
Forseti: Dynamic Chunk-level Reshaping for Data
Processing on Heterogeneous Clusters

Sultan Alamroa,b, Tian Lanb, Suresh Subramaniamb

aDepartment of Electrical Engineering, College of Engineering, Qassim University,
Buraidah 51452, Saudi Arabia

bDepartment of Electrical and Computer Engineering, the George Washington University,
Washington, DC, 20052 USA

Abstract

Data-intensive computing frameworks typically split job workload into fixed-size

chunks, allowing them to be processed as parallel tasks on distributed machines.

Ideally, when the machines are homogeneous and have identical speed, chunks of

equal size would finish processing at the same time. However, such determinism

in processing time cannot be guaranteed in practice. Diverging processing times

can result from various sources such as system dynamics, machine heterogeneity,

and variable network conditions. Such variation, together with dynamics and

uncertainty during task processing, can lead to significant performance degrada-

tion at job level, due to long tails in job completion time resulted from residual

chunk workload and stragglers.

In this paper, we propose Forseti, a novel processing scheme that is able

to reshape data chunk size on the fly with respect to heterogeneous machines

and a dynamic execution environment. Forseti mitigates residual workload and

stragglers to achieve significant improvement in performance. We note that

Forseti is a fully online scheme and does not require any a priori knowledge of

the machine configuration nor job statistics. Instead, it infers such information

and adjusts data chunk sizes at runtime, making the solution robust even in

environments with high volatility. In its implementation, Forseti also exploits

Email addresses: alamro@qec.edu.sa (Sultan Alamro), tlan@gwu.edu (Tian Lan),
suresh@gwu.edu (Suresh Subramaniam)

Preprint submitted to Elsevier September 8, 2022

a virtual machine reuse feature to avoid task start-up and initialization cost

associated with launching new tasks. We prototype Forseti on a real-world

cluster and evaluate its performance using several realistic benchmarks. The

results show that Forseti outperforms a number of baselines, including default

Hadoop by up to 68% and SkewTune by up to 50% in terms of average job

completion time.

1. INTRODUCTION

Data-intensive computing frameworks (DISCs) have become the de facto

standard for large-scale computing applications like web indexing and data min-

ing, which often need to process up to petabytes of data on a daily basis. To

enable distributed computing, these frameworks typically split job data into

fixed size chunks and process them by parallel tasks on distributed machines

that involve commodity hardware/software. Ideally, in a homogeneous environ-

ment with identical-speed machines and equal-size chunks, the chunk processing

intervals would be perfectly aligned with each other, eliminating any possibility

of residual workload and stragglers1 during job executions. However, such an

ideal homogeneous environment is not feasible in practice. It has been shown

that the divergence and uncertainty in task processing times resulting from

machine heterogeneity and execution dynamics could lead to significant perfor-

mance degradation of up to 75% [1] due to residual workload and stragglers.

This paper proposes a novel processing scheme called Forseti, which has

the ability to reshape data chunk size processed by heterogeneous machines

on the fly and to dynamically balance the workload assigned to parallel pro-

cessing tasks. It effectively mitigates residual workload and stragglers during

job execution, and as a result, leads to substantial job-level performance im-

provement, e.g., in terms of job average completion times and completion time

tails. We note that the performance loss stemming from machine heterogeneity

1Stragglers refer to tasks that are running slow and behind the progress of average task
executions.

2

and execution dynamics has been identified by many reserchers [45, 1]. While

existing work mainly focus on either optimizing DISC cluster configurations

based on the specific applications and infrastructure available [20, 21, 34, 6] or

mitigating the negative effect of stragglers through task scheduling and place-

ment [4, 3, 43, 45, 9], Forseti advocates an alternative approach to reshape data

chunk size and re-balance task workload in a dynamic, online fashion through-

out job processing. This equips the system with the ability to automatically

adapt its execution and workload partitioning in any heterogeneous, uncertain

execution environment.

Taming residual workload and stragglers is a crucial task for any comput-

ing performance optimization. In practical DISC clusters, heterogeneity can be

caused by a number of reasons. First, the links within data centers suffer from

congestion that could last up to several hundreds of seconds [24, 38]. This con-

gestion makes tasks run slow (i.e., straggle) as their execution time and progress

fall behind the average execution time of other tasks. Second, cloud providers

use virtualization process to provide isolation among jobs and tasks running

simultaneously on the same machines. However, practical task scheduling and

isolation mechanisms either require precise job processing models or are too

coarse-grained. Third, computing nodes are typically composed of commodity

parts, thereby becoming dissimilar in processing speed. Last, heterogeneity in

execution time can occur due to load imbalance assigned or created by different

tasks [25, 26]. Thus, the divergence in task execution speed on heterogeneous

machines is considered as the main issue that leads to excessive worker idleness

(and thus resource under-utilization) in the cluster along with the creation of

stragglers. To better understand the issue of heterogeneity and its impact on

detecting stragglers on real systems, consider for instance the performance of

a map-reduce job in Figure 1(a). The figure shows the execution time of map

and reduce tasks of Hadoop for a WordCount benchmark running on a heteroge-

neous cluster. In this experiment, we set the level of heterogeneity in the cluster

to 1-2-3 ratio (i.e., CPU speeds are 1x, 2x and 3x of a base speed). Initially,

each map task is assigned 128MB of data to process. It can be clearly seen that

3

Hadoop creates discrepancy in performance among running tasks. Hadoop fails

to adapt to the heterogeneity, even if speculation mechanism is enabled.

To reshape data chunk size and re-balance task workload, Forseti adapts to

the divergence in task execution times and dynamically redistributes workload

through an efficient pointer-rebalancing mechanism according to the underly-

ing nodes’ processing speeds. Forseti estimates the progress rate of different

tasks/chunks, obtain a prediction of task completion times, and redistributes

workload accordingly to minimize any potential residual work or stragglers.

Forseti aims to reassign unprocessed data to machines so that the completion

time of a job is minimized. As a result, this mechanism also ensures that the

overall energy consumption/cost is minimized. Figure 1(b) shows how Forseti is

able to reduce the overall completion time by 56% compared with Hadoop. We

emphasize that Forseti does not require any a priori knowledge of the machine

configuration nor job statistics. Instead, it infers such information on the fly

and adjusts data chunk sizes at runtime, making the solution robust even in

environments with high volatility.

