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ABSTRACT
Optimizing distributional utilities (such as mitigating perfor-

mance tails and maximizing risk-aware objectives) is crucial for on-

line network slice management to meet the diverse requirements of

different services and applications. While Reinforcement Learning

(RL) has been successfully applied to autonomous online decision-

making in many network slice management problems, existing

solutions often focus on maximizing the expected cumulative re-

ward or are limited to specific distributional utilities. This paper

proposes a new RL algorithm for general Distributional Utilities Op-

timization (DUO) in an actor-critic framework for online network

slice management. In particular, we derive a DUO Temporal Dif-

ference Learning algorithm for updating distributional utilities in

the critic through stochastic gradient descent. It is proven that the

Distributional Optimal Bellman Operator for distributional utilities

is a 𝛾-contraction and thus is guaranteed to converge. In addition,

we parameterize the policy by another neural network and prove a

revised policy gradient theorem for distributional utilities, which

shows that the derived policy update converges to at least a station-

ary point of the DUO problem. Our proposed algorithm works with

arbitrary smooth utility functions on the return distributions, mak-

ing it suitable for optimizing various network slice performance

objectives in an online setting. Our solution is implemented and val-

idated by building a hybrid trace-driven network simulator, which

was built using an open-source O-RAN dataset, along with data col-

lected from a 5G O-RAN testbed. Results demonstrate a significant

improvement over heuristic and RL baselines.
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1 INTRODUCTION
The growth of mobile services in the Internet of Things (IoT)

and smart devices has presented challenges for 5G network man-

agement [11]. Network slicing has emerged as a key technology to

address the diverse performance requirements of different services

and applications [15]. Jointly managing network slices in a 5G net-

work requires solving an online optimization problem over various

control knobs such as scheduling policies, resource allocation, and

spectrum actions [18] in dynamic wireless environments.

Intelligent management of wireless network slices is becoming

a must. Recently, O-RAN Alliance[1] is defining open RAN inter-

faces and infrastructure to make more programmable RANs cross

operators and vendors. In particular, the O-RAN framework can

provide rich third-party support for network assurance and control

through near-real-time (nRT) Radio Intelligent Controller (RIC) by

using an E2 interface and Service Model (E2SM), e.g., E2SM-RC

(Radio Control)[2]. However, data-driven methods for optimizing

various distributional performance objectives, e.g., 95-percentile

tail latency and throughput outage probabilities, are still limited.

For example, a special URLLC slice for robot control may require

performance guarantees defined on the distributions of through-

put and latency during the whole time interval – rather than the

standard on-average guarantee – which is our focus in this paper.

To this end, Reinforcement Learning (RL) has gained attention

for intelligent wireless network optimization, as it enables agents

to learn an optimal policy through interaction with the environ-

ment [14]. These works formulate online network slice manage-

ment as a Markov Decision Process for utility maximization and

apply RL techniques to learn an optimal policy. However, they often

focus on optimizing expected performance objectives modeled as

discounted cumulative rewards, rather than distributional utilities.

In this paper, we consider the learning problem of optimizing

distributional utilities defined w.r.t. return/reward distributions and

develop a new RL algorithm for general Distributional Utilities Op-

timization (DUO) in an actor-critic framework. In practice, there are

many scenarios where the optimizationmust go beyond considering

the expected return values and optimize the distribution of certain

performance metrics/rewards. These include robust network opti-

mization that considers outage probabilities [26], managing slice

SLAs defined through availability and performance tails [15], and

resource allocation taking risk into account in decision making

such as [10, 22]. We model relevant network performance metrics

as random rewards in RL and recast the problem of online network

slice management by optimizing certain utility functions over the
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distribution of such random returns. This approach allows us to

meet different design objectives (e.g, balancing 𝑥-percentile latency

for different network slices or minimizing the probability of each

slice’s throughput falling below 𝑦𝑖 ) by maximizing appropriate util-

ity function on the return distribution. In contrast to existing work

on distributional RL that is often limited to specific types of utility

functions such as the expected value [8, 27] and the Conditional

Value at Risk [22], our goal in this paper is to build an RL framework

with respect to general distributional utilities.

More precisely, we optimize arbitrary smooth, differentiable util-

ity functions on return distributions using an actor-critic framework

– Deep Neural Networks (DNNs) estimate return/reward distribu-

tions (for each slice) from dynamic network state observations, such

as network conditions and available slice/user statistics. The Tem-

poral Difference Learning algorithm updates target distributional

utilities in the critic through stochastic gradient descent, with proof

of convergence by the Distributional Optimal Bellman Operator’s

𝛾-contraction property. We parameterize the policy (for generating

slice management actions) with another neural network and derive

a revised policy gradient theorem for distributional utilities, which

shows convergence to at least a stationary point for optimization.

To the best of our knowledge, this is the first proposal to optimize

general distributional utility functions using actor-critic RL.

The proposed algorithm allows us to readily solve many network

slice management problems involving distributional utilities. To

demonstrate this, we consider the problem of jointly apportioning

network resources among multiple slices (in terms of physical re-

source blocks) and optimizing intra-slice scheduling policies (i.e.,

selecting proportional fair, water-filling, or round-robin schedulers

for each network slice), with the goal of mitigating performance

tails (e.g., the probability of received data rates falling below pre-

scribed SLAs). The problem can be easily formulated as RL with

heterogeneous distributional utilities (due to varying SLAs for dif-

ferent slices) and solved efficiently using the proposed algorithms.

We implement and validate our solution by building a hybrid

trace-driven network simulator. It trains a DNN to generate the re-

ward trajectories given network slice management actions in each

episode (i.e., resource allocation and intra-slice scheduling policy)

by using data from both an open-source Colosseum O-RAN COM-

MAG Dataset [7] and in OTA (Over-The-Air) 5G O-RAN testbed.

The dataset contains time-varying network state information and

slice/UE statistics for multiple cells and under different network

conditions. Modeling each slice as an individual learning agent,

we implement our actor-critic framework for optimizing distribu-

tional utilities. It jointly manages multiple slices with highly-variant

performance expectations. We show that our DUO algorithm can

achieve the optimal policy and significantly outperform both heuris-

tic policies and baseline RL algorithms, including D4PG [3] and

RMIX [22], in particular, by reducing performance tail probabilities

by up to one order of magnitude using a log-percentile utility.

The main contributions of this paper are as follows:

• We propose an RL algorithm for optimizing general distribu-

tional utilities in an actor-critic framework. The 𝑁−step dis-

tributional bellman operator is shown to be a 𝛾−contraction;
• We leverage an𝑁−step Distributional TD learning algorithm

for a critic update. A policy gradient theorem is proven to

guarantee convergence to at least a stationary point of the

network utility optimization;

• The results work with arbitrary smooth utilities and enables

Distributional Multi-Agent Actor-Critic algorithms for on-

line network slice management;

• Our solutions are implemented and validated by building a

hybrid trace-driven network simulator using an open-source

ORAN dataset and collecting additional datasets with real

UEs in a shield room in our OTA (Over-The-Air) 5G O-RAN

testbed. Significant improvement is achieved over heuristic

and RL baselines.

2 RELATEDWORK
Network utility maximization (NUM) is often solved through

optimization methods such as gradient descent, but obtaining the

complicated mathematical expressions of users’ utility functions in

real-world network circumstances can be challenging [24]. Deep

learning and deep reinforcement learning have been applied to

the problem, but they do not directly model the required distri-

butions for network utility optimization, limiting their ability to

guarantee specific network slice requirements beyond expected

performance/rewards [14] Distributional RL has made significant

advancements in various single-agent domains [4, 8, 30], but a

multi-agent RL (MARL) system [20] is required for network opti-

mization problems with large action spaces. Value-based distribu-

tional MARL [19, 31] faces the challenge of integrating individual

distributional Q-values into a global distributional Q-value under

the Distributional-Individual-Global-Max (DIGM) principle [27].

