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Abstract—Gradient quantization is an emerging technique in
reducing communication costs in distributed learning. Existing
gradient quantization algorithms often rely on engineering
heuristics or empirical observations, lacking a systematic ap-
proach to dynamically quantize gradients. This paper addresses
this issue by proposing a novel dynamically quantized SGD
(DQ-SGD) framework, enabling us to dynamically adjust
the quantization scheme for each gradient descent step by
exploring the trade-off between communication cost and con-
vergence error. We derive an upper bound, tight in some
cases, of the convergence error for a restricted family of
quantization schemes and loss functions. We design our DQ-
SGD algorithm via minimizing the communication cost under
the convergence error constraints. Finally, through extensive
experiments on large-scale natural language processing and
computer vision tasks on AG-News, CIFAR-10, and CIFAR-100
datasets, we demonstrate that our quantization scheme achieves
better tradeoffs between the communication cost and learning
performance than other state-of-the-art gradient quantization
methods.

Keywords-Distributed Learning, Communication-efficient,
Quantization

I. INTRODUCTION

Distributed Stochastic Gradient Descent (SGD) is the core
in a vast majority of distributed learning algorithms. Due
to the limited bandwidth in practical networks, communica-
tion overhead for transferring gradients often becomes the
performance bottleneck. Gradient quantization is an effec-
tive approach towards communication-efficient distributed
learning, which uses fewer number of bits to approximate
the original real value [2], [5], [6], [7], [8]. The lossy
quantization inevitably brings in gradient noise, which hurts
the convergence of the model. Hence, a key question is
how to effectively select the number of quantization bits to
balance the trade-off between the communication cost and
the convergence performance.

Existing algorithms often quantize parameters into a
fixed number of bits for all training iterations, which is
inefficient in balancing the communication-convergence trade-
off. To further reduce the communication overhead, some
empirical studies began to dynamically adjust the number of
quantization bits according to current model parameters in

the training process, such as the gradient’s mean to standard
deviation ratio [9], the training loss [10], gradient’s root-
mean-squared value [11]. Though these empirical heuristics
of adaptive quantization methods show good performance
in specific tasks, their imprecise conjectures and the lack
of theoretical guidelines in the conjecture framework have
limited their generalization to a broad range of machine
learning models/tasks.

This paper proposes a novel dynamically quantized SGD
(DQ-SGD) framework for minimizing communication over-
head in distributed learning while maintaining the desired
model performance. Under the assumption of smoothness
and strong convexity, we first derive an upper bound on the
gap between the loss after T iterations and the optimal loss to
characterize the convergence error caused by limited iteration
steps, sampling, and quantization. Based on the above theoret-
ical analysis, we design a dynamic quantization algorithm by
minimizing the total communication cost under desired model
performance constraints. Our dynamic quantization algorithm
can adjust the number of quantization bits adaptively by
taking into account the desired model performance, the
remaining number of iterations, and the norm of gradients.
We validate our theoretical analysis through extensive exper-
iments on large-scale Natural Language Processing (NLP)
and Computer Vision (CV) tasks, including text classification
tasks on AG-News and image classification tasks on CIFAR-
10 and CIFAR-100. Numerical results show that our proposed
DQ-SGD significantly outperforms the baseline quantization
methods.

To summarize, our key contributions are as follows:
• We propose a novel framework to characterize the trade-

off between communication cost and convergence error by
dynamically quantizing gradients in the distributed learning.
• We derive an upper bound on the convergence error for

smooth strongly-convex objectives, and the upper bound is
shown to be tight for a special case of quadratic functions
with isotropic Hessian matrix.
• We develop a dynamically quantized SGD strategy,

which is shown to achieve a fewer communication cost than
fixed-bit quantization methods.
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• We validate the proposed DQ-SGD on a variety of real-
world datasets and machine learning models, demonstrating
that our proposed DQ-SGD significantly outperforms state-of-
the-art gradient quantization methods in terms of mitigating
communication costs.

II. RELATED WORK

To mitigate the communication bottleneck in distributed
SGD, gradient quantization has been investigated. Different
fixed number of bits quantization methods have been studied,
such as 1BitSGD [5], [6], TernGrad (ternary levels) [12],
QSGD (arbitrary fixed number of bits) [2].