While Forseti works with any distributed data processing framework, for

the purpose of evaluating its performance, we implement a prototype of Forseti

on Hadoop map-reduce framework. The reshaping algorithm is implemented

in the master, which monitors the progress rate of all tasks of a job, estimates

the completion time, and redistributes the remaining workload accordingly. In

order to minimize overall network overhead, Forseti checks for data locally before

fetching data from remote nodes. We note that even when data is not local, we

found in our experiments that the benefit of redistributing data outweighs any

overhead caused by fetching non-local data [32]. Forseti exploits “JVM reuse”

to recycle virtual machine container of completed tasks without termination

and re-launching [30, 17, 33, 19]. It effectively eliminates the JVM launching

time overhead for new tasks. Moreover, Forseti does not need to know about

the cause of divergence and uncertainty in execution time of tasks nor the exact

job processing model. In addition, Forseti is designed to be transparent to the

task function and requires no modification to the function design. Evaluating

4

Forseti on real-world benchmarks, our results show that Forseti can significantly

reduce job execution time by up to 68% on average compared to default Hadoop

and 50% to SkewTune [27], a popular data rebalancing scheme. Moreover, the

results show that Forseti can exploit the divergence and dynamics in progress

rate among tasks and redistribute unprocessed workload efficiently. The findings

substantiate our assertion that dynamic task/chunk reshaping mitigates the

discrepancy in progress rate and minimizes the completion time of a job.

The rest of this paper is organized as follows. Section 2 presents related work,

and Section 3 presents background and our motivation. The design of Forseti

is presented in Section 4, and the algorithm’s implementation is described in

Section 5. Experimental results are presented in Section 6, and finally the paper

is concluded in Section 7.

2. Background and Related Work

DISC frameworks, such as Hadoop (open source of MapReduce) and Spark,

have been widely employed in production systems. Such frameworks process

large datasets (e.g., terabytes or petabytes of data) across huge clusters (e.g.,

hundreds or thousands of nodes). The massive data are divided into and con-

figured as fixed size chunks/blocks and then stored within an underlying dis-

tributed file system so as to support simultaneous processing of computation

tasks across heterogeneous machines and clusters on the cloud. Generally, the

execution flow is processed in a multi-stage/phase fashion by using the output

from one phase as the input to another phase. A phase is considered completed

when tasks of the phase finish processing. Therefore, a slowdown in one phase

due to some tasks running slow can lead to a late start of next phase.

The issue of heterogeneity and the way it creates stragglers have been ex-

tensively studied in the context of DISC frameworks. LATE [45] suggested that

MapReduce has many limitations under heterogeneous environments, mainly

because straggler identification mechanisms that are in-built struggle to func-

tion properly within an environment that is heterogeneous. To address this

challenge, better priority, scheduling, and identification techniques have been

5

0 100 200 300 400 500 600 700 800 900

Time(s)

Ta
sk

s

map

sort

shuffle

reduce

(a)

0 100 200 300 400 500 600 700 800 900

Time(s)

Ta
sk

s

56% reduction

map

sort

shuffle

reduce

(b)

Figure 1: Timing flow of a WordCount job running map and reduce tasks: (a) Hadoop (b)
Forseti.

6

proposed. For instance, [5, 37, 9, 8, 41, 22, 3, 4, 43, 42, 44] attempt to miti-

gate stragglers and enhance the speculation mechanism of default Hadoop. They

have proposed novel strategies to track stragglers, launch speculative tasks reac-

tively and proactively. Another study [1] found that the use of remote map tasks

increases network traffic when applied on fast machines significantly. However,

one challenge to this technique is that the increased network traffic could end

up competing with shuffle between phases, a factor that causes deterioration in

performance. They overcame this issue through undertaking communication-

aware load balancing as it helps keep away from busty network traffic. This

process is enhanced further by [18] through undertaking fresh key partition-

ing schemes that have been established to improve Hadoop’s performance with

heterogeneous clusters. A node-capability-aware data placement model was

developed that distributes data among nodes according to their processing ca-

pabilities [36]. The issue of data skewness among tasks due to data placement

in a heterogeneous cluster has been addressed in [27, 25, 28, 14, 35, 18, 11].

Going by most research findings, data skewness can be mitigated. Here,

skewness refers to the imbalance of computational nodes and datasets among

tasks. Various researchers [9, 26, 2] studied and analyzed different skews that

appear in different types of applications. SkewTune [27] proposed a strategy

which balances data distribution across different nodes. SkewTune repartitions

stragglers’ data to capitalize on the idle task which just finished processing. In

contrast to SkewTune, Forseti redistributes data assigned to all tasks on previous

rounds upon a new task completion. FlexMap [14] tackled the heterogeneity

issue and proposed a scheme to create map tasks with small block size and

increase the sizes according to node’s capabilities. The system initially launches

a large number of maps with a small block size. However, this creates significant

scheduling and starting overhead on the scheduler as well as resource contention.

Moreover, it does not assume a shared cluster and fails to consider the JVM

launching time overhead. Forseti aims to bypass the JVM launching overhead

and follows the policies imposed by the master.

There are other papers too which focus on skewness. [7] proposed a frame-

7

work that reproduces blocks according to their popularity. It aims to minimize

interference on any running jobs that have been co-hosted under a similar clus-

ter with an accurate prediction of file popularity. Another work [16] proposed a

task progress indicator in order to deal with data skewness. [46, 40, 15] proposed

techniques to improve the performance of DISC frameworks and jointly optimize

performance and cost within heterogeneous cloud environments. [39, 29] pro-

pose a dynamic data placement scheme for a heterogeneous cluster. However,

such scheme requires a priori knowledge about the capability of the cluster. [35]

proposed the concept of a virtual split, wherein its size changes (by adding more

splits) as the mapper runs. Nonetheless, unlike Forseti, the assigned splits are

never reassigned to other maps.