Limited research has addressed distributional MARL. RMIX [22]

models individual Q-values with distributions, while DMIX [27]

parameterizes both individual and global Q-values with a quantile

function. However, neither approach considers general distribu-

tional network utilities.

3 PROBLEM FORMULATION
We consider a base station (BS) with𝐾 network slices in a mobile

network. Multiple network slices are created to serve their asso-

ciated users (UEs). The slices are modeled as the learning agents

managing the resource allocation among different network slices

and deciding relevant control actions/configurations, such as intra-

slice scheduling policies, intending to maximize the overall utilities

of all slices. Each network slice 𝑘 serves UEs in a distinctive service

class with unique service-level agreements (SLA) requirements. Let

𝑎𝑡
𝑘
denote the set of network slice management decisions such as

the choice of intra-slice scheduling policies or the number of physi-

cal resource blocks (PRBs) assigned to slice 𝑘 at each training step 𝑡 .

Given 𝑎𝑡
𝑘
, the resulting performance received by all UEs in network

slice 𝑘 is denoted by a random reward 𝑟𝑡
𝑘
(e.g., delay, data rate, or

reliability). Thus, we consider the random return 𝑍 𝑡
𝑘
=

∑
𝑡 𝛾
𝑡𝑟𝑡
𝑘
as

the sum of discounted reward (with a factor 𝛾 ) along network slice

𝑘’s trajectory (i.e., the sequence of network conditions, scheduling

decisions and reward signals). We define the distributional utility

of network slice 𝑘 at time slot 𝑡 as a function of the random return

distribution, i.e., P𝑈 𝑡
𝑘
= P𝑈𝑘

(𝑍 𝑡
𝑘
), where P𝑈𝑘

(·) is smooth utility

function over the distribution of 𝑍 𝑡
𝑘
.
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Such distributional utility functions capture a wide range of

network design objectives. For instance, it could be (i) the 95-

percentile tail of the random return, i.e., P𝑈 (𝑍 ) = {𝑥 : 𝑃 (𝑍 >

𝑥) ≥ 0.95}, (ii) the Conditional Value at Risk (CVaR) function

P𝑈 (𝑍 ) = 1

1−𝑐
∫ 𝛼
−1 𝑧𝑓 (𝑧)𝑑𝑧, 𝛼 > 0 [23] over the distribution 𝑓 (𝑧), as

a risk assessment measure used in portfolio optimization for effec-

tive risk management, (iii) the prospect utility function P𝑈 (𝑍 ) =∫
𝑧
𝑧𝑓 (𝑧)𝑤 (𝑧)𝑑𝑧 with S-shaped weights𝑤 (𝑧) to model risk-seeking

and risk-aversion behaviors in decision making [10], or (iv) the

𝛼-fair utility functions P𝑈 (𝑧) = 𝐸 [𝑍 1−𝛼/(1 − 𝛼)] for 𝛼 ≠ 1, 𝛼 > 0,

P𝑈 (𝑧) = 𝐸 [log(𝑧)] for 𝛼 = 1, which are widely used in network

optimization [17].

The objective of network slice management is to maximize the

sum of distributional utility of all network slices, which can be

expressed as

∑
𝑘 P𝑈𝑘

(lim𝑇→∞ 1/𝑇 ∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡
𝑘
). We consider this sto-

chastic programming problem for network slice management with

a finite 𝑇 time horizon [24] and define the Distributional Utility
Optimization (DUO) problem:

max

∑︁
𝑘

P𝑈𝑘
(𝑍 𝑡
𝑘
), s.t. 𝑍𝑘 =

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡
𝑘
, (1)

where distributional utilities P𝑈𝑘
(·) model different performance

expectations as defined by SLA requirements over 𝑍𝑘 distribution.

Due to dynamic network conditions, this network slice manage-

ment problem requires online decision-making. RL is a natural

way to solve this. However, RL algorithms typically aim to maxi-

mize the expected discounted long-term reward of all agents - i.e.,

E𝜋 [
∑
𝑡

∑
𝑘 𝛾

𝑡𝑟𝑡
𝑘
] - and fail to consider distributional utilities that

are defined over the distributions over random return 𝑍𝑘 and also

could vary among different network slices. Due to this difference,

distributional utilities cannot be expressed as the accumulation of

rewards. Even if the reward function is appropriately shaped to

incorporate the distributional properties of the return, the resulting

expected reward would still be an incomplete representation of the

return distribution. The key to developing a solution is to estimate

the distribution of the random return and devise a policy update

for maximizing such distributional utility objectives.

4 LEARNING ALGORITHM AND ANALYSIS
4.1 Solution Overview

Figure 1: Our framework

In this section, we address the challenges outlined in the previ-

ous section 3. We reformulate the problem using a distributional

RL approach, which involves learning return distributions of indi-

vidual agents and defining distributional value functions calculated

analytically based on the return distributions as well as each target

utility. The defined distributional value functions are incorporated

into the TD error objective and act as auxiliary local rewards during

centralized training for updating policies. Return distributions are

updated using cross-entropy loss.

Our design, illustrated in Figure 1, adopts the Centralized Train-

ing Decentralized Execution (CTDE) framework commonly em-

ployed in Multi-Agent Reinforcement Learning (MARL). Unlike

CTDE, our approach does not utilize deterministic centralized critic

values for each agent. Instead, the critic outputs logits, which are

converted into probability density functions using the softmax func-

tion. These distributions form the basis for the random return 𝑍𝑘 .

We introduce a distributional value function 𝑄𝑈𝑘 ,𝐹𝑍𝑘
(𝑠, 𝑎) that is

dependent on the arbitrary target utility function P𝑈𝑘
and the re-

turn distribution 𝑍𝑘 , represented by the Cumulative Distribution

Function (CDF) 𝐹𝑍𝑘 , based on the critic outputs. Lemma 1 shows

the convergence of such distributional value function. We present a

novel policy gradient theorem, as proven in Theorem 1, that extends

the standard policy gradient theorem by incorporating the random-

ness of the return distribution and an arbitrary utility function.

The standard policy gradient theorem only considers the expected

return, whereas our proposed theorem introduces an additional

level of complexity by incorporating an arbitrary utility function.

The proposed utility-based distributional value function and

policy gradient theorem are employed to approximate distributional

value functions through discretization, allowing for computation

with a DNN. This approach is extended to address the DUO problem

in multi-agent scenarios for network slicing problems, providing a

scalable and flexible solution. The discretization and DNN-based

computation of distributional value functions can be applied to

multiple agents, facilitating independent multi-agent learning based

on specific requirements for each slice. This approach is particularly

useful for solving large-scale problems with multiple agents and

allows for efficient policy updates for each agent, ultimately leading

to optimal resource allocation for each slice.

4.2 Convergence of the Distributional Value
Function

We optimize network utility by modeling the network as an

environment and the network slices as learning agents. Agents

learn policies by interacting with the environment to optimize

arbitrary utilities P𝑈𝑘
(𝑍𝑘 ) of random return. This is considered

as an infinite horizon discounted Markov Decision Process (MDP)

M that is defined by the tuple (𝑆,𝐴, 𝑃, 𝐾, 𝑅,𝛾). Here 𝑆 denotes a

set of states, 𝐴 a set of actions, and 𝑃 : 𝑆 × 𝐴 → 𝑆 the transition

probability distribution. 𝐾 is the total number of agents. And 𝑅 is

the reward function, which in this work we explicitly treat it as a

random variable.