However, these fixed-bit quantization methods may not be
efficient in communication; and more efficient schemes that
can dynamically adjust the number of quantization bits in
different gradient descent step may have the potential to im-
prove the communication-convergence tradeoff performance.
Several studies try to construct adaptive quantization schemes
through engineering heuristics or empirical observations.
However, they do not come up with a solid theoretical
analysis [9], [10], [11], which even results in contradicted
conclusions. More specifically, MQGrad [10], and AdaQS
[11] suggest using few quantization bits in early epochs
and gradually increase the number of bits in later epochs;
while the scheme proposed by Anders [9] states that more
quantization bits should be used for the gradient with a larger
root-mean-squared (RMS) value, choosing to use more bits
in the early training stage and fewer bits in the later stage.

This paper’s key contribution is to develop a systematic
framework to crystallize the design trade-off in dynamic
gradient quantization and settle this contradiction.

III. PROBLEM FORMULATION

We consider a distributed learning system with W workers
and a parameter server. Data are distributed over W workers,
with a shared model to be jointly optimized. The local dataset
of worker i is Di. We aim to minimize the objective function
F : Rd → R with model parameter x

min
x∈Rd

F (x) =
1

W

W∑
i=1

Eξ∼Di [l(x; ξ)], (1)

where l(x; ξ) is the loss of the model x at data point ξ. A
standard approach to solve this problem is distributed SGD,
where each worker i computes its local stochastic gradient
at iteration t with model parameter xt: g

(i)
t = ∇l(xt; ξ(i)).

Then these local gradients are sent to the parameter server,
and the server aggregates these gradients to update the model:
xt+1 = xt − η

W

∑W
i=1 g

(i)
t , where η is the learning rate. To

reduce the communication cost, we consider to quantize the
local stochastic gradients before sending them to the server:

xt+1 = xt −
η

W

W∑
i=1

Qbt [g
(i)
t ], (2)

where Qbt [·] is the quantization operator and bt is the number
of quantization bits at iteration t (in other words, we may
allocate a different number of quantization bits at different
iteration steps).

It is clear that the lossy compression inevitably affects the
convergence of model training and deteriorates the learning
performance. Therefore, we use the gap between the loss
after T iterations and the optimal loss to characterize the
learning performance. We say the algorithm achieves an
ε-suboptimal solution if

F (xT )− F (x∗) ≤ ε (3)

where x∗ is the optimal solution to minimize F . Note that
this suboptimal gap ε depends not only on the constrained
communications between workers and servers, but also on
the limited number of iterations T , the stochastic sampling,
and the initial model parameter.

In this work, given the total number of training iterations T ,
the number of workers W , and the desired model performance
ε, we aim to adaptively adjust the number of quantization
bits bt for each step to minimize the total communication
cost under the model performance constraints.

Formally, our design of DQ-SGD is to solve the
following Dynamic Quantization Problem (DQP):

(DQP): min
{bt}

fQ(T,W, {bt})

s.t. F (xT )− F (x∗) ≤ ε,
(4)

where fQ(T,W, {bt}) is the incurred total communication
cost of T iterations and our goal is to find appropriate
dynamic quantization schemes {bt} for T iterations.

IV. DYNAMICALLY QUANTIZED SGD

In general, the DQP problem is not easy to solve and
relaxations are needed to approach this problem. Therefore,
we propose to solve a relaxed version of the DQP problem
and design a DQ-SGD algorithm based on the solution,
which we show performs sufficiently well in practice in the
experiments.

More specifically, we relax the DQP problem from the
following two perspectives.
• We restrict our quantization scheme to a family of

Element-Wise Uniform (EWU) quantization schemes, which
are unbias with bounded variance.
• We relax the constraint in Eq. (2) to upper bound the

convergence rate for smooth strongly-convex loss functions.

A. Element-Wise Uniform Quantization

There are several types of quantization operations –
categorized from different perspectives, such as grid quan-
tization, uniform and non-uniform quantization, biased and
unbiased quantization. Here, we adopt a family of stochastic
quantization –EWU, similar to [2], to quantize the gradients.



