
1

DeepChunk: Deep Q-Learning for Chunk-based
Caching in Wireless Data Processing Networks

Yimeng Wang, Yongbo Li, Tian Lan, and Vaneet Aggarwal

Abstract—A Data Processing Network (DPN) streams massive
volumes of data collected and stored by the network to multiple
processing units to compute desired results in a timely fashion.
Due to ever-increasing traffic, distributed cache nodes can be
deployed to store hot data and rapidly deliver them for con-
sumption. However, prior work on caching policies has primarily
focused on the potential gains in network performance, e.g., cache
hit ratio and download latency, while neglecting the impact of
cache on data processing and consumption.

In this paper, we propose a novel framework, DeepChunk,
which leverages deep Q-learning for chunk-based caching in
wireless DPN. We show that cache policies must be optimized for
both network performance during data delivery and processing
efficiency during data consumption. Specifically, DeepChunk uti-
lizes a model-free approach by jointly learning limited network,
data streaming, and processing statistics at runtime and making
cache update decisions under the guidance of deep Q-learning.
It enables a joint optimization of multiple objectives including
chunk hit ratio, processing stall time, and object download time
while being self-adaptive under the time-varying workload and
network conditions. We build a prototype implementation of
DeepChunk with Ceph, a popular distributed object storage
system. Based on real-world Wifi and 4G traces, our extensive ex-
periments and evaluation demonstrate significant improvement,
i.e., 52% increase in total reward and 68% decrease in processing
stall time, over a number of baseline caching policies.

Index Terms—Data Streaming and Processing, Caching, Rein-
forcement Learning.

I. INTRODUCTION

DATA collection, streaming, and processing are essential
tasks for modern wireless networks due to the rapid

development in areas such as Internet of Things, sensor
networks, online data analytics and edge computing [1], [2],
[3]. In such applications, massive volumes of data collected
(and stored) by the network need to be streamed to multi-
ple processing units to compute desired results in a timely
fashion. One example of this type of application is intelligent
transportation, where large volumes of sensor data and video
footage are recorded from various monitoring points, and
then fetched on-demand (through wireless networks) into
distributed computing nodes, for applications ranging from
vehicle identification to traffic analysis. Due to ever-increasing
traffic in Data Processing Networks (DPN), [4], [5], [6], they
often enhance the performance by caching data in nodes

Y. Wang, Y. Li, and T. Lan are with the School of Engineering and
Applied Science, George Washington University, Washington, DC, 20052,
USA, emails: {wangyimeng, lib, tlan}@gwu.edu. V. Aggarwal is with the
School of Industrial Engineering and the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, USA, email:
vaneet@purdue.edu.

A1 A2 A3

B1 B2

vA=0.5

vB=2

B3

λA=λB

A1

B1

B2

A-50%
B-50%

C=3

LRU DeepChunk

Data Analytics

Fig. 1. An illustrative example of DeepChunk approach for data processing.

close to computing units and rapidly delivering those data for
consumption.

The design of caching policies, however, is primarily fo-
cused on the potential gains in network performance, e.g.,
cache hit ratio and download latency, while neglecting the
impact on data processing and consumption. These policies
include the Least Frequently Used (LFU) [7] and Most Popular
Object [8] strategies that achieve a high cache hit ratio, and the
Least Recently Used (LRU), qLRU, and kLRU [9] strategies
that use request recency for cache update. Yet, for data
processing networks, a data stream is simultaneously being
fetched and consumed on the fly. Existing caching policies
only considering network performance during data delivery
fall short on addressing end-to-end tuple processing time
[2], which depends on both data delivery and consumption.
In practice, when available network bandwidth cannot fully
sustain all data processing needs [1], [2], stalls during data
processing become inevitable. As a result, the design of
caching policies should be made aware of data consumption
needs, to mitigate processing stalls and fulfill the timely online
processing requirements.

In this paper, we propose a novel framework, DeepChunk,
which leverages deep Q-learning [10] for chunk-based caching
in DPN. Our key idea is that cache policies must be optimized
for both (i) network performance during data delivery and
(ii) processing efficiency during data consumption. Since the
classical hit ratio metric does not account for partial files in the
cache, we use the notion of chunk hit ratio that accounts for the
existence of partial files in the cache. The necessity of taking
data processing into account in caching can be illustrated via a
simple example in Figure 1. Two data objects, A and B (each
consisting of 3 chunks), are recorded on network edge and
fetched by different data processing units through a wireless
link that has a capacity of 1 chunk per second and is equipped
with a cache of size C = 3. If A and B have the same
request rate, they are equally likely to be stored in the cache



under LRU and LFU policies. Suppose that two applications
with processing speed of νA = 1/2 and νB = 2 chunks per
second start to request A and B at t = 0, respectively. It is
easy to see that if A is cached, the processing of B stalls
for a total of 2 seconds (i.e., 1 second waiting time for the
first chunk and 1/2 second idle time before processing each
subsequent chunks), and similarly the processing of A stalls
for 1 second if B is cached. However, we show that stall-
free data processing is indeed possible under an optimized,
chunk-based caching policy. If the first 2 chunks of B are
cached, we can fetch the last chunk of B by t = 1, so that
the processing of B is stall-free. At the same time, caching
the first chunk of A allows it to continue processing without
interruption until the next two chunks are fetched by t = 2 and
t = 3, respective. This caching policy not only achieves the
same chunk hit ratio (i.e., 50%), but also minimizes end-to-
end tuple processing time (i.e., 6 and 1.5 seconds for A and B
respectively) with stall-free data processing. Thus, to fulfill
the real-time data processing requirements, it is necessary
to consider both network performance and data processing
objectives.

A fundamental problem in our chunk-based cache system is
the cache update policy, which entails two types of decisions
at chunk level – how many chunks of a data object to admit
(cache admission) and which chunks to evict from the cache
(cache eviction) if it is already full – with the objective of
jointly optimizing average chunk hit ratio, processing stall
time, and object download time, in DPN. This optimization
may be solvable if we can accurately model the correlation
between the objective values and underlying variables, e.g.,
request arrival patterns, data popularity distributions, and wire-
less network conditions. However, this is very challenging and
has not yet been well studied in the context of data processing
networks, which represent a fairly complicated multi-point to
multi-point system with the dynamics of data streaming and
processing (from multiple data objects) closely coupled and
jointly impacting the design objectives.

Hence, DeepChunk aims to develop an approach by jointly
learning data streaming, processing, and network statistics
and making decisions under the guidance of deep Q-learning
[10]. We believe the approach is especially promising for
chunk-based cache in data processing networks because: (i) it
does not rely on precise and mathematically solvable models,
which is hard to obtain in practical DPN, (ii) it is capable
of supporting an enormously large state space, and (iii) it
is self-adaptive to the dynamic environment, e.g., evolving
data popularity/arrivals and time-varying wireless network
conditions. In particular, the state space in DeepChunk’s
deep Q-learning includes data popularity distribution, cache
states, request arrival statistics, network conditions and current
request information, while its reward captures chunk hit ratio,
processing stall time, and object download time. The output
action determines DeepChunk’s cache update policy, and the
resulting reward is further fed-back to the neural network for
learning.