In multi-tenant data centers, resource sharing has become vital. Various

studies have addressed the issue of unpredictable application performance in

shared clusters [10, 23, 13]. The lack of performance isolation among users and

applications leads to volatile application performance. The absence of proper

isolation causes the task executions of DISC jobs to be stochastic. The un-

certainty in their execution times affects the ability of straggler identification

mechanisms, and makes their decision to speculate (or not to speculate) a strag-

gling task very challenging. Thus, discrepancy in performance is the norm of

shared resources rather than the exception.

3. Motivations and Problem Statement

In this section, we start by briefly introducing the fundamentals of DISC

frameworks. We also discuss the ways through which the performance in het-

erogeneous settings gets severely affected by having routine parallelization in

homogeneous clusters. Further, we show that the heavy-tailed behavior in the

runtime distribution and large variation of execution times among tasks can be

solved through an efficient dynamic load balancing.

DISC is the default for many data processing systems. Its implementation

can be better understood from two specific phases, namely map and reduce.

In this context, input data and a record of transitional key or value pairs are

8

𝑁"
𝑁#
𝑁$
𝑁%

𝑇"
𝑇#

𝑇$
𝑇%

(a)

𝜏𝑡#

𝑁%
𝑁&
𝑁'

𝑁# 𝑇#
𝑇%

𝑇&
𝑇'

(b)

Figure 2: An illustrative example of the impact of a heterogeneous cluster on job completion
time: (a) Default Hadoop. (b) Forseti.

formed via the map task. Every map task accesses and processes one split/chunk

from a Distributed File System (DFS). On the other hand, these transitional

key/value pairs are accumulated collectively and thereby passed to the reduce

task through a communication stage named shuffle. A master monitors the

progress of every task, and reports to the user about the job completion.

Case study. To demonstrate the problem considered in this paper, we per-

form a case study on Hadoop map-reduce framework. Consider for instance

a DISC job in a heterogeneous environment with four unrelated tasks, i.e.,

T = {T1, T2, T3, T4}, which are running in parallel on four different nodes (N1,

N2, N3, N4). It can be seen (see Figure 2(a)) that T1 and T2 took a long time

compared with T3 and T4. The job cannot be considered complete until the

processing of T2 finishes. Moreover, N3 finished first and stayed idle for the

rest of the time. This indicates the inefficiency of the entire process. Figure

2(b) illustrates how Forseti re-balances the remaining workload among running

nodes. Upon the completion of T3, i.e., Tf = {T3}, at t1, Forseti checks the

progress rate of all running tasks (i.e., T1, T2, T4) and redistributes the remain-

ing data, i.e., Dr
1, Dr

2, and Dr
4, among the four tasks so they all finish at the

same time (τ). The figure shows that T4 can finish its remaining workload and

process more data before τ . Thus, only data belonging to T1 and T2 are re-

distributed. This process is repeated until the completion of all tasks. This

9

case can be extended to consider a multi-phase framework. However, Figure

1 shows that the map phase can take up to 75% of the whole job completion

time. Further, the figure shows that the shuffling starts right after a few map

tasks complete. Nonetheless, the actual processing of reduce tasks is delayed

until the last map task commits its output.2 Thus, since the execution of reduce

tasks takes only about 5% of job execution time, Forseti is designed to optimize

and re-balance workload map tasks only, which leads to overall reduction in job

execution time. Moreover, Forseti assumes all tasks are independent and have

no precedence among them, which is typical for map tasks.

In DISC frameworks, the presence of homogeneous task model cannot fulfill

the load balancing obligations and thereby maintain an effective heterogeneous

setting. Furthermore, the model is also incapable of adapting to the fluctuat-

ing performance due to shared resources. The divergence and uncertainty is

a problem for performance optimization and scheduling. This is because they

make it almost impossible to obtain a precise model of task processing times.

Additionally, tasks are generally regarded as the procedure of collecting records

through serial key-value pairs. Nevertheless, as per the availability of any sort

of application, such records might necessitate CPU as well as memory for pro-

cessing valuable data based on the runtime of the DISC cluster. The key is

to quickly and accurately estimate the completion time of running tasks based

on their progress rate, and redistribute load swiftly. Forseti is built to develop

straggler and skew mitigation through an efficient load balancing scheme that

dynamically rebalances workload among running tasks. The objective is to re-

assign unprocessed data to machines so that makespan of a job (i.e., the time to

complete all the tasks of a job) is minimized. The new load assignment aims to

reallocate workload to machines according to their capabilities. Unlike [14, 27],

Forseti reallocates and rearranges data assigned to all tasks on previous rounds

upon a new task completion. Failure to do so can lead to a significant degra-

dation and violate the service level agreement (SLA) between users and cloud

2Similar results are reported in [28, 27].

10

operators.

We now formally state the problem of minimizing the completion time of a

job: Given a job (or a set of jobs) with a set of tasks T , our goal is to design a

processing scheme that is capable of reshaping data chunk sizes assigned to each

task on the fly with respect to cluster heterogeneity in order to minimize the job

completion time. When a task finishes processing, the scheme takes all tasks’

associated unprocessed workload Dr
n, n ∈ T , and redistributes it proportionally

based on the measured process rate Rn among all tasks. The goal is to balance

the residual workload among the processing nodes and let all tasks finish at

the same time with the new assignment. We present the details of the design

of Forseti in the next section, and then show the significant improvement in

computing performance that it achieves.

4. Forseti Design

In this section, we present the design of Forseti and its applicability to any

DISC framework. In addition, we explain how Forseti estimates the execution

time of tasks and redistributes workload accordingly. Further, relying on Forseti,

we propose a greedy algorithm which aims to minimize the job execution time.

4.1. Overview

We design Forseti to be applicable to any multi-phase DISC framework.

Forseti assumes a job consists of tasks that run on parallel unrelated machines.

Each task uses data within boundaries, reads it as records, generates key-value

pairs and passes the pairs to the next phase. In addition, Forseti makes no

assumption about a priori knowledge of the cluster state nor does it require to

know about job requirements and configuration upon job submission (or past

runs). Moreover, Forseti exploits “JVM reuse”, and seamlessly redistributes

data among running tasks without interruption.

