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ABSTRACT
With the increasing popularity of multi-core processors and multi-
thread languages/frameworks, race conditions – which are non-
deterministic by nature – are becoming a main root cause for con-
currency bugs. It opens doors to malicious attacks such as remote
code execution and denial of service attacks, potentially putting
millions of users in danger. Yet, such non-deterministic racing condi-
tions are often difficult to identify or reproduce in standard program
testing. In this paper, we focus on the Garbage-Collection (GC) fea-
ture, which is known to be a frequent victim of concurrency bugs
in many software systems. We develop a new approach to facilitate
the testing of GC-related bugs through critical condition restoration.
In particular, we propose a risk-score mechanism to quantify the
risk of GC-related bugs in target functions and leverage the score
to select appropriate testing parameters and garbage generation
strategy, with a higher chance of producing the critical condition.
Our experimental results show that the proposed approach could
significantly improve the probability of finding GC-related bugs
(from 0 in condition-oblivious testing to 14.8 bugs identified in our
experiment) while incurring only around 26% execution overhead.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Software and its engineering → Soft-
ware testing and debugging; • Software and its engineering
→ Software reliability;

1 INTRODUCTION
Automatic software testing helps to verify expected behavior of
a program and proof it against bugs. However, for multiple rea-
sons, software systems might behave non-deterministically, or in
other words, running the same piece of code could produce differ-
ent results. Except for natural and physical reasons, and apparent
randomness reasons such as time and random number generator,
system and software level concurrency are another leading cause
for such non-deterministic behaviors. Since concurrency related
bugs often trigger only under specific context, it is very hard to
detect, reproduce and fix such bugs [3]. Existing research on this
topic mainly pay attention on data race condition or data hazards
[12][15]. For example, [21] [13] and [26] mainly combined static
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analysis and fuzz testing to find such concurrency vulnerabilities,
using the results of static analysis of potential concurrency vul-
nerability to guide a coverage-based fuzzer, AFL [25] for example,
trying to trigger the suspicious vulnerabilities.

However, with the wide use of modern languages like Java,
JavaScript and their concurrent garbage collection design, there are
still potential concurrency vulnerabilities might be introduced by
its non-static (dynamic) behaviors. For example, CVE-2019-5786,
CVE-2018-8174 and CVE-2018-4192 in the National Vulnerability
Database [17]. Unfortunately, there are not many readily available
tools and resources dealing with addressing them primarily due
to GC complexity. We note that GC feature is operated on a OS
level that is often inaccessible to coverage guided fuzzing for many
languages. Furthermore, the GC features cannot be fully controlled
by the user- for example in Java, Java Virtual Machine(JVM) has
a higher priority than programmer in dealing with GC; even if
an explicit GC function call is in the code, Java Virtual Machine
might postpone its execution or even ignore it [19]. Even with the
control of GC, many vulnerabilities regarding this rely on many
conditions, timing of the program execution and the process of GC
for example, without which one can hardly reproduce and trigger
the bug leading to it.

The goal of this paper is to develop a mechanism for hunting GC-
related concurrency bugs through critical condition identification
and restoration. As an illustrative example, Some_array.reverse()
is a one-line code shows a real-world GC-related bugs in JavaScript
as illustrated later in Section 2.2, some elements in the array might
be prematurely freed, causing a use-after-free scenario, due to a
data race between the array.reverse() function and a GC pro-
cess. This vulnerability is only triggered under specific conditions,
a maliciously crafted website could lead to an arbitrary code execu-
tion utilizing this triggered bug, with continuous trials to increase
its probability of triggering the bug. Although extremely hard to
reproduce without sophisticated memory manipulation, it affects
multiple versions of WebKit, the engine for the widely used web
browser Safari and several other Apple products [18]. It took almost
2 years after it was originally introduced to patch this GC-related
vulnerability, indicating the challenge and difficulty of finding a
GC-related bug [18]. This is mainly due to the fact that such GC-
related bugs often manifest only under stringent conditions (e.g.,
under the racing condition in array.reverse()) and are difficult
to trigger and reproduce during testing. To demonstrate this, we
have conducted experiments to show that following the example
above, reversing an array with a length of 50000 for 50000 times
could result in positive bug trigger with a probability rate of less
than 1%, an array with less length or tried for fewer times than that
could never trigger it, this also indicates the limitation for a normal
fuzzer on testing a GC-related bug when they can hardly trigger it.
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The key idea of our approach is that we can analyze and identify
the bug-trigger conditions for GC-related vulnerabilities – such
as timing, input preconditions and memory allocation – and then
guide program testing to not only focus on code segments with
a higher probability of containing such vulnerabilities but also
recreate the critical bug-trigger conditions through program instru-
mentation (e.g., employing different garbage generation strategies).
More precisely, we consider four hypotheses on recreating critical
conditions for GC-related vulnerabilities, empirically validate them
using a set of garbage generation policies, and finally propose a
novel risk-score mechanism to guide program testing and to trigger
GC related bugs more quickly. In particular, a Sensitive Analyser
(SA) is developed to leverage the hypotheses and to compute a risk
score quantifying the potential likelihood of GC-related concur-
rency vulnerabilities. The risk score is used to (i) identify high risk
functions, so that we can drive program testing to focus more on
these risky functions, and (ii) guide the selection of garbage gener-
ating strategy and testing parameters to trigger the vulnerabilities
more efficiently during testing.

