DeepChunk: Deep Q-Learning for Chunk-based
Caching in Data Processing Networks

Yimeng Wang, Yongbo Li, Tian Lan, and Vaneet Aggarwal

Abstract—A Data Processing Network (DPN) streams massive
volumes of data collected and stored by the network to multiple
processing units to compute desired results in a timely fashion.
Due to ever-increasing traffic, distributed cache nodes can be
deployed to store hot data and rapidly deliver them for con-
sumption. However, prior work on caching policies has primarily
focused on the potential gains in network performance, e.g., cache
hit ratio and download latency, while neglecting the impact of
cache on data processing and consumption.

In this paper, we propose a novel framework, DeepChunk,
which leverages deep Q-learning for chunk-based caching in
DPN. We show that cache policies must be optimized for both
network performance during data delivery and processing effi-
ciency during data consumption. Specifically, DeepChunk utilizes
a model-free approach by jointly learning limited network, data
streaming, and processing statistics at runtime and making cache
update decisions under the guidance of powerful deep Q-learning.
It enables a joint optimization of multiple objectives including
chunk hit ratio, processing stall time, and object download time
while being self-adaptive under the time-varying workload and
network conditions. We build a prototype implementation of
DeepChunk with Ceph, a popular distributed object storage
system. Our extensive experiments and evaluation demonstrate
significant improvement, i.e., 43% in total reward and 39% in
processing stall time, over a number of baseline caching policies.

Index Terms—Data streaming and processing, caching, rein-
forcement learning.

I. INTRODUCTION

Data collection, streaming, and processing are essential
tasks for modern networks due to the rapid development in
areas such as Internet of Things, sensor networks, online
data analytics and edge computing [1], [2], [3]. In such
applications, massive volumes of data collected (and stored)
by the network need to be streamed to multiple processing
units to compute desired results in a timely fashion. One
example of this type of application is intelligent transportation,
where large volumes of sensor data and video footage are
recorded from various monitoring points, and then fetched
on-demand into distributed computing nodes, for objectives
from vehicle identification to traffic analysis. Due to ever-
increasing traffic in Data Processing Networks (DPN), [4], [5],
[6], they often enhance the performance by caching data in
nodes close to computing units and rapidly delivering those
data for consumption.

The design of caching policies, however, is primarily fo-
cused on the potential gains in network performance, e.g.,
cache hit ratio and download latency, while neglecting the
impact of data processing and consumption. These include the
Least Frequently Used [7] and Most Popular Object [8] strate-
gies that achieve a high cache hit ratio, and the Least Recently
Used (LRU), gLRU, and kLRU [9] strategies that use request
recency for cache update. Yet, for data processing networks,

/ _ \\ Data Analytics
“ L ATATA)=
: / \L -n | 2a=Ag E]:[_J v,=05

\}5

\j, | / —

LRU DeepChunk

Fig. 1. An illustrative example of DeepChunk approach for data processing.

a data stream is simultaneously being fetched and consumed
on the fly. Existing caching policies only considering network
performance during data delivery fall short on addressing end-
to-end tuple processing time [2], which depends on both data
delivery and consumption. In practice, when available network
bandwidth cannot fully sustain all data processing needs [1],
[2], stalls during data processing become inevitable. As a
result, the design of caching policies should be made aware
of data consumption needs, to mitigate processing stalls and
fulfill the timely online processing requirements.

In this paper, we propose a novel framework, DeepChunk,
which leverages deep Q-learning [10] for chunk-based caching
in DPN. Our key idea is that cache policies must be optimized
for both (i) network performance during data delivery and
(ii) processing efficiency during data consumption. Since the
classical hit ratio does not account for partial files in the cache,
we use the notion of chunk hit ratio that accounts for the
existence of partial files in the cache. The necessity of taking
data processing into account in caching can be illustrated via
a simple example in Figure 1. Two data objects, A and B
(each consisting of 3 chunks), are recorded on network edge
and fetched by different data processing units through a link
that has a capacity of 1 chunk per second and is equipped
with a cache of size C = 3. If A and B have the same
request rate, they are equally likely to be stored in the cache
under LRU and LFU policies. Suppose that two applications
with processing speed of ¥4 = 1/2 and vp = 2 chunks per
second start to request A and B at £ = 0, respectively. It is
easy to see that if A is cached, the processing of B stalls
for a total of 2 seconds (i.e., 1 second waiting time for the
first chunk and 1/2 second idle time before processing each
subsequent chunks), and similarly the processing of A stalls
for 1 second if B is cached. However, we show that stall-
free data processing is indeed possible under an optimized,
chunk-based caching policy. If the first 2 chunks of B are
cached, we can fetch the last chunk of B by ¢ = 1, so that
the processing of B is stall-free. At the same time, caching

the first chunk of A allows it to continue processing without
interruption until the next two chunks are fetched by ¢ = 2 and
t = 3, respective. This caching policy not only achieves the
same chunk hit ratio (i.e., 50%), but also minimizes end-to-
end tuple processing time (i.e., 6 and 1.5 seconds for A and B
respectively) with stall-free data processing. Thus, to fulfill
the real-time data processing requirements, it iS necessary
to consider both network performance and data processing
objectives.

A fundamental problem in our chunk-based cache system is
the cache update policy, which entails two types of decisions
at chunk level — how many chunks of a data object to admit
(cache admission) and which chunks to evict from the cache
(cache eviction), if it is already full — with the objective of
jointly optimizing average chunk hit ratio, processing stall
time, and object download time, in DPN. This optimization
may be solvable if we can accurately model the correlation
between the objective values and underlying variables, e.g.,
request arrival patterns, data popularity distributions and net-
work conditions. However, this is very challenging and has
not yet been well studied in the context of data processing
networks, which represent a fairly complicated multi-point to
multi-point system with the dynamics of data streaming and
processing (from multiple data objects) closely-coupled and
jointly impacting the design objectives.

