
DAMGate: Dynamic Adaptive Multi-feature Gating in Program
Binaries

Yurong Chen, Tian Lan, Guru Venkataramani
{gabrielchen,tlan,guruv}@gwu.edu

ABSTRACT
Feature creep has emerged as a serious threat due to the growing
number of utilities and capabilities crammed into modern software
systems. While feature elimination and de-bloating techniques can
produce slimmer executables, a complete elimination of all unnec-
essary or unwanted features is often not possible, not only due to
the tight coupling of feature-related functions/codes, but also be-
cause the usefulness/necessity of program features is often di�cult
to determine statically and can vary during runtime. This paper
presents DamGate , a framework for dynamic feature customiza-
tion, allowing vigilant management of program features at runtime
to prevent violation of privacy and security policies. At the heart
of this technique is the selective placement of checker functions
(known as gates) into feature-constituent functions that need to
be protected. Through execution gating and feature validation on
the �y, DamGate provides di�erentiated control policy for program
features and enables �exible runtime recon�guration. The proposed
framework is prototyped and evaluated using LibreO�ce, a large-
scale o�ce suit. The evaluation results show that it can achieve
desired feature customization with negligible gating overhead.

KEYWORDS
feature customization; de-bloating; binary rewriting

1 INTRODUCTION
Modern software systems are typically crammed with diverse ca-
pabilities and utilities (known as program features) to facilitate
code reuse and enable compatibility under di�erent deployment
environments. However, the continuing expansion of software fea-
tures leads to the problem of feature creep [13], which not only
causes growing software complexity, larger installation footprint
and runtime overhead, but also results in an increased attack sur-
face with higher possibility of exploitable vulnerabilities, especially
in large-scale, object-oriented applications.

To mitigate feature creep, existing approaches often focus on
the elimination of undesired or unnecessary software features. Sev-
eral proposals have been made towards feature separation [22],
reduction [13] and code de-bloat [12, 37], such as static analysis
and program slicing to trim features either in program source code
or through runtime de-bloat [35, 37]. While feature elimination can
produce slimmer executables prior to deployment, the permitted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
FEAST’17, November 3rd, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-5395-3/17/11. . . $15.00
DOI: http://dx.doi.org/10.1145/XXXXXX.XXXXXX

features still need to be vigilantly managed at runtime, due to a
number of reasons. (i) The usefulness of program features is often
di�cult to determine statically. It is shown that 83% of available
browser features are executed on less than 1% of the most popular
10,000 websites [30]. Although these features are required to guar-
antee usability, they constitute a signi�cant source of feature bloat,
which can only be mitigated via a dynamic management approach.
(ii) Permitted features can still lead to serious security issues if they
are not managed properly. For instance, system logging and money
transfer (both necessary, permitted features) executed simultane-
ously in a banking system can potentially result in information
leakage or even unauthorized behaviors [13]. (iii) Due to entangle-
ment and dependency between features, a complete elimination of
unnecessary features while maintaining all desired features may be
impossible, e.g., the removal of Google Instant feature also disabled
some useful keyboard shortcuts such as “ESC” (jumping to text
search box) and “Tab” (jumping to the �rst search result).

In this paper, we propose DamGate (Dynamic Adaptive Multi-
feature Gating), a binary customization tool that enables dynamic
management of software features in an adjustable and tailored fash-
ion. After a de-bloated executable is obtained through feature elimi-
nation, the remaining (permitted) features are then customized with
respect to users’ preferences, system security policies and applica-
tion contexts. DamGate complements existing feature elimination
approaches by protecting the de-bloated binaries through dynamic
gating and feature validation during runtime. In particular, access
to program features that are unnecessary under current security
policy or execution context are prohibited by gating, in order to
prevent any undesired interaction between admitted features. Our
approach enables �ne-grained management of program features
that are tightly coupled or cannot be permanently removed due to
the negative impact on usability. DamGate ’s gating approach also
enables agile feature recon�guration as user preference or system
environment changes. It provides di�erentiated feature control and
security policies through gates that are customizable on the �y.

A key feature of DamGate is that it performs feature customiza-
tion on binaries. This is motivated by the fact that many legacy
programs, playing a critical role in government and military systems
such as the Strategic Automated Command and Control System
used in Department of Defense [6], often do not have source code
available. With more components and abstractions retro�tted to
existing software systems to meet the continuously growing re-
quirement, feature creep has been an obtrusive and hard issue in
commercial software and legacy systems [6, 10, 13]. Our DamGate
leverages existing binary rewriting tools such as [26, 29, 31] to
analyze and instrument binaries, in order to enable feature cus-
tomization for legacy programs.