As a result, our experimental results show that the proposed
approach could try several times on functions with high risks and
gain a significantly improve of probability on finding GC-related
bugs, from 0 in condition-oblivious testing to 14.8 bugs identified
in our experiment, while incurring only around 26% time overhead.

In summary this work makes the following contributions:
• We present a new approach to find GC-related concurrency
vulnerabilities by combining critical condition restoration
and program testing.

• A risk score mechanism is developed to identify functions
with high probability of GC-related vulnerabilities and to
guide the selection of testing strategies and parameters.

• Our experimental results on three selected CVE vulnerabil-
ities shows significantly higher probabilities of triggering
the GC-related bugs with mild execution overhead.

2 BACKGROUND
2.1 Garbage Collection
In C/C++, programmers are responsible for memory allocation and
de-allocation through creating and destroying objects. Failure to
free thememory no longer in use could lead tomemory leak and out-
of-memory errors. For other modern languages like Java, Python
and JavaScript, programmers do not have to free the memory they
allocated, due to the use of an automatic garbage collector. Advan-
tages for automatic garbage collection are obvious: programmers no
longer have to worry about freeing objects/pointers, thus reducing
the likelihood of related bugs such as double-free. However, the in-
troduction of the GC feature requires extra memory operations and
sometimes results in a period known as "stop-the-world" [20] [9],
meaning that all process have to stop and wait for GC to complete,
causing stalls and delay. Modern programming languages strive
to minimize this "stop-the-world" period, e.g., through concurrent,
increment and real-time garbage collection, although each of these
techniques brings new design trade-offs. The garbage collector
works by identifying reachability of the objects, i.e., when an object
becomes unreachable, it shall be freed in the next round of garbage
collection. However, while there are function calls available for

garbage collection, for many languages like Java, calling these func-
tions does not guarantee the timing of the next GC execution. As a
result, the behavior of GC feature is often highly non-deterministic.

Mark-and-sweep is a classic algorithm for garbage collection
proposed to solve the " cyclic reference" issue from the reference
counting algorithm, where a series of references forms a loop, mak-
ing them all have a nonzero reference count yet might be laying on
the memory space never used thereafter. The algorithm consists of
two stages: mark and sweep, and a GC bit map to record the status
for all objects created. For mark phase, garbage collector will go
through all objects and mark the reachable ones’ corresponding
bit on the bitmap to true. Following a search policy like depth first
search starting from a certain node could traverse all objects under
it and mark every one of them. In JavaScript, for example, all objects
are created under one or several GC roots for DFS search in the
marking phase. The Sweep phase is to clean up all the unreachable
objects and make their memory space available for later object
creation. In general, GC would go through the GC bitmap and free
all objects whose corresponding bit on the bitmap is marked as
false. There have been many implementations to enhance the clas-
sic mark-and-sweep, for example, mark-and-compact to solve the
memory fragments issue, but most of them would involve 2 phases,
mark the live objects and free the rest.