Hence, DeepChunk aims to develop a model-free approach
by jointly learning data streaming, processing, and network
statistics and making decisions under the guidance of powerful
deep Q-learning [10]. We believe the approach is especially
promising for chunk-based cache in data processing networks
because: (i) it does not rely on precise and mathematically
solvable models, hard to obtain in practical DPN, (ii) it is
capable of supporting an enormously large state space, and (iii)
it is self-adaptive to the dynamic environment, e.g., evolving
data popularity/arrivals and time-varying network conditions.
In particular, the state space in DeepChunk’s Q-learning in-
clude data popularity distribution, cache states, request arrival
statistics, network conditions and current request information,
while its reward captures chunk hit ratio, processing stall
time, and object download time. The output action determines
DeepChunk’s cache update policy, and the resulting reward is
further fed-back to the neural network for learning.

We build a prototype implementation of DeepChunk with
Ceph [11], a popular distributed object storage system. Ceph’s
cache node is modified to implement a Q-learning engine and a
chunk-based cache module. Upon a request arrival, the cache
module immediately streams all cached chunks and request
the remaining chunks from the Ceph storage cluster, where
all data objects are stored. The Q-learning engine obtains
state updates s(t) via UDP messages, decides an action a(t)
based on the trained neural network, and then sends the action
a(t) through a UDP message to the cache module, which
performs cache updates accordingly, calculate the resulting
reward, and send it back to the Q-learning engine through
another UDP message. To evaluate DeepChunk, we generate
data popularities from Zipf distribution and utilize Linux TC
traffic control [12] to set up different network configurations.
We run extensive experiments to compare DeepChunk with
a number of baselines including No-Cache, LRU, kLRU,

gLRU. DeepChunk achieves up to 43% reward improvements
compared with the baselines, and in all scenarios, it has the
ability to balance different design objects, illuminating an
interesting tradeoff between chunk hit ratio, processing stall
time, and object download time.

The main contributions of this paper are as follows:

e We propose DeepChunk for chunk-based caching in
DPN with the objective of jointly optimizing both data
processing and network performance.

o DeepChunk leverages a model-free approach by jointly
learning limited statistics on the fly and making cache
update decisions under the guidance of powerful Q-
learning.

o We build a prototype of DeepChunk using Ceph and
compare its performance with a number of baseline
caching policies. Significant improvement, i.e., 43% in
total reward and 39% in processing stall time, is observed.

Related work. LRU-based caching mechanisms have been
widely studied [13], [14]. One of the key issue in LRU based
caching strategy is that a large file arrival can evict multiple
small files [15]. In order to have better performance with
realistic file sizes, multiple approaches have been proposed,
see [15] and the references therein. Caching has been applied
in many applications including radio-access network [16],
mobile 5G networks [17], web applications [18], BigData
applications [19], and video delivery [20]. In this paper,
we propose a chunk-based caching framework that leverages
deep Q-learning [10]. Q-learning has been applied to address
network optimization tasks such as traffic engineering [21],
video bitrate control [22], LTE femtocell configuration [23],
and cell outage management [24].

II. BACKGROUND AND PROBLEM STATEMENT

We consider a DPN as a set of data sources and processing
units, connected through a communication network to apply
various data operations and computations. Massive volumes
of data collected (and stored) by the network often need to
be streamed to multiple processing units and processed in real
time. This feature is also known as stream data processing [2]
and can be found in many existing and future applications such
as the Internet of Things, sensor networks, online data analyt-
ics and edge computing [1], [2]. In such DPN, cache nodes
can be deployed between the data source and the processing
units, to store and reuse hot data objects passing through the
network. Most of the existing cache replacement policies, such
as LRU and LFU [25], focus on network performance metrics
such as cache hit ratio. However, in DPN, as demonstrated
in the previous example in Figure 1, higher hit ratio does not
necessarily lead to more efficient data processing, as measured
by processing stall time. Motivated by this phenomenon, we
acknowledge the new cache design challenges arising from
DPN and develop a chunk-based caching framework. guided
by deep Q-learning.

Chunk-based caching. To reduce data processing stall,
caching the starting chunks of different data objects is crucial,
while storing the complete data objects does not offer any
additional benefits, as illustrated by the example in Figure 1. It
mandates us to consider chunk-based caching in DeepChunk.

At the core of chunk-based caching policies is the need
to make cache admission and eviction decisions for each
individual data chunk, resulting in higher decision complexity
on the fly. In object-based policies, such as kLRU and qLRU
[26], cache admission and eviction decisions are typically
binary, as to whether or not to add a new object to replace the
least-recently-used one in the cache. A chunk-based caching
policy, however, must decide how many new chunks to admit
into the cache when a requested data object traverses the
cache node, even-though the cache eviction can employ a least-
recently-used strategy.

Consider the example in Figure 1. Suppose that the cache
currently contains 2 chunks of A and 1 chunk B, ie.,
Ay, As, By. If a new request of A arrives with a data pro-
cessing speed of v4 = 0.5, stall-free processing can already be
achieved with the 2 chunks of A in the cache (ignoring a fixed
initial waiting time to start streaming). There is no need to ad-
mit any more chunks of A into the cache, as it only negatively
impacts the processing stall time of other objects that must be
evicted as a result. On the other hand, if a new request of B
arrives with a data processing speed of vp = 2, the processing
will stall, demanding new chunks of B to be admitted into the
cache. However, we need to carefully choose the number of
object-B chunks to admit, since an overly aggressive policy
(e.g., adding both By and Bs) would superfluously stall future
processing requests of A. In DeepChunk, we collect runtime
statistics from the DPN — including cache state, request rates,
data processing speeds, chunk sizes, and network configuration
— and leverage powerful Q-learning to guide the chunk-based
decision making.

