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Abstract—A datacenter that consists of hundreds or thousands
of servers can provide virtualized environments to a large number
of cloud applications and jobs that value the requirement of
reliability very differently. Checkpointing a virtual machine (VM)
is a proven technique to improve reliability. However, existing
checkpoint scheduling techniques for enhancing reliability of
distributed systems fails to achieve satisfactory results, either
because they tend to offer the same, fixed reliability to all jobs,
or because their solutions are tied up to specific applications
and rely on centralized checkpoint control mechanisms. In this
work, we first show that reliability can be significantly improved
through contention-free scheduling of checkpoints. Then, inspired
by the Carrier Sense Multiple Access (CSMA) protocol in wireless
congestion control, we propose a novel framework for distributed
and contention-free scheduling of VM checkpointing to provide
reliability as a transparent, elastic service. We quantify reliability
in closed form by studying system stationary behaviours, and
maximize job reliability through utility optimization. Our design
is validated via a proof-of-concept prototype that leverages
readily available implementations in Xen hypervisors. The pro-
posed checkpoint scheduling is shown to significantly reduce
checkpointing interference and improve reliability by as much
as one order of magnitude over contention-oblivious checkpoint
schemes.

Index Terms—Reliability optimization, cloud computing,
checkpointing.

I. INTRODUCTION

Reliability is a critical requirement for modern datacenters.
High reliability is desirable for many jobs and applications,
because even a small service downtime may potentially lead
to business interruption with hefty financial penalties. In a
public cloud, reliability is provided as a fixed service pa-
rameter, e.g., all Amazon EC2 users are expected to receive
99.95% reliability [1]. In other words, the best reliability that
cloud customers can get right now is also the worst. Thus
it is up to the cloud customers to harden the jobs running
within their VM instances in order to enhance reliability for
critical applications. Now, applications that provide increased
reliability do exist, e.g., Oracle’s payroll and general ledger
programs. However, these approaches are specific to appli-
cations or require specific problem structures, and providing
elastic reliability for the masses remains an elusive goal in
cloud computing today.

This paper introduces an approach for assigning elastic
reliability to heterogeneous datacenter jobs via distributed
checkpoint scheduling and reliability optimization. Virtual Ma-
chine (VM) checkpointing is a widely-employed, application-
transparent solution to improve reliability in public clouds
[4], [5]. To optimize reliability of a single job, prior work
has proposed a number of models for calculating the optimal

checkpoint schedule [6], [7], [8], [9], [10], [11], and several al-
gorithms for balancing checkpoint workload and performance
overhead have also been proposed in [15], [16], [17]. Unfor-
tunately, these solutions fall short in optimizing checkpoints
of multiple jobs whose reliability requirements may vary
significantly, due to their inadequacy of taking into account
resource contention among different jobs’ checkpoints.

In a multi-job scenario, uncoordinated VM checkpoints
taken independently run the risk of interfering with each
other [12], [13] and may cause significant resource contention
and reliability degradation [2]. In particular, the time to save
local checkpoint images is determined largely by how I/O
resources are shared, while the overhead to transfer locally
saved images to networked storage relies on how network
resources are shared. In a large datacenter, chances are that
VM checkpointing, if unmanaged and uncoordinated, would
encounter severe network and I/O congestion, resulting in
high VM checkpointing overhead and reliability loss. For a
large datacenter, a centralized checkpoint scheduling scheme
that micro-manages each job’s checkpoints is impractical for
handling tens of thousands of jobs. Distributed checkpoint
scheduling is needed for achieving our goal of providing
elastic reliability as a service.

To this end, we propose a novel job-level self-management
approach that not only enables distributed checkpoint schedul-
ing but also optimizes reliability assignments to individual
jobs. Our contention-free scheduling solution is inspired by the
Carrier Sense Multiple Access (CSMA) method, a distributed
protocol for accessing a shared transmission medium, wherein
a node verifies the absence of other traffic before transmitting
on the medium [25], [26], [27]. If a job senses any ongoing
checkpoint actions at its serving hosts, it waits (or backs-off)
for an indefinite amount of time and keeps silent if any of its
hosts is busy or becomes busy during its backoff. The proposed
framework allows jobs to jointly optimize their reliabilities
via a fully distributed protocol for checkpoint scheduling. In
particular, we model the system evolution as an embedded
Discrete Time Markov Chain, solve the stationary distribu-
tion, derive the mean checkpoint interval under the proposed
scheduling protocol, and finally characterize the resulting
reliability of all jobs in the system. The analysis enables us
to develop a novel reliability optimization algorithm for the
proposed framework, which is able to re-balance reliability
assignment of different users in an online environment with
dynamic job arrivals and departures. Further, we show that
when sensing rates meet a certain set of system equations, the
optimal reliability assignment can be found in closed form.

We conduct simulations and experiments to compare
our method with contention-oblivious checkpoint schedul-
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Fig. 1. Multiple VMs belonging to the same job must be checkpointed simul-
taneously to avoid cascaded rollbacks. It increases the chance of checkpoint
contention.