Every task in a DISC framework is given a boundary which defines the start

and end of a segment (or split) to be processed. A task completes when the

segment end is reached. Tasks use a pointer to specify the start byte offset of a

11

Symbol Description

T The set of all tasks of a job

Tr The set of all tasks currently processing

Tf The set of all idle (finished) tasks

Tw The set of all tasks waiting for resources
(JVM)

To The set of all tasks being optimized

S The set of all segments being distributed

Wn The set of segments assigned to task n

τ The current estimated finishing time of
all tasks with the new rebalancing

Dr
n The unprocessed workload for task n

De
s The processed workload for segment s

Dr
s The unprocessed workload for segment s

Rn The real time process rate of task n

Bn The estimated logical buffer size

ps Progress of segment s

ε Threshold in seconds to terminate
Forseti

σ Threshold of progress score at which a
task is included for optimization

ω Threshold of progress score at which a
task is excluded from optimization

Table 1: List of symbols

12

𝑡

100%

80%

Time

0 100

101 200

201 300

500 51

280201 281 300

65

66 95

10096

𝑇#

𝑇$

𝑇%

𝜏

50%

Figure 3: Segments Creation and Allocation

100%

50%

80%

𝑁"

𝑁#

𝑁$

𝑡" 𝜏

90%

100%

95%

𝑡" 𝜏𝑡# 𝜏'

100%

100%

100%

𝑡# 𝑡$ Time

master

Figure 4: System architecture and steps taken upon new task completion.

record. The key of a record is the byte offset at which it is located, and the value

is the data present in this record. The pointer is incremented by the record size

in order to point to the next record. For instance, the start byte offset of the

first record is 0, and if we assume the first record size is 100KB, the start byte

offset of the second record is (100KB + 1B).

Forseti uses the idea of boundaries limits and pointers to specify the data

to be processed by every task. Forseti defines distributed data as a set of

segments, which have start and end byte offsets. Upon a job submission, every

task is assigned one segment, and it is roughly the same size for every task.

Any part of a segment can be specified by a start and end offset. As data is

redistributed among running tasks periodically upon a new task completion, the

number of segments assigned and their sizes are changing based on the current

state of tasks. Forseti creates a logical buffer when optimizing distributed data.

The buffer size of every task is calculated based on the estimated finishing time.

That is, the master finds the amount of data that should be assigned to every

task so that all tasks finish roughly at the same time. This data defines the

13

buffer size in bytes.

Figure 3 explains the concept of segments and how they are created and

distributed periodically among tasks. Let us suppose we have one file of size

300B to be processed. If the configured initial segment size is 100B, the master

launches three tasks, each of which processes 100B. The numbers shown on top

and bottom are the start and end byte offset. At time t, T2 finishes processing

the assigned data, while T1 and T3 are still processing data. Based on the

process rate, the master finds that the remaining data from T1 can be split into

three segments with different sizes. The blue dashed rectangle represents the

buffer (the estimated data to be processed by τ). The segments are redistributed

among the running tasks, where T1 processes 15B extra, T2 processes 30B and

T3 finishes processing its data and processes one segment from T1 (5B). Note

that the master only sends the start and end byte offset to every designated

task. Then, the tasks use their pointers to point to the start byte offset of a

segment achieving online rebalancing.

4.2. Estimating New Workload Assignment of Tasks

Forseti is designed based on the assumption that a priori knowledge of the

cluster capability and the submitted jobs configuration are unknown. Thus,

Forseti has to deal with and adapt to the divergence in the cluster performance.

Forseti relies on the real time tasks’ progress rate and data remaining to be

processed in order to estimate the tasks’ finishing time. Moreover, Forseti takes

into account the remaining data of all tasks when rebalancing workload. That is,

the remaining workload is redistributed among all tasks so that the completion

time is minimized.

To estimate the new amount of data to be assigned to a task, we first need to

calculate the estimated finishing time (τ) considering the total remaining data

and the progress rate of all tasks. τ is calculated as follows:

τ =

∑|Tr|
n=1D

r
n∑|To|

n=1Rn

(1)

14

where Dr
n and Rn are the unprocessed workload and progress rate of task n,

respectively. We use the term buffer to represent the logical available space in

every task which can be filled with data. Once τ is found, the estimated buffer

size Bn available for task n is calculated as follows:

Bn = Rn · τ. (2)

The buffer size plays an important role in defining the segments limits.

4.3. Proposed Dynamic Load Balancing Algorithm

In Forseti, we use a greedy algorithm to fill buffers with data. After a job

submission, the master launches tasks with a pre-configured segment (or split)

size. Then, the master monitors every task and waits for tasks to finish. Every

task notifies the master upon completion. The master waits for at least one

task to finish before optimizing workload among tasks. Figure 4 shows the

manner in which the master reacts to a new finished task. Suppose that a job

is submitted to a cluster and is running. For the sake of simplicity, suppose

that the job has only three tasks and they start running simultaneously. T1,

T2 and T3 run on node N1, N2 and N3, respectively. The percentage shown

represents the fraction of data processed. The master polls the status of every

task periodically and records the progress rate R based on the number of bytes

processed and elapsed time. Based on the first workload assignment, T1 finishes

first at t1, while T2 and T3 are still running. The dashed red rectangle represents

the unprocessed data Dr
2 and Dr

3 in T2 and T3, respectively. Now, the master

needs to redistribute the workload in T2 and T3 among all three tasks so that

all tasks finish roughly at the same time with the new assignment. The master

first estimates the finishing time τ of all tasks based on the remaining workload

and the real time progress rate. That is, the master tries to find the amount of

data that should be given to every task based on its progress rate so that they

all finish roughly at the same time. The blue dashed rectangle represents the

estimated buffer size after workload taken from T2 and T3 is redistributed. Once

τ is found, the master notifies every task about the new start and end offsets of

15

segments assigned to be processed. After the first load rebalancing, T2 finishes

first at t2. This indicates that T2, which suffers temporal slowdown at t1, is able

to finish before τ . Now, the master estimates a new finishing time τ ′, and the

unprocessed data of T1 is divided among T1 and T2 based on the current progress

rate, while T3 is left untouched as it is about to finish processing. If all tasks

are about to finish, and no more data can be redistributed, the master checks if

there are tasks waiting to be launched. If found, their data gets redistributed in

the same manner among running tasks, and they get removed from the system.