ITII. PROPOSED DEEPCHUNK FRAMEWORK

We assume that there are N data objects to be streamed
and processed by different processing units. Each object i €
{1,2,..., N} is partitioned into F; identical-sized chunks. A
cache node is located in close proximity to the processing
units and can store up to C' data chunks. We consider a time-
slotted system model, in which each time bin contains exactly
one request arrival. At a given time bin ¢, let C;(¢) denote the
number of chunks of data object ¢ stored in the cache node,
satisfying 0 < C;(t) < F;. The cache size constraint requires
Zi\[:l C;(t) < C for any time bin ¢. For the proposed caching
strategy, in steady state the above cache size constraint will
hold with equality since we will not waste any cache capacity
in the steady state.

Our chunk-based caching policy is formulated as follows.
In time bin ¢, when data object ¢ is requested, C;(¢) chunks
stored in the cache are directly streamed to the processing
unit, which then immediately begin data processing. At the
same time, the remaining F; — C;(t) requested chunks will
be delivered from the data source and through the network.
When the complete data object 7 is not yet in the cache, i.e.,
C;(t) < F;, E. additional chunks of object i satisfying 0 <
E. < F;—C;(t) will be added to the cache. Thus, the number
of object-i chunks in cache increases from C;(t) to C;(t+1) =
C;(t) 4+ E. in the next time bin ¢ 4 1. Further, these C;(¢t + 1)
chunks of object ¢ are moved to the head of line in the cache
since they become most-recently-used. It is easy to see that
to mitigate processing stall, we should always place the first

Data Source Cache Node Data Processing Unit
t.
J ty @ Initial
® z Wait
2
t @ ©) l
£
® B ® —
@ |°
f4 @ |
@ 1"

Fig. 2. Calculation of processing stall time.

C;(t+1) chunks of object 4 in cache and stream them to jump-
start data processing. Finally, when the cache is already full,
to make space for the added chunks, an equivalent number
of chunks must be removed from the cache. In DeepChunk,
we adopt a policy similar to least-recently-used and remove a
necessary number of chunks from the tail of the cache line.

Our goal is to design a cache policy to optimize both net-
work performance and data processing objectives. Let h(t) be
the chunk hit ratio in time bin ¢ (defined formally later in this
section), Ty(t) the average object download time, and T (¢) the
average processing stall time. Specifically, DeepChunk aims to
optimize the following objective in steady state (for sufficiently
large 7) over feasible cache policies P :

1 T
max ; arh(t) — aaTs(t) — asTy(t), (1)

where o, ag, aig are non-negative weights assigned to chunk
hit ratio, processing stall time, and object download time,
respectively. In practice, we can adjust these weights to achieve
different tradeoffs between the network performance and data
processing objectives. For instance, when a3 = az = 0,
the resulting cache policy minimizes processing stall time
T,(t). We use Reinforcement Learning (RL) to solve the above
optimization, and for each network state, to determine the
optimal cache replacement, i.e., the number of chunks FE. to
replace. We note that existing caching policies typically rely
on constant cache replacement strategies, e.g., £, = F; for
the LRU policy and E. = 1 for the gLRU policy [14], thus
lacking the ability to adapt cache replacement on the fly with
respect to dynamics in DPN.

Next, we derive different network performance and data

processing metrics that will be computed from limited runtime
statistics on the fly and leveraged by the RL agent to optimize
DeepChunk.
Process stall time. To find processing stall time, we assume
that the data processing unit is equipped with a sufficiently
large buffer, so all streamed data chunks are consumed by
the processing unit without the need for retransmission. We
consider a request in time bin ¢ and drop the index ¢ in the
following derivations for the simplicity of notations. Since the
first C; out of F; chunks of data object ¢ are already stored
in the cache and the remaining F; — C; chunks need to be
streamed from the data source, we find the processing stall
time by considering a two-stage buffer problem.

As shown in Figure 2, let ro denote the available bandwidth
(i.e., data streaming speed) from data source to cache node,
r1 denotes the speed from cache node to processing unit, and

v; denotes the data processing/consumption speed of object
i. We consider 2 stages in data streaming, ¢, and fp to
denote the time when the kth chunk starts streaming from
data source to cache node and from cache node to processing
unit, respectively. Since the first C; chunks are already stored
in the cache and the other chunks are streamed one-by-one
from data source, we have

t, — tk—l"'éa ke[cl+1aK]7

7\ o, kell,C.
Next, each data chunk & can be streamed from the cache
node to the processing unit, when it becomes available (i.e.,
at t = 0 for any cached chunk and ¢y, + 1/ry if it needs to be

fetched from data source) and after the preceding chunk k —1
is delivered (i.e., at ¢x_1 + 1/r1). Combining these, we have

: { max{ty_1 + ;- tp + o}, k€ [Ci+ 1, Fi,
Y =

B + 4, ke 2,)
except that #; of the first chunk depends on whether any
chunks of object ¢ are cached, i.e.,

1 .
m={§+”’Q > @)

2

otherwise.