DamGate consists of two main modules, namely feature identi-
�cation and feature customization. First, after disassembling and
conducting control �ow analysis of binaries, DamGate identi�es

a0

y1

b0

a1 a2 a3

y2 q

b1 b2 b3 b4

direct function call indirect function call

Figure 1: Running example: call graph of printer system

and extracts target features that are de�ned through speci�c seed
functions from program call graphs. Examples of seed functions
include critical functions that are related to user privacy and pro-
gram capability, and the core functions that enable certain services
required by implementation of program features. Next, to protect
each feature from unauthorized access, DamGate places “gates”
(which are checker functions) to �lter function calls from or to
other features/functions. While direct function calls have �xed
callees, the addresses of indirect callees are undetermined prior to
runtime, which requires further analysis. Thus, we develop two
di�erent mechanisms for placing gates at direct and indirect func-
tion calls/jumps, respectively. The binaries are then instrumented
in a way that administrators can conveniently modify the gates
and update gating policies, thus enabling quick recon�guration and
management of diverse program features.

We implement a prototype of DamGate . To fully automate fea-
ture identi�cation and customization, we leverage a number of
tools from binary static analysis (CodeSurfer [2]), dynamic analysis
(Pin [26]) and rewriting (Dyninst [31]). The output of DamGate is
a de-bloated, modi�ed version of binary executables with feature
customization enforced through gating. We evaluate the e�ective-
ness of DamGate on real-world applications such as LibreO�ce, an
open source o�ce software suite. We show that DamGate succeeds
in identifying and customizing various features, and in preventing
the unwanted interactions among di�erent features. The number
of instructions for placing each direct and indirect gate is around
70 and 150, respectively. The total instruction increase of DamGate
is around 0.0068% compared with original programs.

In summary, this paper makes the following contributions:
• We design DamGate , an automated tool that enables fea-

ture identi�cation and customization with binaries. It pro-
vides dynamic management and protection of di�erent
program features.

• By placing gates at direct and indirect function calls/jumps,
DamGate enables dynamic feature recon�guration to be
adaptive to changing security policies and user preferences.

• DamGate is evaluated on real-world, large-scale applica-
tions such as LibreO�ce. The results show that DamGate
can achieve the desired feature customization with negli-
gible gating overhead.

2 MOTIVATION
Our DamGate framework for dynamic feature customization is
motivated by the fact that simply admitting all necessary program
features (after elimination) can still pose serious security risks.

Binary Call Graph CG Taint-
ing

Feature
Con-
stituent
Functions

Seed
Function

Gate
Placement

Binary
Rewrite

Customized
Binary

Feature Identi�cation

Feature Customization

Figure 2: DamGate System Diagram

More precisely, since program features are often tightly coupled,
without proper protection and isolation of feature-constituent func-
tions, any undesired interaction of di�erent features (e.g., evoking
functions belonging to a logging feature when executing other
banking features) can give rise to security threats such as informa-
tion leakage and privilege escalation [15]. Dynamic customization
also becomes vital in security systems that require multi-level secu-
rity management, as it enables di�erent access to program features
to be set up for di�erent groups of users, e.g., in networked printers
with di�erent WAN-related features that can be exploited for DoS
or even physical attacks [21].

Dynamic feature customization is especially hard for legacy soft-
ware whose source codes are usually unavailable. Hence DamGate
focus on binaries. Due to the lack of debugging information in
stripped binaries, program functionality is normally di�cult to
interpret regarding code semantics and control �ows, let alone to
analyze and instrument the program for features customization.
Furthermore, the optimizations carried out during multiple phases
such as compiling and linking can divide function bodies apart,
making it even harder to acquire the necessary information related
to features.

In this paper, we focus on feature customization and assume
that improper control �ow transfers such as ROP and JOP can
be protected by existing techniques such as ASLR (Address Space
Layout Randomization) [42] and CFI (Control Flow Integrity) [1, 43].
We also do not consider self-modifying codes which can be analyzed
by other techniques [4, 27].

Figure 1 shows an illustrative example of two coupled features
from a printer system, where a, b and y denote functions related to
networking, printing and logging, respectively. These three features
are permitted after feature elimination.

When function y1 is called (by a0 or b0), it will log some infor-
mation of the caller (e.g., current system states) and then pass it
to its callee function (a1 or b1). When networking and printing
features are permitted at the same time, y1 can possibly take the
information from a0 (or b0) and transfer it to b1 (or a1). Moreover,
when b3 is supposed to jump to its own feature function b4, it can
be redirected to y2, which results in undesired logging. Both of
these two situations can lead to risky states that a�ect security
and privacy of the printer system. A more detailed analysis of this
example will be provided in section 3.