We use a stochastic policy 𝜋 (𝑎 |𝑠) to map each state 𝑠 ∈ 𝑆

to a probability distribution over the action space 𝐴. Distribu-

tional RL aims to approximate the distribution of returns (i.e.,

the sum of discounted rewards along the agent’s trajectory of in-

teractions with the environment) denoted by a random variable

𝑍𝜋 (𝑠, 𝑎) =
∑
𝑡 𝛾
𝑡𝑅𝑡 , whose expectation is the scalar state-action

value function 𝑄𝜋 (𝑠, 𝑎), i.e., 𝑄𝜋 (𝑠, 𝑎) = 𝐸 [𝑍𝜋 (𝑠, 𝑎)] = 𝐸 [
∑
𝑡 𝛾
𝑡𝑅𝑡 ].

Similar to the Bellman equation of Q-value function 𝑄𝜋 (𝑠, 𝑎)
𝐷
:=

𝐸 [𝑅(𝑠, 𝑎)]+𝛾𝐸𝑃,𝜋𝑄 ′𝜋 (𝑠′, 𝑎′),𝑍𝜋 (𝑠, 𝑎) is also described by a recursive

163



MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Chen et al.

equation of a distributional nature:

𝑍𝜋 (𝑠, 𝑎)
𝐷
:= 𝑅(𝑠, 𝑎) + 𝛾𝑍𝜋 (𝑠′, 𝑎′), (2)

where 𝑠′ ∼ 𝑃 (·|𝑠, 𝑎), 𝑎′ ∼ 𝜋 (·|𝑠′). Then we have the distributional

Bellman optimality operator T as follows:

(T𝜋𝑍 ) (𝑠, 𝑎)
𝐷
:= 𝑅(𝑠, 𝑎) + 𝛾𝐸 [𝑍 (𝑠′, 𝜋 (𝑠′)) |𝑠, 𝑎], (3)

based on the distributional Bellman optimality operator above, the

objective of traditional distributional RL is to reduce the distance be-

tween the distribution 𝑍 (𝑠, 𝑎) and the target distribution T𝑞𝑍 (𝑠, 𝑎).
In order to solve the DUO problem in section 3, we are typically

interested in acting so as to maximize the target utilities w.r.t. the

return distributions. Therefore, we define a distributional value

function, 𝑄𝑈𝑘 ,𝐹𝑍𝑘
(𝑠, 𝑎), in terms of the arbitrary target utility func-

tion, P𝑈𝑘
, and the CDF of the random return 𝐹𝑍𝑘 , which guides

each agent’s decision-making process via its utilization as the actor

loss.

Definition 1. (Distributional value function.) The distribu-
tional value function is formally defined as 𝑄𝑈 ,𝐹𝑍 , where𝑈 denotes
the utility function, and 𝐹𝑍 represents the Cumulative Distribution
Function (CDF) of the random return variable 𝑍 .

To maximize the distributional value function of each agent 𝑘

(we omit 𝑘 and treat each agent 𝑘 identical in the rest of our paper

for notation brevity), we define a Bellman operator T𝑞 for the

distributional value function as:

T𝑞𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎)
𝐷
:= 𝐸 [𝑅(𝑠, 𝑎)] + 𝛾𝐸𝑃

[
𝑚𝑎𝑥𝑎′∈𝐴𝑄𝑈 ,𝐹𝑍 (𝑠

′, 𝑎′)
]
. (4)

where we view distributional value functions as vectors in R𝑆×𝐴

and the expected reward function as on such vector. This operator

describes the expected behavior of the agents. In particular, this

is a contraction mapping with repeated application to some ini-

tial 𝑄0

𝑈 ,𝐹𝑍
(𝑠, 𝑎) converges exponentially to a unique fixed point

𝑄∗
𝑈 ,𝐹𝑍
(𝑠, 𝑎) which is the optimal distributional value function cor-

responding to the set of optimal policies 𝜋∗, where 𝜋∗ satisfies the
equation 𝐸𝑎∼𝜋∗𝑄∗𝑈 ,𝐹𝑍 (𝑠, 𝑎) = 𝑚𝑎𝑥𝑎𝑄

∗
𝑈 ,𝐹𝑍
(𝑠, 𝑎) [5]. This operator

T𝑞 is fundamentally different from the usual Bellman operator

T𝑄 (𝑠, 𝑎) = 𝐸 [𝑅] + 𝛾𝐸𝑃 [𝑚𝑎𝑥𝑎′∈𝐴𝑄 (𝑠′, 𝑎′)] for traditional state-
action value function 𝑄 (𝑠, 𝑎). In particular, the randomness in the

reward 𝑅, utility function distribution P𝑈 and next-state return dis-

tribution𝑍 (𝑠′, 𝑎′) define the compound distribution T𝑞𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎).
In particular, we make the usual assumption that these quantities

are independent. In this section, we will show that Eq. 4 is a contrac-

tion mapping whose unique fixed point is the random distributional

value function 𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎).
Consider the process 𝑄

(𝑘+1)
𝑈 ,𝐹𝑍

= T𝑞𝑄 (𝑘 )
𝑈 ,𝐹𝑍

starting from initial

value 𝑄0

𝑈 ,𝐹𝑍
∈ Q, we now show that this process converges in

a strong sense that T𝑞 is a contraction, which implies that all

moments also converge exponentially quickly to a fixed point

𝑄∗
𝑈 ,𝐹𝑍
(𝑠, 𝑎).

Lemma 1. T𝑞 : Q ↦→ Q is a 𝛾-contraction.

Proof. We show that the sup-norm contraction satisfies:

| T𝑞𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) − T𝑞𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) |

≤ 𝛾 | |T𝑞𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) − T𝑞𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) | |∞,

(5)

for all 𝑠 ∈ 𝑆 , 𝑎 ∈ 𝐴. The sup-norm is defined as | |𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎) | |∞ =

𝑠𝑢𝑝𝑠∈𝑆,𝑎∈𝐴 |𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎) |. For give distributional value function𝑄 ∈
𝑅 with fixed hyper-parameters (e.g., corresponding to different SLA

requirements), we show that for two different return distributions

𝑍 (1) and 𝑍 (2) , we have:

|T𝑞𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) − T𝑞𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) |

≤ 𝑚𝑎𝑥𝑠,𝑎 | [T𝑞𝑄 (1)𝑈 ,𝐹𝑍 ] (𝑠, 𝑎) − [T
𝑞𝑄
(2)
𝑈 ,𝐹𝑍
] (𝑠, 𝑎) |,

=𝑚𝑎𝑥𝑠,𝑎 |𝛾
∑︁
𝑠′
𝑃 (𝑠′ |𝑠, 𝑎) [𝑚𝑎𝑥𝑎′𝑄 (1)𝑈 ,𝐹𝑍 (𝑠

′, 𝑎′) −𝑚𝑎𝑥𝑎′𝑄 (2)𝑈 ,𝐹𝑍 (𝑠
′, 𝑎′)] |,

≤ 𝛾𝑚𝑎𝑥𝑠′ |𝑚𝑎𝑥𝑎′ |𝑄 (1)𝑈 ,𝐹𝑍 (𝑠
′, 𝑎′) −𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠′, 𝑎′) | |,

≤ 𝛾𝑚𝑎𝑥𝑠′,𝑎′ |𝑄 (1)𝑈 ,𝐹𝑍 (𝑠
′, 𝑎′) −𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠′, 𝑎′) |,

= 𝛾 | |𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) −𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) | |∞,

(6)

where the second step uses the state transition probabilities 𝑃 (𝑠′ |𝑠, 𝑎)
and the third step considers themaximum |𝑄 (1)

𝑈 ,𝐹𝑍
(𝑠, 𝑎)−𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) |.