WebKit is the web browser engine used by Safari and many other
Apple applications on multi-platforms. Since its preview release 21,
a new concurrent GC called Riptide was adopted, aiming to increase
the GC throughput and reduce the GC latency. It utilizes modern
GC features like parallel marking and generations. By performing
parallel marking, it could use up to 8 threads for GC marking phase
[22]. For a generational GC, it also adopts the feature of stick mark
bits. Considering newly created objects tend to have a shorter time
period and are often associated with recently created objects, they
are allocated and marked as eden object, those who survived several
rounds of GC are thenmarked as tenure object, and if the memory is
far from full, the marking phase might go over eden objects only as
a minor GC, comparing with a full GC that scans the whole memory,
to save time. It did greatly increase the general performance for
the GC, yet for a large project like WebKit with great redundancy,
the introducing of it also poses potential risks due to its parallelism
feature against compatibility and security on previous codes [10].

Listing 1: Sample execution of array reverse

f u n c t i o n r e v e r s e ( a r r ) :
i =0 , j = l e ng t h ( a r r )−1
whi l e i <= j :

swap ( a r r [ i ] , a r r [ j ] )
i ++ , j −−

a r r =Arrays ( 5 0 0 0 0 0 )
r e v e r s e ( a r r )

2.2 Case Study: CVE-2018-4192
To explain how a data race between normal program execution
and GC could happen, we take a real-world vulnerability, CVE-
2018-4192 [18] from JavaScript Core in WebKit. As illustrated in
Listing 1 showing the implementation of reversing an array, the data
race between the array.reverse() function and the concurrent



Figure 1: Illustration of CVE-2018-4192. While reversing an array during
an on-going GC’s marking process, some part of the array getting swapped
are not marked, and will be freed later, causing a use-after-free situation.

marking process – if occurring with a certain time – could result
in part of the elements not getting marked, thus getting freed later.
Since Riptide GC in WebKit does not have the feature for shifting
the live objects to eliminating the fragmentation, there will be freed
"holes" on memory space available for later new objects allocation.
This could lead to a use-after-free scenario where malicious crafted
contents could be allocated at desired place and ultimately having
this vulnerability leveraged to arbitrary remote code execution. A
simplified example, as illustrated in the Figure 1, with reversing
function at the time of finishing swapping array index 𝑥 and index
𝑦, marking process is about to mark index 𝑥 , but due to the data
race, it accidentally marks index 𝑦 and continues to mark elements
starting index𝑦+1. Without getting marked, elements with indexes
between 𝑥 and 𝑦 will be marked as “garbage” and ready to be freed
in the future for new objects allocation. In reality, there could be
more than one threads marking the array, so the area of elements
affected could be different.

Listing 2: Sample code to reproduce CVE-2018-4192

a r r =Array ( 1 0 0 0 ) . f i l l ( [ ] )
async f u n c t i o n a s yn c_ r e v e r s e ( a r r ) {

a r r . r e v e r s e ( )
}
f o r ( var index = 0 ; index <rounds ; index ++ ) {

a r r . map ( f u n c t i o n ( e l e , index , a r r ) {
my_reverse ( a r r ) ;

} )
}

3 METHODOLOGY AND DESIGN
In this section, we present four hypotheses on recreating critical
conditions for GC related vulnerabilities, empirically validate them
using a set of garbage generation policies, and finally propose a

novel risk-score mechanism to guide program testing and to trigger
GC related bugs more quickly.

3.1 Hypothesis and Empirical Validation
Our key hypotheses are:

(1) The timing and state of a GC process (with respect to the
execution of target code segment) jointly affects the occur-
rence of GC-related bug. Only under specific conditions such
as certain timing and memory locations, GC-related bugs
could be triggered during execution.

(2) The timing of a scheduled GC can be affected by the amount
and type of "garbage" generated in the system. In particular,
large amounts of garbage objects created within a short time
could advance a scheduled GC action.

(3) Code fragments consuming higher execution time and per-
forming more memory operations have a higher chance of
leading to GC-related bugs. In fact, more memory operations
could mean more memory writes/reads and thus a higher
risk of race conditions.

(4) Due to non-deterministic nature of the GC feature, repeated
execution of the target code (as well as the GC process) can
increase the probability of producing racing conditions and
eventually triggering GC-related bugs.