In this EWU scheme, The j-th component of the stochastic
gradient vector g (for any worker i) is quantized as

Qb[gj ] = ‖g‖p · sgn(gj) · ζ(gj , s), (5)

where ‖g‖p is the lp norm of g; sgn(gj) = {+1,−1} is
the sign of gj ; s is the quantization level. Note that, the
quantization level is roughly exponential to the number of
quantized bits. If we use b bits to quantize gj , we will
use one bit to represent its sign and the other b − 1 bits
to represent ζ(gj , s), thus resulting in a quantization level
s = 2b−1−1. And ζ(gj , s) is an unbiased stochastic function
that maps scalar |gj |/‖g‖p to one of the values in set
{0, 1/s, 2/s, . . . , s/s}: if |gj |/‖g‖p ∈ [l/s, (l + 1)/s], we
have

ζ(gj , s) =


l/s, with probability 1− pr,

(l + 1)/s, with probability pr = s
|gj |
‖g‖p

− l.

(6)
Hence, the incurred total communication cost is:

fQ(T,W, {bt}) = W

T−1∑
t=0

[dbt +Bpre] , (7)

where Bpre is the number of bits of full-precision floating
point (e.g., Bpre = 32 or Bpre = 64) to represent ‖g‖p.
If we make the commonly used assumption for stochastic
gradients as follow:

Assumption 1 (Unbiasness and Bounded Variance of Stochas-
tic Gradient). The stochastic gradient oracle gives us an
independent unbiased estimate g with a bounded variance:

Eξ∼Di
[g

(i)
t ] = ∇F (xt), (8)

Eξ∼Di
[‖g(i)

t −∇F (xt)‖22] ≤ σ2. (9)

Then we have the following lemma to characterize the

aggregated stochastic gradient ĝt ,
1

W

∑W
i=1Qbt [g

(i)
t ], and

the proof is given in Appendix A.

Lemma 1 (Unbiasness and Bounded Variance of EWU). For
the local gradient g

(i)
t , if the number of quantization bits for

all W workers are all bt, then the aggregated gradient ĝt
satisfies:

E[ĝt] = ∇F (xt) (10)

and

E
[
||ĝt||22

]
≤ ‖∇F (xt)‖22 +

σ2

W︸︷︷︸
Sampling Noise

+
d

4W (2bt−1 − 1)2
Ḡ2
t︸ ︷︷ ︸

Quantization Noise

,

(11)

where Ḡ2
t =

1

W

∑W
i=1 ‖g

(i)
t ‖2p, is the mean square of all

local gradient lp norms at iteration t.

Eq. (10) means that the aggregated gradient ĝt is the
unbiased estimate of ∇F (x). Eq. (11) implies that the
difference between ||ĝt||22 and ‖∇F (xt)‖22 consists of two
parts: the first part is the sampling noise, which inversely
proportional to W ; the second part is the quantization noise,
which is proportional to Ḡ2

t and decays exponentially with
the increase of the number quantization bits bt.

B. Upper Bounded Convergence Rate for Smooth and
Strongly Convex Functions

We first state some assumptions as follows.

Assumption 2 (Smoothness). The objective function F (x) is
L-smooth, if ∀x,y ∈ Rd, ‖∇F (x)−∇F (y)‖2 ≤ L‖x−y‖2.

It implies that ∀x,y ∈ Rd, we have

F (y) ≤ F (x) +∇F (x)T(y − x) +
L

2
‖y − x‖22 (12)

‖∇F (x)‖22 ≤ 2L[F (x)− F (x∗)] (13)

Assumption 3 (Strong convexity). The objective function

F (x) is µ-strongly convex, if ∃µ > 0, F (x) −
µ

2
xTx is a

convex function.

From Assumption 3, we have: ∀x ∈ Rd,

‖∇F (x)‖22 ≥ 2µ[F (x)− F (x∗)] (14)

Putting the quantized SGD (2) on smooth, strongly convex
functions yield the following result with proof given in
Appendix B.