This further implies that:

| T𝑞𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) − T𝑞𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) |

≤ 𝛾 | |T𝑞𝑄 (1)
𝑈 ,𝐹𝑍
(𝑠, 𝑎) − T𝑞𝑄 (2)

𝑈 ,𝐹𝑍
(𝑠, 𝑎) | |∞, ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴.

(7)

where we use the upper bound of the left-hand-side of Eq. 6 in step

1 above, and use MDP state transition probabilities to move one

step forward from (𝑠, 𝑎) to (𝑠′, 𝑎′) in step 2, use the upper bound

of step 2 by maximizing over the whole state space in step 3, and

extract the action outside of the absolute value we could prove the

result above. □

With lemma 1, we use the Banach fixed-point theorem to derive

thatT𝑞 has a unique fixed point assuming all moments are bounded,

this is sufficient to conclude that the sequence {𝑄𝑘
𝑈 ,𝐹𝑍
} converges

to a stationary point {𝑄∗
𝑈 ,𝐹𝑍
}. Therefore, we can leverage the TD

learning to compute the maximal distributional value functions of

each agent thus leading to the maximal global distributional value

functions. The estimation of the value of 𝑄𝑈 ,𝐹𝑍 can be achieved

through either sampling or computation from the parameterized

return (𝑍 ) distribution. However, the sampling method is typically

computationally expensive [29]. Therefore, we let each agent𝑘 learn

its return distribution parameterized by a mixture of Dirac Delta

(𝛿) functions. This approach has been demonstrated to be highly

expressive and computationally efficient [4]. The parameterized

return distribution of each agent at time 𝑡 is defined as:

𝑍 𝑡 (𝜏𝑡 , 𝑎𝑡−1) =
𝑀∑︁
𝑗=1

𝒫𝑗 (𝜏𝑡 , 𝑎𝑡−1)𝛿 𝑗 (𝜏𝑡 , 𝑎𝑡−1), (8)

where𝑀 represents the number of Dirac Delta functions. The 𝑗-th

Dirac Delta function, denoted as𝛿 𝑗 (𝜏𝑡 , 𝑎𝑡−1), specifies the estimated

value that may be effectively parameterized by neural networks

in practice. 𝒫𝑗 (𝜏𝑡 , 𝑎𝑡−1) denotes the corresponding probability

of the estimated value given local observations and actions. The

notation 𝜏𝑡 signifies the trajectories that span up to the 𝑡-th time

step, whereas 𝑎𝑡−1 represents the action of agent 𝑘 .

The individual return distribution, 𝑍 𝑡 (𝜏𝑡 , 𝑎𝑡−1) ∈ Z, and its

corresponding Cumulative Distribution Function (CDF), 𝐹𝑍 𝑡 , are

used to define a distributional value function operator Π𝑄 over
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return in terms of the target utility function𝑈 : Π𝑄𝑍 𝑡 (𝜏𝑡 , 𝑎𝑡−1) :=
𝑄𝑡
𝑈 ,𝐹𝑍𝑡

(𝜏𝑡 , 𝑎𝑡−1), where 𝑄 ∈ Q. The distributional value function
could be estimated in a non-parametric way given the ordering of

Dirac Delta functions {𝛿 𝑗 }𝑚𝑗=1 by leveraging its individual distribu-

tion as(we will omit 𝑡 for notation brevity):

𝑄𝑈 ,𝐹𝑍 =

𝑚∑︁
𝑗=1

𝒫𝑗𝛿 𝑗1{𝛿 𝑗 ≤ 𝑣𝑚}, (9)

where 1{·} denotes the indicator function, 𝑣𝑚 represents the esti-

mated value conditioned on the distributional value function opera-

tor Π𝑄 , and 𝑣𝑚 = ⌊𝛿𝑚 |Π𝑄𝑍 ⌋ with ⌊·⌋ being floor function. This is a
closed-form formulation and can be easily implemented in practice.

The optimal action for agent 𝑘 can be calculated by computing

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑈 ,𝐹𝑍 , which will be elaborated on in detail in Section 4.3.

Using Lemma 1, we can leverage the distributional TD learning

to compute the maximal distributional value function 𝑄𝑈 ,𝐹𝑍 of

each agent by replacing the standard TD error with some metric

𝑑 that measures the distance between two distributions. Here we

utilize 𝑁−step returns when estimating the distributional TD error,

which is widely used in the context of many policy gradient algo-

rithms [21] and Q-learning variants [12]. This modification can be

applied analogously to the distributional Bellman operator to make

use of it when updating the distributional critic. By replacing the

distributional Bellman operator with an 𝑁− step variant, we have:

𝐿(𝜔) = 𝐸𝜌
[
𝑑 (𝑌,𝑄𝜔

𝑈 ,𝐹𝑍
(𝑠0, 𝑎0)

]
,

𝑌 =

𝑁−1∑︁
𝑛=0

𝛾𝑛𝑟𝑛 + 𝛾𝑁 𝐸 [𝑄𝜔
′

𝑈 ,𝐹𝑍
(𝑠𝑁 , 𝑎𝑁 ) | (𝑎0, 𝑠0)],

(10)

where 𝑑 (𝑌,𝑄𝜔
𝑈 ,𝐹𝑍
(𝑠0, 𝑎0) is distributional value function TD error

for updating value functions w.r.t. the 𝑁−step transition dynamics.

𝜔 is the parameters of utility that can be modeled by a DNN, and

𝜔 ′ indicates the parameters of the target critic network that is

periodically copied from 𝜔 for stabilizing training.

For local return (𝑍 ) distribution learning, we first consider util-

ity values as dummy rewards of each agent due to its property of

modeling the potential return loss and then leverage the cross-

entropy loss used in Distributional RL to explicitly update the

local distributions [3, 4]. More concretely, we model the return

distribution using a discrete distribution parameterized by 𝑁 ∈ N
and 𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ∈ R, and whose support is the set of the atoms

{𝑧𝑖 = 𝑉𝑚𝑖𝑛 + 𝑖Δ𝑧, 0 ≤ 𝑖 < 𝑁 }, Δ𝑧 =
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑁−1 . In a sense, these

atoms are the ‘canonical returns’ of 𝑍 distribution. The atom prob-

abilities are given by a DNN model parametrized by 𝜁 :

𝑍𝜁 (𝑠, 𝑎) = 𝑧𝑖 , 𝑤 .𝑝. 𝑝𝑖 (𝑠, 𝑎) =
𝑒𝜁𝑖 (𝑠,𝑎)∑
𝑗 𝑒
𝜁 𝑗 (𝑠,𝑎)

∝ 𝑒𝑥𝑝{𝜁𝑖 }, (11)

observe that this distributional layer corresponds to a linear layer

from the critic’s torso to the logits 𝜁𝑖 (𝑠, 𝑎) followed by a softmax

activation. Since this distribution is not closed under the bellman

operator defined earlier and the fact that adding and scaling these

values will no longer lie on the support defined by the atoms. This

support is explicitly defined by the (𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ) hyperparameters.