To test our hypothesis, we generate garbage objects based on
the following policy: We continuously create objects of a doubled
size and then modify its pointer, so that the pointer no longer
points to itself. These objects then are becoming unreachable and
will get garbage collected. There will be two parameters deciding
the garbage generation policy, size and frequency: size of the last
generated object and the total times of this generation for a single
function. Given a desired size of garbage, it will be generated in a
way similar to Listing 3.

Listing 3: Garbage Generation Example

f u n c t i o n one_ t ime_garbage ( s i z e ) :
g =" g "
t imes = l og ( s i z e )
f o r ( i = 0 ; i < t imes ; i ++ ) {

g=g+g
}
g= n u l l

For example: a desired size of garbage object of 16 byte, frequency
of 30, then times = log(8) = 3, repeat “g+g” for 3 times makes 𝑔 a
string with 8 characters (i.e., 16 bytes). This would result in creating
4 garbage objects with size of 2 ,4, 8 and 16 bytes. Based on the
frequency provided, the above action will be carried out 30 times
to generate the desired "Garbage" during program testing.

The reasons for generating garbage objects in this way are:

(1) Generating sizes from small to large is a way of trying to
cover different sizes of "holes" by doubling incremental sizes,
to be found by the AddressSanitizer.

(2) Generating small sizes of “garbage” objects in a short time
could trigger a minor GC that looks for newly created objects
to recycle.



(3) Generating large sizes of “garbage” objects in a short time
could trigger a full GC that scans the whole memory space.

(4) In this way we can try to trigger different types of GC at the
desired time, covering different types of objects and different
parts of the memory space.

(5) By spraying out numbers of objects could cover more mem-
ory space and increase the probability of triggering other
types of memory related bugs.

To test our hypothesis, since the array.reverse() function
(which is used to reverse an array) alone is unlikely to trigger the
bug, we consider a test program by making array.reverse() an
async function to achieve higher probability of reproducing GC-
related bugs, similar to how CVE-2018-4192 was originally found by
a Grammarly based fuzzer [4]. Async function is the way JavaScript
enabling asynchronous, and it will return a JavaScript promise
object to be resolved or throw the exceptions after its execution.
As listing 2 illustrates, notice that no return value from the async
function is saved, so the returned array and its promise object,
when going outside the scope, can be considered as garbage objects
generated once per function run with a fixed size according to the
definition of our method. We choose another 2 different parameter
settings manually for the garbage generation policy and compare
the results with the original testing program.

Table 1 shows the successful rate of triggering the bug, we com-
pare the results from two different settings with our design and
the original test, i.e. without our modification. The two settings of
parameters for garbage generation policy are manual selected.

From the results we can find see significant difference between
these three results. Both settings significantly affects the successful
rate of triggering the bug. With the first setting we can achieve a
higher probability of triggering the bug comparing to the original
testing programs with only a slightly higher average time. With
the second setting we can see the test was done even in a shorter
time compared to the original results, this indicates our method is
triggering minor GCs, that brings originally scheduled GC ahead of
its time and many objects created after that are then skipped from
the GC process, thus saves some time. When looking at the max
runtime we can also see a big difference, that is the max runtime
from our settings are up to 3x the average runtime, while in the
original results its less than 2x, this indicates we are able to trigger
major GC that costs more time than a minor GC. Not only this
shows our method of approach would influence how the bug would
be triggered by manipulating the memory space, but it also enables
the ability to trigger certain types of GC when needed, depending
on the parameters for the garbage generation policy. Repeating
those actions above gives us the high probability of triggering the
bug. These findings together confirms our previous hypotheses.
Meanwhile with both settings we are able to trigger the bug with
the array length of 30000, while this bug is never triggered when
testing the program without our approach, this also illustrates the
need of our design as an add-on for a normal fuzzer.