3 SYSTEM DESIGN
The system diagram of DamGate is depicted in �gure 2. The goal of
DamGate is to customize the execution of remaining feature func-
tions after eliminating unwanted program features with de-bloat.
It takes a binary (executable or shared object �les) and a set of seed
functions (for feature identi�cation) as inputs. The binary will be
disassembled into assembly code to perform static call graph anal-
ysis. In parallel, we will run the binaries and analyze its dynamic
call graph. By combining both static and dynamic call graphs, a
relatively precise call graph (CG) is generated for feature identi�ca-
tion. Relying on the input seed functions that de�ne unique feature
operations, capabilities, or system service access, we identify all
constituent functions for each feature on the CG. Next, we develop
an algorithm for choosing functions that need to be gated along var-
ious execution paths to enable feature customization, after which
binary rewriting tools are used to insert gates into binaries. The
gates will separate di�erent features and protect the target feature
from being in�ltrated by other features.

We notice that direct and indirect function calls require di�erent
treatment in both call graph generation and gating. While the callee
of direct function calls can be easily identi�ed in assembly, the indi-
rect function calls can not be statically decided. Thus, dynamic call
graph methods are employed to obtain the exact call sequences of
target features. These two types of function calls also need di�erent
gating mechanisms. Our DamGate consists of two major modules,
feature identi�cation and gate placement, which are detailed in the
rest of this section.

3.1 Feature Identi�cation
For feature identi�cation, we assume that the information of seed
functions are available to us to bootstrap and identify various
program features. Formally, we de�ne program features as follows.

De�nition 3.1. Program Feature: Each feature, denoted by F i ,
is de�ned by a set of constituent functions, e.g., F i = { f i1 , f

i
2 , ..., f

i
n }.

Further, for each feature i , there exists a seed function f is ∈ F i ,
which uniquely represents the type of operation, utility, or capabil-
ity of the program feature1. All other constituent functions in the
set F i are located on the execution paths leading to seed function f is .
The set of all program features is denoted by F = {F 1, F 2, ..., Fm }.

De�nition 3.2. Admitted Program Feature: A subset of pro-
gram features, A ⊂ F , that are allowed to be executed in the
current environment or under current user’s privilege, is de�ned
as the admitted program features A.

For the example depicted in �gure 1, seed function a3 and b3 are
given, and the call graph related to them is constructed. Suppose
that the features associated with seed a3 and b3 are F 1 and F 2, re-
spectively. Then F 1 = {a0,y1,a1,a2,a3,y2,q}, F 2 = {b0,y1,b1,b2,
b3,y2,b4}. If the admitted feature is F 1, then functions that belong
to F 2 should not be accessed, thus requiring gates to be placed
along the execution paths.

We adopt call graph analyses to identify each feature F i , by
extracting the functions along the execution paths that lead to each
target seed function. Static analysis alone cannot be su�cient since
1Complex program feature may contain more than one seed functions. Our system
model in this paper can be easily extended to take multiple seed functions into account

a0

y1

b0

a1 a2 a3

y2 q

b1 b2 b3 b4

function without gate function with direct gate

function with indirect gate

Figure 3: Illustration of Gating using a running example

they will not resolve the indirect control �ow transfers. At the
same time, dynamic call graph only represents one speci�c run of
the program. On the other hand, symbolic execution [29, 41] can
provide a high code coverage but are not feasible in practice due to
the problem of path explosion in large-scale software systems.

To this end, we combine the information from static and dynamic
call graph analysis for better feature identi�cation. Once static
call graph is generated, we annotate the function calls with their
call types, i.e., direct or indirect call. Then we perform dynamic
instrumentation to explore more function calls as follows: (1) We
execute the program and guide the execution to each leaf node in
the static call graph. If there are still control �ow branches inside
the leaf node, every branch will be marked and executed using
the forced execution technique in [38]; (2) For caller functions
annotated with indirect call, we force the program to go through
all branches in this caller function and to expand the call graph.

We collect the information from both static and dynamic analyses
to build a combined call graph as the base of feature identi�cation.
To facilitate further analysis, direct function calls that belong to
the same features are merged as a supernode in the call graph. No
feature checking needs to be performed inside a supernode because
the function calls cannot lead to other features.

After the execution paths associated with the target feature i are
extracted, all the functions belonging to these paths will be tainted
as elements of the set F i . We iteratively perform this extraction
and tainting procedure for all features of interest in the program
binaries.

3.2 Feature Customization
For feature customization, we insert gates in di�erent feature-
constituent functions to prevent the execution of unpermitted
features/functions. Without loss of generality, consider a single
admitted program feature F i , while other features F j for j , i are
not allowed. Our DamGate places Gate selectively in functions
from set F i to ensure that the control �ow transfers always happen
within the perimeter of feature F i . If function calls go beyond the
admitted feature, the gate will throw an exception and terminate
the execution.