As a result, we instead use a projected version of the distributional

Bellman operator [4] and let 𝑝′ be the probabilities of the projected
distributional Bellman operator ΦT𝜋 applied to the target distri-

bution 𝑍 ′, While training, gradients from 𝑍 are blocked to avoid

changing the weights of agents’ utility function network. We write

the cross-entropy loss for updating 𝑍𝜁 as:

𝑑 (ΦT𝜋𝑍 ′, 𝑍 ) =
𝑙−1∑︁
𝑖=0

𝑝′𝑖
𝑒𝜁𝑖 (𝑠,𝜋 (𝑠 ) )∑
𝑗 𝑒
𝜁 𝑗 (𝑠,𝜋 (𝑠 ) )

. (12)

4.3 Policy Gradient Theorem
Based on the analysis in section 4.2, our policy aims at selecting

actions to maximize the distributional value function 𝑄𝑈 ,𝐹𝑍 (𝑠, 𝑎)
instead of deterministic state-action values 𝑄 (𝑠, 𝑎). To update the

policy, we derive it directly from a parameterized critic𝑄𝜔
𝑈 ,𝐹𝑍𝜁

(𝑠, 𝑎)
(denote as 𝑄𝜔

𝑈 ,𝜁
(𝑠, 𝑎) for brevity). This is accomplished by consid-

ering a parameterized policy 𝜋𝜃 and maximizing its expected value

through optimization of the following expression:

𝐽 (𝜃 ) = 𝐸𝜋𝜃 [𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 ) ] . (13)

Unfortunately, the policy gradient theorem for RL with cumulative

rewards [28] no longer holds when we consider a general function

instead of cumulative rewards. Therefore, we derive a Distribu-

tional Policy Gradient Theorem in Theorem 1 with distributional

value function distribution 𝑄𝜔
𝑈 ,𝜁
(𝑠, 𝑎) which establishes that the

parameterized policy gradient is the solution to optimize the arbi-

trary target utility functions P𝑈 over the distribution of the random

return 𝑍𝜁 .

Theorem 1. The following policy gradient update:

∇𝜃 𝐽 (𝜃 ) = 𝐸𝜋𝜃

[
∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎)

(
𝑇∑︁
𝑡=1

∇𝜃 ln𝜋𝜃 (𝑠𝑡 )
)
|𝑎𝑡=𝜋𝜃 (𝑠𝑡 )

]
, (14)

converges to a stationary point of the distributional value function
optimization.

Proof. We consider a standard Gradient Descent Method to

update the policy parameter 𝜃 (and thus policy 𝜋𝜃 ) to maximize

objective 𝐽 (𝜃 ) = 𝐸𝜋𝜃 [𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 ) ] in Eq. 13, i.e.,

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡∇𝜃 𝐽 (𝜃𝑡 ) . (15)

The policy parameter 𝜃∗ (and thus policy 𝜋𝜃 ∗ ) converges to a sta-

tionary point for the expectation of the distributional value func-

tion 𝐸𝜋𝜃 [𝑄𝜔𝑈 ,𝐹𝑍𝜁
(𝑠, 𝜋𝜃 (𝑠))]. To this end, we need to obtain gradient

∇𝜃 𝐽 (𝜃 ) for sampled trajectories.

We begin with reformulating the gradient starting with the ex-

pansion of expectation (with a slight abuse of notation):

∇𝜃 𝐽 (𝜃 ) = ∇𝜃𝐸𝜋𝜃
[
𝑄𝜔
𝑈 ,𝜁
(𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )

]
= ∇𝜃

∫
𝜋𝜃 (𝜏)𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )𝑑𝜏,

=

∫
∇𝜃𝜋𝜃 (𝜏)∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )𝑑𝜏,

=

∫
𝜋𝜃 (𝜏)

∇𝜃𝜋𝜃 (𝜏)
𝜋𝜃 (𝜏)

∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )𝑑𝜏,

=

∫
𝜋𝜃 (𝜏)∇𝜃 ln𝜋𝜃 (𝜏)∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )𝑑𝜏,

= 𝐸𝜋𝜃

[
∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )∇𝜃 ln𝜋𝜃 (𝜏)

]
,

(16)

where 𝜏 is a given trajectory. Here we calculate the expectation

using policy 𝜋𝜃 in step 1 and change the sequence of taking de-

rivative and integral in step 2. By multiplying 𝜋𝜃 (𝜏)/𝜋𝜃 (𝜏) in step
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3, we could use ∇𝜃 ln𝜋𝜃 (𝜏) to represent the term ∇𝜃𝜋𝜃 (𝜏)/𝜋𝜃 (𝜏)
in step 4 and get the expectation over policy 𝜋𝜃 in the final step.

This means that the derivative of the expected utility for a given

trajectory is the expectation of the product of the utility function

and gradient of the ln of the policy 𝜋𝜃 , i.e.,

∇𝜃 𝐽 (𝜃 ) = 𝐸𝜋𝜃
[
∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )∇𝜃 ln𝜋𝜃 (𝜏)

]
. (17)

Now, we expand the definition of 𝜋𝜃 (𝜏):

𝜋𝜃 (𝜏) = 𝑃 (𝑠0)
𝑇∏
𝑡=1

𝜋𝜃 (𝑠𝑡 )𝑝 (𝑠𝑡+1, 𝑟𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) . (18)

where 𝑃 represents the ergodic distribution of starting in state 𝑠0.

Then we apply the product rule of probability because each new

action probability is independent of the previous one. At each step,

we take action using the policy 𝜋𝜃 , and the environment dynamics 𝑝

decide which new state to transition into. Those are multiplied over

T time steps representing the length of the trajectory. Equivalently,

taking the logarithm on both sides of Eq. 18, we have:

ln𝜋𝜃 (𝜏) = ln 𝑃 (𝑠0) +
𝑇∑︁
𝑡=1

ln𝜋𝜃 (𝑠𝑡 ) +
𝑇∑︁
𝑡=1

ln 𝑝 (𝑠𝑡+1, 𝑟𝑡+1 |𝑠𝑡 , 𝑎𝑡 ),

=

𝑇∑︁
𝑡=1

ln𝜋𝜃 (𝑠𝑡 ),

(19)

Plugging this into the right-hand side of Eq. 17 to replace the term

ln𝜋𝜃 (𝜏) and considering the summation over𝑇 time steps first, we

have:

∇𝜃 𝐽 (𝜃 ) = ∇𝜃𝐸𝜋𝜃
[
𝑄𝜔
𝑈 ,𝜁
(𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )

]
= 𝐸𝜋𝜃

[
∇𝑎𝑄𝜔𝑈 ,𝜁 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 )

(
𝑇∑︁
𝑡=1

∇𝜃 ln𝜋𝜃 (𝑠𝑡 )
)]
.

(20)

which is the desired result. □

The result shows that we could use a model-free policy gradient

method instead of knowing the ergodic distribution of states 𝑃 nor

the environment dynamics 𝑝 . The algorithm samples trajectories

from a replay buffer of experiences stored throughout training to

approximate the expectation 𝐸𝜋𝜃 . For updating the distributional

value function 𝑄𝜔
𝑈 ,𝜁
(𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 ) , we will use critic loss in Eq. 10

discussed in section 4.2.

Lemma 1 and Theorem 1 inspire an actor-critic algorithm to

solve the DUO problem defined in Eq 1. In particular, to compute

the adjusted actor loss in Eq. 20, we can leverage an estimate of

utility-based distributional value functions’ distributions on the

existing trajectory up to epoch 𝑡 (instead of the expectation of

the return under the current policy). Let 𝑄𝜔
𝑈 ,𝐹𝑍
(𝑠𝑡 , 𝑎𝑡 ) be a DNN

approximate of the distributional value function parameterized

by 𝜔 . We train 𝑄𝜔
𝑈 ,𝐹𝑍
(𝑠𝑡 , 𝑎𝑡 ) using the modified 𝑁 -step distribu-

tional Temporal Different (TD) error and guide the actor network

to choose action 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡 {𝑄𝜔𝑈 ,𝐹𝑍 (𝑠𝑡 , 𝑎𝑡 )}. Note that the learning
process is a sampling from some replay table of size 𝑅 and perform-

ing the necessary network updates using this data. Additionally,

sampling is implemented using non-uniform priorities 𝑝𝑖 as in [25].