We build a prototype implementation of DeepChunk with
Ceph [11], a popular distributed object storage system. Ceph’s
cache node is modified to implement a deep Q-learning engine

and a chunk-based cache module. Upon a request arrival, the
cache module immediately streams all cached chunks and
request the remaining chunks from the Ceph storage cluster,
where all data objects are stored. The deep Q-learning engine
obtains state updates s(t), decides an action a(t) based on
the trained neural network, and then sends the action a(t) to
the cache module, which performs cache updates accordingly,
calculate the resulting reward, and send it back to the deep
Q-learning engine. To evaluate DeepChunk, we generate data
popularities from Zipf distribution and utilize Linux TC traffic
control [12] to emulate different wireless network conditions,
based on real-world Wifi and 4G network traces [13]. We
run extensive experiments to compare DeepChunk with a
number of baselines including No-Cache, LRU, kLRU, gLRU.
DeepChunk achieves up to 52% reward improvements com-
pared with the baselines, and in all scenarios, it has the ability
to balance different design objects, illuminating an interesting
tradeoff between chunk hit ratio, processing stall time, and
object download time.

The main contributions of this paper are as follows:
• We propose a novel framework, DeepChunk, which lever-

ages deep Q-learning to optimize chunk-based caching in
DPN. It only relies on obtaining limited network statistics
on the fly to make cache update decisions and self-teach
the optimal update policy.

• DeepChunk is able to operate in a fully unsupervised
fashion with the objective of jointly optimizing both data
processing and network performance, under the guidance
of deep Q-learning.

• We implement a prototype of DeepChunk using Ceph,
evaluate it on a real-world testbed, and compare its
performance with a number of baseline caching policies.
Significant improvement, i.e., 52% in total reward and
68% in processing stall time, is observed.

II. RELATED WORK

Caching is widely used in networks for various objectives
such as reducing latency, mitigating congestion, and improving
user experience. Its applications include radio-access network
[14], mobile 5G networks [15], web applications [16], BigData
applications [17], distributed storage [18], [19], and video
delivery [20], [21].

As a simple and intuitive cache replacement strategy, LRU-
based caching mechanisms have been widely studied [22],
[23]. One of the key issue in LRU-based caching strategies
is that an arrival of a large file can evict multiple small
files [24]. Several different approaches have been proposed to
improve its performance performance with realistic, vaiable
file sizes and popularities. The qLRU algorithm [25] stores
the newly arrived object and evicts the LRU object with
probability q, and the kLRU algorithm [25] only executes
the storing/evicting procedure when a new object has been
advanced in all k − 1 virtual LRU caches ahead of the
“physical” cache. Other than the LRU-based algorithms, the
R-UPP and P-UPP algorithms [26] specifically consider user
preference profiles, while AdaptSize algorithm in [24] is
optimized for the case where the object sizes are widely



varied. In addition, the Least Hit Density (LHD) policy [27]
predicts each object’s expected hits-per-space-consumed to
improve cache replacement strategy. In contrast, in this paper,
we propose a chunk-based caching framework that leverages
deep Q-learning [10] and optimizes replacement strategy at
chunk level. The use of deep Q-learning allows us to develop
a model-free approach and efficiently compute the optimal
chunk replacement strategy to maximize multiple objectives in
a unified framework. Deep Q-learning has been successfully
applied to address network optimization problems in many
different areas such astraffic engineering [28], video bitrate
control [29], LTE femtocell configuration [30], ride-sharing
[31], and cell outage management [32].

III. BACKGROUND AND PROBLEM STATEMENT

We consider a DPN as a set of data sources and processing
units, connected through a wireless network to apply vari-
ous data operations and computations. Massive volumes of
data collected (and stored) by the network often need to be
streamed to multiple processing units and processed in real
time. This feature is also known as stream data processing [2]
and can be found in many existing and emerging applications
such as the Internet of Things, sensor networks, online data an-
alytics and edge computing [1], [2]. In such DPN, cache nodes
can be deployed between the data source and the processing
units, to store and reuse hot data objects passing through the
network. Most of the existing cache replacement policies, such
as LRU and LFU [33], focus on network performance metrics
such as cache hit ratio. However, in DPN, as demonstrated
in the previous example in Figure 1, higher hit ratio does not
necessarily lead to more efficient data processing, as measured
by processing stall time. Motivated by this phenomenon, we
acknowledge the new cache design challenges arising from
DPN and develop a chunk-based caching framework guided
by deep Q-learning.

To reduce data processing stall, caching the starting chunks
of different data objects is crucial, while storing the complete
data objects does not offer any additional benefits, as illus-
trated by the example in Figure 1. It mandates us to consider
chunk-based caching in DeepChunk. At the core of chunk-
based caching policies is the need to make cache admission
and eviction decisions for each individual data chunk, resulting
in higher decision complexity on the fly. In object-based
policies, such as kLRU and qLRU [34], cache admission and
eviction decisions are typically binary, as to whether or not
to add a new object to replace the least-recently-used one
in the cache. A chunk-based caching policy, however, must
decide how many new chunks to admit into the cache when
a requested data object traverses the cache node, even-though
the cache eviction can employ a least-recently-used strategy.

Consider the example in Figure 1. Suppose that the cache
currently contains 2 chunks of A and 1 chunk B, i.e.,
A1, A2, B1. If a new request of A arrives with a data pro-
cessing speed of νA = 0.5, stall-free processing can already
be achieved with the 2 chunks of A in the cache (ignoring
a fixed initial waiting time to start streaming). There is no
need to admit any more chunks of A into the cache, as it

only negatively impacts the processing stall time of other
objects that must be evicted as a result. On the other hand,
if a new request of B arrives with a data processing speed of
νB = 2, the processing will stall, demanding new chunks
of B to be admitted into the cache. However, we need to
carefully choose the number of object-B chunks to admit,
since an overly aggressive policy (e.g., adding both B2 and
B3) would superfluously stall future processing requests of A.
In DeepChunk, we collect runtime statistics from the DPN –
including cache state, request rates, data processing speeds,
chunk sizes, and network configuration – and leverage deep
Q-learning to guide the chunk-based decision making.

IV. PROPOSED DEEPCHUNK FRAMEWORK

DPNs focus on rapid processing of incoming data streams.
Hence, traditional design policies, maximixing hit ratio and
hit rate, often do not necessarily lead to more efficient data
processing, as demonstrated in our illustrative example, in
Section I. Motivated by these observations, we propose a
new framework to optimize DPNs for improved Quality of
Experience (QoE). In this section, we introduce our chunk-
based caching policy and then optimize it for DPNs.