Fig. 2. Fully coordinated checkpoint scheduling in a pipeline mode
significantly reduces resource contention over parallel checkpoints.

ing, wherein each job simply checkpoints its VMs at a
predetermined rate regardless of any contention from other
jobs’ checkpoints. The numerical results show that our pro-
posed contention-free framework can achieve a reliability
of two nines (i.e., 99%), which is one nine improvement
over contention-oblivious scheme (i.e., 90%), while reducing
application downtime by up to 18.3%. To the best of our
knowledge, this is the first work using a CSMA-based scheme
for distributed datacenter resource scheduling and reliability
optimization. The main contributions of this paper are sum-
marized as follows:

• We harness CSMA-based interference management to
provide a distributed and contention-free checkpoint
scheduling protocol. Our solution is well suited for im-
plementation in large-scale datacenters, as its job-level
distributed checkpoint scheduling mechanism can effec-
tively mitigate resource contentions caused by concurrent
job checkpoints.

• Reliability received by each individual job is character-
ized in closed form by studying the stationary behavior of
our proposed protocol. It enables a joint reliability opti-
mization where flexible service-level agreements (SLAs)
are negotiated through a joint assessment of all jobs’
reliability requirements and total datacenter resources
available.

• Results are validated via a proof-of-concept proto-
type that leverages readily available implementations in
Xen and Linux. The proposed CSMA-based checkpoint
scheduling is shown to significantly reduce checkpoint
interference and improve reliability by one order of
magnitude over contention-oblivious checkpoint schemes.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III introduces the system
model and illustrates the necessity for distributed, contention-
free checkpoint scheduling. Our theoretical analysis of CSMA-
based checkpoint scheduling and reliability optimization are
presented in Section IV. Section V contains experimental
results via a proof-of-concept prototype, and Section VI con-
cludes the paper.

II. RELATED WORK

Checkpointing and restoring the state of a running virtual
machine has been crucial for fault tolerance in virtualized
cloud environments. While sparse checkpoints can result in
loss of reliability, checkpointing too frequently may lead
to a large system overhead. [9], [11] study the impact of
checkpointing on execution time of an application under
different failure and checkpoint models. Existing work has
explored a number of approaches for optimizing the check-
pointing scheme. An age-dependent checkpointing model is
presented in [8], wherein the authors proposed several kinds
of statistical approximation schemes taking account of queuing
effects, to find the optimal checkpoint interval that maximizes
system reliability. [6], [10] propose online learning algorithms
(Bayesian learning and Q-learning) that provide an optimal
interval for statistical checkpointing models, minimizing the
operating cost incurred from checkpoint overhead. To further
reduce the network traffic and local system overhead from
checkpointing, while maintaining necessary checkpoints for
reliability, [15] proposes a smart checkpoint infrastructure
where read-only content is differentiated from read-write parts
in VM images. Thus, the read-only parts need to be check-
pointed only once, while the rest of checkpoints only save the
modifications in read-write parts, and the checkpointing time is
reduced. However, these solutions only address checkpointing
for a single job scenario, as none of these considered the
checkpointing resource interference where multiple jobs are
running across VMs.

Recent works also endeavor to solve the resource contention
between checkpoints in a multi-job scenario. [14] develops
a cooperative checkpoint scheduling strategy for concurrent
jobs. The strategy involves quantifying the impact of interfer-
ence on the I/O bandwidth, and scheduling checkpoints only
when I/O bandwidth utilization is below a certain threshold.
However, this does take VM image transfer into account, so re-
source contention at network level still exists. As a distributed
protocol for transmission sharing schemes, CSMA has been
widely adopted for solving both I/O and network resource
contentions. [25] introduced an adaptive CSMA scheduling
algorithm, to resolve link collisions in a multi-hop wireless
network, where transmitter of a link would periodically sense
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link transmissions and back-off if traffic is intense, which
improves network resource contention and maximizes link
throughput. While CSMA-inspired algorithms for checkpoint
scheduling were introduced in [33], they rely on local search
heuristics to optimize reliability in a dynamic setting. In con-
trast, in this paper we provide a complete analytical framework
for CSMA-inspired checkpoint scheduling protocols, enabling
a joint reliability optimization via a fully distributed protocol
for checkpoint scheduling.

Cloud computing is a primary choice for a wide range of
users from both academia and industry. However, computers
come with failures, and data center is no exception. Com-
mon cloud failures include software error, hardware failure,
scheduling error, service error, power outage, human oper-
ational errors, etc. [42]. Reliability is hence of paramount
value to the well-being of data centers. We find checkpointing,
replication, logging and VM migration are viable options to
improve the data center reliability [41]. However, performing
the aforementioned operations to enhance reliability is likely to
experience contentions at various stages. Using checkpoint as
an example, one might suffer from contentions when multiple
VMs are capturing the VM states on the same physical
machine, or transferring the captured states out from the
same physical machine, or writing the received checkpoint
files to the same storage node [43]. In this paper, we use
CSMA method to alleviate the potential contentions at all
phases of checkpoint. We anticipate that this method will also
benefit other methods such as replication, logging and VM
migrations.