This requires importance sampling by weighting the critic update

by a factor of 1/𝑅𝑝𝑖 [13]. Here the actor and critic parameters are

updated using stochastic gradient descent with learning rates, 𝛼𝑡

and 𝛽𝑡 respectively, which are adjusted online using ADAM [16].

Our proposed Distributional Utility Actor-Critic (DUAC) algorithm

is summarized in Algorithm 1.

Algorithm 1 DUAC Algorithm

1: Input:max-episode,max-episode-length, batch size𝑀 , trajectory

length 𝑁 , reply buffer size 𝑅, exploration constant 𝜖 , 𝜏 , learning rate

𝛼0, 𝛽0;

2: Initialize network weights (𝜃,𝜔 ) for each agent 𝑘 at random;

3: Initialize target weights (𝜃 ′, 𝜔 ′ ) ← (𝜃,𝜔 ) for each agent 𝑘 ;

4: for episode= 1, 2, . . . ,max-episode do
5: Start a new episode;

6: Initialize a random process N for action exploration;

7: for 𝑡 = 1 to max-episode-length do
8: for agent 𝑘 = 1 to 𝐾 do
9: Receive initial state 𝑠 ;

10: Select action 𝑎 = 𝜋𝜃 + N𝑡 ;

11: Execute actions 𝑎, observe reward 𝑟 , new state 𝑠′;
12: Store (𝑠, 𝑎, 𝑟, 𝑠′ ) in replay buffer 𝐷 ;

13: 𝑠 ← 𝑠′;
14: Estimate the local return distribution 𝑍 (𝑠, 𝑎) ;
15: Sample 𝑀 transitions of length 𝑁

(𝑠𝑖 :𝑖+𝑁 , 𝑎𝑖 :𝑖+𝑁 , 𝑟𝑖 :𝑖+𝑁 , 𝑠′𝑖 :𝑖+𝑁 ) from 𝐷 with priority 𝑝𝑖 ;

16: Construct the target distributions:

𝑌𝑖 = (
𝑁 −1∑︁
𝑛=0

𝛾𝑛𝑟𝑖+𝑛 ) + 𝛾𝑁𝑄𝜔
𝑈 ,𝐹𝑍

(𝑠𝑖+𝑁 , 𝑎𝑖+𝑁 ) |𝑎𝑖+𝑁 =𝜋𝜃 ′ (𝑠𝑖+𝑁 )

17: Compute the critic updates:

𝛿𝜔 =
1

𝑀

∑︁
𝑖

∇𝜔 (𝑅𝑝𝑖 )−1𝑑 (𝑌 𝑖 ,𝑄𝜔
𝑈 ,𝐹𝑍

(𝑠𝑖 , 𝑎𝑖 ) )

18: Compute the actor updates:

𝛿𝜃 =
1

𝑀

∑︁
𝑖

∇𝜃 ln𝜋𝜃 (𝑠𝑖 )[∇𝑎𝑖𝑄
𝜔
𝑈 ,𝐹𝑍

(𝑠𝑖 , 𝑎𝑖 ) |𝑎𝑖=𝜋𝜃 (𝑠𝑖 ) ]

19: Update actor network parameters: 𝜃 ← 𝜃 + 𝛼𝑡𝛿𝜃 ;
20: Update critic network parameters: 𝜔 ← 𝜔 + 𝛽𝑡𝛿𝜔 ;

21: Update the local return 𝑍 via loss in Eq. 12;

22: Update actor target network parameters:

𝜃 ′ ← 𝜏𝜃 + (1 − 𝜏 )𝜃 ′

23: Update critic target network parameters:

𝜔 ′ ← 𝜏𝜔 + (1 − 𝜏 )𝜔 ′

24: end for
25: end for
26: end for

5 EVALUATION
We implement and validate the proposed Distributional Utility

Actor-Critic (DUAC) algorithm by building a hybrid trace-driven

network simulator. It is able to leverage realistic network traces

either collected from our real-world 5G testbed or availble from

public datasets such as the open-source ORAN dataset [7]. Using

the network traces as input, our simulator provides an RL enviro-

ment by replaying time-varying network conditions and generating

rewards/outcomes for different network slice management actions.

We show that the DUAC algorithm can significantly outperform

many heuristic and learning algorithms.
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5.1 Applying DUAC Algorithm to Network Slice
Management

In this part, we apply the proposed DUAC algorithm to solve the

DUO problem in network slice management formulated in section

3. We model 𝐾 network slices as 𝐾 agents. The network conditions

will be modeled as the state information 𝑠𝑘 of each agent 𝑘 . The

action 𝑎𝑘 of each agent contains two parts: intra-slice scheduling

policy𝐻𝑘 and number of PRBs 𝐵𝑘 assigned to the agent 𝑘 . We use a

hybrid trace-driven model, where the state transition of each agent

follows the trace execution. We use our simulator developed in

section 5.3 to re-play the network record traces (take 𝑎𝑘 and 𝑠𝑘 as

input), predict the reward (i.e., total data rate) 𝑟𝑘 and give back to

each agent 𝑘 for training.

Our DUAC resource scheduler assigns the scheduling policy 𝐻𝑘
and number of PRBs 𝐵𝑘 to agent 𝑘 with a constraint of the total

number of PRBs after receiving the initial states. The scheduling

policy 𝐻𝑘 can be chosen from three types of policies: policy 0 –

proportionally fair (PF), policy 1 – water-filling (WF), and policy 2 –

round-robin (RR) [6]. The action vector 𝑎𝑘 = (𝐻𝑘 , 𝐵𝑘 ) will be mod-

eled as an one-hot vector with one entry set at 1 indicating a combi-

nation of 𝐻𝑘 and 𝐵𝑘 , where 𝐻𝑘 ∈ {0, 1, 2} and 𝐵𝑘 ∈ {2, 4, 6, 8}(four
possible number of PRBs in ORAN dataset). Then a softmax func-

tion applies to 𝐵𝑘 and gets a corresponding weight𝑊𝑘 to agent 𝑘 .

We use the weight𝑊𝑘 multiple the total number of PRBs to get the

exact number of PRBs for agent 𝑘 and pass this information along

with 𝐻𝑘 to our simulator in section 5.3 in order to get the reward

signal 𝑟𝑘 . The DUO problem in network slice management can be

formally defined as:

max

∑︁
𝑘

P𝑈𝑘
(𝑍𝜁𝑘 (𝑠, 𝜋𝜃 (𝑠))), s.t. 𝑍𝜁𝑘 =

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡
𝑘
, (21)

where 𝑟𝑡
𝑘
is the data rate in network slice 𝑘 at time step 𝑡 , and 𝛾 is

a constant discount factor, 𝜁𝑘 , 𝜋𝑘 are neural network parameters

estimating return distributions and policy described in section 4.