Theorem 1 (Convergence Error Bound of Strongly Convex
Objectives). For the problem in Eq. (1) under Assumption 2,
3 and 1 with initial parameter x0, using quantized gradients
in Eq. (2) for iteration, we can upper bound the convergence
error by

E[F (xT )− F (x∗)]

≤ α(η)T [F (x0)− F (x∗)] +
Lη2σ2[1− α(η)T ]

2W (1− α(η))︸ ︷︷ ︸
Error of Distributed SGD

+
Ldη2

8W

T−1∑
t=0

α(η)T−1−t Ḡ2
t

(2bt−1 − 1)2︸ ︷︷ ︸
Quantization Error

T→∞→
Lη2σ2

2W (1− α(η))
+
Ldη2

8W

T−1∑
t=0

α(η)T−1−t Ḡ2
t

(2bt−1 − 1)2

(15)



where α(η) =: 1− 2µη + Lµη2 (We abbreviate α(η) as α
in the following section.).

We can see that the convergence error consists of two
parts: the first two terms are the error of the distributed
SGD method, which is independent of the quantization
algorithms. This part error can be reduced by increasing
the number of iterations T and also depends on the learning
rate η (from the expression of α, we can see that when
η ≤ 1/L, with the increase of η, α decrease, and the
convergence rate of the model is accelerated); The last term
is quantization error, resulted from the lossy quantization
of gradients. It is obtained by the weighted accumulation of
quantization noise at each iteration and directly increases the
convergence error floor. Note that α is less than 1. Thus the
weight given to quantization noise decays exponentially as
the number of intervening iterations increases. Accordingly,
this is sometimes called an exponential recency-weighted
average.

We can see that the quantization error decays exponentially
in the number of quantization bits bt. When the number of
quantization bits at each iteration is large enough (e.g., bt =
32), the quantization error tends to 0, but the communication
cost is significantly high.

We aim to use as little communication cost as possible
to ensure that the quantization error is below a given level
εQ = [1 − γ]ε, where 1 − γ is a tradeoff factor represent-
ing the contribution of convergence error by quantization.
Furthermore, we have limT→∞ εQ = ε− Lη2σ2

2W (1−α) .

C. DQ-SGD Algorithm

Given the above two relaxations, we can rewrite the DQP
as

min
{bt}

W

T−1∑
t=0

(dbt +Bpre),

s.t.
Ldη2

8W

T−1∑
t=0

αT−1−t Ḡ2
t

(2bt−1 − 1)2
= εQ.

(16)

By solving the above optimization problem, we can determine
the {bt} at every iteration step:

bt = log2

√ T

ε̂Q
α(T−1−t)/2Ḡt + 1

+ 1 (17)

where ε̂Q ,
8W

Ldη2
εQ. We can see that the number of

quantization bits is determined by three key factors: (i)
the desired quantization error upper bound εQ, the smaller
the desired quantization error is, the more quantization bits
are needed; (ii) the iteration step t, the number of bits is
increasing as the training process goes on; (iii) the root-mean-
square of local gradient norms Ḡt, gradients with a larger
norm should be quantized using more bits.

The pseudocode is given in Algorithm 1. We have a
set of W workers who proceed in synchronous steps, and
each worker has a complete copy of the model. In each
communication round, workers compute their local gradients
and communicate quantized gradients with the parameter
server (lines 3-5), while the server aggregates these gradients
from workers and updates the model parameters (lines 8-10).
If Qbt [g

(i)
t ] is the quantized stochastic gradients in the i-th

worker and xt is the model parameter that the workers hold
in iteration t, then the updated value of x by the end of this
iteration is: xt+1 = xt+ηĝt, where ĝt = 1

W

∑W
l=1Qbt [g

(i)
t ].

Note that we determine bt+1 according to the gradients
information at iteration t (lines 11), so we update the
compression bits every τ iterations in practice (In our
experience, we take τ = 100).

DQ-SGD outperforms fixed-bit quantization based
SGD in communication cost. Compared with the fixed-
bit algorithms, our proposed DQ-SGD can achieve the
same performance with fewer communication costs. The
communication cost of DQ-SGD and fixed-bit algorithms
are shown as follows with proofs given in Appendix C.