III. SYSTEM MODEL AND MOTIVATIONS

A. Reliability Model Using Checkpoints

In the simplest form, a Virtual Machine Monitor (VMM)
can periodically record a clear state of the running VMs,
including a full image of the VM’s memory, CPU, and all
the device states, and flush resulting VM images to a central
storage server to establish recovery points [12], [18], [19].
For a single job consisting of multiple VMs, uncoordinated
checkpoints taken independently of each other [12], [13] run
the risk of cascaded rollbacks if causality is not respected.
This can be avoided by taking synchronous checkpoints of
all the VMs that a job comprises; however, the probability
of checkpoint contention increases as jobs often consist of
multiple VMs.

As shown in Figure 1, a single job periodically checkpoints
all its VMs every Tc seconds. Each checkpoint requires time
Tn+Tf to complete, which includes time Tn to suspend all its
VM executions in order to save a consistent local checkpoint
image, as well as time Tf to transfer the saved VM images
to a remote destination. After a failure occurs, the job can be
restored from an available checkpoint and rolled back to the
last saved state with recovery time Tr. We define reliability
by 1 minus the fraction of expected service downtime. More
precisely, let a failure occur at time t after the nth checkpoint

TABLE I
MAIN NOTATION.

Symbol Meaning

N N job indexed by i = 1, . . . , N
S S hosts indexed by h = 1, . . . , S
λi Sensing rate of job i
µi Service rate to checkpoint job i
τci Mean checkpoint time of job i
τri Mean rollback and recovery time of job i
fi Mean failure rate of job i
Ri Reliability of job i
Xk A state in our Markov Chain model

PXk,Xl
Transition rate between states Xk and Xl

πk Stationary distribution in state Xk
Ai A set of all states containing job i
E[Y ] Expectation of random a variable Y

is fully completed. Then,

R = 1− E
[
Service Downtime

Total Service Time

]
= 1− E

[
t− (n− 1)Tc − Tn − Tf + nTn + Tr

t+ Tr

]
,(1)

where nTn is the total service downtime due to taking
checkpoints, t−(n−1)Tc−Tn−Tf is the lost service time due
to rollback, and E is an expectation over all random factors,
e.g., checkpoint overhead and failure time. We note that the
transfer time does not count directly as downtime, since VMs
can resume execution once a local copy of checkpoint image
is created. However, if a failure occurs before the transfer
completes, then the execution has to be rolled back because
the local checkpoint image has not yet been properly stored
on a remote server. Thus, a longer transfer time Tf would lead
to higher downtime only if a failure occurs. For clarification,
we summarize main notations in this paper in Table I.

For a single job, a number of proposals for determining
the optimal temporal scheduling of checkpoints have been
provided in [15], [16], [17], [20], [21]. Further, protocols for
taking consistent snapshots of distributed services in virtual-
ized environments using OpenFlow hardware to improve fault
tolerance are presented in [22]. However, these results do not
take into account the contention among different checkpoints
in a multi-job scenario. It is shown that as the size of
datacenter grows large, uncoordinated VM checkpoints from
different jobs may cause significant resource contention and
result in high checkpoint overhead Tn (due to I/O resource
contention) and Tf (due to network resource contention)
[2], which directly translates to severe reliability degradation
according to (1). A utility-based framework for joint reliability
maximization under data center resource constraints is pro-
posed in [2]. The solution is shown to reduce expected service
downtime by as much as an order of magnitude, even though
it requires centralized coordination/scheduling and does not
allow a distributed implementation at a large scale.

B. Need for Contention-Free Checkpoint Scheduling

Job reliability benefits from mitigating checkpoint overhead,
while checkpoint frequency also has to be determined to
amortize not only service downtime due to taking checkpoints
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but also potential service loss due to failure and rollback.
Due to resource sharing in datacenters, all of these require a
joint checkpoint scheduling over all jobs that share a common
pool of resources. Consider two extreme cases for multi-job
checkpoint scheduling: parallel and pipeline scheduling, as
illustrated in Figure 2. In the parallel mode, the checkpoints
of all N jobs are done at the same time and the total I/O
and network bandwidth are shared among them. In theory, the
time to save a local checkpoint Tn and to transfer VM images
Tf will be at least N times higher than when checkpoints
are taken one at a time, and there can also be an overhead
To for switching between simultaneous VM checkpointing
processes in the parallel mode. On the other hand, if fine-
grained checkpoint control is possible, checkpoints of jobs can
be taken one immediately after another in a pipelined fashion
by overlapping image-saving time of one job’s checkpoint with
the image transfer time of another job. With such completely
coordinated checkpoints, jobs can take full advantage of all I/O
and network bandwidth resource available, causing minimal
interference to others.
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Fig. 3. Fully coordinated pipeline checkpoint schedule significantly reduces
contention and improves reliability over parallel checkpoint schedule. Relia-
bility calculated with 8 failures/year.

