs is equivalent
to a quota problem on G′ with only edge costs. Next, to deal
with zero-prize vertices we introduce in G′, we will employ
the technique in [14] and modify prize values in G′ so as
to get an equivalent instance of the quota problem with only
positive prizes on the vertices. The new prize assignment is
λ̂s = 2|V ′|λs + 1 for all vertex s of G′ = (V ′, E′). We also
scale up the prize quota to be Q̂ = 2Q|V ′|. The following
lemma proves that any tree that is optimal for the quota
problem under the modified prize assignments is optimal for
the original problem before vertex prize scaling.

Lemma 1. If tree T is an optimal solution to the quota
problem with modified vertex prize λ̂s and quota Q̂, then T is
an optimal solution to the original quota problem with vertex
prize λs and quota Q.

Proof. This lemma follows directly from Lemma 4.1 in [14],
and having negative edge costs does not affect vertex prize.

Finally, the quota problem on G′ with modified vertex prize
λ̂s and quota Q̂ can be solved by computing an equivalent k-
MST problem. We just need to substitute every vertex s by a
star with a center node s′ and λ̂s − 1 leaf nodes all attached
to s′ by zero-cost edges [14]. Both s′ and the leaf nodes are
assigned unit vertex prize. Clearly, solving the quota problem
is now equivalent to solving k-MST problem on the modified
graph with k = Q̂, because the modified graph only contain
1-cost vertices. More precisely, any k-MST algorithm that
finds a k-vertex, minimum edge cost spanning tree achieves a
collective prize of exactly k = Q̂ as all vertices have unit prize.
Based on these transformations, we can also deal with negative
edge costs by adding a sufficiently large constant α on all
edges to make their costs become non-negative. Since k-MST
algorithm finds a k-vertex tree that has exactly k − 1 edges,
the additional constant α will only introduce a constant change
α(k−1) in the optimal solution of k-MST. Let k-MST(G′, Q̂)
be a routine that returns optimal tree T . The proposed DSTP
algorithm is summarized below in Algorithm 1.

Algorithm 1: Our DSTP Algorithm
Input : F = {F1, . . . , Fm}, edge storage capacity B;
Algorithm :
Construct G = (V,E) = dupGraph(F);
//Transform G into G′

for each edge i
Substitute i by i′ and i′0;
Assign vertex prize: λi′ ← 0 and λi′0 ← λi;
Assign edge cost: v(i′,i′0) = µi;

end for
Scale prize: λ̂s ← 2|V ′|λs + 1 for all s in G′;
//Solve quota problems
Initialize QL and QU for bisection search;
do {
Q̂← (QL +QU)/2;
T ← k-MST(G′, Q̂);
Estimate storage space: S =

∑
e∈T ve(G

′);
if S > B xxx Quota Q̂ is too high

Update: QL ← Q̂;
else Update: QU ← Q̂;
end if

} while |S −B| > ε;
return T ;

Theorem 2. Algorithm DSTP finds a feasible solution for the
partitioning problem.

Proof. k-MST problem is known to have quadratic-time algo-
rithms with an approximation ratio of (2 + ε) [15]. We have
already shown that solving the k-MST problem with k = Q̂
yields a solution T to the quota problem on G′ with modified
vertex prize λ̂s and quota Q̂. Lemma 1 further establishes that
T is a solution to the original quota problem on G with vertex
prize λs and quota Q = Q̂/(2|V ′|).

Let D(T) be the deduplication function in (1). To show that
T is also a feasible solution to the partitioning problem, we
only need to prove D(T) ≤ B. Due to the bisection search in
Algorithm DSTP, we have

∑
e∈T ve(G

′) ≤ B for edge costs
ve(G

′) on G′. This implies that
∑
e∈T ve(G)+

∑
i∈T µi(G) =∑

e∈T ve(G
′) ≤ B, because of the additional edge costs that

are introduced to construct G′. Using the definition of G as
the δ-similarity graph, we have

D(T) = | ∪i∈T Fi|
≤
∑
i∈T
|Fi| −

∑
(i,j)∈T

|Fi ∩ Fj |

=
∑
e∈T

ve(G) +
∑
i∈T

µi(G) ≤ B. (4)

where the third step follows from the construction of δ-
similarity graph G, and the second step holds since each
unique chunk shared by t files (a.k.a popularity-t chunks)
is counted t times in

∑
i |Fi|, while

∑
(i,j)∈T |Fi ∩ Fj | only

include a subset of those popularity-t chunks that are counted
at most t − 1 times if their owner files are all adjacent and
form a subtree in T . Therefore, T is a feasible solution to the
partitioning problem due to D(T) ≤ B.