Theorem 2. For the problem in Eq. (1) under Assumptions
1, 2, 3, with initial parameter x0, using the dynamic
quantizer in Eqs. (17) to quantize the gradients, then the
total communication cost for DQ-SGD is upper bounded by

fQ(T,W, bt) ≤WdT log2

√
T
[
2L[F (x0)− x∗] + σ2

]
ε̂Q

+WTBpre +WTd+
WTd

2
log2GM(α)

(18)

If we want to achieve the same model performance, the
total communication cost of the fixed-bit algorithms is upper
bounded by

fQ(T,W, bt) ≤WdT log2

√
T
[
2L[F (x0)− x∗] + σ2

]
ε̂Q

+WTBpre +WTd+
WTd

2
log2AM(α)

(19)

where Arithmetic Mean AM(α) =
1

T

∑T−1
t=0 αt =

1

T

1− αT

1− α
and Geometric Mean GM(α) =

[∏T−1
t=0 αt

] 1
T

= α
T−1

2 .

We can see that if we desire a lower quantization error,
we need more communication costs. Note that 0 < α < 1,
so AM(α) > GM(α), which means our proposed DQ-SGD
uses fewer communication cost compared with the fixed-bit
algorithms.



Algorithm 1: DQ-SGD in Distributed Learning
Input: Iterations number T , desired quantization

error upper bound εQ, learning rate η, initial
point x0 ∈ Rd, initial number of quantization
bits b0, hyper-parameters α

Output: xT
1 for t = 0, 1, ..., T − 1 do
2 On each worker l = 1, ...,W :
3 Compute local gradient g

(i)
t ;

4 Quantize the gradient Qbt [g
(i)
t ] according to

Eq. (5);
5 Send Qbt [g

(i)
t ] to server;

6 Receive xt+1 and bt+1 from server;
7 On server:
8 Collect all W quantized gradients Qbt [g

(i)
t ] from

workers;
9 Average: ĝt = 1

W

∑W
l=1Qbt [g

(i)
t ];

10 Update the global parameters xt+1 = xt − ηĝt;
11 Update the quantization bits bt+1 according to

Eq. (17);
12 Send xt+1 and bt+1 to all workers;
13 end

V. DISCUSSIONS

A. Convergence Error for Quadratic Objectives.

In previous sections, we use the upper bound of con-
vergence error to measure the model performance. In this
subsection, we will prove that there exist strongly convex
functions F (x) where the convergence error bound in
Theorem 1 is tight (i.e., The ‘=’ in Eq. (15) can be achieved.).

For general quadratic functions, we can employ gradient
flow1 to calculate an exact convergence error. We have the
relationship between the aggregated stochastic gradients and
full gradients: ĝt = ∇F (xt) + εt. Based on the central
limit theorem, it is assumed that εt follows the Gaussian
distribution, that is εt ∼ N (0,Σ(xt)). Then using analysis
within the gradient flow framework, we can get the following
theorem.

Theorem 3 (Exact Convergence Error for Quadratic Ob-
jectives). For a quadratic optimization objective function
F (x) = 1/2xTHx + ATx + B, consider the perturbed
gradient descent dynamics

xt+1 = xt − η∇F (xt)− ηεt, εt ∼ N (0,Σ(xt)) (20)

1when the learning rate is infinitesimal, the stochastic gradient descent
process can be regarded as a stochastic dynamic system.

We can achieve

E[F (xT )− F (x∗)]

=
1

2
(x0 − x∗)T(ρ(η)T )THρ(η)T (x0 − x∗)

+
η2

2

T−1∑
t=0

Tr
[
ρ(η)T−1−tΣ(xt)H

(
ρ(η)T−1−t)T

]
(21)

where ρ(η) := I− ηH, and H is the Hessian matrix.

Detailed proof is in Appendix D. We can see that the
convergence error consists of two parts: the error of the
gradient descent method, which is linearly convergent; the
error due to gradient estimation error (data sampling noise,
gradient quantization error).