To demonstrate the advantage of checkpoint coordination,
we set up a simple experiment involving two hosts and
four VMs on each host to quantify how much reliability is
achieved under each scheme. We implement both parallel and
pipeline scheduling, and measure the checkpoint overhead
and VM image transfer time. Figure 3 shows that pipeline
scheduling outperforms parallel scheduling by nearly an order
of magnitude for various VM sizes. Significant I/O contentions
are observed in the parallel mode since multiple VMs take
checkpoints simultaneously, while the pipeline mode avoids
such contention and achieves much higher reliability. Further,
the reliability improvement increases as VM size grows be-
cause the larger the VM size, the longer time it needs to save
and transfer checkpoint images, and the more likely checkpoint
contentions occur.

We conclude that checkpoint scheduling is crucial to pro-
vide high reliability in a multi-job scenario. Even though
pipeline scheduling completely avoids checkpoint interference

Fig. 4. Our proposed architecture for checkpoint scheduling, with an
illustration of two jobs, consisting of 1 and 3 VMs respectively and
placed on 2 hosts.

and is able to efficiently utilize all I/O and network band-
width available, such a centralized coordination and micro-
management approach is prohibitive in large-scale datacenters
hosting tens of thousands of jobs. Therefore, a practical check-
point scheduling scheme should (i) allow a distributed im-
plementation without relying on any centralized, fine-grained
checkpoint control, (ii) be able to schedule contention-free
checkpoints for a large number of jobs that may have het-
erogeneous parameters and demands, and (iii) enable a joint
reliability maximization to assign the optimal reliability level
to each job that suits its demand. To this end, this paper makes
novel use of the CSMA protocol in wireless inference control
to derive a distributed, contention-free checkpoint scheduling
protocol with joint reliability optimization.

IV. OUR PROPOSED PROTOCOL AND RELIABILITY
OPTIMIZATION

In this section, we propose a CSMA-based checkpoint
scheduling protocol and quantify the resulting reliability re-
ceived by each job in closed-form. Unlike existing work
[25], [26], [27] that apply CSMA to wireless interference
management and are often concerned with data throughput, our
reliability analysis quantifies the reliability received by each
job in closed-form and enables joint reliability optimization
of all jobs via a utility framework. The protocol is inspired
by CSMA but is applied to datacenter resource sharing to
achieve distributed, contention-free checkpoint scheduling in
large-scale datacenters. Each job may consist of one or more
VMs, which are distributed to different physical machines
(or servers). Figure 4 shows an overview of the proposed
system architecture. It illustrates 2 jobs consisting of 1 and
3 VMs respectively and placed on 2 hosts. Our checkpoints
are organized at the job level - if a checkpoint of a job
is triggered, all VMs that belong to the job first save their
checkpoint images to the local storage (in order to minimize
VM downtime) and then transfer them to the networked
storage to avoid host failure.

In our design, each job achieves reliability optimization via
self-management in two ways: first, each job autonomously
determines its own checkpointing scheduling based on lo-
cally available information, e.g., the co-location of other jobs
and occurrence of checkpoint contention. Second, each job
autonomously updates its checkpoint rate based on locally
available optimal solutions, which is done at runtime with no
dependence on any centralized management decisions.
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In this section, we will first introduce the CSMA-based
checkpoint scheduling protocol, characterize the resulting re-
liability via a Markov Chain analysis of system stationary
distributions, and then present a joint reliability optimization.
Theoretical results obtained in this section will be validated
through a prototype implementation in Section V.

A. CSMA-Based Checkpoint Scheduling

We consider a datacenter serving N jobs denoted by
N = {1, 2, . . . , N} and using S servers denoted by S =
{1, 2, . . . , S}. Each job i is comprised of hi VMs that are
hosted on a subset of servers, denoted by Hi.

As discussed in Section III, mitigating checkpoint con-
tention can significantly reduce service downtime and improve
reliability. To develop a checkpoint scheduling protocol that is
not only contention-free but also fully distributed, we extend
an idealized model of CSMA as in [25], [26], [27]. CSMA
is a probabilistic medium access control protocol in which a
node verifies the absence of other traffic before transmitting
on a shared transmission medium. Our proposed checkpoint
scheduling works as follows: Each job i makes the decision
to create a remote checkpoint image based only on its local
parameters and observation of contention. If job i senses
ongoing checkpoints1 at any of its serving hosts (i.e., any
host s such that s ∈ Hi), then it keeps silent. If none of
its serving hosts is busy, then job i waits (or backs-off) for
a random period of time which is exponentially distributed
with the mean 1/λi and then starts its checkpointing.2 During
the back-off, if some contending job starts taking checkpoints,
then job i suspends its back-off till the contending checkpoint
is complete. We note that waiting a random back-off time with
different mean allows us to adjust different jobs’ checkpointing
probabilities. It will not cause excessive idle time because only
the relative values of 1/λi matter and the mean waiting time
can be set small enough in this CSMA model.