De�nition 3.3. Gate A gate is a checker function that is inserted
by DamGate into the original binary code. Gates ensure that the
current execution stays in constituent functions belonging to ad-
mitted program features A and terminates the execution if it steps
beyond the permitted boundary.

...
mov $0x0,%r8d
mov %rax,%rcx
lea 0x2068f8(%rip),%rdx
lea 0x21a62a(%rip),%rsi
mov $0x0,%edi
call 0x2aaab0945e70
cmp $0x0,0xe(%rsp)
...

jmp *0xa5d2d2(%rip)
push $0x29
jmp 0x2aaab0945bd0
...

...
mov $0x0,%r8d
mov %rax,%rcx
lea 0x2068f8(%rip),%rdx
lea 0x21a62a(%rip),%rsi
mov $0x0,%edi
dg:
...;
cmp %rex, admitted_feature
jlt dg_deny
call 0x2aaab0945e70
cmp $0x0,0xe(%rsp)
...

dg_deny:
...; store current state
mov ax,0x4c01;feature denied
int 0x21 ; exit

jmp *0xa5d2d2(%rip)
push $0x29
jmp 0x2aaab0945bd0
...

Code with direct gateOriginal code

Figure 4: Binary rewriting for direct gating. Gate-related in-
structions are in the dashed box.

In an aggressive gating scheme, every functions that are tainted
with admitted features will be gated, and this will likely incur pro-
hibitive runtime overhead. Based on the assumptions in section 2,
we propose the following light-weight gating strategy on given con-
trol �ow graphs: (1) For direct function calls, we place gates to check
whether the features are permitted to determine the legitimacy of
current execution. The control �ow transfer of direct function calls
are not checked as mentioned in section 2; (2) Function returns are
not instrumented, assuming that control �ow integrity is protected
using techniques mentioned in section 2; (3) Along the execution
path of each permitted feature, if the forking nodes in the call graph
are gated, then merging nodes are considered as safe because only
branches with the admitted feature can lead to them. Thus, we
do not place gates at merging nodes (while we note that this only
applies to direct function calls).

For indirect function calls along the execution path, we check
both the legitimacy of control �ow transfers and the associated
features of the callee function.

As mentioned previously, the di�erences between direct and
indirect function calls require di�erent gating mechanisms. We use
the term direct gates for the codes checking direct function calls
and indirect gates for the others. Let DG and IG denote the sets
of direct and indirect gates, respectively. In summary, the target
functions, in which direct and indirect gates are placed, are selected
through the following steps: (1) For direct function calls, a function
is gated only if it satis�es two conditions. (a). It is a forking node
in the call graph, e.g., multiple functions can be invoked from this
caller; (b). At least one of the callee functions belongs to a di�erent
feature other than the features associated with the caller function.
It is easy to see that if the callee and caller have exact the same
set of features, then no gate needs to be placed to di�erentiate the
executions. Thus, the caller function of direct calls are assigned to
set DG; (2) All indirect function calls are assigned to IG, and all
associated features of each callee function will be checked against
the set of admitted program featuresA, to determine the legitimacy
of an execution. The design of direct and indirect are detailed next.

...
mov $0x1,%esi
movzbl %sil,%esi
mov %rbp,%rcx
mov foo,%rax
call *%rax
mov %eax,%r12d
lea 0x21a757(%rip),%rsi
...

push %rbp
push %rbx
sub $0x98,%rsp
call 0x2aaaaad96165
...

...
mov $0x1,%esi
movzbl %sil,%esi
mov %rbp,%rcx
mov foo_ig, %rax
jmp ig

ig_back:
mov %eax,%r12d
lea 0x21a757(%rip),%rsi
...

ig:
;validate indirect call
;check %rax
...
call *%rax
mov ax,0x4c01; invalid call;
int 0x21; exit
...

foo_ig:
;verify feature
...
jnez foo
mov ax,0x4c01;feature denied
int 0x21; exit

foo:
...
jmp ig_back

Code with indirect gateOriginal code

Figure 5: Binary rewriting for indirect gating. Gate-related
instructions are in the dashed box.

3.3 Direct Gates
We add a direct gate before each direct function call for the func-

tions in setDG . Before runtime, functions of interests will be tainted
with appropriate features through the call graph analysis. The ad-
mitted program features (denoted as feature index) are hard-coded
into each function to reduce runtime overhead. Caller functions
will store the feature index of callee functions. On the other hand,
the index of admitted features are stored in the con�guration �le to
enable dynamic management and recon�guration under di�erent
security policies and environments.