We assume that there are N data objects to be streamed
and processed by different processing units. Each object i ∈
{1, 2, ..., N} is partitioned into Fi identical-sized chunks. A
cache node is located in close proximity to the processing
units and can store up to C data chunks. We consider a time-
slotted system model, in which each time bin contains exactly
one request arrival. At a given time bin t, let Ci(t) denote the
number of chunks of data object i stored in the cache node,
satisfying 0 ≤ Ci(t) ≤ Fi. The cache size constraint requires∑N
i=1 Ci(t) ≤ C for any time bin t. For the proposed caching

strategy, in steady state the above cache size constraint will
hold with equality since we will not waste any cache capacity
in the steady state.

Our chunk-based caching policy is formulated as follows.
In time bin t, when data object i is requested, Ci(t) chunks
stored in the cache are directly streamed to the processing
unit, which then immediately begins data processing. At the
same time, the remaining Fi − Ci(t) requested chunks will
be delivered from the data source and through the network.
When the complete data object i is not yet in the cache, i.e.,
Ci(t) < Fi, Ec additional chunks of object i satisfying 0 ≤
Ec ≤ Fi−Ci(t) will be added to the cache. Thus, the number
of object-i chunks in cache increases from Ci(t) to Ci(t+1) =
Ci(t) +Ec in the next time bin t+ 1. Further, these Ci(t+ 1)
chunks of object i are moved to the head of line in the cache
since they become most-recently-used. It is easy to see that
to mitigate processing stall, we should always place the first
Ci(t+1) chunks of object i in cache and stream them to jump-
start data processing. Finally, when the cache is already full,
to make space for the added chunks, an equivalent number of
chunks must be removed from the cache. In DeepChunk, we
adopt a policy similar to LRU and remove a necessary number
of chunks from the tail of the cache line.

Our goal is to design a cache policy to optimize both net-
work performance and data processing objectives. Let h(t) be



Initial 

Wait

Data Source Data Processing UnitCache Node

③
①

②

④ ③

④

𝑡3

𝑡4
ҧ𝑡3

ҧ𝑡4

①
ǁ𝑡1

②

③

④

ǁ𝑡2

ǁ𝑡3

ǁ𝑡4

ҧ𝑡2

ҧ𝑡1

Fig. 2. Calculation of processing stall time.

the chunk hit ratio in time bin t (defined formally later in this
section), Td(t) the average object download time, and Ts(t) the
average processing stall time. Specifically, DeepChunk aims to
optimize the following objective in steady state (for sufficiently
large τ ) over feasible cache policies P :

max
P

1

τ

τ∑
t=1

α1h(t)− α2Ts(t)− α3Td(t), (1)

where α1, α2, α3 are non-negative weights assigned to chunk
hit ratio, processing stall time, and object download time,
respectively. In practice, we can adjust these weights to achieve
different tradeoffs between the network performance and data
processing objectives. For instance, when α1 = α3 = 0,
the resulting cache policy minimizes processing stall time
Ts(t). We use Reinforcement Learning (RL) to solve the above
optimization, and for each network state, to determine the
optimal cache replacement, i.e., the number of chunks Ec to
replace. We note that existing caching policies typically rely
on constant cache replacement strategies, e.g., Ec = Fi for
the LRU policy and Ec = 1 for the gLRU policy [23], thus
lacking the ability to adapt cache replacement on the fly with
respect to dynamics in DPN.

Our goal in this paper is to jointly optimize both the network
performance and the data processing efficiency in a DPN. To
tackle this multi-objective optimization problem, we introduce
three metrics that will be computed from limited runtime
statistics on the fly, and then leverages RL to develop an
automated solution, DeepChunk.
Process stall time. To find processing stall time, we assume
that the data processing unit is equipped with a sufficiently
large buffer, so all streamed data chunks are consumed by the
processing unit without the need for retransmission. For the
simplicity of notations, we drop the index t in the following
derivations, while the variables such as cache state Ci and
wireless bandwidth r1 are indeed time-varying.

Consider a request in time bin t. Since the first Ci out of
Fi chunks of data object i are already stored in the cache
and the remaining Fi − Ci chunks need to be streamed
from the data source, we find the processing stall time by
considering a two-stage buffer problem. As shown in Figure 2,
let r2 denote the available bandwidth (i.e., data streaming
speed) from data source to cache node, r1 denotes the speed
from cache node to processing unit, and νi denotes the data
processing/consumption speed of object i. Note that for wire-
less channels with time-varying bandwidth, r1(k) denotes the
average speed when transmitting the kth chunk. We consider
2 stages in data streaming, tk and t̄k to denote the time when

the kth chunk starts streaming from data source to cache node
and from cache node to processing unit, respectively. Since
the first Ci chunks are already stored in the cache and the
other chunks are streamed one-by-one from data source, we
have

tk =

{
tk−1 + 1

r2
, k ∈ [Ci + 1,K],

0, k ∈ [1, Ci].
(2)

Next, each data chunk k can be streamed from the cache
node to the processing unit, when it becomes available (i.e.,
at t = 0 for any cached chunk and tk + 1/r2 if it needs to be
fetched from data source) and after the preceding chunk k−1
is delivered (i.e., at t̄k−1 + 1/r1). Combining these, we have

t̄k =

{
max{t̄k−1 + 1

r1(k−1) , tk + 1
r2
}, k ∈ [Ci + 1, Fi],

t̄k−1 + 1
r1(k−1) , k ∈ [2, Ci],

(3)
except that t̄1 of the first chunk depends on whether any
chunks of object i are cached, i.e.,

t̄1 =

{
t1 + 1

r2
, Ci = 0,

0, otherwise.
(4)

Finally, the processing unit consumes data at speed νi.
Then the processing start time of chunk k can be recursively
computed from t̄k’s as

t̃k = max{t̃k−1 +
1

νi
, t̄k +

1

r1(k)
}, and t̃1 = tini, (5)

where tini is the initial wait time (or startup delay) mentioned
in Section III. When t̃k > (k − 1)/νi + tini, the processing
unit would experience stall time waiting for chunk k. The total
processing stall time of object i is then given by the difference
between actual play time and expected play time of the last
chunk Fi (since stall time accumulates during processing), that
is

Ts = (t̃Fi −
Fi − 1

νi
− tini)+. (6)

Object download time. The download time of each data
chunk k can be found through t̄k, which is the time to starting
streaming chunk k from the cache node to the processing
unit and is already given in the above analysis of processing
stall time. Thus the download time Td of data object i that is
equivalent to the arrival time of last chunk Fi can be derived
directly from t̄Fi

as follows:

Td = t̄Fi +
1

r1(Fi)
. (7)

Chunk hit ratio. We note that for object-based cache systems,
a “hit” occurs if the requested data object is found in the
cache. Thus, the hit ratio equals to the probability that the
requested data object is stored in the cache. For chunk-based
caching considered in this paper, we define a similar chunk
hit ratio to quantify the performance of the proposed caching
policy. Specifically, we denote hi = Ci/Fi as the chunk hit
ratio of data object i, which is the percentage of object-i
chunks that are stored in the cache and can be directly used
to serve a request. This notion of chunk hit ratio generalizes



Cache

RL Engine

A
ctio

n

State

Variables

State

Reward
Neural Network

Fig. 3. Reinforcement learning mechanism of DeepChunk decision making.

the existing object-based definition, which is binary – hi = 0
for a cache miss and hi = 1 for a cache hit – and cannot
be used to evaluate chunk-based caching systems. Finally, the
overall chunk hit ratio is simply the average of chunk hit ratio
of individual data objects weighted by request arrival rates λi,
i.e., (

∑
i λihi)/(

∑
i λi).

V. REINFORCEMENT LEARNING

A. Deep Q-Learning

To make caching decisions in different system states, we
utilize deep Q-learning to dynamically generate optimized
values.

With the development of the neural networks, deep Q-
learning is commonly used in modern decision making tasks.
The advantages of RL decision making process are: (i) sup-
porting enormously large state space, (ii) scalable to different
input dimensions, and (iii) self-adapting to the environment
including evolving data popularity and varying network con-
ditions. We take advantage of RL to adapt to these dynamic
features in the caching problem.

Figure 3 illustrates how deep Q-learning is solving our
cache decision problem. At each time bin t, the cache node
monitors the current state s(t) of the system. When a request
q(t) is observed at the cache node, the RL Engine feeds the
current state s(t) into a neural network to generate an action
a(t). Further, according to the state s(t) and the action a(t),
the state will be pushed to the next state s(t + 1). When the
next request arrives, the reward r(t) of the previous action a(t)
can be observed, further fed back to train the neural network.

To dynamically improve the reward, Q-values for each state-
action pair are maintained to represent the potential reward of
decisions. The Q-values are updated by the immediate reward,
and an expected optimal future reward which is discounted by
a factor γ, (0 ≤ γ ≤ 1):

Q(s(t), a(t)) = r(t) + γmax
a

Q(s(t+ 1), a). (8)

To maintain a large system state space, an artificial neural
network is utilized. At time t, the detected state s(t) are
sent into the neural network as the input. After the process
in hidden layers, the Q-values for all possible actions are
observed at the output layer. The decision making policy
follows the Epsilon Greedy scheme: with probability 1 − ε,
the agent will choose the action that results in the highest Q-
value, otherwise, select a random action with equal probability.
The ε reduces linearly from 1 to 0.1 over iterations, thus the
agent starts with an aggressive exploring behavior, then tends
to utilize the learned experience over time.

After the action is selected, according to the corresponding
reward r(t), the Q-value is updated with a learning rate β:

(9)
Q′(s(t), a(t))← (1− β)Q(s(t), a(t))

+ β[r(t) + γmax
a

Q(s(t+ 1), a)].

Similar to ε, the learning rate β is also reduced linearly.
The neural network contains multiple layers to estimate the

Q-values of each state-action pair. For different problems, spe-
cific types of neural networks – such as Convolutional Neural
Network (CNN) [35], Recurrent Neural Network (RNN) [36],
etc. – can be used to improve the training speed and the
estimation accuracy. For our proposed model, we choose a
simple neural network which contains only fully connected
layers as the hidden layer.

B. Reward, States, and Actions

To use deep Q-learning for decision making, we define the
three crucial elements - state, action and reward - as follows:

1) Reward: We consider both data processing and network
performance to be optimized as the reward. As mentioned in
Section IV, chunk hit ratio, processing stall time and object
download time are defined as the reward variables. We apply
three weight factors α1, α2 and α3 to adjust the importances
of the three reward variables. Thus, the immediate reward is
defined as:

r = α1h− α2Ts − α3Td. (10)

Note that when the algorithm is running, all three objectives
– h, Ts, Td – can be measured from the cache node or the data
processing units, while Equations (6) and (7) can be utilized to
pre-train the neural network from zero knowledge, to improve
the speed of convergence.

2) States: The state variables should reflect the system
status, further affect the reward feedback of different actions.
We measure the system state in our caching model as a five-
tuple: (−→p ,−→n ,−→c ,−→o , f).

Specifically, f denotes the currently requested object. As
we designed, only this object will be cached in the same
time iteration. −→p denotes the popularity distribution over all
objects. In practical networks, the popularity of objects are
changing over time. In order to adapt to the latest popularities,
instead of using a static distribution, we maintain a sliding
window to monitor popularities of all objects during the past
n requests:

wp = [f(t− n+ 1), f(t− n+ 2), ..., f(t)]. (11)

Similarly, the network condition history −→n is computed
through another sliding window to track the time-varying
bandwidth of wireless channel:

wn = [b(t− n+ 1), b(t− n+ 2), ..., b(t)], (12)

where b(t) denotes the average bandwidth in time slot t. The
use of sliding windows can eliminate (i.e., average out) system
randomness at small timescale, while allowing us to track the
trend/change in object popularity and network bandwidth at



large timescale, providing important information for the cache
optimization. The sliding windows contain the histories of the
past requested objects/network bandwidths for n time slots.
The currently cached chunks for all objects are denoted by −→c .
These state variables are utilized to determine how data chunks
in the cache are updated, in order to optimize the reward.
Finally, the order of requested objects is expressed by an array
−→o . In our DeepChunk policy, we make decisions to replace the
least-recently-used object chunks by new chunks. This state
variable will indicate chunks from which object/objects will
be removed when making decisions.

All the elements in this four-tuple can be obtained at the
cache node when a request arrives. For cache decision, the
four-tuple is pushed into the input layer of the neural network.

3) Actions: Current RL applications can have a large state
space, but it is not well scalable with action. So, we define an
unsophisticated action to fit our problem to this feature. The
action a(t) represents the number of chunks of the requested
object f to be added to the cache. When the action is made,
Ec additional chunks of object f will be stored in the cache
storage. When the cache storage is full, chunks from the LRU
objects will be removed.

At a certain state s(t), the action a(t) will result in a
cache increment of the requested object f , and an up to a(t)
cache decrement of the least-recently-used objects. Thus, in
the next time slot t + 1, the cached chunks −→c depends on
the cache decision a(t). Other state variables – the popularity
distribution −→p , network condition −→n , request order −→o , and
requested object f – will follow their own randomnesses.