Finally, the processing unit consumes data at speed v;.
Then the processing start time of chunk & can be recursively
computed from ¢;’s as

i = maa{i s+ — B+) and By =ty)
v; 1
where ;,,; is the initial wait time (or startup delay) mentioned
in Section II. When &, > (k — 1)/v; + tini, the processing
unit would experience stall time waiting for chunk k. The total
processing stall time of object i is then given by the difference
between actual play time and expected play time of the last
chunk F; (since stall time accumulates during processing), that

S
! F—1

v;

T = (tNFL - - tini)+~ (6)
Object download time. The download time of each data
chunk k& can be found through #;, which is the time to starting
streaming chunk %k from the cache node to the processing
unit and is already given in the above analysis of processing
stall time. Thus the download time 7}; of data object ¢ that is
equivalent to the arrival time of last chunk F; can be derived
directly from ¢, as follows:

Ty=1p + i @)
1
Chunk hit ratio. We note that for object-based cache systems,
a “hit” occurs if the requested data object is found in the
cache. Thus, the hit ratio equals to the probability that the
requested data object is stored in the cache. For chunk-based
caching considered in this paper, we define a similar chunk
hit ratio to quantify the performance of the proposed caching
policy. Specifically, we denote h; = C;/F; as the chunk hit
ratio of data object ¢, which is the percentage of object-i
chunks that are stored in the cache and can be directly used
to serve a request. This notion of chunk hit ratio generalizes

[

Reward RL Engine
State
Variablgs

Cache State

uonoy

|

Fig. 3. Reinforcement learning mechanism of DeepChunk decision making.

the existing object-based definition, which is binary — h; =0
for a cache miss and h; = 1 for a cache hit — and cannot
be used to evaluate chunk-based caching systems. Finally, the
overall chunk hit ratio is simply the average of chunk hit ratio
of individual data objects weighted by request arrival rates \;,

Le., (32; Aihi)/(32; M)
IV. REINFORCEMENT LEARNING
A. Q-Learning

To make caching decisions in different system states, we
utilize Q-Learning to dynamically generate optimized values.

With the development of the neural networks, Q-Learning
is commonly used in modern decision making tasks. The
advantages of RL decision making process are: i) supporting
enormously large state space, ii) Scalable to different input
dimensions, and iii) self-adapting to the environment including
evolving data popularity and varying network conditions. We
take advantage of RL to adapt to these dynamic features in
the caching problem.

Figure 3 illustrates how Q-Learning is solving our cache
decision problem. At each time bin ¢, the cache node monitors
the current state s(t) of the system. When a request ¢(t) is
observed at the cache node, the RL Engine feeds the current
state s(t) into a neural network to generate an action a(t).
Further, according to the state s(¢) and the action a(t), the
state will be pushed to the next state s(¢t+ 1). When the next
request arrives, the reward 7(t) of the previous action a(t) can
be observed, further fed back to train the neural network.

To dynamically improve the reward, a Q-table is maintained.
Q-values are correlated with state-action pairs, represent the
quality of decisions. It is made of the immediate reward, and
an expected optimal future reward which is discounted by a
factor v, (0 <~y < 1):

Q(s(t),a(t)) = r(t) + ymaxQ(s(t +1),a). (8

The learning starts with zero-knowledge. At time ¢, when
the detected state s(t) does not exist in the Q-table, it is
added with arbitrary Q-values. Actions are chosen following
the Epsilon Greedy scheme: with probability 1 — ¢, the agent
will choose the action that results in the highest Q-value,
otherwise, select a random action. The € reduces linearly from
1 to 0.1 over iterations.

After the action is selected, according to the corresponding
reward r(t), the Q-value is updated with a learning rate f:

Q'(s(t),a(t)) « (1= B)Q(s(t), a(t))

+ Blr(t) + 7 max Q(s(t+1),a)]. ©)

Similar to e, the learning rate (3 is also reduced linearly.

To maintain a large system state space, an artificial neural
network is utilized. Different from the Q-table, a neural
network produces a vector of Q-values for all actions. When
updating the Q-values, a loss function is used to compute the
difference between the predicted Q-values and the target Q-
values obtained by Equation (8).

toss = (@ - QP

a

(10)

where Q' represents the target Q-values.

B. Reward, States, and Actions

To use Q-Learning for decision making, we define the three
crucial elements - state, action and reward - as follows:

1) Reward: We consider both data processing and network
performance to be optimized as the reward. As mentioned in
Section III, chunk hit ratio, processing stall time and object
download time are defined as the reward variables. We apply
three weight factors oy, ao and a3 to adjust the importances
of the three reward variables. Thus, the immediate reward is
defined as:

(1)

Note that when the algorithm is running, all three objectives
—h, T,, Ty — can be measured from the cache node or the data
processing units, while Equations (6) and (7) can be utilized to
pre-train the neural network from zero knowledge, to improve
the speed of convergence.

2) States: The state variables should reflect the system
status, further affect the reward feedback of different actions.
We measure the system state in our caching model as a four-
wple: (7, ¢, 7, f).

? denotes the popularity distribution over all objects. In
practical networks, the popularities of objects are changing
over time. In order to adapt to the latest popularities, instead
of using a static distribution, we maintain a sliding window to
monitor popularities of all objects during the past n requests.
The currently cached chunks for all objects are denoted by <.
This is important for decision making to keep an appropriate
amount of chunks in the cache, and further optimize the
reward. The order of requested objects is expressed by an array
0. In our DeepChunk policy, we make decisions to replace the
least-recently-used object chunks by new chunks. This state
variable will indicate chunks from which object/objects will
be removed when making decisions. Finally, f denotes the
currently requested object. As we designed, only this object
will be cached in the same time iteration. Decisions will result
in different ¢[f] in the next time bin.