A direct gate will retrieve the list of associated features of both
caller and callee functions, then compare them with the set of ad-
mitted program features. Only when the caller and callee functions
both belong to the admitted program featureA, shall the execution
proceed to the callee function.

As illustrated in �gure 4, a direct gate labeled as dд is placed
before the original function call. If the current feature access is
denied, the execution will be redirected to dд_deny, which is a
system interrupt. Otherwise, the result ofdд veri�cation is validated,
meaning that the features of both original caller and callee functions
are within the set of admitted program features. The direct gate will
guide the program to the original call site and continue its normal
execution.

3.4 Indirect Gates
In order to gate indirect function calls for feature customization,
we �rst need to identify all indirect call sites, denoted by the set IG .
This is achieved through the following steps: (1) From the dynamic
call graph generated in section 3.1, we perform cross inference
to recursively resolve part of the indirect function calls. This will
reveal most of the relevant indirect calls. (2) For indirect function
calls whose calling addresses are hard-coded, we can easily �nd

indirect code entries from relocation table. (3) In addition to the
two steps above, we also over-approximate the possible indirect
callee functions using VSA(Value Set Analysis) as mentioned in [3].

The indirect function calls identi�ed through the above steps
will be considered as valid control �ow transfers and DamGate
creates a trampoline function for each valid indirect function calls
in the protected memory region. The protected memory region has
a special address format [42]. DamGate enforces the CFI (Control
Flow Integrity) of these valid indirect calls by implementing the
approach mentioned in [16, 42]. When indirect function call occurs,
it is redirected to the associated trampoline function. Di�erent from
the checkings in [42], indirect gates in DamGate will check both the
control �ow integrity and feature legitimacy of the target function
calls. Before the trampoline function is called, the indirect gate
will check if the callee address resides in the protected memory
region. Additionally, before the trampoline function jumps back
to the original callee function, another check will be performed to
verify if the feature of callee function is permitted.

The control �ow transfers of indirect gating are shown in �g-
ure 5. Suppose the original indirect function call happens when
the address of function f oo is loaded into register %rax and call
*%rax is executed. Instead of letting f oo get invoked, the indirect
gate will replace the address of f oo with a pre�xed trampoline
function f oo_iд. Before calling f oo_iд, we’ll check the format of
f oo_iд’s address to make sure that it’s the function in the protected
memory region. Once validated, function f oo_iд will be invoked.
Function f oo_iд will perform feature veri�cation then jump to the
actual implementation of function f oo if current function feature is
admitted. At the end of function f oo, a jump instruction will lead
the program back to the next instruction of original f oo call site,
labeled as iд_back .

We illustrate the policy of gate placement in �gure 3 using
the example from �gure 1. Function y1 can invoke a1, b1 and a2
through function pointers as denoted by dashed line between func-
tions.Function a2 is also the caller of an indirect call. As such, y1
and a2 will be checked by direct gates. Function b3 is a forking node
and only involves direct function calls, so it is checked by a direct
gate.

4 IMPLEMENTATION
This section shows the tools we use to achieve the design of sec-
tion 3. DamGate relies on several binary analysis and instrumen-
tation tools to achieve our goal of identifying features, protecting
function calls and rewriting binaries.

We utilize both static and dynamic analyses to get a more ac-
curate and representative call graph from binaries and object �les.
CodeSurfer [2], a static analysis tool, is used for static binary call
graph generation. It can investigate properties and behaviors of bi-
naries, including CFG generation. CodeSurfer incorporates IDAPro
to parse the input binary �le and generate an initial version of CFG,
followed by VSA (Value-Set Analysis) and ASI (Aggregate Structure
Identi�cation) to further analyze indirect jumps and calls. However,
the discover of indirect calls are still not precise in CodeSurfer and
the dynamic binary instrumentation tool Pin is used to generate
the dynamic call graph (execution path) of speci�c runs [11, 26]. By
combing static and dynamic call graph, we can recursively explore

Direct Gate Indirect Gate
Feature # gates avg. # in-

struction
gates avg. # in-

struction
Save �le 13 75 106 150
Insert Image 22 67 91 150
Print �le 16 70 64 153

Table 1: Gating statistics on LibreO�ce

the possible indirect function calls and complete the control �ows
for features.

In the feature customization module, we use Dyninst [31] to
statically rewrite the binaries for both direct and indirect gates
using di�erent policies as described in section 3. Dyninst provides
APIs for instrumenting binaries with which we create a “mutator”
program to perform the modi�cation on “mutatee” program (the
original binary). The resulting binary will have the gating policies
enforced. As mentioned in section 3.3, a separate con�guration
�le is also created to store the information of currently admitted
features.

5 EVALUATION
We perform and evaluate DamGate on LibreO�ce binary, a cross-
platform o�ce software suite. All experiments are conducted on
an 8-core 3.4GHz Intel i7-3770 server with 16GB RAM.