V. APPROXIMATION RATIO OF DSTP

We show that DSTP is a (2d2Γe - 1 + ε)-approximation
algorithm, where Γ = B/D(T) ≥ 1 is the edge storage
capacity B divided by actual usage D(T). We also provide
a closed-form bound on Γ and propose a hierarchical model
and quantify Γ on practical datasets.

A. Main Result.

It is easy to see that the performance of DSTP algorithm
depends on two factors: (i) The optimality of using k-MST to
solve the quota problem on G, and (ii) The gap of using edge
plus vertex cost of δ-similarity graph to estimate deduplicated
storage space in the quota problem. We will analyze these
two factors and use them to jointly derive an approximation
ratio for the proposed DSTP algorithm. For a set of m files
F = {F1, . . . , Fm}, we define chunk popularity function R(t)
as the number of unique chunks shared by exactly t files. In
the following we analyze the gap Γ of estimating deduplicated
storage space using a spanning tree on G.

Lemma 2. For a set of m files F and corresponding δ-
similarity graph G = dupGraph(F), we have for any
minimum spanning tree T :

Γ =
S(T)

D(T)
≤
∑
t

R(t)

[
t− t2 − t

m

]
, (5)

where R(t) is the chunk popularity function, S(T) =∑
i∈T µi +

∑
e∈T ve is the total edge plus vertex cost of T ,

and D(T) is the deduplication storage space.

Lemma 2 quantifies the gap Γ with respect to a chunk
popularity function R(t). It is similar to the result proven in
[7], which however, only applies to a directed delta-graph.
We present a different proof for undirected graph in Lemma
2, and its proof is shown in Appendix. For practical systems,
such R(t) can be empirically obtained for any data sources. It
is evaluated in [7] that in real-world dataset, most chunks have
small popularity values and thus R(t) is heavily left-skewed,
leading to a tight bound of Γ (very close to 1) in Lemma
2. Next, we prove another lemma that provides an important
bound on splitting node-weighted trees. It plays a crucial role
in analyzing the competitive ratio of DSTP algorithm. Again,
the proof is collected in Appendix.

Lemma 3. For ∀α ≥ 3, any node-weighted tree with at least
α nodes, in which no node weighs more than 1

2α−1 of the total
weight of the tree, can be split into α edge-disjoint subtrees,
such that each of them contains at least 1

2α−1 of the total
weight.

Now we are ready to state the main theorem of this paper.

Theorem 3. DSTP yields a polynomial-time (2d2Γe− 1 + ε)-
approximation algorithm for the partitioning problem.

Proof. We prove the theorem by constructing a contradiction.
Let tree T be a solution computed from DSTP algorithm.
Suppose that no polynomial-time algorithm can achieve an
approximation ratio less than or equal to 2d2Γe−1 + ε. Then,
there must exist some solution T ∗ that is not only feasible
D(T ∗) ≤ B but also achieve a large prize Q(T ∗) satisfying:

Q(T ∗) ≥ (2d2Γe − 1 + ε)Q(T), (6)

because otherwise Q(T) would attain the desired approxima-
tion ratio. We note that T ∗ must be the minimum spanning
tree on the subgraph containing its vertices, because we can
otherwise replace T ∗ by the minimum spanning tree to have
a feasible solution with the same vertex prize and yet smaller
cost. Applying Lemma 2 to T ∗ we get:

S(T ∗) ≤ ΓD(T ∗) ≤ ΓB, (7)

where the last step holds due to the feasibility of T ∗, i.e.,
D(T ∗) ≤ B. Next, we choose α = d2Γe in Lemma 3 and use
it to split T ∗ into α trees that each of them contains prize at
least:

Q(T ∗)

2d2Γe − 1
≥ (2d2Γe − 1 + ε)Q(T)

2d2Γe − 1
> Q(T), (8)

where the second step is due to (6). Since the total cost of
these α split trees is less than that of T ∗, there must exist one
split tree with cost no more than:

S(T ∗)

α
≤ ΓB

d2Γe
≤ B

2
, (9)

where the second step uses (7) and α = d2Γe. To summarize,
we now find a split tree of T ∗, who achieves a prize strictly
higher than Q(T) (due to (8)) and have a cost no more than
B/2 (due to (9)).