3.2 Sensitive Analysis and Rick-Score
Computation

As demonstrated above, parameters for the garbage generating
policy are of vital importance to successfully triggering GC-related

Table 1: Results for tests with different array lengths and settings. Original:
run test program without any modification or instruments. Setting 1: during
the executing of the test program, garbage objects up to sizes of 300Kb are
generated 30 times, evenly distributed throughout the program process.
Setting 2: during the executing of the test program, garbage objects up to
sizes of 3000Kb are generated 300 times, evenly distributed throughout the
program process. For each test run JavaScript Core is restarted before a new
execution, This is the average results from 100 independent runs.

setting length successful
rate(%)

average
runtime

min
runtime

max
runtime

original
30000 0 1.16 0.80 2.30
50000 23 2.88 2.28 5.79
80000 44 9.78 5.89 15.35

Setting 1
30000 5 1.23 0.80 2.75
50000 30 3.34 2.28 7.61
80000 56 10.26 5.89 30.43

Setting 2
30000 12 1.36 0.80 2.77
50000 22 2.86 2.29 7.62
80000 71 9.70 5.90 30.36

bugs. In this section we analyze the common situations for certain
bugs and propose a heuristic design of Sensitive Analyzer (SA) to
help guide the fuzzing process to meet the critical conditions of GC-
related bugs. More specifically, we propose a novel risk-score, which
(i) quantifies the relative risk of a target function containing GC-
related bugs, and (ii) can be used to guide the selection of garbage
generating policy parameters to trigger the bugs more quickly.
We begin with dividing a target function into three categories as
follows:

• Type 1: light memory operations in a short time. This type
of functions should be covered with existing techniques, also
they have a lower probability related to a non-deterministic
bug.

• Type 2: heavy memory operations in a long time. This type
of functions has a much higher probability related to a non-
deterministic bug. Also, it is harder to find as the condition of
triggering it might not be satisfied during the normal fuzzing
process. This is the main type our approach is trying to deal
with.

• Type 3: light memory operations in a long time. Since there
are not too many memory changes, this type of functions
has a lower probability of having a race condition, but it is
also worth testing them in the new approaches.

From our hypothesis the execution time of memory-related oper-
ations plays a significant role in deciding the successful probability
of triggering GC-related bugs. To capture the impact of different
execution environments, we first run a standard test program and
record its execution time T𝑠 . Let T𝑐 be the execution time of the tar-
get program code,𝑀 the memory write operations in Kbytes, and𝑚
the memory space allocated. We propose the following risk-score:

𝑅𝑠 =
𝑇𝑐

𝑇𝑠
× log

(
𝑀

𝑚

)
It is easy to see that the risk score increases if the execution time
of memory-related operations becomes higher, or if more frequent
memory operations are performed on a smaller memory space.
According to the our hypothesis, the higher the risk score is, the



higher chance the function might lead to a non-deterministic GC-
related bug.

As an illustrative example, suppose to reproduce [18] we are
reversing an array with 30000 empty arrays for 30000 times, the
risk score is calculated as, 1 * log(32*30000) = 13.7, reversing an
array with 50000 empty arrays for 50000 times the risk score is
4*log(32*50000) =57.1, indicating the latter one has a much higher
risk, supposing the empty array takes 32 byes of memory space.

The risk score allows us to identify functions that have a higher
chance for GC-related bugs and thus deservesmore attention during
testing. Finally, we propose an testing policy based on the regression
results from over 10 different setting combinations. Based on the
risk score R𝑠 , we divide our testing policy into 4 cases:

(1) R𝑠< 10: Continue to test next function
(2) 10<R𝑠<35: repeat current testing for 3 times, with policy

parameters (𝑚/5,30)
(3) 35<R𝑠< 60: repeat current testing for 6 times, with policy

parameters (𝑚/8,30) and (𝑚/5,50), each parameter for 3 times.
(4) R𝑠> 60: repeat current testing for 9 times, with policy pa-

rameters (𝑚/8,30), (𝑚/5,50) and (𝑚/3,70), each parameter for
3 times.

Figure 2: A system diagram of our proposed approach. After the profil-
ing stage, functions with higher risks will be executed and tested more
frequently under different polices.

3.3 Program instrumentation
Based on the risk score that is calculated from the sensitive analyzer,
those functions with higher risk scores deserve more time during
testing to see if they could lead to GC-related non-deterministic
bugs. But only repeatedly executing these functions may not be
enough, if specific conditions (such as racing condition) with respect
to the GC process is not satisfied. To address this, we instrument the
target functions to boost garbage generation according to policies
determined by our sensitive analyzer, For example, after the initial
profiling testing round we found that reversing an array of 50000
elements gives a R𝑠 = 57.1, in this case, it will be executed 6 more
times after its initial execution, with parameters(200Kbytes,30) and
(320Kbytes,50), each for 3 times. In this paper as we are working on
JavaScript, which is a scripting language, the instrumentation can
be implemented as direct lines of code injection to the functions

we are testing, for other language a compiler level modification or
interruption design might be needed. In the next section we show
though this policy is based on empirical evidence, it is yet very
effective if combined with a standard fuzzer.