Consider the case where the Hessian matrix is isotropic
H = λI, and let β(η) := 1− 2ηλ+ η2λ2, then Eq.(21) can
be rewrite as

E[F (xT )− F (x∗)] = β(η)T [F (x0)− F (x∗)]

+
λη2

2

T−1∑
t=0

β(η)T−1−tTr[Σ(xt)] (22)

In Lemma 1, if we let the gradient noise always reach the
upper bound value, then we can get

Tr[Σ(xt)] = E
[
‖ĝt −∇F (xt)‖22

]
=
σ2

W
+

d

4W (2bt−1 − 1)2
Ḡt (23)

Plugging Eq. (23) into Eq. (22), then the ‘=’ in Eq. (15) can
be achieved, and proves that the upper bound for strongly
convex objectives in Theorem 1 is tight in this case.

B. Algorithm Implementation Details

Although Eq. (17) provide valuable insights about how to
adjust bt over time, it is still challenging to use it in practice
due to the convergence rate α being known. Inspired by [16],
we propose a straightforward rule where we approximate
F (x∗) to 0 and the learning rate η is small enough. We
estimate α as follows according to Theorem 1:

αest =

[
F (xt)

F (x0)

]1/t

(24)

where F (x0) and F (xt) can be easily obtained in the
training.

C. Dynamic Adjustment in the Number of Bits

From Eq. (17), we can see that two factors may affect how
to adjust the number of quantization bits: the increased weight
α(T−1−t)/2 and the root-mean-square of local gradient norm
Ḡt. α(T−1−t)/2 increases with the iterations t, and Ḡt gets
smaller as the training process goes on. Therefore,
• Decreasing in Communication. If the decreasing rate

of the root-mean-square of local gradient norm (i.e., Ḡt+1

Ḡt
)



smaller than
√
α, then bt+1 < bt, which means the number

of quantization bits decreases with the iteration step;
• Increasing in Communication. On the contrary, if the

decreasing rate Ḡt+1

Ḡt
is bigger than

√
α, then bt+1 > bt,

meaning that the number of quantization bits increases with
the iteration step.

VI. EXPERIMENTS

In this section, we conduct experiments on NLP and CV
tasks on three datasets: AG-News [13], CIFAR-10 [14],
and CIFAR-100 [14], to validate the effectiveness of our
proposed DQ-SGD method. We conduct experiments for
W = 8 workers and use canonical networks to evaluate the
performance of different algorithms: BiLSTM on the text
classification task on the AG-News dataset, Resnet18 on
the image classification task on the CIFAR-10 dataset, and
Resnet34 on the image classification task on the CIFAR-100
dataset. Other parameters information is shown in Table I. We
use test accuracy to measure the learning performance. We
compare our proposed DQ-SGD with the following baselines:
SignSGD [5], TernGrad [12], QSGD [2], Adaptive [11] and
AdaQS [9].

Test Accuracy vs Communication Cost. Figure 1 and
table II compare the test accuracy and communication cost of
different algorithms under different tasks. The communication
cost of Vanilla SGD are 1313.29 GB, 1998.06 GB, and
3805.54 GB, and the test accuracy can be achieved are 0.9016,
0.8815, and 0.6969 on AG-News, CIFAR-10, CIFAR-100,
respectively. We set a communication budget as 15% of the
communication cost incurred by the SGD and a performance
threshold as 99.7% of the test accuracy achieved by the
SGD for all three tasks. We can see that our proposed
algorithm is the only one that satisfies a high-performance
and low communication cost (the upper left region). Other
baselines cannot achieve the performance threshold given
the communication budget.

Fixed Quantization vs. Dynamic Quantization. Figure
2 shows the comparison results of the Fixed Bits algorithm
and our proposed DQ-SGD on CIFAR-10. Figure 2 (a)
and Figure 2 (b) show the test accuracy curves and the
training loss curves. Figure 2 (c) shows the bits allocation
of each iteration of DQ-SGD. Fixed Bits (6 bits) and DQ-
SGD can get almost the same accuracy as SGD. However,
the communication cost of DQ-SGD is reduced up to 25%
compared with that of Fixed Bits (6 bits). It can be seen that
our dynamic quantization strategy can effectively reduce the
communication cost compared with the fixed quantization
scheme. Figure 3 shows the accuracy of Fixed Bits and DQ-
SGD under different communication costs. It can be seen
that DQ-SGD can achieve higher test accuracy than Fixed
Bits under the same communication cost.