However, T is a solution computed from DSTP algorithm
by solving a sequence of quota problems with bisection search.
Quota problems are known to have quadratic-time algorithms
with an approximation ratio of (2 + ε) [15]. It implies that
any solution achieving a higher prize quota than Q(T) must
have cost more than B/2 (otherwise T would not be a (2+ε)-
approximation solution). This contradicts with the fact that we
have constructed a split tree of T ∗ above with a prize strictly
higher than Q(T) and a cost no more than B/2. Therefore,
we prove the desired result.

Remark. We note that for datasets in practice, Γ can be very
close to 1, since most data chunks have small popularity value.
Empirical evaluation of popularity distribution R(t) has been
provided in [7]. Using the result, we can compute a bound for
Γ using Lemma 2, i.e., Γ ≤ 1.26. Further plugging this into our
approximation ratio in Theorem 3, it becomes 2d2Γe−1+ε =
2d2× 1.26e − 1 = 5 + ε. In other words, DSTP is a (5 + ε)-
approximation algorithm on the dataset.

VI. EVALUATION

We implement a prototype of the proposed DSTP algorithm
and evaluate its performance using real-world IoT data. In
this section, we describe our system design and present the
results of extensive experiments and simulations that show the
efficacy of our proposed algorithm over other baselines.

A. Implementation and Experiment Setup

Our implementation of edge-based deduplication is illus-
trated in Fig.1. When a set of new files (F1, F2, . . . , F5) arrive
at the edge nodes, we split each file object into fixed-size
chunks and calculate a hash value for each chunk. The unique
hash values are maintained in a distributed edge storage, using
Cassandra [16], [17], and allows efficient deduplication of
new file objects using Duperemove [18], as well as quick
construction of the δ-similarity graph as shown in Fig.III.
Then, we run DSTP algorithm at edge nodes to determine the
optimal set of files to store on the edge nodes. In particular,
another index table in Cassandra is created to store the
mapping from chunks to their original positions in file objects,
to allow quick recovery at any edge node. When an access
request arrives, edge files are reconstructed locally on the fly,
while cloud files are retrieved from the remote cloud.

Our local storage system testbed consists of 20 VMs (edge
nodes) created on a local Cassandra cluster, where each VM
has 2 VCPUs, 2GB RAM and 5 GB virtual disk drive. We also
set up four more powerful VMs in a cloud Cassandra cluster, in
which each VM has 4 VCPUs, 8GB RAM, and 20GB storage.
We implement a distributed Cassandra file storage on local
VMs. All of the local VMs are gathered in the same Cassandra
cluster. In this way, file objects stored at network edge will
have their chunks evenly distributed among all nodes in the

Fig. 4. We compare the performance of DSTP
against the baseline algorithms. It is shown that
DSTP is able to outperform the baselines by 43.4-
118.5% in terms of edge service rate.

(a) Edge service rate (b) Deduplication ratio

Fig. 5. We evaluate the performance of DSTP solution with respect to a mix of two datasets.
Files are randomly selected from the datasets with varying probabilities p and 1− p, respectively.

cluster. We maintain a table indicating the order of chunks in
different file objects, which can thus be successfully recreated
upon access requests.

The bandwidth among the local VMs is 1.726 Gbps with
an average latency of 0.85 ms. We measured the average
bandwidth between our local VMs and Amazon EC2 VMs
is 0.377 Gbps with average latency of 12.2 ms. Then we
use NetEm[19] to set the bandwidth and latency between
local Cassandra cluster and cloud Cassandra cluster equal as
the measurements. Then we use real-world IoT datasets for
the evaluation. The first one consists of accelerometer data
recording human walking over 25 days from 5 participants,
with each data point in the size range of 80-187MB [20].
The seconds one is MIT traffic data set which is for research
on activity analysis and crowded scenes. It includes video
sequences captured by a stationary traffic camera[21]. All
numbers presented in our evaluations are an average of 100
measurements over a real system we implemented.