5.1 overhead
As shown in table 1, the number of instructions for each direct and
indirect gate is around 70 and 150, respectively. Within each feature,
we notice that the children of a forking point usually contain all the
features of their parent, e.g., the features of children is a superset of
feature of parent. In this case, if a direct gate is placed in the forking
function, the function calls will always be allowed as long as the
caller has the admitted feature. This greatly reduces the number of
direct gates placed within a feature. These children functions, such
as setting up display parameters, are typically near the leaves of
call graph and perform basic tasks that can be reused by multiple
features. The separation of features are mainly achieved by indirect
gates as indicated by the number of direct and indirect gates in
table 1.

5.2 protection
When the customized binary is produced, it’s executed multiple
times to test its e�ectiveness of protection. The protection goal is
to only allow features that are speci�ed in the con�guration �le.
To enforce di�erent protection policies, no modi�cation is required
on the binary but on the con�guration �le. Ideally, features not
in the con�guration �le cannot be executed after gating. This can
be easily achieved by gating at more functions. As mentioned in
section 3, we selectively place gates to reduce the redundant checks.
Hence, if there are multiple entries for a certain feature, it may still
be possibly reached when one of the entries is blocked.

We evaluate the level of protection using the number of functions
that are unique to the target feature, number of common functions
shared with other features and the number of functions unique to
other features as shown in �gure 6. Note that the common functions
for program initializations, which are not directly related to feature

Save �le Insert image Print
0

0.5

1

1.5

2
·104 20,638

5,923

9,078
7,445

4,276 4,365

0 0 0

#F
un

ct
io

ns

U C O

Figure 6: Statistics of functions that can still be accessed af-
ter gating: U, C and O stand for unique functions that only
belong to current feature, common functions shared by cur-
rent feature and other features, functions that don’t belong
to current feature, respectively.

implementations, are excluded from the second bar of each feature.

5.3 case study
LibreO�ce is an o�ce software suite with hundreds of features.
After the program launches and �nishes initialization, it will keep
listening and yielding to the next event. Di�erent functionalities are
invoked by callback mechanism when user operations are detected.
We �rst put gates along the execution path from main to callback
point, then gate functions within each feature.

From our binary analysis, approximately two million functions
are contained in LibreO�ce binaries and libraries, from which
about 193519 are necessary for the three features we evaluated
as shown in �gure 6 and the rest can be removed by de-bloating
techniques. Our customization only incurs a slight code increase of
about 0.0068%.

6 RELATEDWORK
E�orts have been made towards program feature extraction and
decomposition from both research and industrial areas. With in-
creasing number of functionalities being added to existing code
base, the software can be notoriously bloated which further leads
to security and performance issues.

Bloat Analysis: Plenty of works have been done to analyze and
ameliorate both static and dynamic code bloat [20, 37] . Yufei Jiang
et al. utilize program slicing methods and data �ow analysis to
achieve feature removal [13]. Given the function to be removed,
they discover and delete codes related to its return value, param-
eter and call site through the whole program. Jred [12] lifts Java
bytecode into Soot IR then removes unused methods discovered
from program call graph. After trimming, IR is re-transformed into
Java bytecode to produce a light-weight program. While static de-
bloating mainly aims at removing unwanted functions to reduce
code size, dynamic de-bloating targets at improving runtime per-
formance by detecting ine�cient memory usage and redundant
instructions. Guoqing Xu et al. propose a pro�ling approach to
summarize the data copies during runtime, rooted from the obser-
vation that intensive copies typically indicates excessive program
activities. Analyses of copy activities are conducted to �nd hot copy
chains thus providing suggestions for programmers to achieve po-
tential performance gain. Other works by Xu [35, 36] harnesses
dynamic slicing to discover low-utility data structures where the

cost of generating such data structures are higher than the bene�t
of using them. Khanh Nguyen et al. [23] design Cachetor to pinpoint
operations that keep generating identical values. Such values are
cached for later use thus to reduce runtime bloat.

While the goal of above works is to de-bloat with respect to code
size or runtime performance, we focus on dynamic recon�guration
of features after code de-bloating. Moreover, most of the de-bloating
approaches have the limitation of only working with object oriented
programming languages while our proposal, DamGate , can be
directly applied to binaries. We leverage a series of binary analysis
and rewriting tools to achieve this.