All the elements in this four-tuple can be obtained at the
cache node when a request arrives. For cache decision, the
four-tuple is pushed into the input layer of the neural network.

3) Actions: Current RL applications can have a large state
space, but the action space is always limited to be small. So,
we define an unsophisticated action to fit our problem to this
feature. The action a(t) represents the number of chunks of the
requested object f to be added to the cache. When the action
is made, F. additional chunks of object f will be stored in

r= ()(1]7, — OCQTS — O¢3Td.

OSD OSD OSD

=

Ceph Client

Ceph Cluster

Cache Module

Cache Storage':l

Data Processing Unit

i

Buffer |

RL Engine :

Cache Node

Fig. 4. Implemented DPN diagram.

the cache storage. When the cache storage is full, chunks from
the LRU objects will be removed.

V. IMPLEMENTATION

In this section, we will describe the prototype implemen-
tation details. In specific, we will discuss the DPN setup in
terms of the following aspects: data source, cache node, data
processing unit, and the links between nodes. The system
diagram is depicted in Figure 4.

A. Data Source

Three virtual machines running a Ceph [11] cluster are im-
plemented as the data source. All files used in the experiments
are divided into chunks. The files are stored in the three Object
Storage Daemons (OSDs). Another virtual machine within the
same cluster configuration is set as a Ceph client, which is
responsible to collect chunks (Ceph objects) from the storage
cluster and send them to the cache node. A Tornado server
[27] is implemented on the Ceph client, where it handles the
fetch requests from the cache node with responses from the
data source. The transmission latency and processing delay
within the Ceph cluster machines (those for cloud storage,
Ceph client, and Tornado server) are ignored.

B. Cache Node

The cache node aims to simulate an edge node between
the data processing unit and the source. When the processing
unit sends a request to the cache node, the cache node fetches
the chunks of the object that do not exist in the cache from
the Tornado server at the source, and delivers the chunks
that obtained (previously cached and newly downloaded) to
the processing unit simultaneously. Further, with the arriving
chunks from the source, the cache node runs an RL Engine
to determine the updated placement of the chunks of different
objects in the cache. Cache node has two modules - Cache
Module and Reinforcement Learning Engine, which together
achieve the functions explained above. In our experiments, one
virtual machine is utilized to run both the modules.

1) Cache Module: The Cache Module manages the place-
ment of the chunks on the cache node, fetching the chunks
from the data source, and delivery of contents to the processing
unit. A Tornado server is used to build the connection with the
data processing unit, and a Tornado client is paired with the

server on the data source. When an object request is received
from the processing unit, the cache module starts to push the
cached chunks and fetch the missing chunks from the source
simultaneously.

A buffer is used to store the fetched data bytes from the
data source. The fetched contents will stay in buffer till all
the chunk are sent to the processing unit. The cache policy
will determine how many of these contents will be transferred
to the cache storage. After the transmission of the contents to
the processing unit and the transfer of required contents to the
cache storage, the contents are removed from the buffer.

We note that the cache node knows how many contents
are in the cache, and what was fetched from the data source.
Thus, the metric of chunk hit ratio is collected from the cache
module. We will next describe the Reinforcement Learning
Engine that makes the decision for the update of caching
policy which will influence how many of the chunks fetched
from the data source will go to cache storage and which
contents will be removed from the cache storage.

2) Reinforcement Learning Engine: The Reinforcement
Learning (RL Engine) implements the cache update policy.
To accelerate the training process, the neural network is
pre-trained using simulated inputs. A serial of Zipf-random
requests are used to activate the evolution of the system state.
After the action is made, the reward is calculated by the
monitored chunk hit ratio and calculated stall/download time
from Equations (6) and (7). The pre-trained neural network
is then stored in the engine. When a cache decision is
needed, the Cache Module will consult the RL Engine. In our
implementation, the RL Engine and Cache Module are located
on the same node and communicate using UDP messages.

A state listener queries a UDP message from the Cache
Module which contains all the required state information,
including current cache storage status, request history, and
currently requested object. By feeding the state variables to
the neural network, the RL Engine obtains the action. The
action is then sent to the Cache Module via a UDP message
to transmit the cache update decision.

For the real-time training of RL Engine, the reward variables
(the chunk hit ratio from the cache module, the response delay
and stall time from the data processing unit) are collected
after all chunks are received by the processing unit. We
note that the obtained reward is dependent on the previous
states and actions. In the evaluations, it takes 60 minutes to
train the neural network with a million preset samples. The
training process is controlled by a linear control signal, which
decreases the epsilon greedy parameter € and the learning rate
[linearly.

C. Data Processing Unit

A Tornado client is set up as the data processing unit. The
processing unit continuously sends object requests to the cache
node following a Zipf distribution. A Zipf “seed” is utilized to
order the popularities of objects. By changing the “seed”, we
can set the popularity distributions and object sizes positively
or negatively correlation. Each request is sent to the cache
node, and the object is received from the cache module. The
data processing unit records the reward attributes, including
processing time, initial waiting time, and stall time. These

reward variables are sent to the cache node, which will be
used by the RL engine for online learning and improving of
the caching policy.

D. Data/Signal Flow

In the above, we introduced the function modules. Now,
we will show an example to trace the data flow, and further
describe how the system works.

When initiated, the Tornado servers in the Ceph client and
the cache module, and the state listener in the RL Engine
are activated. The data processing unit generates a random
integer following Zipf distribution and decides which object
to be requested according to the Zipf seed. Then a request of
the object is sent to the cache module.