B. Numerical Evaluation and Comparison

We evaluate the proposed DSTP algorithm and compare its
performance with a number of baselines. The first baseline is
a most-popular-first algorithm, which aims to store the hottest
file objects with the highest access rate on edge nodes. This
is indeed a Most-Frequently-Used policy widely employed in
caching systems[22], [13]. The second baseline is a space-
only algorithm, which only takes file similarity into account
and maximizes the deduplication ratio of selected files, similar
to those used in deduplication systems[6]. Finally, the third
baseline employs the First In First Out (FIFO) heuristic, which
store the latest files at network edge. In this section, we
compare the performance of DSTP and the baselines, with
respect to edge service rate (defined as the total request rate
that are served by edge storage), response time for accessing
different file objects, and the deduplication ratio that measures
the space-efficiency of edge storage.

We first vary the edge storage capacity from 200MB to
1.2GB (per node) and evaluate DSTP algorithm and baselines,
in terms of their optimal edge service rate. Fig. V-A shows
that while all algorithms achieve better edge service rate
due to higher storage capacity available for hot files, our
algorithm is able to outperform the baselines by 43.4-118.5%.

The maximum improvement is achieved at medium edge
storage capacity, because there are either too few or too many
files in low and high edge storage, leading to less room
for optimization. Nevertheless, even with very limited local
storage space - 200MB per edge node - our algorithm could
still achieve 44.5% improvement over the baselines. It can
more effectively utilize edge storage space to support hot files.

We also evaluate our DSTP algorithm on a mix of two
different IoT accelerometer datasets, in which higher file
similarity (and thus higher potential for deduplication) exist
within each dataset, while less similarity across datasets. We
randomly select files from the two datasets with probabilities p
and 1−p. Figure. V-A shows the optimal edge service rate for
different values of p. It is observed that the best performance
of DSTP is attained when p is close to 50% (with about 35%
increase over the performance at p = 0 and p = 1). This is
because when files are files are uniformly chosen from the two
datasets, DSTP is able to “cherry-pick” the hot files with both
high request rate and high similarity from each data set, thus
achieving the best edge service rate. Fig. V-A verifies this
by showing the deduplication ratio (which is defined as the
storage space ratio before and after deduplication and is always
greater than or equal to 1) achieved by files from each dataset
for different values of p. Deduplication ratio saturates as soon
as a small number of hot files from each dataset are stored on
the edge. DSTP’s ability to deliver better performance when
the data become more hybrid makes it suitable for practical
applicators.

Fig. 6. Comparing DSTP and baseline algorithms with respect to different
distributions of request rate (i.e., file popularity). DSTP demonstrates superior
ability to adapt to different file request distributions and performs better for
larger variations in file popularity.

(a) Mean response Time (b) Distribution of response time (c) Online re-optimization

Fig. 7. We evaluate the performance of DSTP on our testbed for randomly generated requests over a period of 100 minutes, in terms of the actual request
response time and the ability of online re-optimization. DSTP can significantly reduce response time and adapt to dynamic new file arrivals.

Next, we changed the distribution of file request rates (i.e.,
file popularity) to compare DSTP with the baselines. Fig. 6
shows the performance when file access requests are generated
according to a uniform distribution in different range (x, y).
DSTP demonstrates superior ability to adapt to different file
request distributions. In particular, it almost doubles the edge
service rate under uniform request distribution in (1, 9), which
corresponds to large variation in file popularity and allows
DSTP to better optimize over select hot files with high access
rate. Such high variation in file popularity often hold in
practical systems due to timeliness of IoT data.

In Fig. 7, we evaluate the performance of DSTP on our
testbed described at the beginning of this section, in terms of
the actual request response time in Fig. 7(a) and Fig. 7(b),
and the ability to re-optimize file placement with online new
file arrivals Fig. 7(c). The numbers shown in the figure is
the sum of 500 requests (for both edge and cloud files)
randomly generated according to a uniform distribution in
[1, 10] (requests per second). In general, downloading a file
from edge nodes requires less than 1 second service time
on our testbed, while 3-6.5 seconds from the cloud, due to
smaller latency and higher bandwidth between clients and
edge nodes. As shown in Fig. 7(a), while most-popular-first
algorithm is able to store the hottest files at network edge, it
results in the worst request responds time, since the hottest
files may have low similarity and thus poor space efficiency
for edge storage. On the other hand, space-only algorithm is
able to store the maximum number of files at network edge,
but it does not take file popularity into account. Our DSTP
algorithm is able to achieve the minimum response time, as it
is able to maximize the number of requests served by network
edge and also achieve high space efficiency. DSTP is able to
achieve smaller response time for a larger fraction of files and
significantly reduces response time tails.