This process eliminates the JVM launching time overhead and exploits “JVM

reuse” of running tasks. This optimization is repeated periodically upon a new

task completion until all tasks finish processing or τ becomes very small. Forseti

ensures seamless execution throughout the lifetime of a task. Tasks only need

to point to the right start offset of a segment and continue processing from

there. If a task’s progress rate indicates that it can process more data after

completion and before τ , the master assigns new segments to be processed right

after completing the current workload.

In order to redistribute data among tasks, we first need to find the set of

segments S, which includes all non-processed segments previously assigned to

tasks, as well as the remaining data from the current segment being processed

that will not be processed after τ . We also need to find the set of tasks To which

make enough progress, and an accurate process rate is recorded. Algorithm 1

explains how segments are collected from running tasks (already started pro-

cessing). Steps (2-10) check the progress of the current segment being processed,

s, and add all remaining unprocessed segments to S. In our optimization, we

only consider tasks that make enough progress (more than ω) and there is more

than σ of data remaining in the current segment. The remaining segments of

the task which is about to finish processing the current segment are excluded.

Steps (11-20) calculate the buffer size and checks whether a task can process

more data after finishing the current segment.

Algorithm 2 works in a greedy manner to fill the logical tasks’ buffer with

segments. Forseti always prioritizes re-balancing the workload of running tasks.

16

Algorithm 1: unprocessedSegs()

1: S = {∅}
2: for n ∈ Tr do
3: s =Wn[c] \\c: Current segment being processed
4: \\Check progress of current segment
5: if σ > ps ≥ ω then
6: To.append(n)
7: S.append(Wn[c+ 1 :])
8: else if ps < ω then
9: S.append(Wn[c+ 1 :]) \\Add all unprocessed segments

10: end if
11: end for
12: for n ∈ To do
13: s =Wn[c]
14: Bn = Rn · τ\\Calculate estimated buffer size for task n
15: \\Add remaining unprocessed workload for segment c
16: if Dr

s −Bn > 0 then
17: κ = s.start+De

s +Bn

18: S.append([κ, s.end])
19: else
20: Bn = Bn −Dr

s

21: end if
22: end for

17

Algorithm 2: segmentsAssign()

1: if S = {∅} then
2: if Tw 6= {∅} then
3: \\Assign unscheduled tasks’ workload to idle tasks
4: for v ∈ min(|Tw|, |Tf |) do
5: x = Tw[v]
6: y = Tf [v]
7: Wy.append(Wx)
8: end for
9: end if

10: else
11: while To 6= {∅} do
12: T0 = To[0]
13: W0 = []
14: while B0 > 0 do
15: s = S[0]
16: y = s.end− s.start\\Data size of segment s
17: while y > 0 &B0 > 0 do
18: \\Check if whole segment fits in buffer
19: if B0 ≥ y then
20: W0.append(s)
21: B0 = B0 − y\\Decrease buffer size
22: y = 0
23: S = S − {s}\\Remove segment s from S
24: \\Remove task T0 from To if buffer is filled
25: if B0 == 0 then
26: To = To − {T0}
27: end if
28: else
29: \\Fill the remaining buffer space
30: z = s.start
31: W0.append([z, z +B0])
32: s.start = z +B0

33: y = y −B0

34: To = To − {T0}
35: end if
36: end while
37: end while
38: end while
39: end if

18

The unscheduled tasks, Tw, are only considered if there are no segments to be

redistributed from the running tasks. Steps (1-8) assign the initial segment

assigned to an unscheduled task to an idle task (a finished task waiting for more

data to be processed). Once the segment is assigned, the unscheduled task gets

removed from the cluster. Steps (9-35) assign segments from S to all tasks in

To, where Tf ∪Tr = To. The algorithm assigns segments to a task until no more

space is available for data to be processed before τ . If a whole segment cannot

be assigned to a task, it gets split between two or more tasks. Algorithm 3

shows when Forseti allows tasks to commit their results. If τ is less than or

equal to a threshold, all tasks commit their results and Forseti terminates.

Algorithm 3: commForseti()

1: \\Commit if no more segments in S and no more tasks waiting
2: if S = {∅}& Tw = {∅}& τ > ε then
3: \\Ask every finished task to commit
4: for n ∈ Tf do
5: n.commit = true
6: end for
7: else if τ ≤ ε then
8: n.commit = true,∀n ∈ T
9: end if

5. Forseti Implementation

While Forseti works with any distributed computing framework, to evaluate

its performance in this paper, we implement Forseti using Hadoop YARN, which

includes an RM (Resource Manager), an AM (Application Master) for each

application (job) as well as an NM (Node Manager within each node). The

AM negotiates resources from the RM and works with the NMs to execute and

monitor an application’s tasks. Forseti is job-independent, so the algorithm is

implemented in the AM to estimate τ and redistribute workload among all tasks

of a job accordingly.

The Forseti load balancing algorithm is centralized and implemented in the

AM. The AM keeps tracking the segments assigned to every task. The AM runs

19

(a) (b) (c)

Figure 5: Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average
completion time using three benchmarks: (a) WordCount (b) Classification (c) Adjacency
List. The heterogeneity level is 1-2-3.

the algorithm upon a new task finishing. Instead of relying on progress score

sent from tasks to AM, when load re-balancing is needed, we let the AM poll for

the real-time progress rate from tasks and the current segment being processed.

We create a new thread for every task which is in charge of communicating with

the AM and updating it with current status upon request. The outputs of all

segments are concatenated before a task commits the results and are fetched by

reduce tasks.

One challenge confronting us is that when calculating the start byte offset

of a segment, the AM does not know about the start offset of records within a

segment. These offset values are only known to tasks when processing segments.

Because of the resulting fraction from Rn and τ , there is no guarantee that the

start byte offset of a segment always leads to the start byte offset of a record.

Recall that the start byte offset of a record is the key, and the value is the data

present in this record. Thus, the start byte offset usually points to the value

of a record, not the key. Therefore, we let tasks always skip the first record

of new segments and point to the start byte offset of the second record upon

processing. The skipped part will be the last record to be processed by whoever

gets assigned the corresponding segment.