C. Algorithm Training

We train the deep Q-learning algorithm using the simu-
lated rewards (from Equations 6, 7, and 10). Following the
Zipf distribution, an object request is randomly generated
in each time iteration. Depicted in Figure 3, the five-tuple
(−→p ,−→n ,−→c ,−→o , f) is observed by the state listener in the RL
Engine, and further fed into the input layer of the neural
network. After the calculation of the neural network, the
estimated Q-values of all possible actions are obtained at the
output layer. The action with the highest Q-value, or a random
action will be chosen according to the Epsilon Greedy policy.
Finally, using the calculated Q-value shown in Equation 9, the
neural network is updated.

Reinforcement learning has been developing in order to
address varied problems. To adopt to different application sce-
narios, advanced Q-learning algorithms are utilized, including
Dueling-DQN [37], Double-DQN [38], Deep Recurrent Q-
learning [39], Rainbow DQN [40], etc. We test our proposed
cache environment in both the original deep Q-learning and
Dueling-DQN – which separately estimates state values (V (s))
and advantages (A(s, a)) – algorithms. The training curves are
shown in Figure 4. According to the figure, Dueling-DQN
does not improve the final reward of the training process
comparing with the original deep Q-learning algorithm since
every action making in the service placement problem impacts
the instant reward critically in almost all kinds of states.
However, because the training speed suffers from extra layers

10 20 30 40 50
0

20

40

60

80

100

R
ew

ar
d
(%

)

Q-learning

Dueling-DQN

Fig. 4. Training curves of deep Q-learning and Dueling-DQN algorithms.

OSD OSD OSD

Ceph Client
Ceph Cluster

Cache Module
RL Engine

Cache Storage Buffer

Cache Node

Data Processing Unit

Fig. 5. Diagram of implemented deep Q-learning prototype.

utilized to separately estimate both V (s) and A(s, a), the
convergence of DDQN is slower than deep Q-learning. Thus,
to accelerate the training speed, we choose the original deep
Q-learning method for the proposed optimization task.

VI. IMPLEMENTATION

In this section, we will describe the prototype implemen-
tation details. In specific, we will discuss the DPN setup in
terms of the following aspects: data source, cache node, data
processing unit, and the links between nodes. The system
diagram is depicted in Figure 5.

A. Data Source

Three virtual machines running a Ceph [11] cluster are im-
plemented as the data source. All files used in the experiments
are divided into chunks. The files are stored in the three Object
Storage Daemons (OSDs). Another virtual machine within the
same cluster configuration is set as a Ceph client, which is
responsible to collect chunks (Ceph objects) from the storage
cluster and send them to the cache node. A Tornado server
[41] is implemented on the Ceph client, where it handles the
fetch requests from the cache node with responses from the
data source. The transmission latency and processing delay
within the Ceph cluster machines (those for cloud storage,
Ceph client, and Tornado server) are ignored.



B. Cache Node
The cache node aims to simulate an edge node between

the data processing unit and the source. When the processing
unit sends a request to the cache node, the cache node fetches
the chunks of the object that do not exist in the cache from
the Tornado server at the source, and delivers the chunks
that obtained (previously cached and newly downloaded) to
the processing unit simultaneously. Further, with the arriving
chunks from the source, the cache node runs an RL Engine
to determine the updated placement of the chunks of different
objects in the cache. Cache node has two modules - Cache
Module and Reinforcement Learning Engine, which together
achieve the functions explained above. In our experiments, one
virtual machine is utilized to run both the modules.

1) Cache Module: The Cache Module manages the place-
ment of the chunks on the cache node, fetching the chunks
from the data source, and delivery of contents to the processing
unit. A Tornado server is used to build the connection with the
data processing unit, and a Tornado client is paired with the
server on the data source. When an object request is received
from the processing unit, the cache module starts to push the
cached chunks and fetch the missing chunks from the source
simultaneously.

A buffer is used to store the fetched data bytes from the
data source. The fetched contents will stay in buffer till all
the chunks are sent to the processing unit. The cache policy
will determine how many of these contents will be transferred
to the cache storage. After the transmission of the contents to
the processing unit and the transfer of required contents to the
cache storage, the contents are removed from the buffer.

The metric of chunk hit ratio is collected from the cache
module. We will next describe the Reinforcement Learning
Engine that makes the decision for the update of caching
policy which will influence how many of the chunks fetched
from the data source will go to cache storage and which
contents will be removed from the cache storage.

2) Reinforcement Learning Engine: The Reinforcement
Learning (RL Engine) implements the cache update policy.
To accelerate the training process, the neural network is
pre-trained using simulated inputs. A series of Zipf-random
requests are used to activate the evolution of the system state.
After the action is made, the reward is calculated by the
monitored chunk hit ratio and calculated stall/download time
from Equations (6) and (7). The pre-trained neural network
is then stored in the engine. When a cache decision is
needed, the Cache Module will consult the RL Engine. In our
implementation, the RL Engine and Cache Module are located
on the same node.

A state listener queries a message from the Cache Module
which contains all the required state information, including
current cache storage status, request history, network band-
width history, and currently requested object. By feeding the
state variables to the neural network, the RL Engine obtains
the action. The action is then sent to the Cache Module via a
message to transmit the cache update decision.

For the real-time training of RL Engine, the reward variables
(the chunk hit ratio from the cache module, the download
and stall time from the data processing unit) are collected

after all chunks are received by the processing unit. We
note that the obtained reward is dependent on the previous
states and actions. In the evaluations, it takes 60 minutes to
train the neural network with a million preset samples. The
training process is controlled by a linear control signal, which
decreases the epsilon greedy parameter ε and the learning rate
β linearly.

C. Data Processing Unit

A Tornado client is set up as the data processing unit. The
processing unit continuously sends object requests to the cache
node following a Zipf distribution. A Zipf “seed” is utilized
to order the popularities of objects. Each request is sent to
the cache node, and the object is received from the cache
module. The data processing unit records the reward attributes,
including processing time, initial waiting time, and stall time.
These reward variables are sent to the cache node, which will
be used by the RL engine for online learning and improving
of the caching policy.

D. Data/Signal Flow

In the above, we introduced the function modules. Now,
we will show an example to trace the data flow, and further
describe how the system works.

When initiated, the Tornado servers in the Ceph client and
the cache module, and the state listener in the RL Engine
are activated. The data processing unit generates a random
integer following Zipf distribution and decides which object
to be requested according to the Zipf seed. Then a request of
the object is sent to the cache module.

The cache module maintains awareness of cache status in
real time. Once the new request is detected, it is able to build
up the system state by cache storage status (cached chunks
of all objects), updated request history, and the currently
requested object. We denote this state as s(t) for clearer
demonstration. s(t) is further pushed to the RL Engine via
a message. Then, the action listener is activated.

The RL Engine captures state message by the state listener
and makes an action a(t) based on previously trained neural
network. The RL Engine then sends a(t) to the cache module
through a message and starts to listen for the reward.