Finally, we apply DSTP to an online setting. At the be-
ginning of each time slot, a batch of new files are randomly
selected from the two datasets with equal probability and their
requests are generated from a uniform distribution in (0, 10).
With new files arriving in each time slot, we re-optimize the
storage system by solving DSTP optimization jointly for both
existing files and new files. As shown in Fig. 7(c), we measure
the edge service rate at the end of each time slot, for a total of

40 time slots. It is shown that as more files arrive at the system,
edge service rate increases, and eventually saturates due to
storage capacity constraint at network edge. DSTP achieves
the largest service rate and outperforms most-popular-first and
space-only by 53% and 72%, respectively. This validates the
benefit of DSTP for online optimization with new file arrivals.

VII. CONCLUSION

Data management at network edge needs to exploit both
data popularity (for optimal data access performance) and data
similarity (for optimal storage space efficiency). In this paper,
we formulate a joint optimization problem to maximize edge
service rate and storage space efficiency with deduplication.
The problem is shown to be NP-hard. Our proposed 2d2Γ −
1+ε-approximation algorithm makes novel use of δ-similarity
graph to capture pairwise data similarity and leverages the
k-MST algorithm to solve a Prize Collecting Steiner Tree
problem on the graph. Its prototype and evaluation using real-
world testbed and datasets validates significant improvement
in edge service rate and reduction in request response time.

APPENDIX

A. Proof of Lemma 2

Proof. We denote T as the set of all possible trees of the δ-
similarity graph G. Due to the construction of G in Section IV,
we have vertex cost µi = D(Fi) (which is the size of file Fi)
and edge cost v(i,j) = −D(Fi ∩Fj) (which is the negative of
the size of common chunks shared by files Fi and Fj). Since
T is an optimal spanning tree with minimum weight S(T),
the weight of T can be bounded by the average weight of all
spanning trees of G. We have

S(T) ≤ 1

|T |
∑
T∈T

S(T)

=
1

|T |
∑
T∈T

∑
i∈T

µi +
∑

(i,j)∈T

v(i,j)


=
∑
i

µi −
2

m

∑
i,j:i<j

v(i,j)

=
∑
i

D(Fi)−
2

m

∑
i,j:i<j

D(Fi ∩ Fj), (10)

where the second step uses the definition of S(T) in Lemma
3, the last step directly follows from the construction of of G
in Section IV, and the third holds because each spanning tree
traverses all vertices in G and thus has the same total vertex
weight, and because there each edge shows in exactly 2/m
spanning trees (since all edges have equal chance to be in the
spanning trees due to symmetry).

Next, we consider a chunk popularity function N(t), defined
as the number of unique chunks shared by exactly t files.
It is easy to see that we have R(t) = N(t)/[

∑
tN(t)], as

the fraction of chunks with popularity t. Using N(t), we can
rewrite rewrite deduplicated storage space D(T). Sine each
unique chunk of popularity t is counted exactly once in the
value of N(t), or in other words, the sum of N(t) gives the
total number of unique chunks, we have

D(T) = D(∪iFi) =
∑
t

N(t). (11)

Similarly, we can use N(t) to rewrite
∑
iD(Fi) and∑

i,j:i<j D(Fi ∩ Fj) in (10). In particular, because a chunk
of of popularity t exists in exactly t different files, we have∑

iD(Fi) =
∑
t

t ·N(t). (12)

Further, the fact that a chunk of of popularity t exists in exactly
t different files also implies that the chunk will be contained
in t− choose−2 different pairwise intersections, D(Fi∩Fj).
We have ∑

i,j:i<j D(Fi ∩ Fj) =
∑
t

(
t
2

)
·N(t),

=
t(t− 1)

2
·N(t). (13)

Finally, plugging (11), (12), (13) into (10), we obtain:

S(T)
D(T) ≤

∑
iD(Fi)− 2

m

∑
i,j:i<j D(Fi ∩ Fj)

D(T)
,

=

∑
t t ·N(t)−

∑
t

2
m ·

t(t−1)
2 ·N(t)∑

tN(t)
,

=
∑
t

(
t− t2 − t

m

)
·

[
N(t)/

∑
t′

N(t′)

]

=
∑
t

(
t− t2 − t

m

)
·R(t) , Γ (14)

where the last step uses R(t) = N(t)/[
∑
tN(t)]. This

completes the proof.