20

(a) (b) (c)

Figure 6: Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average
completion time using Kmeans and TermVector benchmarks with different level of hetero-
geneity: (a) 1-2 (b) 1-2-3 (c) 1-2-3-4.

6. Evaluation

The performance of Forseti is evaluated on a local cluster as well as Amazon

EC2 cloud. In this section, we present the evaluation results. We first give a

description of the experimental setup, and then we show our results comparing

Forseti with SkewTune and Hadoop. We also compare Forseti with a simple

heuristic which works as one-to-one mapping. That is, upon completion of a

new task f , we find the slowest running task l that will finish the latest, based

on its progress. Then, the remaining data is divided among these two tasks

such that they both finish at the same time. The slow task is notified to process

Bl more bytes, while the idle task processes the remaining. Bl is calculated as

follows:

Bl =
Rl ·Dr

l

Rl +Rf
(3)

where Dr
l , Rl, and Rf are the remaining unprocessed data from the slow task,

the process rate of the slow task and the process rate of the idle (finished) task,

respectively.

6.1. Experimental Setup

Forseti is deployed on a local cluster and Amazon EC2 consisting of 101

nodes - one master and 100 slaves, and 145 nodes - one master and 144 slaves,

21

respectively. All local servers are connected with a Gigabit Ethernet switch,

each of which is Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and run on

Ubuntu 16.04.6 LTS operating system. We set ω, σ and ε equal to 5%, 90%

and 15 seconds, respectively. These variables help determine whether the seg-

ment currently processed should be included in the optimization. If not chosen

properly, some segments might get processed more than once. Note that the

variables can be environment- and applications-specific values. We use Docker

[31] platform to create a cluster with different levels of heterogeneity. In our

cluster, each node is capable of running one task at a time. Forseti is evalu-

ated by using popular benchmarks, TermVector (TV), WordCount (WC) and

WordMean (WM) as well as Machine Learning benchmarks such as Histogram

Ratings (HR), Classification (CL) and KMeans (KM) clustering benchmarks,

and Graph processing benchmark such as Adjacency List (AL) [12]. The figures

show average completion times of 20 jobs as well as the maximum and minimum

of these completion times.

6.2. Results

Figure 5 compares the average completion time of Forseti with One-to-One,

SkewTune and Hadoop for various job sizes and benchmarks. In this figure, we

fix the level of heterogeneity to 1-2-3 ratio (i.e., CPU speeds are 1x, 2x and

3x of a base speed) and run jobs with different workload size (i.e., 10G, 30G,

50G and 100G bytes of data) one by one and measure the completion time for

each job. The figures show that Foresti outperforms all strategies and reduces

the average completion time. The figures also show that even with large data

size, Forseti is able to exploit the dissimilarity in progress rate among tasks

and redistributes workload efficiently. We notice in this figure that the gap

between Forseti and SkewTune stays roughly the same with different data size,

but Forseti still provides better results. However, the difference in completion

time between Forseti and Hadoop increases as we increase the job size. This

demonstrates Forseti’s superiority in dealing with large jobs.

In Figure 6, we compare the average completion time of Forseti with One-

22

(a) (b) (c)

Figure 7: Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average
completion time using Histogram Ratings and WordMean benchmarks with different job con-
tention levels: (a) Low (b) Medium (c) High.

to-One, SkewTune and Hadoop for different heterogeneity levels. In this figure,

we fix the job size and run the benchmarks with various cluster settings, i.e.,

1-2, 1-2-3, 1-2-3-4 ratio of CPU speed. As in the previous experiment, jobs are

presented one by one to the system, and the completion time is measured and

the average taken over all jobs. The two benchmarks, KM and TV, process 30G

and 10G bytes of data, respectively. Clearly, we can see that as we increase the

heterogeneity level, Forseti is able to maintain a superior performance difference

compared with other strategies. In this figure, we can see that the gaps with

SkewTune and Hadoop keep increasing as we increase the heterogeneity level.

This is because Hadoop and SkewTune make no assumptions about the fluctu-

ation in processing speed in the cluster. The results also show that, even with

a highly heterogeneous system, Forseti shows to be more appealing compared

with SkewTune and Hadoop. Forseti can adapt and adjust to the current state

of a system regardless of benchmarks and the discrepancy in progress rate.

In the previous two experiments, jobs were presented one by one to the

system and did not compete with each other for system resources; the only

contention for resources is among the tasks of the same job. In the next exper-

iment, we allow multiple jobs to compete with each other. Here, we present j

jobs simultaneously to the system and the tasks of these j jobs compete with

each other. Note that if there are not enough VMs to launch all the tasks of

23

these jobs, some will have to be scheduled after other tasks finish. We measure

the completion time of each job from the time the job is presented to the system

(i.e., including any waiting time for launching the job’s tasks). Figure 7 presents

a comparison of the average completion time of Forseti with One-to-One, Skew-

Tune and Hadoop for 3 different contention levels: Low (j = 2), medium (j = 3),

and high (j = 5) contention levels. In this experiment, we run two benchmarks,

HR and WM, which process 30G and 10G bytes of data, respectively. The fig-

ures show that Forseti notably outperforms all baselines and is able to reduce

the average completion time. The figures also show that SkewTune fails to per-

form well at high contention level especially for WM benchmark. That is, with

high contention level, SkewTune is not able to reduce the completion time of

the jobs running on the cluster and free resources for the jobs that need them.

On the other hand, Forseti’s outstanding performance is due to the fact that

the processing time of jobs is minimized, which makes resources available for

yet-to-be-scheduled jobs.

CL KM HR

Benchmarks

0

200

400

600

800

1000

1200

1400

1600

1800

A
vg
. C
om
pl
et
io
n
Ti
m
e(
s)

Forseti

One-to-One

SkewTune

Hadoop

Figure 8: Comparisons of Forseti, One-to-One, SkewTune and Hadoop in terms of average
completion time with 300GB of workload using Classification, KMeans and Histogram Ratings
benchmarks on Amazon EC2.