For analytical tractability, we assume that the total time
of saving a local checkpoint and transferring it to a re-
mote destination is exponentially distributed with the mean
of 1/µi = E(Tn + Tf ). This assumption of exponential
checkpoint time can be further removed using results in [27].
In such an idealized CSMA model, if sensing time is negligible
and back-off time follows a continuous distribution, then the
probability for two contending checkpoints to start at the
same time is 0 [25]. Therefore, the CSMA-based protocol,
summarized in Figure 5 achieves contention-free, distributed
scheduling of job checkpoints. We hasten to point out that the
back-off time parameters λi need to be optimized to ensure
fairness between different jobs, e.g., to prevent checkpoint-
intensive jobs from blocking others. We will quantify the
reliability received by different jobs for a given set of λi in
Section IV.C and leverage the result to jointly optimize job
reliability in Section IV.D.

1This can be achieved by assigning a timer to each job and having a
controller in each host’s hypervisor to monitor the status.

2The random backoff time is to ensure that two potentially-contending jobs
that sense no contention from other jobs do not start checkpointing at the same
time and trigger a contention.

Assign positive sensing rates λi > 0 ∀i

Each job independently performs:
Initialize backoff timer Bi
while job i is running

while Bi > 0
if any server in Hi is busy

Job i keeps silent
Generate new backoff: Bi = exponential with mean 1

λi

end if
Update Bi = Bi − 1

end while
Checkpoint all VMs of job i
Generate new backoff: Bi = exponential with mean 1

λi

end while

Fig. 5. Our contention-free, distributed checkpoint scheduling protocol
inspired by CSMA.

In contrast to existing CSMA analysis that focuses on data
throughput, this paper aims to quantify individual-job reliabil-
ity resulting from such contention-free, distributed checkpoint
scheduling protocol in large-scale datacenters. It requires us to
investigate the distributions of checkpoint intervals Ti, which
are random variables due to the CSMA-based, probabilistic
checkpoint scheduling protocol. Given a set of sensing rates
λ1, . . . , λN , we use Ri to denote the reliability received by job
i in the proposed checkpoint scheduling protocol. Notice that
reliability also depends on service rates µ1, . . . , µN and job
failure rate fi, which may further depend on server failure
model and VM placement. In this paper, we focus on the
checkpoint scheduling protocol and reliability maximization
by optimizing parameters λ1, . . . , λN . Using our model, we
are able to find the reliability received by each job in closed
form and then perform reliability optimization jointly over all
jobs with respect to their utilities.

B. Markov Chain Model

In order to optimize reliability, we first need to obtain the
reliability each job receives in the CSMA-based checkpoint
scheduling protocol for given sensing rates λ1, . . . , λN . We
make use of a Markov Chain model, which is commonly
employed for CSMA analysis in wireless interference manage-
ment. The Markov Chain for analyzing the protocol depends
on the sensing rate λi and checkpoint overhead µi, as well
as the datacenter VM placement that determines the pattern
of job interference. We will first describe the model in this
subsection and then use it to derive job reliability in closed
form to enable reliability optimization.

For any time t, we define a system state as the set of jobs ac-
tively taking checkpoints at t. Since our CSMA-based protocol
achieves contention-free checkpoint scheduling, in each state,
a set of non-conflicting jobs (known as an Independent Set)
are scheduled. We assume that there exist K ≤ 2N possible
states, represented by k = 1, . . . ,K. Let Xk ⊆ N denote the
subset of jobs actively taking checkpoints in state k. If job i is
not taking checkpoints in state k and all of its conflicting jobs
are not taking checkpoints, the state k with checkpointing jobs
Xk can transit to state k′ with checkpointing jobs Xk ∪ {i},
with a rate λi (i.e., job i starts its checkpoint). Similarly, state
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k′ with Xk ∪{i} can transit to state k with Xk, with a rate µi
(i.e., job i completes its checkpoints). It is easy to see that the
system state at any time is a Continuous Time Markov Chain
(CTMC).

Unlike existing CSMA analyses for wireless systems that
focus on throughput, our goal is to quantify job reliability us-
ing the Markov Chain model. According to Equation (1), this
requires the characterization of the distribution of checkpoint
overhead Tn, Tf , and checkpoint interval Ti, which are related
to sojourn time and returning time of the CTMC. We first
transform the CTMC into an embedded Discrete Time Markov
Chain (DTMC) that is easier to analyze. Since the embedded
chain also has different holding times for its states, we further
apply the uniformization technique to obtain a randomized
DTMC. It is sufficient to consider transitions between states
that differ by one job because there is no contention in our
idealized CSMA model. Let v be a uniformization constant
that is sufficiently large. Then, the DTMC has the following
transition probabilities:

PXk,Xk∪{i} =
λi
v

and PXk∪{i},Xk
=
µi
v
, (2)

where PXk,Xl
denotes the transition probabilities from state Xk

to state Xl. Due to uniformization, we define vk =
∑
l 6=k v ·

PXk,Xl
to be the sum of transition probabilities out of state Xk

and add a self-transition rate 1 − vk/v so that the transition
probabilities form a stochastic matrix. This means we have