B. Proof of Lemma 3

Proof. Without loss of generality, we assume the total weight
of all nodes is 1. Let w(T) denote the total weight of tree T .
We first prove the tree can be split into α subtrees(α ≥ 3),
where two of them weigh at least 1

2α−1 . Then we prove that
each subtree weighs at least 1

2α−1 .
There are at least 3 nodes, so we can split them into at

least 3 subtrees. First, we prove the tree can be split into α

subtrees(α ≥ 3), where two of them weigh at least 1
2α−1 .

If this assumption is not possible, then there exists only one
subtrees T1 whose total weight is at least 1

2α−1 and other
α−1 subtrees weigh less than 1

2α−1 . Suppose T2 is the subtree
with largest total weights in those α− 1 small subtrees. Then
w(T2) < 1

2α−1 . The sum of all of the remaining α−2 subtrees’
weights wremaining < α−2

2α−1 .
Let v be the vertex which is shared by T1 and T2. If node v

has only one incident edge in T1. Then, if we move this edge
from T1 to T2, creating two new subtrees T

′

1 and T
′

2. Then,

w(T
′
1) = w(T1)− w(v)

≥ 1− α− 2

2α− 1
− 1

2α− 1
− 1

2α− 1

>
α− 1

2α− 1
>

1

2α− 1
(15)

w(T
′
2) = w(T2) + w(v) ≥ 1

2α− 1
(16)

Then, both of T
′

1 and T
′

2 weigh at least 1
2α−1 , which is

contradiction.
If vertex v has at least two children in T2, we can split

T2 into two subtrees, both rooted at v. The larger of the two
subtrees must weigh at least α−1

2α−1 . Similarly, by moving the
smaller subtree of T2 over to T1, we have:

w(T1
′) >

1

2α− 1
+

α− 1

2α− 1
) ≥ 1

2α− 1
(17)

w(T
′
2) ≥ 1− 1

2α− 1
− α− 1

2α− 1

=
α− 1

2α− 1
≥ 1

2α− 1
(18)

Then, both of T
′

1 and T
′

2 weigh at least 1
2α−1 , which is

contradiction.
We already proved the tree can be split into α subtrees(α ≥

3), where two of them weigh at least 1
2α−1 . So there exists

an edge-disjoint split T1 and T2 where w(T1) ≤ w(T2) and
both of them weigh at least 1

2α−1 . Consider all the possible
edge-disjoint splits into two subtree. We denote the smaller
tree as T1, and the other one as T2. Then T1 must weigh more
than α−1

2α−1 , otherwise T2 could weigh at least α
2α−1 , causing

contradiction. Let v be the vertex which is shared by T1 and
T2. If node v has only one incident edge in T1, then if we move
this edge from T1 to T2, we will create two new subtrees T

′

1

and T
′

2. Suppose w(T) means the total weights of a tree called
T. Then, since in the original split w(T2) > 2α−2

2α−1 , we have

w(T
′
1) = w(T1)− w(v) >

α− 1

2α− 1
− 1

2α− 1
>

α− 2

2α− 1
(19)

This is a contradiction. So this tree can be split into 2 edge-
disjoint subtrees, such that one of them contains at least 1

2α−1
of the total weight and the other one contains at least α

2α−1
of the total weight.

Since no node weighs more than 1
2α−1 <

1
α , we can take

the larger subtree and split it further into α subtrees, each of
weight at least 1

α of the total. It is easy to see that we obtain
α subtrees, each containing at least 1

2α−1 of the total node
weight.

REFERENCES

[1] R. Clarke, R. Westervelt, D. Vesset, M. Torchia, A. Siviero, R. Segal,
K. Prouty, V. Turner, C. MacGillivray, and L. Lamy, “Idc futurescape:
Worldwide internet of things 2016 predictions,” IDC FutureScape, 2016.