The cache module maintains awareness of cache status real-
timely. Once the new request is detected, it is able to build up
the system state by cache storage status (cached chunks of all
objects), updated request history, and the currently requested
object. We denote this state as s(t) for clearer demonstration.
s(t) is further pushed to the RL Engine via a UDP message.
Then, the action listener is activated.

The RL Engine captures state message by the state listener
and makes an action a(t) based on previously trained neural
network. The RL Engine then sends a(t) to the cache module
through a UDP message and starts to listen for the reward.

The cache module obtains the action message a(t), and
begins the data flushing process. It first reads all cached chunks
of the requested object to its buffer, then sends a request for
the missing chunks from its Tornado client to the server in
Ceph cluster.

At the Ceph cluster, the chunks stored in Ceph OSDs are
fetched as the response data. When sending the response, the
Tornado server will flush the chunks into the network interface
one by one to achieve a streaming feature.

The cache module starts two threads simultaneously. The
fetching thread pushes the fetched bytes into the buffer. It is
also responsible to write a part of the chunks into files ac-
cording to a(t), and further store them into the cache storage.
The flushing thread keeps flushing the existing bytes in the
buffer to the network interface. When the buffer is empty, it
waits for the fetching thread until another chunk is ready in the
buffer. After all chunks are fetched and flushed, the connection
finishes. Then, the reward listener enters standby mode.

The data processing unit receives the data stream. A timer
will measure the download time from the moment when the
request is sent, to the moment when the connection is finished.
By subtracting the preset initial wait time and processing time,
it obtains the processing stall time. A UDP message carrying
stall time and download time is reported to the cache module.

The reward value is calculated at the cache module. Note
that three terms: chunk hit ratio, processing stall time, and
total delay. The chunk hit ratio is obtained from the cache
status which can be found in s(t). Further, the reward r(t —1)
is sent to the RL Engine.

At the RL Engine, r(¢) is utilized to train the neural
network. In our Q-Learning algorithm, the reward r(t — 1)
is correlated with the previous state and action, s(t — 1)
and a(t — 1). After the whole process is complete, the data
processing unit loops.

VI. EVALUATION

In this section, we present our evaluation results based on
the experimental setup described in the last section.

A. Configuration

1) Machine Setup: Virtual machines running the Ceph
cluster have identical disk space which is 10GB. The virtual
machine acts as the cache node has 256G B disk, 16GB
memory, and has a core of Intel Xeon CPU E5-2630 v3
(2.40Ghz).

2) Link Setup: All experiment machines are within the
same local network. We use the Linux TC traffic control
feature [12] to throttle the bandwidths between nodes. The
link between the user client and the cache node is set to
5MB/s, while the link between the cache node and the cloud
server node is 1MB/s. The bandwidths between Ceph nodes
(OSDs and Ceph client) are not a bottleneck, so no additional
bandwidth restriction is imposed.

3) Reward Weights: We adjust the weights in the reward
function, given in Equation (11). Based to the range of the
reward variables, we set o, ao, and a3 as 10, 10, and 1,
respectively. Using these weights, we make processing stall
time the most important reward metric in data processing
networks.

4) Objects: We use video files to run the experiments. Each
file consists of multiple chunks, where each chunk is 1MB.
Since the file sizes are not multiples of 10242, the last chunk
of each file can be less than 1MB. Further, the processing
speed of the files is divided into two groups — 1 MB/s and 3
MBY/s — to represent different data processing applications.

We generate file popularities using Zipf’s distribution [28]
with the parameter z = 1. We sort the files by their sizes as the
popularity ranks. In general, the file sizes and the popularities
are dependent on each other. We consider both positive and
negative correlation between the file size and the popularity.
In positive correlation, larger file sizes have higher popularity
and the reverse holds for negative correlation. The popularity
numbers are taken as the arrival rates of the requests at the
user client.

5) Evaluated Policies: We compare the proposed
DeepChunk policy with four baseline strategies, as described
below.

No Cache: This caching policy does not store anything in
the cache.

LRU: The LRU caching policy [29] moves the requested
file to the head of the cache, if already in the cache. If it is
not in the cache, the file is added to the head of the cache
and the files are removed from the tail to make space for the
incoming file. Due to different file sizes, multiple files can be
evicted to make space of a large incoming file.

KLRU: Instead of caching every missed request, kLRU
[26], [9] deploys k virtual LRU caches ahead of the phys-
ical LRU cache to achieve a selective caching scheme. The
virtual caches cache only file pointers instead of the data. A
virtual/physical cache will store the pointer/data only if there
is a hit in the LRU cache ahead of it, and replace the object
following the LRU policy. In our experiments, two kLRU
policies are tested. KLRU-1 and kLRU-2 policies apply 1 and
2 virtual caches ahead of their physical cache, respectively.

TABLE I
REWARD SUMMARY FOR POLICIES IN DIFFERENT POPULARITY AND
CACHE SIZE SETTINGS.

Reward

Policy Positive correlation, Negative correlation,
cache size = 80 cache size = 40
DeepChunk -38.1650385015 -9.4738189784
gLRU -50.824600919 -12.6091608098
kLRU-1 -58.5616000914 -9.8270152744
kLRU-2 -43.7540371966 -15.4748794595
LRU -56.9513351377 -16.6214642859
No cache -119.5670992208 -27.7861073589

gLRU: Distinct from the previous policies, the generalized
LRU [14] extends the LRU caching algorithm from file-level
to a chunk-level algorithm. Upon a request arrival, if the
requested file is not completely in the cache, one additional
chunk of that file will be stored. When the cache storage is
full, one chunk of the LRU object will be replaced. Further,
all chunks of the requested file will be moved to the head of
the cache (in order, such that the earlier chunks are towards
the head so that they are evicted later).