PXk,Xk
= 1− vk

v
. (3)

Now we can study the properties of the original CTMC
through the DTMC whose state transitions occur according
to the jump times of an independent Poisson Process with
rate v, which is typically used in analyzing CSMA algorithms
[25], [26], [27]. Fig. 6 (a) gives an example datacenter with 3
jobs and 2 hosts. If each host is able to checkpoint 1 VM at a
time without incurring any performance loss, then checkpoints
of job 3 conflict with those of jobs 1 and 2, whereas jobs
1 and 2 can take parallel checkpoints without any resource
contention. Therefore, this system has K = 5 feasible states
(or Independent Sets): {·}, {1}, {2}, {3}, {1, 2}. State {·}
means no job is taking checkpoints, {i} means a single job i
takes checkpoints for i = 1, 2, 3, and {1, 2} means jobs 1 and
2 take checkpoints at the same time.

Fig. 6. Example: 3 jobs and corresponding Markov Chain.

Given the above DTMC model, we are interested in analyz-
ing its stationary behavior, which reveals the distributions of
checkpoint overhead Tn, Tf , and checkpoint interval Ti. The
transition probability matrix P of the DTMC has size K by
K and its stationary distribution is denoted by π1, . . . , πK ,
satisfying

(π1, . . . , πK) = (π1, . . . , πK) · P, (4)

where πk is the stationary probability that the DTMC stays in
state Xk. In the following lemma, we show that the stationary
distribution can be obtained in closed form for our DTMC
model.

Lemma 1: When no checkpoint interference (i.e., con-
tention) is permitted, the DTMC has stationary distribution:

πk =

∏
i∈Xk

λi ·
∏
j /∈Xk

µj

Cλ
, (5)

where Cλ is a normalization factor such that
∑
k πk = 1.

Proof: This lemma can be directly proved by showing that
the stationary distribution in Equation (5) satisfies the detailed
balance equation πkPXk,Xl

= πlPXl,Xk
, ∀k, l. Therefore,

the DTMC is time-reversible and its stationary distribution
depends on rates λi, µi of all jobs. �

C. Reliability Analysis

Now we can analyze the stationary behavior of the CTMC
through the DTMC and an independent Poisson Process with
rate v. From Equation (1), reliability is defined by 1 minus
the fraction of service downtime. It means that we need to
obtain the distributions of checkpoint overhead Tn, Tf , and
checkpoint interval Ti from the Markov Chain model. We
assume that each job has a known Mean Time to Failure
(MTTF) 1/fi and its failure time is modeled by an exponential
distribution. In practice, the MTTF can be estimated from
existing failure models or large-scale datacenter event logs
[28], [29]. For example, if each server has independent failures
according to a Poisson Process with rate f0 and job i is hosted
by mi different servers, then we have fi = mi · f0.

Consider checkpoint overhead Tn, Tf , and checkpoint in-
terval Ti in our CSMA-based protocol for a single job i. Let
Ai = {Xk : i ∈ Xk} be the set of all states containing job i.
It is not hard to see that total checkpoint overhead Tn + Tf
is the sojourn time that the CTMC stays within Ai, i.e., the
time to checkpoint job i’s VMs. Similarly, checkpoint interval
Ti is the first returning time of the CTMC to Ai. It is easy to
see that both sojourn time and first returning time are random
variables whose distributions depend on the Markov Chain
model. Using the definition in Equation (1), we first rewrite
reliability Ri with respect to random checkpoint overhead and
checkpoint interval.

Lemma 2: Let Ti be the random checkpoint interval of job
i. If job i has Poisson failures with rate fi, then its reliability
is given by

Ri = 1− τ ci µiπAi
− fiπAi

ETi − fiτ ri −
fiE

(
T 2
i

)
2ETi

(6)
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where τ ci is the mean time to save a local checkpoint image,
τ ri is the mean repair time, and πAi =

∑
k∈Ai

πk is the sum
of stationary distribution of all states in Ai.

Next, we provide some interpretations on the result. First,
πAi is the fraction of time that the Markov Chain spends in
states Ai (i.e., checkpointing job i VMs). Since our protocol
is contention-free, out of E(Tn + Tc) = 1/µi seconds on
average for each checkpoint, job i VMs have to be suspended
for E(Tn) = τ ci seconds to save consistent, local checkpoint
images during the process. Therefore, the service downtime
due to checkpointing is given by τ ci µiπAi . Second, fiτ ri is the
expected downtime due to failure recovery and repair. Further,
because of our assumption of Poisson failures, lost service time
due to VM rollback after each failure can be derived using
the Poisson Arrival Sees Time Average (PASTA) property,
i.e., fiE

(
T 2
i

)
/2ETi. Finally, when a failure arrives before a

checkpoint is completed (which again has probability πAi
),

all VMs must be recovered from the last available checkpoint
images. It implies that an additional rollback time of πAi

ETi
is incurred on average. A formal proof for this lemma can be
found in our online technical report [34].