Figure 8 depicts results from experiments on EC2. The figure shows the

average completion time of Forseti compared with One-to-One, SkewTune and

Hadoop for different benchmarks with 300GB of workload. The results show

that, even with large jobs, Forseti significantly outperforms all baselines. This

24

improvement over other strategies is due to the fact that the assigned segments

are always reassigned if the AM finds that a new data distribution is needed to

minimize the completion time.

ARF ACT(s)
10G (WC) 9 338
50G (WC) 14 568
30G (CL) 6 247
100G (CL) 10 400
1-2 (KM) 5 188
1-2-3 (KM) 6 248
1-2-3-4 (KM) 7 309
1-2 (TV) 5 236
1-2-3 (TV) 7 306
1-2-3-4 (TV) 8 368

Table 2: Average number of re-optimizations of Forseti for different workloads, benchmarks
and heterogeneity levels.

Table 2 shows the average re-optimization frequency (ARF) and the average

completion time (ACT) in seconds of Forseti for different workloads, benchmarks

and heterogeneity levels. The table shows that the re-optimization frequency is

directly proportional to the total completion time of a job. The table also shows

jobs with different characteristics and workload sizes require different number of

re-optimizations, and large job sizes do not always provide enough information

about jobs. Thus, Forseti makes no assumption about the jobs and adapts to

the current state of a system accordingly.

7. Conclusion

In this paper, we present Forseti, a dynamic load balancing framework that

aims to adjust the workload assigned to each task periodically according to their

processing capability. Forseti makes no assumption about the cluster state and

optimizes workload based on the current tasks’ state. It exploits “JVM reuse”

by assigning more data to running tasks and avoiding launching new tasks.

In addition, Forseti does not need to investigate the cause of discrepancy in

execution time of tasks. We design Forseti to be transparent to the map function

25

and require no modification to the function design. Our results show that Forseti

can significantly reduce job completion time by up to 68% on average compared

to default Hadoop and 50% to SkewTune.

In the future work, we plan to investigate the network usage and conduct

deep analysis and its impact on the performance. Furthermore, we aim to

evaluate how our greedy algorithm scales as the complexity increases.

References

[1] Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T., 2012.

Tarazu: optimizing mapreduce on heterogeneous clusters. ACM SIGARCH

Computer Architecture News 40, 61–74.

[2] Ahmad, Z., Duppala, S., Chowdhury, R., Skiena, S., 2020. Improved

mapreduce load balancing through distribution-dependent hash function

optimization, in: 2020 IEEE 26th International Conference on Parallel and

Distributed Systems (ICPADS), IEEE. pp. 9–18.

[3] Aktas, M.F., Peng, P., Soljanin, E., 2018. Straggler mitigation by delayed

relaunch of tasks. SIGMETRICS Perform. Eval. Rev. .

[4] Alamro, S., Xu, M., Lan, T., Subramaniam, S., 2018. Shed: Optimal

dynamic cloning to meet application deadlines in cloud, in: 2018 IEEE

International Conference on Communications (ICC).

[5] Alamro, S., Xu, M., Lan, T., Subramaniam, S., 2020. Shed+: Optimal

dynamic speculation to meet application deadlines in cloud. IEEE Trans-

actions on Network and Service Management 17, 1515–1526.

[6] Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.,

2017. Cherrypick: Adaptively unearthing the best cloud configurations for

big data analytics, in: 14th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 17), pp. 469–482.

26

[7] Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A., Stoica,

I., Harlan, D., Harris, E., 2011. Scarlett: coping with skewed content

popularity in mapreduce clusters, in: Proceedings of the sixth conference

on Computer systems, pp. 287–300.

[8] Ananthanarayanan, G., Ghodsi, A., Shenker, S., Stoica, I., 2013. Effective

straggler mitigation: Attack of the clones, in: NSDI’13.

[9] Ananthanarayanan, G., Kandula, S., Greenberg, A.G., Stoica, I., Lu, Y.,

Saha, B., Harris, E., 2010. Reining in the outliers in map-reduce clusters

using mantri., in: OSDI’10.

[10] Angel, S., Ballani, H., Karagiannis, T., O?Shea, G., Thereska, E., 2014.

End-to-end performance isolation through virtual datacenters, in: 11th

{USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 14), pp. 233–248.

[11] Anjos, J.C., Carrera, I., Kolberg, W., Tibola, A.L., Arantes, L.B., Geyer,

C.R., 2015. Mra++: Scheduling and data placement on mapreduce for

heterogeneous environments. Future Generation Computer Systems 42,

22–35.

[12] Apache Software Foundation, . Puma: Purdue maprduce benchmark suite.

URL: https://engineering.purdue.edu/~puma/pumabenchmarks.htm.

[13] Ballani, H., Jang, K., Karagiannis, T., Kim, C., Gunawardena, D., O?Shea,

G., 2013. Chatty tenants and the cloud network sharing problem, in: Pre-

sented as part of the 10th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 13), pp. 171–184.

[14] Chen, W., Rao, J., Zhou, X., 2017. Addressing performance heterogene-

ity in mapreduce clusters with elastic tasks, in: 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), IEEE. pp. 1078–

1087.

27

https://engineering.purdue.edu/~puma/pumabenchmarks.htm

[15] Cheng, D., Rao, J., Guo, Y., Zhou, X., 2014. Improving mapreduce per-

formance in heterogeneous environments with adaptive task tuning, in:

Proceedings of the 15th International Middleware Conference, pp. 97–108.

[16] Coppa, E., Finocchi, I., 2015. On data skewness, stragglers, and mapre-

duce progress indicators, in: Proceedings of the Sixth ACM Symposium on

Cloud Computing, pp. 139–152.

[17] Fu, S., Mittal, R., Zhang, L., Ratnasamy, S., 2020. Fast and efficient con-

tainer startup at the edge via dependency scheduling, in: 3rd {USENIX}

Workshop on Hot Topics in Edge Computing (HotEdge 20).

[18] Gandhi, R., Xie, D., Hu, Y.C., 2013. {PIKACHU}: How to rebalance load

in optimizing mapreduce on heterogeneous clusters, in: Presented as part

of the 2013 {USENIX} Annual Technical Conference ({USENIX}{ATC}

13), pp. 61–66.