5.2 Training Data Collection
An open-source Colosseum O-RAN COMMAG Dataset which

contains time-varying network state information and slice/UE sta-

tistics for multiple cells under different network conditions is pro-

vided in [7]. The datasets emulated a 5G network with 4 BSs and 40

UEs in the dense urban scenario of Rome, Italy. It provides datasets

for a multi-slice scenario in which UEs are statically assigned to a

slice of the network and request three different traffic types: eMBB

(1 Mb/s constant bit rate traffic), URLLC (Poisson traffic, with 10

pkt/s of 125 bytes), and MTC (Poisson traffic, with 30 pkt/s of 125

bytes). The BSs serve each slice with a dedicated and different sched-

uling policy, selecting among proportionally fair (PF), water-filling

(WF), and round-robin (RR) [6] and the number of PRBs allocated

to each slice varies over time [9].

We also conducted similar experiments in our OTA (Over-The-

Air) 5G O-RAN testbed and collected additional datasets with real

UEs in a shield room. As shown in Figure 2, this experiment setup

has open5gs for 5G core, B210/X310-based gNBs and 9 COTS UEs.

Each gNB is configured with 40 MHz of n78 (C-band 3.5 GHz)

and 3 slices (i.e., eMBB, URLLC, MTC) each of which has 3 UEs.

However, application traffic scaled up to make some congestion
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Figure 2: Data Collection System and Example of Measure-
ment.

in a high-capacity 5G network. Our datasets show performance

dynamics even with stationary UEs in a single eMBB slice. In this

example, UE-1 experiences fluctuating low throughput due to its

poor channel condition, then a high delay. The PF schduling (for

intra-slice) allocates more RBs for UE-1 time-to-time to compensate,

resulting in latency variations for other UEs with good channel

conditions, i.e., UE-2 and UE-3.

5.3 Hybrid Trace-driven Network Simulator
To evaluate the DUAC algorithm, we built a hybrid trace-driven

network simulator that trains a DNN to generate the reward trajec-

tories (i.e., total data rate) given network slice management actions

in each episode (i.e., resource allocation and intra-slice schedul-

ing policy) based on an open-source O-RAN dataset and the real

data collected from testbed. These datasets contain time-varying

network state information and slice/UE statistics for multiple cells

under different network conditions. We evaluate three scenarios

in O-RAN datasets after data collection procedure described in

section 5.2:

• Scenario 1(slice mixed slow close): UEs belonging to differ-

ent traffic classes are randomly distributed across slices(slice

mixed) and uniformly distributedwithin 20𝑚 of each BS(close).

UE’s mobility is slow (3𝑚/𝑠);
• Scenario 2 (slice mixed static close): UEs belonging to differ-

ent traffic classes are randomly distributed across slices(slice

mixed) and uniformly distributedwithin 20𝑚 of each BS(close).

UE’s mobility is static (no mobility);

• Scenario 3 (slice traffic static far): are divided per slice based
on traffic types(slice traffic), i.e., Slice 0: eMBB UEs; Slice

1: MTC UEs; Slice 2: URLLC UEs. And UEs are uniformly

distributed within 100𝑚 of each BS(far). UEs has no mobility;

To build a realistic simulator, we extract metrics for various

types of UEs from multiple training sessions to ensure diversity

of features. The extracted metrics are combined into a dataset and

sorted in ascending order based on the Timestep variable to create

a time series sequential data. To predict the download link data

rate, we formulate a multivariate time series forecasting problem

using a Long Short-Term Memory (LSTM) model developed with

Keras. The dataset is framed as a forecasting problem where the

download link data rate at the next time step is predicted based on

the network conditions and download link data rate at the previous

time step. The dataset is normalized using MinMaxScaler, and split

into training and testing samples with a 7/3 ratio. The LSTM model

consists of 50 neurons in the first hidden layer and one neuron in

the output layer. The Mean Absolute Error (MAE) loss function and

the efficient Adam version of stochastic gradient descent are used
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(a) Training Loss (b) Testing Loss

Figure 3: Training and Testing losses(Y-axis) are decreasing
as training steps(X-axis) increase indicating the simulator
predicts download link data rates efficiently in all 3 scenarios.

to optimize the model. The simulator is trained for 100 epochs with

a batch size of 72. Figure 3 shows the progress of simulator model

training and testing loss over 100 steps for all three scenarios. The

loss values decreasemonotonically, indicating increased accuracy in

predicting download link data rates. The model does not overfit and

generalizes well, as evidenced by the convergence of both training

and testing loss towards a minimum value.

5.4 Evaluation Results
In the evaluations, we consider the utility 𝑈 as a class of 𝛼-

fair utility functions, which are widely used in network optimiza-

tion [17]. For some constant 𝛼 ≥ 0, define 𝛼-fair utility as:

𝑈 (𝑥) =
{
𝑥1−𝛼/(1 − 𝛼) for 𝛼 ≠ 1,

log(𝑥) for 𝛼 = 1.
(22)

We evaluate our DUAC algorithm in a hybrid trace-driven network

simulator designed in Section 5.3 and compare its performance with

four baselines, including heuristic and learning methods:

• DUAC: The proposed DUAC algorithm optimizing distribu-

tional utilities.

• Even: A heuristic policy that evenly distributes the PRBs to

all slices. Random discounted data rate 𝑍𝑘 will be calculated

manually, scheduling policy will be randomly assigned, same

as Adaptive policy.

• Adaptive: A heuristic policy that dynamically assigns the

PRBs in proportion to slices’ SLA requirements levels;

• D4PG: The D4PG algorithm in [3] is for optimizing the ex-

pected state-action function 𝑄𝜋 by taking the expectation

over distribution 𝑍𝜋 which is modeled by a DNN.

• RMIX : The RMIX algorithm in [22] is an RL method learning

the Conditional Value at Risk (CVaR) measure over the dis-

tributions of individuals’ Q values; it optimizes the policies

to maximize the CVaR value.

The actor and critic neural networks in our experiments consist

of three hidden layers with 64 neurons and ReLu activation func-

tions. We use the Adam optimizer to train the learning algorithms

until convergence, with each episode consisting of 100 steps. The

initial learning rate for the actor network is 1 × 10
−4
, while the

critic network has an initial learning rate of 1×10−3 to enable faster
learning. We set𝛾 = 0.95 in the critic network to discount the utility

value. For the distributional return 𝑍 updates, we use 51 atoms for

the categorical distribution and the absolute distributional TD-error

as described in Section 4.

We compare DUAC and four baselines using utility function

𝑈𝑘 (𝑍𝑘 ) = 𝑃{𝑍𝑘 > 𝜂𝑘 } (Utility 1), which is the 𝛼-fair utility

𝑥1−𝛼/(1 − 𝛼) for 𝛼 = 0 with 𝑥 representing the distribution func-

tion of 𝑍𝑘 , i.e., 𝑃{𝑍𝑘 > 𝜂𝑘 }. We set 𝜂𝑘 to 0.76, 0.42, 0.30, 0.24, 0.58,

and SLA requirement levels 𝜎𝑘 to 50%, 75%, 90%, 95%, 99% for five

different network slices across all scenarios described in Section 5.3

(values remains the same for other utilities). Since 𝑍 is the random

return of the total download link data rate, maximizing this utility

can be regarded as minimizing the probability of received data rates

falling below the prescribed SLAs. The convergence of Utility 1 val-

ues is plotted for slices with SLA levels of 50% and 75% in Scenario

1(Figures 4(a) to 4(b)), and for slices with SLA levels of 95% and

99% in Scenarios 2 and 3 (Figures 4(c) to 4(f)). The blue dotted line

represents the current slice’s SLA requirement level. Our proposed

DUAC algorithm outperforms D4PG and RMIX, as D4PG aims to

optimize long-term rewards without considering specific distribu-

tional utilities; and RMIX cannot meet different agent requirements

due to its centralized framework that only optimizes the centralized

risk value. DUAC not only meets SLA requirements and achieves

higher values than other baselines when the SLA requirements are

feasible, but it also satisfies higher SLA requirements where other

baselines fail to surpass the requirements.