The cache module obtains the action message a(t), and
begins the data flushing process. It first reads all cached chunks
of the requested object to its buffer, then sends a request for
the missing chunks from its Tornado client to the server in
Ceph cluster.

At the Ceph cluster, the chunks stored in Ceph OSDs are
fetched as the response data. When sending the response, the
Tornado server will flush the chunks into the network interface
one by one to achieve a streaming feature.

The cache module starts two threads simultaneously. The
fetching thread pushes the fetched bytes into the buffer. It is
also responsible to write a part of the chunks into files ac-
cording to a(t), and further store them into the cache storage.
The flushing thread keeps flushing the existing bytes in the
buffer to the network interface. When the buffer is empty, it
waits for the fetching thread until another chunk is ready in the



0 500 1,000 1,500
0

5

10

15

Time (s)

B
a
n
d
w
id
th

(M
B
/s
)

Wifi

4G

Fig. 6. Bandwidth traces of Wifi and 4G networks.

buffer. After all chunks are fetched and flushed, the connection
finishes. Then, the reward listener enters standby mode.

The data processing unit receives the data stream. A timer
will measure the download time from the moment when the
request is sent, to the moment when the connection is finished.
By subtracting the preset initial wait time and processing time,
it obtains the processing stall time. A message carrying stall
time and download time is reported to the cache module.

The reward value is calculated at the cache module. Note
that three terms: chunk hit ratio, processing stall time, and
object download time. The chunk hit ratio is obtained from the
cache status which can be found in s(t). Further, the reward
r(t− 1) is sent to the RL Engine.

At the RL Engine, r(t) is utilized to train the neural
network. In our deep Q-Learning algorithm, the reward r(t−1)
is correlated with the previous state and action, s(t − 1)
and a(t − 1). After the whole process is complete, the data
processing unit loops.

VII. EVALUATION

In this section, we present our evaluation results based on
the system implementation described in the last section. We
will leverage real-word Wifi and 4G traces [13] to compare
DeepChunk with a number of baselines, including LRU, k-
LRU, gLRU, and No-Cache policies.

A. Configuration

1) Machine Setup: Virtual machines running the Ceph
cluster have identical disk space which is 10GB. The virtual
machine acts as the cache node has 256GB disk, 16GB
memory, and has a core of Intel Xeon CPU E5-2630 v3
(2.40Ghz).

2) Link Setup: We use two wireless bandwidth traces (for
Wifi and 4G channels, respectively) in our experiment. For
the Wifi trace, we download a 100GB file on a computer, and
measure the real-time downloading rate. For the 4G channel,
we use the database collected by Ghent University [13]. The
bandwidth traces are depicted in Figure 6, with an average
bandwidth of 15MB/s for the Wifi channel and 2.6MB/s for
the 4G channel.

All experiment machines are within the same local network.
We use the Linux TC traffic control feature [12] to throttle

the bandwidths between nodes. The wired link between the
cache node and the cloud server node is set to 1.5MB/s, and
the wireless link between the user client and the cache node is
dynamic following the Wifi/4G bandwidth traces with average
rates of 15MB/s and 2.6MB/s. The bandwidths between Ceph
nodes (OSDs and Ceph client) are not a bottleneck, so no
additional bandwidth restriction is imposed.

3) Objects: We use video files to run the experiments. Each
file consists of multiple chunks, where each chunk is 1MB.
Since the file sizes are not multiples of 10242, the last chunk
of each file can be less than 1MB. Further, the processing
speed of the files is divided into two groups – 1 MB/s and 3
MB/s – to represent different data processing applications.

We generate file popularities using Zipf’s distribution [42]
with the parameter z = 1. We sort the files by their sizes as the
popularity ranks. In general, the file sizes and the popularities
are dependent on each other. We consider a positive correlation
between the file size and the popularity, in which larger file
sizes have higher popularity. The popularity numbers are taken
as the arrival rates of the requests at the user client.

4) Learning Parameters: A neural network is built by three
parts: the input layer, the hidden layers, and the output layer.
For the proposed optimization problem, we utilize four fully
connected layers as the hidden layers. Each fully connected
layer contains 1024 neurons.

Described in Section V-A, the learning rate β and the
decision parameter ε is reduced linearly. Among the learning
process, the learning rate β is reduced from 10−5 to 10−7,
and the decision parameter ε from 1 to 0.1.

5) Evaluated Policies: We compare the proposed
DeepChunk policy with four baseline strategies, as described
below.

No-Cache: This caching policy does not store anything in
the cache.

LRU: The LRU caching policy [43] moves the requested
file to the head of the cache, if already in the cache. If it is
not in the cache, the file is added to the head of the cache
and the files are removed from the tail to make space for the
incoming file. Due to different file sizes, multiple files can be
evicted to make space of a large incoming file.

kLRU: Instead of caching every missed request, kLRU
[34], [9] deploys k virtual LRU caches ahead of the phys-
ical LRU cache to achieve a selective caching scheme. The
virtual caches cache only file pointers instead of the data. A
virtual/physical cache will store the pointer/data only if there
is a hit in the LRU cache ahead of it, and replace the object
following the LRU policy. In our experiments, two kLRU
policies are tested. kLRU-1 and kLRU-2 policies apply 1 and
2 virtual caches ahead of their physical cache, respectively.

gLRU: Distinct from the previous policies, the generalized
LRU [23] extends the LRU caching algorithm from file-level
to a chunk-level algorithm. Upon a request arrival, if the
requested file is not completely in the cache, one additional
chunk of that file will be stored. When the cache storage is
full, one chunk of the LRU object will be replaced. Further,
all chunks of the requested file will be moved to the head of
the cache (in order, such that the earlier chunks are towards
the head so that they are evicted later).



TABLE I
REWARD SUMMARY FOR POLICIES IN DIFFERENT POPULARITY AND

CACHE SIZE SETTINGS.

Policy
Reward

Wifi connection, 4G connection,
DeepChunk -11.7070387055 -50.0106189471

gLRU -17.3062326451 -68.7043762353
kLRU-1 -24.4986792735 -63.9718621500
kLRU-2 -22.8175804253 -60.8568648048

LRU -20.5943264981 -70.3070151289
No cache -31.6773507333 -93.8548818358

B. Evaluation Results

In this subsection, we compare the proposed DeepChunk
policy with the baseline policies stated above. All strategies
are run on both the Wifi and 4G environments. The cache size
is set to 80MB (80 chunks), reward factors are set to 10 for the
chunk hit ratio, 1 for the processing stall time, and 0.5 for the
object download time. Under this reward setting, increasing
the hit ratio of an object by 10%, decreasing the processing
stall time by 1 second, and decreasing the total download time
by 2 seconds are considered the same amount of contribution.