Therefore, the reliability of job i can be obtained if ETi and
ET 2

i are known. Next we derive them via their counterparts
in the embedded DTMC. Since job i takes a checkpoint if the
DTMC is in a state belonging to Ai, its checkpoint interval
Ti can be measured by the first returning time to Ai, denoted
by tAi

. Let Y1, Y2 . . . be a sequence of i.i.d. exponentially-
distributed variables with mean 1/v. We have Ti =

∑tAi

l=1 Yl,
which results in

ETi = EtAi
· EYl =

1

v
EtAi

(7)

and

ET 2
i = var(Yl) · EtAi

+ (EYl)2 · Et2Ai

=
1

v2
(
EtAi

+ Et2Ai

)
. (8)

Here the derivations are straightforward from the i.i.d. property
of Yl, as well as the independence between the DTMC and the
underlying Poisson Process (i.e., the independence between Yl
and tAi

). We refer readers to [40] for the details.
Now it remains to find EtAi and Et2Ai

in the embedded
DTMC. When the number of jobs is large, we can approximate
the first returning time tAi

by an exponential distribution [30].
Then, its second order moment should be Et2Ai

= 2[EtAi
]2.

To find EtAi
, we apply Kac’s Formula in [30] and obtain the

following result.
Lemma 3: The expectation of first returning time tAi

for
the DTMC is given by

EtAi
= 1 +

v

µi

(
1

πAi

− 1

)
. (9)

Proof: Checkpoint interval tAi
is the time that the DTMC first

returns to any state in Ai since the previous time. Let X(n)

be the DTMC state at time n under stationary distribution. It
is easy to see that

tAi
= min{T |X(0) ∈ Ai,X(1) /∈ Ai,X(T ) ∈ Ai}, (10)

that is the minimum (random) time the chain returns to Ai
after it leaves at time n = 0. Applying Kac’s Formula [30]
to the DTMC, we have 1/πAi = E

[
τ+Ai

]
, where τ+Ai

=
min{T |X(0) ∈ Ai,X(T ) ∈ Ai, T ≥ 1} is the first hitting
time from a stationary distribution. Using the law of total
probability, we further have

E
[
τ+Ai

]
=
v − µi
v

E
[
τ+Ai
|X(1) ∈ Ai

]
+
µi
v
E
[
τ+Ai
|X(1) /∈ Ai

]
,

=
v − µi
v

+
µi
v
E [tAi

] , (11)

where the first step uses P{X(1)∈Ai} = 1 − µi/v and
P{X(1) /∈Ai} = µi/v because departure probability from Ai
is a constant µi/v from all states. The second step uses
the definition of tAi in Equation (10), as well as the fact
that E

[
τ+Ai
|X(1) ∈ Ai

]
= 1 due to the definition of hitting

time. Combining Equation (11) and Kac’s formula 1/πAi
=

E
[
τ+Ai

]
, we derive the desired Equation (9). This completes

the proof. �
Plugging these results into Equation (6), we can quantify

the reliability received by each job i in our contention-free,
distributed checkpoint scheduling protocol. Again, we refer
readers to our online technical report [34] for a complete proof.

Theorem 1: For given rates λ1, . . . , λK , each job i in our
protocol receives the following reliability Ri:

Ri = 1− fiτ ri − τ ci µiπAi −
fi
µi

(πAi +
1

πAi

). (12)

D. Reliability Optimization

We can use Theorem 1 to numerically calculate the reliabil-
ity of each job i for any given rates λ1, . . . , λK and failure rate
fi. Let Ui(Ri) be a utility function, representing the value of
assigning reliability level ri to job i. Our goal is to derive an
autonomous reliability optimization where flexible SLAs are
negotiated through a joint assessment of users’ utility and total
datacenter resources available. Toward this end, we formulate
a joint reliability optimization through a utility optimization
framework [31], [32] that maximizes total utility

∑
i Ui(Ri),

i.e.,

max
∑
i

Ui(Ri) (13)

s.t. Ri = 1− fiτ ri − τ ci µiπAi −
fi
µi

(πAi +
1

πAi

),

πAi
=

1

Cλ
·
∑
Xk∈Ai

∏
j∈Xk

λj ·
∏
l/∈Xk

µl,

var. λ1, . . . , λK

where Cλ is a normalization factor such that
∑
k πk = 1.

Here we use the closed-form reliability characterization in
Equation (12) and the stationary distribution in Equation
(5). We note that fairness between different jobs can be
achieved using certain utility functions. In particular, by choos-
ing a family of α-fairness utility functions [39], [38], i.e.,∑
i U(Ri) =

∑
iR

1−α
i /(1 − α) for α > 0, the resulting

reliability assignment will achieve different notions of fairness,
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Fig. 7. Comparison of the reliability values from our theoretical analysis
with a prototype experiment using 24 VMs in Xen. Our reliability analysis
can accurately estimate reliability in the proposed contention-free checkpoint
scheduling protocol within a margin of ±0.2%.