Next, we evaluate the ability of the DUAC algorithm to optimize

different utility functions by considering the proportional-fair util-

ity function P𝑈𝑘
(𝑍𝑘 ) = log(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 )(Utility 2), which is

a special case of the 𝛼-fair utility with 𝛼 = 1. Maximizing this utility

aims to increase the likelihood of achieving higher data rates 𝜂𝑘
closer to the SLA level 𝜎𝑘 . Results in Figure 5 show that DUAC can

converge to higher utility values compared to all other baselines.

The improvements in distributional utility should be interpreted

in the decibel sense due to the logarithm utility function. For in-

stance, as the distributional utility in Figure 5(d) for network slice

4 with SLA requirement 𝜎4 = 99% improves from -95 (achieved

by RMIX ) to -73 (achieved by DUAC), the 23.16% improvement in

utility corresponds to 10
(−73+95)/5 − 1 = 2.51 × 104 improvement

in the geometric-mean reward.

To further investigate the strength of the DUAC algorithm and

demonstrate DUAC algorithm’s ability to optimize more utility

functions, Figure 6 shows the Cumulative Distribution Function

(CDF) of the discounted total throughput of each slice (i.e., the

CDF of 𝑍𝑘 , k=0,. . . ,4) before and after being trained by our pro-

posed DUAC algorithm in Scenario 2 with Utility 3, which is the

𝛼-fair utility with 𝛼 = 1/2, i.e,
√︁
(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ), this function

could work for balancing 𝜎𝑘 -percentile latency for different slices

or minimizing the probability of each slice’s throughput 𝑍𝑘 falling

below 𝜂𝑘 . Figure 6 shows that the CDF of 𝑍𝑘 generated randomly

before training (represented by the blue line) fails to satisfy the

performance requirements for each slice 𝑘 , Taking slice 4 (the last

subfigure) with the highest SLA requirement 𝜎4 = 99% as an exam-

ple, the probability of 𝑍4 exceeding the threshold value 𝜂4 is given

as 𝑃{𝑍4 > 𝜂4} = 1 − 𝐹𝑍4
(0.58) = 15% ≤ 99%, indicating that slice

4 fails to meet the desired requirements prior to training. Upon

being trained by the DUAC algorithm, the distribution of the total
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(a) slice 0 (b) slice 1 (c) slice 3 (d) slice 4 (e) slice 3 (f) slice 4

Figure 4: Learning curves of Utility 1 𝑃{𝑍𝑘 > 𝜂𝑘 } values (Y-axis) in Scenario 1(a-b), Scenario 2(c-d) and Scenario 3(e-f) for slices
with different target utility parameters 𝜂𝑘 and SLA requirement levels 𝜎𝑘 (represented by the blue dotted line). The slice learning
agents trained by DUAC algorithm(red curve) converge to higher values of utility 1 compared to other baseline models and can
surpass the specified SLA requirement level 𝜎𝑘 , whereas other baselines fail to meet the SLA requirements.

(a) slice 1 (b) slice 2 (c) slice 3 (d) slice 4 (e) slice 0 (f) slice 2

Figure 5: Learning curves of Utility 2 log(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ) values (Y-axis) in Scenario 1(a-b), Scenario 2(c-d) and Scenario 3(e-f)
for slices with different target utility parameters 𝜂𝑘 and SLA requirement levels 𝜎𝑘 . The slice learning agents trained by DUAC
algorithm(red curve) have the ability to converge towards higher utility values when compared to other baseline models.

Figure 6: The DUAC algorithm adjusts return 𝑍𝑘 distributions for every slice 𝑘 represented by the Cumulative Distribution
Function (CDF) 𝐹𝑍𝑘 (with the original CDF shown in blue curves and the DUAC-trained CDF shown in orange curves) to
successfully meet the SLA requirement of each slice while considering Utility 3

√︁
(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ) in scenario 2.

throughput 𝑍𝑘 is adjusted to increase the probability of 𝑍𝑘 exceed-

ing the threshold value 𝜂𝑘 beyond the level of 𝜎𝑘 in accordance with

distinct requirements for each slice 𝑘 . Taking slice 4 as an example

again, after being trained by DUAC, the corresponding orange line

shows that 𝑃{𝑍4 > 𝜂4} = 1−𝐹𝑍4
(0.58) = 1−0.01 = 99%, indicating

that the SLA requirement level 99% has been met for network slice

4. The previous calculations are equally applicable to slices 0 to 3,

thereby demonstrating DUAC’s capability to optimize utility values

that satisfy various requirements in network slicing problems by

adjusting the total throughput distribution for each slice 𝑘 based on

distinct requirements 𝜂𝑘 and 𝜎𝑘 . To assess the DUAC algorithm’s

capability to meet the SLA requirements with Utility 3 in scenar-

ios 1 and 3, Table 1 presents the results. It reveals that following

the training process by the DUAC algorithm, all the network slice

performances could meet the targeted SLA requirements.

To demonstrate overall performance of all utilities in solving the

optimization problem presented in Eq. 1 across all scenarios, the to-

tal utility values of all slices over the entire throughput distribution

were plotted in Figure 7 and 8. Specifically, Figure 7 compares the

total utility values for utility 1 (𝑈𝑘 (𝑍𝑘 ) = 𝑃{𝑍𝑘 > 𝜂𝑘 }) and utility

3 (

√︁
(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 )) in all scenarios, while Figure 8 shows the

Table 1: All network slices satisfy the SLA requirementswhen
considering utility 3

√︁
(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ) in scenarios 1 and 3.

Slice 𝜂𝑘 𝜎𝑘 Scenario 1 Scenario 3

0 0.76 50% 59.2% 52.4%

1 0.42 75% 78.5% 80.3%

2 0.30 90% 93.8% 90.6%

3 0.24 95% 97.5% 97.3%

4 0.58 99% 99.2% 99.8%

comparison for utility 2 (log(𝑃{𝑍𝑘 > 𝜂𝑘 }−𝜎𝑘 )) as they exhibit neg-
ative values. The results indicate that DUAC algorithm( red bars in

both figures) can achieve a higher utility value of the total through-

put distribution compared to all baselines, thereby demonstrating

its effectiveness in handling arbitrary utility functions.

6 CONCLUSION
We propose a new RL algorithm for online network slice manage-

ment using distributional utilities. Our approach updates the critic’s

value function through stochastic gradient descent and shows con-

vergence to a stationary point of the DUO problem. Validation with

a hybrid network simulator demonstrates significant improvements

169



MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Chen et al.

Figure 7: Comparing the total utility values w.r.t. utility
1 𝑈𝑘 (𝑍𝑘 ) = 𝑃{𝑍𝑘 > 𝜂𝑘 }) and utility 3 (

√︁
(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ),

summed over all network slices in each scenario. Y-axis: to-
tal utility values, X-axis: indicates conditions of utility 𝑖 in
scenario 𝑘 . The results indicate that DUAC (represented by
red bars) achieves higher total utility values in all scenarios.

Figure 8: Comparing the total utility values w.r.t. utility 2
log(𝑃{𝑍𝑘 > 𝜂𝑘 } − 𝜎𝑘 ), summed over all network slices in each
scenario. The results indicate that DUAC (represented by red
bars) achieves higher total utility values. Note that Y-axis is
in log due to the use of proportional-fair utility.

over baselines. Future work includes real-world deployment in a 5G

testbed. This work was supported by ONR Grant N000142012146.
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