The experiment rewards of tested policies are shown in
Table I. DeepChunk policy improves the total reward by
32.35% to 52.20% as compared to the other caching algo-
rithms on the Wifi channel, and by 17.83% to 28.87% on
the 4G channel. The other chunk-level policy, gLRU, suffers
a lower reward compared with the file-level kLRU policies
on the 4G channel. This fact indicates that without a proper
joint optimization that takes into account time-varying wireless
channel conditions, chunk-level cache policies alone cannot
achieve optimal performance, as evidenced by the superior
performance of our proposed DeepChunk policy.

Figure 7 shows the reward breakdown for the Wifi con-
nection. From the figure, we observe that our DeepChunk
policy outperforms all other policies in terms of all three
reward factors. Compared with the file-level policies, the
improvements are up to 44.44% on hit ratio, 68.10% on stall
time, and 15.31% on object download time. Our policy did not
improve significantly on download time since it’s considered
a minor contributor to the total reward. For the stall time and
the hit ratio, the improvements are more obvious.

Compared with the other chunk-level policy gLRU, our
policy is also better for all three reward factors. We observe
that the gLRU policy also promises lower stall time. This
result shows that by bringing the cache strategy into the chunk
level, stall time, a major contributor to user experience, can
be improved. Although gLRU has the lowest hit ratio among
all the strategies, it’s total reward is still better than all other
file-level policies. However, without the learning feature to
decide how many chunks should be cached, it cannot reach
the optimal.

Similar results are concluded from Figure 8 for DeepChunk.
When the connection is on 4G, DeepChunk improves the
reward factors by up to 45.71% on hit ratio, 29.64% on
stall time, and 19.43% on download time compared with file-
level policies. However, in this experiment, the performance
of gLRU policy is not ideal. Its hit ratio is still the lowest

(changing bandwidth does not affect the hit ratios of caching
policies), and the stall time becomes longer than the kLRU
policies. This is because when the bandwidth is low, more
chunks need to be stored to eliminate the stall time. The gLRU
policy caches 1 chunk for each request, resulting in a very slow
growth in the number of cached chunks.

In Figure 9, we show the improvement obtained by increas-
ing the cache size. Take the LRU policy as an example, both
stall time and chunk hit ratio are improved by 50% when
the cache size is increased from 40 chunks to 80 chunks.
With the increasing cache size, the average stall time improves
smoothly, while the chunk hit ratio does not. It is because a
slight increase in cache size is not able to make the storage
capacity for one additional big file.

Figure 10 describes the importance of cache chunk decision
optimization. We run the DeepChunk policy at the cache node
with an empty cache storage, while a file with 40 chunks is
repeatedly requested. As the time evolves, the chunk hit ratio
of individual requests will grow from 0 to 1 linearly. The
x-axis in the figure is marked by the chunk hit ratio of the
request. As it grows, the download time decreases linearly.
However, with the chunk hit ratio at 0.4 (iteration 10), the stall
time hits 0 which is its minimum. Thus at this state, caching
more chunks of this file will no longer gain rewards from the
stall time, which has a heavy weight. The reward curve shows
the same information, the growth slows down after the 10th
iteration. Since DeepChunk is a state-aware policy, it tends to
cache fewer chunks to save cache space for other files when
the stall time can no longer be improved.

We extract the reward variables for individual files while
running the experiments. In Figure 11, we compare the average
stall time and chunk hit ratio for each file when different
caching policies are applied. According to Figure 11 (a), the
five files experience similar stall time under the DeepChunk
policy. The standard deviation is 0.268, that is lower than
LRU’s standard deviation which is 2.189. As depicted in
Figure 11 (b), although chunk hit ratio is not the largest
weighted term in the reward function, DeepChunk still has a
lower standard deviation (0.074) as compared to LRU (0.104).
We can conclude that under the DeepChunk policy, more space
is saved to reduce the overall stall time among all files.

Finally, we measure the performance of the policies when
the popularity distribution suddenly changes. At the user client
node, we change the popularity ranking for each of the 50
requests. From Figure 12, we observe that since the Deep-
Cache keeps monitoring the historical probability distribution
of the requests in a sliding window, and its performance (both
processing stall time and chunk hit ratio) is better than the
static LRU algorithm. This verifies that our DeepChunk is
more robust and has the ability to adapt to time-varying data
popularity in a dynamic environment.

VIII. CONCLUSION

We propose DeepChunk to leverage deep Q-learning to
make chunk-based cache update decisions on the fly in Data
Processing Networks, and to jointly optimize both network
performance and data processing objectives, including the



D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

0.2

0.4

0.6 0.52

0.3
0.36

0.42
0.38

0

H
it

ra
ti
o

(a) Chunk hit ratio
D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

5

10

15

4.16

6.77

13.04
12.01

10.52

14.58

S
ta
ll
ti
m
e
(s
)

(b) Processing stall time
D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

10

20

30

40

25.5
27.15

30.1130.02
27.74

34.19

D
el
a
y
(s
)

(c) Object download time

Fig. 7. Reward breakdown for different policies in Wifi connection. Cache capability is 80 chunks. Weight factors are set to 10 (hit ratio), 1 (stall time), and
0.5 (download time).

D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

0.2

0.4

0.6
0.51

0.33

0.41 0.4
0.35

0

H
it

ra
ti
o

(a) Chunk hit ratio
D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

20

40

60

30

41.24
38.8 36.5

42.64

55.53

S
ta
ll
ti
m
e
(s
)

(b) Processing stall time
D
ee
pC

hu
nk

gL
R
U

kL
R
U
-1

kL
R
U
-2

LR
U

N
oC
ac
he

0

20

40

60

80

50.23

61.5 58.5456.72
62.34

76.66

D
el
a
y
(s
)

(c) Object download time

Fig. 8. Reward breakdown for different policies with 4G connection. Cache capability is 80 chunks. Weight factors are set to 10 (hit ratio), 1 (stall time),
and 0.5 (download time).

0

0.2

0.4

H
it
ra
ti
o

40 50 60 70 80
0

0.5

1

1.5

2

Cache Size

S
ta
ll
ti
m
e

Hit Ratio

Stall Time

Fig. 9. LRU performance affected by cache size.

−200

−150

−100

−50

0

R
ew

ar
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

Hit ratio

T
im

e

Reward

Stall time

Download time

Fig. 10. Reinforcement learning mechanism of DeepChunk decision making.

chunk hit ratio, processing stall time, and object download
time. Our prototype using Ceph demonstrates significant im-
provement, i.e., 52.20% in total reward and 68.10% in process-
ing stall time, over a number of baseline caching policies, as
well as DeepChunk’s ability to adapt to time-varying workload
and network conditions. As a future research, we plan to incor-

Fi
le
1

Fi
le
2

Fi
le
3

Fi
le
4

Fi
le
5

0

5

10

15

S
ta
ll
T
im

e
(s
)

DeepChunk

LRU

(a) Stall time
Fi
le
1

Fi
le
2

Fi
le
3

Fi
le
4

Fi
le
5

0

0.1

0.2

0.3

H
it
R
at
io

DeepChunk

LRU

(b) Hit ratio

Fig. 11. Reward breakdown for different files. The standard deviations of stall
time are 0.628 for DeepChunk and 2.189 for LRU. The standard deviations
of chunk hit ratio are 0.074 for DeepChunk and 0.104 for LRU.