4 EVALUATION
4.1 Environment setup
All experiments are done on a Ubuntu desktop(16.04.5TLS) with 8
cores Intel Core i7-3770 CPU @ 3.4GHz and 16GB RAM. WebKit
GTK 2.18.6 [1] debug build compiled with address sanitizer (ASan
[8]) is selected as the test platform for JavaScript Core testing on
reproducing CVE-2018-4192 and CVE-2018-4233 as a benchmark.

We first construct a target program that performs 12 different
functions including CPU- and memory-intensive tasks. Then, for
the test cases provided, we implement our risk-score mechanism
to quantify the risk of different functions and to select appropriate
testing parameters as well as garbage generation strategies. Each
test was conducted 10 times to find its average execution time
and the average occurrence of GC-related bugs. For each test,the
JavaScript Core engine is restarted to clear previous program mem-
ory allocation and fragments.

4.2 Testing program
Since our goal is to improve the probability of triggering non-
deterministic GC-related bugs, rather than maximizing the code
coverage or generating more test cases, we created a synthetic
target program with a simple structure covering 12 different types
of functions, including CPU- and memory-intensive tasks as well as
some known CVE vulnerabilities, to simulate a real-world program
and to illustrate the effectiveness of our approach.

The target program consists of 12 functions shown in the section
3.3, including 3 new minimized proof-of-concept CVE functions:

(1) Deep copy of a large object for multiple times.
(2) Generate all permutations of a very large array of strings.
(3) Solving traveling salesman problem with brute force.
(4) Brute force guessing a magic number with random policy.
(5) Sleep for a long time.
(6) Calculating the digits of 𝜋 with Spigot algorithm.
(7) Find the max value in a very large array.
(8) Perform binary search in a very large sorted array.
(9) Reverse a very large array with async reverse function
(10) PoC code for CVE-2018-4192
(11) PoC code for CVE-2018-4233
(12) PoC code for CVE-2017-2491

The target program starts with known inputs to decide which func-
tion to execute. All 12 functions have equal chance to be executed
from the test cases provided. Since it is the functions built in the
JavaScript Core we are testing, in this case, we can execute this
program by iterating all the possible inputs to trigger different
functions, just like how a standard fuzzer would behave.

We first execute the target program without any instrumenta-
tion to simulate a grammar-based fuzzing process that traverses all
possible branches without priority in a DFS fashion (denoted by
"Original"). Then we run the previous test for 10 times(denoted by



"Repeat") to show the the limitation of repeating tests without a con-
dition restoration. Finally, we implement our risk-score mechanism
to selectively (and more frequently) test high-risk functions with
the proposed garbage generation strategy and testing parameters.
Each of these 3 approaches were executed 10 times (with 10 runs
of the target program under all test cases per execution) to obtain
the average results.
Table 2: Average results for 3 tests with different settings. Since all possible
inputs are known, the code coverage is able to reach 100%, tests using our
approach triggered GC-related bugs significantly more times, compared to
the standard execution or repeated testing.

Time(s) Bugs
Triggered

Code
Coverage

Functions
Executed

Standard 230.23 0 100% 12
Repeat 2493.90 0.3 100% 120
Ours 290.84 14.8 100% 30

As shown in the Table 2, tests using our proposed approach could
trigger the GC-related bugs with a significantly higher probability,
compared to the two baselines. In fact, 14.8 bugs were triggered
per testing with an execution time overhead of 26% on average,
while only 0 and 0.3 bugs were triggered by the baseline approaches,
respectively. The benefitsmainly come from the intelligent selection
of risky functions as well as garbage generation strategy and testing
parameters. For example, the long sleep function comes with a risk
score of nearly 0 and it will not be tested for a second time under our
policy. Also by the version of WebKit GTK2.18.6, CVE-2017-2491
is already patched and would not be triggered, but our design also
spent several runs on it. Some of the functions with long execution
time and memory footprint like are also tested repeatedly although
there were no bugs found. These results show that our approach
has the ability to (i) identify functions with a higher chance of GC-
related bugs through risk score and (ii) create the critical conditions
for triggering the bugs during testing. It enables our approach
to trigger more times of the two CVE bugs compared to the two
baselines that are oblivious to the critical conditions.