[19] Gunasekaran, J.R., Thinakaran, P., Nachiappan, N.C., Kandemir, M.T.,

Das, C.R., 2020. Fifer: Tackling resource underutilization in the serverless

era, in: Proceedings of the 21st International Middleware Conference, pp.

280–295.

[20] Herodotou, H., Dong, F., Babu, S., 2011a. No one (cluster) size fits all:

automatic cluster sizing for data-intensive analytics, in: Proceedings of the

2nd ACM Symposium on Cloud Computing, pp. 1–14.

[21] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu,

S., 2011b. Starfish: A self-tuning system for big data analytics., in: Cidr,

pp. 261–272.

[22] Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., Wu, S., 2012. Maestro:

Replica-aware map scheduling for mapreduce, in: Cluster, Cloud and Grid

Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on,

IEEE. pp. 435–442.

28

[23] Jang, K., Sherry, J., Ballani, H., Moncaster, T., 2015. Silo: Predictable

message latency in the cloud, in: Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, pp. 435–448.

[24] Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R., 2009. The

nature of data center traffic: measurements & analysis, in: SIGCOMM’09.

[25] Kwon, Y., Balazinska, M., Howe, B., Rolia, J., 2010. Skew-resistant par-

allel processing of feature-extracting scientific user-defined functions, in:

Proceedings of the 1st ACM symposium on Cloud computing, pp. 75–86.

[26] Kwon, Y., Balazinska, M., Howe, B., Rolia, J., 2011. A study of skew in

mapreduce applications. Open Cirrus Summit 11.

[27] Kwon, Y., Balazinska, M., Howe, B., Rolia, J., 2012. Skewtune: miti-

gating skew in mapreduce applications, in: Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, pp. 25–36.

[28] Le, Y., Liu, J., Ergün, F., Wang, D., 2014. Online load balancing for mapre-

duce with skewed data input, in: IEEE INFOCOM 2014-IEEE Conference

on Computer Communications, IEEE. pp. 2004–2012.

[29] Lee, C.W., Hsieh, K.Y., Hsieh, S.Y., Hsiao, H.C., 2014. A dynamic data

placement strategy for hadoop in heterogeneous environments. Big Data

Research 1, 14–22.

[30] Lion, D., Chiu, A., Sun, H., Zhuang, X., Grcevski, N., Yuan, D., 2016.

Don’t get caught in the cold, warm-up your {JVM}: Understand and

eliminate {JVM} warm-up overhead in data-parallel systems, in: 12th

{USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 16), pp. 383–400.

[31] Merkel, D., 2014. Docker: lightweight linux containers for consistent devel-

opment and deployment. Linux journal 2014, 2.

29

[32] Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.G., 2015.

Making sense of performance in data analytics frameworks, in: 12th

{USENIX} Symposium on Networked Systems Design and Implementa-

tion ({NSDI} 15), pp. 293–307.

[33] Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I., 2013. Sparrow: dis-

tributed, low latency scheduling, in: Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, pp. 69–84.

[34] Pettijohn, E., Guo, Y., Lama, P., Zhou, X., 2014. User-centric

heterogeneity-aware mapreduce job provisioning in the public cloud, in:

11th International Conference on Autonomic Computing ({ICAC} 14), pp.

137–143.

[35] Vernica, R., Balmin, A., Beyer, K.S., Ercegovac, V., 2012. Adaptive mapre-

duce using situation-aware mappers, in: Proceedings of the 15th Interna-

tional Conference on Extending Database Technology, pp. 420–431.

[36] Wang, B., Jiang, J., Yang, G., 2015. Actcap: Accelerating mapreduce

on heterogeneous clusters with capability-aware data placement, in: 2015

IEEE Conference on Computer Communications (INFOCOM), IEEE. pp.

1328–1336.

[37] Wang, D., Joshi, G., Wornell, G.W., 2019. Efficient straggler replication

in large-scale parallel computing. ACM Transactions on Modeling and

Performance Evaluation of Computing Systems (TOMPECS) 4, 1–23.

[38] Wang, W., Ying, L., 2016. Data locality in mapreduce: A network per-

spective. Performance Evaluation 96, 1–11.

[39] Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A.,

Qin, X., 2010. Improving mapreduce performance through data placement

in heterogeneous hadoop clusters, in: 2010 IEEE International Sympo-

sium on Parallel & Distributed Processing, Workshops and Phd Forum

(IPDPSW), IEEE. pp. 1–9.

30

[40] Xu, F., Liu, F., Jin, H., 2015. Heterogeneity and interference-aware vir-

tual machine provisioning for predictable performance in the cloud. IEEE

Transactions on Computers 65, 2470–2483.

[41] Xu, H., Lau, W.C., 2017. Optimization for speculative execution in big

data processing clusters. IEEE Transactions on Parallel and Distributed

Systems 28, 530–545.

[42] Xu, M., Alamro, S., Lan, T., Subramaniam, S., 2017. Laser: A deep learn-

ing approach for speculative execution and replication of deadline-critical

jobs in cloud, in: Computer Communication and Networks (ICCCN), 2017

26th International Conference on, IEEE. pp. 1–8.

[43] Xu, M., Alamro, S., Lan, T., Subramaniam, S., 2018. Chronos: A unify-

ing optimization framework for speculative execution of deadline-critical

mapreduce jobs, in: 2018 IEEE 38th International Conference on Dis-

tributed Computing Systems (ICDCS), IEEE.

[44] Yang, D., Rang, W., Cheng, D., 2020. Mitigating stragglers in the de-

centralized training on heterogeneous clusters, in: Proceedings of the 21st

International Middleware Conference, pp. 386–399.

[45] Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I., 2008.

Improving mapreduce performance in heterogeneous environments., in:

OSDI’08.

[46] Zhang, Z., Cherkasova, L., Loo, B.T., 2015. Exploiting cloud heterogeneity

to optimize performance and cost of mapreduce processing. ACM SIG-

METRICS Performance Evaluation Review 42, 38–50.

31

	INTRODUCTION
	Background and Related Work
	Motivations and Problem Statement
	Forseti Design
	Overview
	Estimating New Workload Assignment of Tasks
	Proposed Dynamic Load Balancing Algorithm

	Forseti Implementation
	Evaluation
	Experimental Setup
	Results

	Conclusion