B. Evaluation Results

In this subsection, we compare the proposed DeepChunk
policy with the baseline policies stated above. The main results
are depicted in Figures 5 and 6.

Figure 5 shows the reward breakdown when popularities
and file sizes are positively correlated, and the cache size
is set to 80 chunks. From the figure, we observe that our
DeepChunk policy outperforms all other policies in terms of
both the chunk hit ratio and the processing stall time. As
compared to the file-level policies, our improvements are up to
11.71% and 39.70%, respectively. Since the reward weight of
response delay is set low, DeepChunk policy has a slightly
higher delay than kLRU-2 while being better in the other
two metrics. As compared with the other chunk-level policy
gLRU, DeepChunk is better for all three reward factors. We
note that one of the down-sides of gLLRU is that it takes a
long time to fill the cache since only one chunk is added for
each request. This startup phase is alleviated in other schemes,
including ours, which helps provide improved gains as the
system evolves or when the popularities of contents change.
This phase makes the rewards of the gLRU conservative, while
this issue is alleviated with the proposed DeepChunk policy.

As seen in Table I, DeepChunk policy improves the total
reward by 12.77 - 34.83% from other caching algorithms.
The chunk-level gLRU policy has 16.16% lower reward than
kLRU-2, which indicates that without optimizing the chunk
cache decision, chunk-level policies do not always gain a
better performance than file-level schemes in a data streaming
scenario.

Similar results are concluded from Figure 6. When the
file popularity and size are negatively correlated, DeepChunk
improves the total reward by up to 43.00%. Note that unlike
the previous popularity/cache size configuration, in this case,
kLRU-1 has a better performance than kLRU-2. Thus when
using the kKLRU policy, it is important to optimize the number
of virtual caches to be deployed.

Hit ratio
Stall time (s)

(a) Hit ratio

(b) Stall time

Delay (s)

—
o

(c) Delay

Fig. 5. Reward breakdown for different policies. Cache capability is 80 chunks, file popularity and size are positively correlated.

10

0.8
Z 06 < 2
(&)
£ 04 g
3]
£ 02 &

0 0
QQJ@Q QQ)@Q

(a) Hit ratio
Fig. 6. Reward breakdown for different policies. Cache capability is 40 chunks, file popularity and size are negatively correlated.

2 [
-104
1.5
)
: 5
A :
= [- h=
%3 0.2 &
0.5 —8— Hit Ratio
—o— Stall Time
0 1 1 I I 0

|
40 50 60 70 80
Cache Size

Fig. 7. LRU performance affected by cache size.

Intuitively, smaller cache size results in lower rewards.
We observed that even with cache size halved, all three
reward factors will be better when popularity and file size are
negatively correlated. In this experiment, although DeepChunk
compromises a lower chunk hit ratio, it has 13.27 - 36.36%
advantages to other caching policies on processing stall time,
resulting in an improvement of the overall reward.

In Figure 7 we show the improvement obtained by increas-
ing the cache size. Take the LRU policy as an example, both
stall time and chunk hit ratio are improved by 50% when
the cache size is increased from 40 chunks to 80 chunks.
With the increasing cache size, the average stall time improves
smoothly, while the chunk hit ratio does not. It is because a
slight increase in cache size is not able to make the storage
capacity for one additional big file.

Figure 8 describes the importance of cache chunk decision
optimization. We run the DeepChunk policy at the cache node
with an empty cache storage, while a file with 40 chunks is
repeatedly requested. As the time evolves, the chunk hit ratio

(b) Stall time

Stall time (s)
[=JN CRNGYCONIS

(c) Delay

n0
40
0 - —50
E J-100 £
E Q
20 - ~
—8— Reward —150
—o— Stall time
—a— Download time
I I I Py Py _
0 0 01 02 03 04 05 06 0.7 200

Hit ratio

Fig. 8. Reinforcement learning mechanism of DeepChunk decision making.

of individual requests will grow from O to 1 linearly. The
x-axis in the figure is marked by the chunk hit ratio of the
request. As it grows, the download time decreases linearly.
However, with the chunk hit ratio at 0.4 (iteration 10), the stall
time hits 0 which is its minimum. Thus at this state, caching
more chunks of this file will no longer gain rewards from the
stall time, which has a heavy weight. The reward curve shows
the same information, the growth slows down after the 10th
iteration. Since DeepChunk is a state-aware policy, it tends to
cache fewer chunks to save cache space for other files when
the stall time can no longer be improved.

We extract the reward variables for individual files while
running the experiments. In Figure 9, we compare the average
stall time and chunk hit ratio for each file when different
caching policies are applied. According to Figure 9 (a), the five
files shown experience similar stall time under the DeepChunk
policy. The standard deviation is 0.268, that is lower than
LRU’s standard deviation which is 2.189. As depicted in
Figure 9 (b), although chunk hit ratio is not the largest

15 03F
00 DeepChunk 0 B DeepChunk
= 00 LRU 0o 1RU
° 10 |- 12 02F g
V]
- =
= 5 T 0.1 b
n
0 0
N Vv > 2 o) N Vv > »)
§§® Qbe §§® Q\\Q) §§® Q\\Q) §§® Q\\Q) §§® Q&b

(a) Stall time (b) Hit ratio

Fig. 9. Reward breakdown for different files. The standard deviations of stall
time are 0.628 for CLRU and 2.189 for LRU. The standard deviations of
chunk hit ratio are 0.074 for CLRU and 0.104 for LRU.