Binary Analysis and Rewriting: Binary code analysis is nec-
essary to enable other analyses such as reverse engineering [32],
debugging [14] and vulnerability examination [17, 28, 34]. DamGate
requires tools that can generate call graph from binaries [2, 7, 11, 18,
38] and perform binary rewriting [26, 31]. FXE [38] is proposed to
construct control �ow graphs from binaries by forcing the program
to execute both branches of each condition in a virtual environment.
The address of branches not taken at the �rst iteration will be saved
and executed later. Similar to this idea, we also force the program to
explore possible function calls in each branch. However, we will �rst
generate a static call graph using CodeSurfer [2] and later we only
perform this enforcement at selected functions based on existing
information of static call graph and avoid redundant explorations.
Trin-Trin [11], a dynamic call graph generator, utilizes Pin API to
track threads and processes then produce per-thread call graphs.
By analyzing, merging and pruning these per-thread call graphs,
the call graph for the whole program will be created. This approach
will also include the system calls. In DamGate , instead of exploring
in depth of the call graph of a certain feature, it’s preferable that
the call graph can grow in width where functions that can fork
and invoke multiple targets (especially indirect calls) are captured.
The combination of static and dynamic analysis can also be applied
to �elds such as program vulnerability identi�cation [41], bound
check removal [39] and binary di�ering [19].

Control Flow Integrity: Di�erent methods and evaluations for
control �ow integrity have been proposed [5, 8, 9, 24, 25, 33, 40, 43].
CCFIR [42] validates each indirect control transfer by creating a
function stub inside a springboard memory area (with special ad-
dress format) and redirecting original transfer to this stub. Address
checks are performed before redirecting as well as function return
to make sure each indirect call at runtime leads to a predetermined
valid target. We use the similar idea to verify both legitimacy of
indirect function calls and function features.

7 CONCLUSION
In this paper, we present DamGate , a prototype that customizes bi-
nary programs to protect feature executions. DamGate places gates
(checker functions) into selected feature constituent functions af-
ter identifying features from program call graphs. The customized
binary will prevent undesirable control transfers among di�er-
ent features and be easily adapted to di�erent protection policies
without being modi�ed. Our evaluation results on LibreO�ce, a
large-scale o�ce software system, show that DamGate can achieve
desired protection with minor runtime overhead of around 70 and
150 extra instructions for each direct and indirect gate, respectively.
The total percentage of gating instructions introduced by DamGate

to LibreO�ce is only 0.0068% compared with the original program.

8 ACKNOWLEDGEMENTS
This work was supported by the US O�ce of Naval Research (ONR)
under Award N00014-17-1-2786 and N00014-15-1-2210. Any opin-
ions, �ndings, conclusions, or recommendations expressed in this
article are those of the authors, and do not necessarily re�ect those
of ONR.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-�ow

integrity. In Proceedings of the 12th ACM conference on Computer and communi-
cations security. ACM, 340–353.

[2] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. 2005.
CodeSurfer/x86:A platform for analyzing x86 executables. In Compiler Construc-
tion. Springer, 139–139.

[3] Ti�any Bao, Johnathon Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. Byteweight: Learning to recognize functions in binary code. USENIX.

[4] Andrew R Bernat, Kevin Roundy, and Barton P Miller. 2011. E�cient, sensi-
tivity resistant binary instrumentation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. ACM, 89–99.

[5] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-�ow integrity: Precision, security,
and performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16.

[6] Information Technology Management Issues David A. Powner, Director. 2016.
Federal Agencies Need to Address Aging Legacy Systems.

[7] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev. ng: a
uni�ed binary analysis framework to recover CFGs and function boundaries. In
Proceedings of the 26th International Conference on Compiler Construction. ACM,
131–141.

[8] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control jujutsu: On the
weaknesses of �ne-grained control �ow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 901–913.

[9] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
grained control-�ow integrity for kernel software. In Security and Privacy (Eu-
roS&P), 2016 IEEE European Symposium on. IEEE, 179–194.

[10] The Standish Group. 2014. Chaos Report.
[11] Rohit Jalan and Arun Kejariwal. 2012. Trin-trin: Who is calling? a pin-based

dynamic call graph extraction framework. International Journal of Parallel
Programming (2012), 1–33.

[12] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization
and Bloatware Mitigation Based on Static Analysis. In Computer Software and
Applications Conference (COMPSAC), 2016 IEEE 40th Annual, Vol. 1. IEEE, 12–21.

[13] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. 2016. Feature-Based Soft-
ware Customization: Preliminary Analysis, Formalization, and Methods. In High
Assurance Systems Engineering (HASE), 2016 IEEE 17th International Symposium
on. IEEE, 122–131.

[14] Christopher Kruegel, William Robertson, and Giovanni Vigna. 2004. Detecting
kernel-level rootkits through binary analysis. In Computer Security Applications
Conference, 2004. 20th Annual. IEEE, 91–100.