1-
50

51
-1
00

10
1-
15
0

15
1-
20
0

20
1-
25
0

0

2

4

6

8

S
ta
ll
T
im

e
(s
)

DeepChunk

LRU

(a) Stall time

1-
50

51
-1
00

10
1-
15
0

15
1-
20
0

20
1-
25
0

0

0.2

0.4

0.6

0.8

H
it
ra
ti
o

DeepChunk

LRU

(b) Hit ratio

Fig. 12. Reward breakdown comparison for time bins, when the popularity
changes for every 50 requests.

porate other metrics such as the Age of Information [44] into
DeepChunk and investigate the performance of DeepChunk in
a setting with network of caches.



REFERENCES

[1] M. D. de Assunção, A. D. S. Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” J. Network and Computer Applications, vol. 103,
pp. 1–17, 2018.

[2] T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed
stream data processing using deep reinforcement learning,” Proceedings
of the VLDB Endowment, vol. 11, no. 6, pp. 705–718, 2018.

[3] A. Elgabli, V. Aggarwal, S. Hao, F. Qian, and S. Sen, “Lbp: Robust rate
adaptation algorithm for svc video streaming,” IEEE/ACM Transactions
on Networking, vol. 26, no. 4, pp. 1633–1645, 2018.

[4] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapreduce:
An in-depth study,” Proceedings of the VLDB Endowment, vol. 3.

[5] N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, pp. 1–125, 2015.

[6] Youtube help. https://support.google.com/youtube/answer/1722171.
[7] Y. Kim and I. Yeom, “Performance analysis of in-network caching for

content-centric networking,” Comput. Netw., vol. 57, no. 13, pp. 2465–
2482, Sep. 2013.

[8] D. K. Krishnappa, S. Khemmarat, L. Gao, and M. Zink, “On the feasi-
bility of prefetching and caching for online tv services: a measurement
study on hulu,” in International Conference on Passive and Active
Network Measurement. Springer, 2011, pp. 72–80.

[9] D. Shasha and T. Johnson, “2q: A low overhead high performance buffer
management replacement algoritm,” in VLDB, 1994, pp. 439–450.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[11] Ceph. https://ceph.com/.
[12] B. Hubert et al., “Linux advanced routing & traffic control howto,”

Netherlabs BV, vol. 1, 2002.
[13] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,

T. Bostoen, and F. De Turck, “HTTP/2-Based Adaptive Streaming of
HEVC Video Over 4G/LTE Networks,” IEEE Communications Letters,
vol. 20, no. 11, pp. 2177–2180, 2016.

[14] H. Ahlehagh and S. Dey, “Hierarchical video caching in wireless cloud:
Approaches and algorithms,” in ICC 2012. IEEE, 2012, pp. 7082–7087.

[15] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[16] S. Sivasubramanian, G. Pierre, M. Van Steen, and G. Alonso, “Analysis
of caching and replication strategies for web applications,” IEEE Internet
Computing, vol. 11, no. 1, 2007.

[17] Y. Zhao, J. Wu, and C. Liu, “Dache: A data aware caching for big-
data applications using the mapreduce framework,” Tsinghua science
and technology, vol. 19, no. 1, pp. 39–50, 2014.

[18] V. Aggarwal, Y.-F. R. Chen, T. Lan, and Y. Xiang, “Sprout: A functional
caching approach to minimize service latency in erasure-coded storage,”
IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3683–3694,
2017.

[19] T. Luo, V. Aggarwal, and B. Peleato, “Coded caching with distributed
storage,” IEEE Transactions on Information Theory, pp. 1–1, 2019.

[20] A. Al-Abbasi, V. Aggarwal, T. Lan, Y. Xiang, M.-R. Ra, and Y.-F. Chen,
“Fasttrack: Minimizing stalls for cdn-based over-the-top video streaming
systems,” IEEE Transactions on Cloud Computing, 2019.

[21] A. O. Al-Abbasi, V. Aggarwal, and M.-R. Ra, “Multi-tier caching
analysis in cdn-based over-the-top video streaming systems,” IEEE/ACM
Transactions on Networking (TON), vol. 27, no. 2, pp. 835–847, 2019.

[22] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[23] E. Friedlander and V. Aggarwal, “Generalization of lru cache replace-
ment policy with applications to video streaming,” ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), vol. 4, no. 3, p. 18, 2019.

[24] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network.”
in NSDI, 2017, pp. 483–498.

[25] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in IEEE INFOCOM 2014-
IEEE Conference on Computer Communications. IEEE, 2014, pp.
2040–2048.

[26] H. Ahlehagh and S. Dey, “Video-aware scheduling and caching in the
radio access network,” IEEE/ACM Transactions on Networking (TON),
vol. 22, no. 5, pp. 1444–1462, 2014.

[27] N. Beckmann, H. Chen, and A. Cidon, “{LHD}: Improving cache hit
rate by maximizing hit density,” in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18), 2018, pp.
389–403.

[28] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[29] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in SIGCOMM. ACM, 2017, pp. 197–210.

[30] G. Alnwaimi, S. Vahid, and K. Moessner, “Dynamic heterogeneous
learning games for opportunistic access in lte-based macro/femtocell
deployments,” IEEE Transactions on Wireless Communications, vol. 14,
no. 4, pp. 2294–2308, 2015.

[31] A. O. Al-Abbasi, A. Ghosh, and V. Aggarwal, “Deeppool: Distributed
model-free algorithm for ride-sharing using deep reinforcement learn-
ing,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–14,
2019.

[32] O. Onireti, A. Zoha, J. Moysen, A. Imran, L. Giupponi, M. A. Imran,
and A. Abu-Dayya, “A cell outage management framework for dense
heterogeneous networks,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 4, pp. 2097–2113, 2016.

[33] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222–250, 1977.

[34] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM TOMPECS, vol. 1,
no. 3, p. 12, 2016.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[36] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.

[37] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning, 2016, pp. 1995–2003.

[38] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016.

[39] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 AAAI Fall Symposium Series, 2015.

[40] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[41] Tornado web server. http://www.tornadoweb.org/en/stable/.
[42] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.”

Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.
[43] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page

replacement,” JACM, vol. 18, no. 1, pp. 80–93, 1971.
[44] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp.
2731–2735.