8 T T I I 08 T I T T
—6— DeepChunk —o6— DeepChunk
n 6 —a— LRU 0.6 H —8— LRU B
~ o
= =
A= L | = L N
£ 4 204
= jasi
<
&n 2r 4102 -
0 | | | | | O | | | | |
Q Q Q Q Q Q Q Q Q Q
S P VRO S
& \9\/ \‘/o\’ N & {0\ ¥

(a) Stall time (b) Hit ratio

Fig. 10. Reward breakdown comparison for time bins, when the popularity
changes for every 50 requests.

weighted term in the reward function, DeepChunk still has a
lower standard deviation (0.074) as compared to LRU (0.104).
We can conclude that under the DeepChunk policy, more space
is saved to reduce the overall stall time among all files.

Finally, we measure the performance of the policies when
the popularity distribution suddenly changes. At the user client
node, we change the popularity ranking for each of the 50
requests. From Figure 10, we observe that since the Deep-
Cache keeps monitoring the historical probability distribution
of the requests in a sliding window, and its performance (both
processing stall time and chunk hit ratio) is better than the
static LRU algorithm. Thus this verifies that our DeepChunk
is more robust and has the ability to adapt to time-varying data
popularity in a dynamic environment.

VII. CONCLUSION

We propose DeepChunk to leverage powerful Q-learning to
make chunk-based cache update decisions on the fly in Data
Processing Networks, and to jointly optimize both network
performance and data processing objectives, including the
chunk hit ratio, processing stall time, and object download
time. Our prototype using Ceph demonstrates significant im-
provement, i.e., 43% in total reward and 39% in processing
stall time, over a number of baseline caching policies, as well
as DeepChunk’s ability to adapt to time-varying workload
and network conditions. As a future research, we plan to
incorporate other metrics such as the Age of Information into
DeepChunk and investigate the performance of DeepChunk in
a setting with network of caches.

[1]

[2]

[3

=

4

=

[5

[t

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

REFERENCES

M. D. de Assunc@o, A. D. S. Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” J. Network and Computer Applications, vol. 103,
pp. 1-17, 2018.

T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed
stream data processing using deep reinforcement learning,” CoRR, vol.
abs/1803.01016, 2018.

A. Elgabli, V. Aggarwal, S. Hao, F. Qian, and S. Sen, “Lbp: Robust rate
adaptation algorithm for svc video streaming,” IEEE/ACM Transactions
on Networking, pp. 1-13, 2018.

D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapreduce:
An in-depth study,” Proceedings of the VLDB Endowment, vol. 3.

N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, pp. 1-125, 2015.

Youtube help. https://support.google.com/youtube/answer/1722171.

Y. Kim and I. Yeom, “Performance analysis of in-network caching for
content-centric networking,” Comput. Netw., vol. 57, no. 13, pp. 2465—
2482, Sep. 2013.

D. K. Krishnappa, S. Khemmarat, L. Gao, and M. Zink, “On the feasi-
bility of prefetching and caching for online tv services: a measurement
study on hulu,” in International Conference on Passive and Active
Network Measurement. Springer, 2011, pp. 72-80.

D. Shasha and T. Johnson, “2q: A low overhead high performance buffer
management replacement algoritm,” in VLDB, 1994, pp. 439-450.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

Ceph. https://ceph.com/.

B. Hubert et al.,, “Linux advanced routing & traffic control howto,”
Netherlabs BV, vol. 1, 2002.

H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305-1314, 2002.

E. Friedlander and V. Aggarwal, “Generalization of Iru cache re-
placement policy with applications to video streaming,” arXiv preprint
arXiv:1806.10853, 2018.

D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network.”
in NSDI, 2017, pp. 483-498.

H. Ahlehagh and S. Dey, “Hierarchical video caching in wireless cloud:
Approaches and algorithms,” in /CC 2012. IEEE, 2012, pp. 7082-7087.
E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The
role of proactive caching in 5g wireless networks,” arXiv preprint
arXiv:1405.5974, 2014.

S. Sivasubramanian, G. Pierre, M. Van Steen, and G. Alonso, “Analysis
of caching and replication strategies for web applications,” IEEE Internet
Computing, vol. 11, no. 1, 2007.

Y. Zhao, J. Wu, and C. Liu, “Dache: A data aware caching for big-
data applications using the mapreduce framework,” Tsinghua science
and technology, vol. 19, no. 1, pp. 39-50, 2014.

A. Alabbasi, V. Aggarwal, T. Lan, Y. Xiang, M.-R. Ra, and Y.-F. R.
Chen, “Fasttrack: Minimizing stalls for cdn-based over-the-top video
streaming systems,” arXiv preprint arXiv:1807.01147, 2018.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” arXiv preprint arXiv:1801.05757, 2018.

H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in SIGCOMM. ACM, 2017, pp. 197-210.

G. Alnwaimi, S. Vahid, and K. Moessner, “Dynamic heterogeneous
learning games for opportunistic access in lte-based macro/femtocell
deployments,” IEEE Transactions on Wireless Communications, vol. 14,
no. 4, pp. 2294-2308, 2015.

O. Onireti, A. Zoha, J. Moysen, A. Imran, L. Giupponi, M. A. Imran,
and A. Abu-Dayya, “A cell outage management framework for dense
heterogeneous networks,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 4, pp. 2097-2113, 2016.

R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222-250, 1977.
M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM TOMPECS, vol. 1,
no. 3, p. 12, 2016.

Tornado web server. http://www.tornadoweb.org/en/stable/.

L. A. Adamic and B. A. Huberman, ‘“Zipf’s law and the internet.”
Glottometrics, vol. 3, no. 1, pp. 143-150, 2002.

A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page
replacement,” JACM, vol. 18, no. 1, pp. 80-93, 1971.