VII. CONCLUSION

This paper proposes a novel adaptive gradient quantization
strategy called DQ-SGD to reduce the communication cost
of distributed computing based on theoretical analysis. DQ-
SGD adjusts quantization bits automatically by considering
the norm of gradient and current iteration number. The exper-
imental results of image classification and text classification
show that DQ-SGD is superior to state-of-the-art gradient
quantization methods in reducing communication costs.
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APPENDIX A.
PROOF OF LEMMA 1

According to Eq. (6), we have

E[ζ(gj , s)] =
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s
[1− s

|gj |
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+ l] +
l + 1

s
[s
|gj |
‖g‖p

− l] =
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Then, we have
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=
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1
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4s2

Considering that Qb(gj) = ‖g‖p · sgn(gj) · ζ(gj , s), we
have
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‖ĝt‖22

]
= Tr {V [ĝt]}+ E [ĝt]
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where (a) uses the Assumption 1, and Ḡ2
t =

1
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∑W
i=1 ‖g

(i)
t ‖2p.

APPENDIX B.
PROOF OF THEOREM 1

Considering function F is L− smooth, and using Assump-
tion 2:

F (xt+1) ≤ F (xt) +∇F (xt)
T(xt+1 − xt) +

L

2
‖xt+1 − xt‖22

Due to xt+1 = xt −
η
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Taking total expectations, and using Lemma 1, this yields:

E[F (xt+1)− F (xt)] ≤ (−η +
Lη2

2
)‖∇F (xt)‖22

+
Lη2σ2

2W
+

Lη2d

8W (2bt−1 − 1)2
Ḡ2
t

Considering that function F is µ− strongly convex, and
using Assumption 3, so:

E[F (xt+1)− F (xt)] ≤ −(2µη − Lµη2)[F (xt)− F (x∗)]

+
Lη2σ2

2W
+

Lη2d

8W (2bt−1 − 1)2
Ḡ2
t

Subtracting F (x∗) from both sides, and let α(η) := 1−



2µη + Lµη2, so:

E[F (xt+1)− F (x∗)] ≤ α[F (xt)− F (x∗)] +
Lη2σ2

2W

+
Lη2d

8W (2bt−1 − 1)2
Ḡ2
t

Applying this recursively, we conclude the proof.

APPENDIX C.
PROOF OF THEOREM 2

The bits allocation is: bt ≈

log2

[√
T

ε̂Q
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+ 1, so
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Accordingly, if we fix the number of quantization bits (i.e.,
bt = b), then we have
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t

(2bt−1 − 1)2

≤
Ḡ2
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So, the total communication cost for the fixed bits

algorithm is
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Then the total communication cost for DQ-SGD is
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For a quadratic optimization problem F (x) = 1/2xTHx+
ATx +B, we consider a Gaussian noise case

xt+1 = xt − η∇F (xt)− ηεt, εt ∼ N (0,Σ(xt))

Then we have

xt+1 = xt − η∇F (xt)− ηεt
= xt − η[Hxt + A]− ηεt
= (I− ηH)xt − ηA− ηεt

Considering ∇F (x∗) = ηA + ηHx∗ = 0, subtracting x∗

from both sides, and rearranging, this yields:

xt+1 − x∗ = (I− ηH)xt − ηA− x∗ − ηεt
= (I− ηH)(xt − x∗)− ηA− ηHx∗ − ηεt
= (I− ηH)(xt − x∗)− ηεt

Applying this recursively, let ρ = I− ηH, we have:
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[ηρT−1−tεt]



Considering that εt ∼ N (0,Σ(xt)), then:
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where, W is a standard d-dimensional Wiener process, and
I(T ) is an Ito integral. Hence xT = x∗+ρT (x0−x∗)−I(T ),
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If we consider a simple example: the Hessian matrix is
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APPENDIX E.
PROOF OF EQ. (17)

For the constrain function of Eq. (16), we have

∂2[
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αT−1−tḠ2
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Therefore, this optimization problem is a convex optimization
problem, then we have the Lagrange function
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where λ is Lagrange multiplier. Then we can get
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= ε̂Q, we can solve λ

and get the result.
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