In summary, certain types of non-deterministic GC-related bugs
are different to trigger in standard testing that is oblivious of the
critical conditions, even if the target problem is executed many
times. Analyze the condition needed for these bugs allows us to
focus on the risky functions and to recreate such critical conditions,
which would greatly increase the chance of reproducing the bugs
during testing. Our experiments validate the effectiveness of our
proposed approach in guiding a testing process to find GC-related
non-deterministic more quickly.

4.3 Discussions on Future Work
As a proof-of-concept, our approach is evaluated on a synthetic
target program with test cases provided in advance. It would be
interesting to fully integrate our approach (as an add-on) with a
practical fuzzer like AFL. For path sensitive designs like [5], our
approach can provide a feedback for paths with higher chances of
finding a GC-related vulnerability, and thus effective guide it to
creating a prioritized path exploration strategy.

Our approach focuses on GC-related bugs with a known critical
condition of long execution time and intensive memory operations,

while other factors such as the type of GC operations, e.g., full and
partial GC, could also affect the probability of triggering bugs and
can be integrated into our risk score mechanism. Also, our strategy
for selecting testing parameters and garbage objects generation are
based on linear regression with empirical experiment data. More
sophisticated data-driven methods, such as machine learning or
reinforcement learning may lead to better parameters or policies,
and open doors to possible future work.

5 RELATEDWORK
Grammarly based Fuzz testing.Current coverage guided fuzzers,
for example the famous AFL [25], when dealing with programs with
structured input that requires specific grammars it is limited due to
its fuzzing policy. Many of its generated inputs would not pass the
syntax check and are rejected at early state of fuzzing. In grammar-
based whitebox fuzzing [6] the authors present a dynamic test
generation algorithm that utilizes symbolic execution to gener-
ate grammar constraints so that the input can satisfy the syntax
check with a grammar-based constraint solver from [7]. In Supe-
rion [24], the authors proposed a grammar-aware coverage-based
greybox fuzzing that process structured inputs with a grammar-
aware trimming technique and grammar-aware mutation strategies
as extension to AFL to improve its code coverage. These works
help fuzzing process generate well-formed inputs faster. Our design
could be based on these inputs generated and explore whether those
generated functions inputs could lead to a non-deterministic bug.
Hybrid Fuzzing and Path prioritization. Hybrid fuzzing, com-
bining code coverage guided fuzzing and concolic execution, is
becoming an advanced technique to find deep bugs in a faster man-
ner. Driller [23] uses selective concolic execution to explore and
solve constraints to different paths and then apply fuzzing to the
code compartment following that path to increase code coverages.
CollAFL [5] mitigates path collisions and utilizes new fuzzing strate-
gies based on the coverage information to promote the speed of
discovering new paths. DigFuzz [27] proposed in probabilistic path
prioritization for hybrid fuzzing utilizes a discriminative dispatch
strategy, with a Monte Carlo based probabilistic path prioritization
model to enhance the ability of concolic execution.
Concurrency error detect. Another group of works is on detect-
ing concurrency errors [11] [14] [2]. Existing methods mostly are
based on monitoring memory access and find concurrency errors,
or through static analyze of the code fragments. [16] proposes a
framework that also combines static analysis and fuzzing, with
static analysis to locate and analyze sensitive concurrent parts in a
program based on previously categorized features of several poten-
tial concurrency errors types, with the results fed into the fuzzers
in order to trigger the suspected concurrency vulnerabilities.

6 CONCLUSION
This paper propose a risk-score based mechanism to guide program
testing with the goal of triggering GC-related bugs more quickly. In
particular, functions in the target program are categorized through
their risk scores and associated with different testing rules. We
further instrument the target functions to boost garbage genera-
tion (and thus the execution frequency of GC process) according
to policies determined by our sensitive analyzer. Results show that



our approach could trigger different types of GC bugs with a sig-
nificantly higher probability, while only introducing an execution
overhead of 26%.
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