[15] Yongbo Li, Fan Yao, Tian Lan, and Guru Venkataramani. 2016. Sarre: semantics-
aware rule recommendation and enforcement for event paths on android. IEEE
Transactions on Information Forensics and Security 11, 12 (2016), 2748–2762.

[16] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Archi-
tecture.. In USENIX Security Symposium.

[17] Xiaozhu Meng and Barton P Miller. 2016. Binary code is not easy. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. ACM,
24–35.

[18] Jiang Ming and Dinghao Wu. 2016. BinCFP: E�cient Multi-threaded Binary
Code Control Flow Pro�ling. In Source Code Analysis and Manipulation (SCAM),
2016 IEEE 16th International Working Conference on. IEEE, 61–66.

[19] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Di�ng via System Call Sliced Segment Equivalence
Checking. In 26th USENIX Security Symposium USENIX Security 17).

[20] Nick Mitchell and Gary Sevitsky. 2007. The causes of bloat, the limits of health.
In ACM SIGPLAN Notices, Vol. 42. ACM, 245–260.

[21] Jens Müller, Vladislav Mladenov, Juraj Somorovsky, and Jörg Schwenk. 2017. SoK:
Exploiting Network Printers. In Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 213–230.

[22] Gail C Murphy, Albert Lai, Robert J Walker, and Martin P Robillard. 2001. Separat-
ing features in source code: An exploratory study. In Software Engineering, 2001.
ICSE 2001. Proceedings of the 23rd International Conference on. IEEE, 275–284.

[23] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting cacheable data to
remove bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM, 268–278.

[24] Ben Niu and Gang Tan. 2014. Modular control-�ow integrity. ACM SIGPLAN
Notices 49, 6 (2014), 577–587.

[25] Ben Niu and Gang Tan. 2015. Per-input control-�ow integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 914–926.

[26] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
2010. Pinplay: a framework for deterministic replay and reproducible analysis
of parallel programs. In Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, 2–11.

[27] Kevin A Roundy. 2012. Hybrid analysis and control of malicious code. Ph.D.
Dissertation. The University of Wisconsin-Madison.

[28] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware.. In NDSS.

[29] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: O�ensive techniques in binary analysis.
In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 138–157.

[30] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
feature usage on the modern web. In Proceedings of the 2016 ACM on Internet
Measurement Conference. ACM, 97–110.

[31] Open Source. 2016. Dyninst: An application program interface (api) for runtime
code generation. Online, http://www.dyninst.org.

[32] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling..
In USENIX Security Symposium. 627–642.

[33] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. 2012.
Securing untrusted code via compiler-agnostic binary rewriting. In Proceedings
of the 28th Annual Computer Security Applications Conference. ACM, 299–308.

[34] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic Function
Detection in Obfuscated Binaries via Bit-precise Symbolic Loop Mapping. In
Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 921–937.

[35] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,
and Gary Sevitsky. 2010. Finding low-utility data structures. ACM Sigplan Notices
45, 6 (2010), 174–186.

[36] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,
and Gary Sevitsky. 2014. Scalable runtime bloat detection using abstract dynamic
slicing. ACM Transactions on Software Engineering and Methodology (TOSEM) 23,
3 (2014), 23.

[37] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.
2010. Software bloat analysis: �nding, removing, and preventing performance
problems in modern large-scale object-oriented applications. In Proceedings of
the FSE/SDP workshop on Future of software engineering research. ACM, 421–426.

[38] Liang Xu, Fangqi Sun, and Zhendong Su. 2009. Constructing precise control �ow
graphs from binaries. University of California, Davis, Tech. Rep (2009).

[39] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan, and Guru Venkatara-
mani. 2017. SIMBER: Eliminating Redundant Memory Bound Checks via Sta-
tistical Inference. In IFIP International Conference on ICT Systems Security and
Privacy Protection. Springer, 413–426.

[40] Fan Yao, Jie Chen, and Guru Venkataramani. 2013. Jop-alarm: Detecting jump-
oriented programming-based anomalies in applications. In Computer Design
(ICCD), 2013 IEEE 31st International Conference on. IEEE, 467–470.

[41] Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Tian Lan, and Guru Venkatara-
mani. 2017. StatSym: vulnerable path discovery through statistics-guided sym-
bolic execution. In Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on. IEEE, 109–120.

[42] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical control �ow integrity and
randomization for binary executables. In Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 559–573.

[43] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS Binaries..
In USENIX Security Symposium. 337–352.

	Abstract
	1 Introduction
	2 Motivation
	3 System Design
	3.1 Feature Identification
	3.2 Feature Customization
	3.3 Direct Gates
	3.4 Indirect Gates

	4 Implementation
	5 Evaluation
	5.1 overhead
	5.2 protection
	5.3 case study

	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References