[2] X. Tao and C. Ji, “Clustering massive small data for iot,” in The 2014
2nd International Conference on Systems and Informatics (ICSAI 2014).
IEEE, 2014, pp. 974–978.

[3] S. Aljawarneh, V. Radhakrishna, P. V. Kumar, and V. Janaki, “A
similarity measure for temporal pattern discovery in time series data
generated by iot,” in 2016 International conference on engineering &
MIS (ICEMIS). IEEE, 2016, pp. 1–4.

[4] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and P. Shilane,
“Tradeoffs in scalable data routing for deduplication clusters.” in FAST,
vol. 11, 2011, pp. 15–29.

[5] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzel-
czak, J. Szczepkowski, C. Ungureanu, and M. Welnicki, “Hydrastor: A
scalable secondary storage.” in FAST, vol. 9, 2009, pp. 197–210.

[6] B. B. M.-R. R. H. W. L. R. P. Shijing Li, Tian Lan, “Ef-dedup: Enabling
collaborative data deduplication at the network edge,” in 2019 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2019.

[7] B. Balasubramanian, T. Lan, and M. Chiang, “Sap: Similarity-aware
partitioning for efficient cloud storage,” in IEEE INFOCOM 2014-IEEE
Conference on Computer Communications. IEEE, 2014, pp. 592–600.

[8] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution
of data deduplication,” in Proceedings of the 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE Computer Society,
2012, pp. 114–121.

[9] H. Yan, X. Li, Y. Wang, and C. Jia, “Centralized duplicate removal video
storage system with privacy preservation in iot,” Sensors, vol. 18, no. 6,
p. 1814, 2018.

[10] K. Zhou, Y. Zhang, P. Huang, H. Wang, Y. Ji, B. Cheng, and Y. Liu,
“Lea: A lazy eviction algorithm for ssd cache in cloud block storage,” in
2018 IEEE 36th International Conference on Computer Design (ICCD).
IEEE, 2018, pp. 569–572.

[11] M. Ma and V. W. Wong, “An optimal peak hour content server cache
update scheduling algorithm for 5g hetnets,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–6.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker et al., “Web caching
and zipf-like distributions: Evidence and implications,” in Ieee Infocom,
vol. 1, no. 1. INSTITUTE OF ELECTRICAL ENGINEERS INC
(IEEE), 1999, pp. 126–134.

[13] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms.” in
Usenix symposium on internet technologies and systems, vol. 12, no. 97,
1997, pp. 193–206.

[14] M. Minkoff, “The prize collecting steiner tree problem,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2000.

[15] S. Arora and G. Karakostas, “A 2+ ε approximation algorithm for the
k-mst problem,” Mathematical Programming, vol. 107, no. 3, pp. 491–
504, 2006.

[16] A. Lakshman and P. Malik, “Cassandra: structured storage system
on a p2p network,” in Proceedings of the 28th ACM symposium
on Principles of distributed computing, ser. PODC ’09. New
York, NY, USA: ACM, 2009, pp. 5–5. [Online]. Available: http:
//doi.acm.org/10.1145/1582716.1582722

[17] ——, “Cassandra: a decentralized structured storage system,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1773912.1773922

[18] “Duperemove,” https://github.com/markfasheh/duperemove.
[19] S. Hemminger et al., “Network emulation with netem,” in Linux conf

au, 2005, pp. 18–23.
[20] M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, and

G. Zussman, “CRAWDAD dataset columbia/kinetic (v. 2014-05-
13),” Downloaded from https://crawdad.org/columbia/kinetic/20140513/
kinetic-energy, May 2014, traceset: kinetic-energy.

[21] X. Wang, X. Ma, and W. E. L. Grimson, “Unsupervised activity per-
ception in crowded and complicated scenes using hierarchical bayesian
models,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 31, no. 3, pp. 539–555, 2008.

[22] A. A. Rocha, M. Dehghan, T. Salonidis, T. He, and D. Towsley, “Dsca:
A data stream caching algorithm,” in Proceedings of the 1st Workshop

on Content Caching and Delivery in Wireless Networks. ACM, 2016,
p. 8.