2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

# of updates

R
at

es
 λ

1
,λ

2

 

 

rate λ
1

rate λ
2

Fig. 8. Plot convergence of sensing rates λ1, λ2 when Hill Climbing local
search [35] is employed to solve the reliability optimization in Equation
(13) with 2 classes of jobs and a utility 2R1+R2. The algorithm converges
within only a few local updates to the optimal sensing rates.

e.g., proportional fairness for α = 1 and max-min fairness
for α → ∞. Thus, our proposed optimization algorithm can
capture different notions of fairness and balance the reliability
achieved by different jobs.

The reliability optimization is computed by maximizing an
aggregate utility

∑
i Ui(Ri) over all feasible sensing rates

λ1, . . . , λK . In a dynamic setting, such reliability optimiza-
tions must be solved for each job arrival and departure to
balance reliability assignments autonomously. We note that
many local search heuristics, such as Hill Climbing [35]
and Simulated Annealing [36], can be employed to solve
the reliability optimization in Equation (13) by incrementally
improving the total utility over single search directions. Un-
der certain conditions, we can also characterize the optimal
solution in closed form.

Theorem 2: If there exists a set of rates λ1, . . . , λK and
a positive constant Cλ satisfying the following system of
equations, then the rates maximize the aggregate utility in
Equation (13) for arbitrary non-decreasing functions:∑

Xk∈Ai

∏
j∈Xk

λj ·
∏
l/∈Xk

µl = Cλ ·
√

τc
i µ

2
i

fi
+ 1,∀i∑K

k=1

∏
j∈Xk

λj ·
∏
l/∈Xk

µl = Cλ. (14)

These rates simultaneously maximize the reliabilities received
by all jobs, i.e.,

Ri = 1− fiτ ri − 2

√
τ ci +

fi
µi

2

, ∀i. (15)

Proof: We apply the following inequality, ax + b/x ≥ 2
√
ab

for all positive a, b, x > 0, to the reliability in Equation (12).
It implies

Ri = 1− fiτ ri − τ ci µiπAi −
fi
µi

(πAi +
1

πAi

)

≤ 1− fiτ ri − 2

√
τ ci +

fi
µi

2

, (16)

where we use x = πAi
, a = τ ci µi +

fi
µi

and b = fi
µi

in
the inequality. Notice that the last step holds with equality
only if x =

√
b/a. For arbitrary non-decreasing utility

functions Ui(Ri), it is easy to see that aggregate utility∑
i Ui(Ri) is maximized if Equation (16) holds with equality

for all i = 1, . . . , N , i.e., all reliability values are maxi-
mized simultaneously. This proves the maximum achievable
reliability in Equation (15), which can be achieved only if

πAi
=
√

τc
i µ

2
i

fi
+ 1, ∀i. Plugging the stationary distribution in

Equation (5), we get exactly the conditions in Equation (14).
�

Remark: Theorem 2 establishes the maximum utility that our
checkpoint scheduling algorithm can achieve. If the conditions
in Theorem 2 are satisfied, then solving Equation (14) gives us
a set of rates λ1, . . . , λK , which maximize the aggregate utility
in Equation (13) for arbitrary non-decreasing utility functions.
As an example, if all jobs share a common resource bottleneck
that allows only a single checkpoint at each time, then we have
Ai = {i} ∀i because any pair of jobs conflict with each other.
It is easy to verify that the following rates satisfy conditions
in Equation (14), and therefore the reliability optimization can
be solved in closed form for arbitrary non-decreasing utility
functions:

λi =

√
τc
i µ

2
i

fi
+ 1∑N

j=1

√
τc
j µ

2
j

fj
+ 1

·
1−

∏N
j=1 µj∑N

j=1

∏
l 6=j µl

, ∀i. (17)

Once the optimal solutions are obtained (through either
local search heuristics or the sufficient conditions above), each
job only has to update its checkpoint rate according to the
optimal solutions. Due to the distributed nature of CSMA-
based scheduling, jobs can easily reconfigure their checkpoint
rates on-the-fly without relying on any centralized checkpoint
coordination.

Validation of theoretical analysis. To validate the relia-
bility analysis in Theorem 1, we implement a prototype of
the contention-free, distributed checkpoint scheduling protocol
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Fig. 10. Reliability for different checkpoint time intervals.

with 3 servers supporting 24 Xen VMs each with 1GB DRAM.
The detailed implementation parameters are provided later
in Section V. We first benchmark necessary parameters in
our theoretical model using Markov Chain analysis, i.e., the
mean checkpoint local-saving time τ ci = 30.2 seconds, mean
checkpoint overhead 1/µi = 71.5 seconds, and mean repair
time τ ri = 80.2 seconds for all jobs i = 1, . . . , 24. So
all jobs in the experiment receive an equal reliability value.
For a sensing rate of λi = 1/(2.5 days) and exponential
failures with fi ranging from 2 to 16 failures per year, we
compare the reliability values from our theoretical analysis to
the values obtained from the experiment. Figure 7 shows that
our theoretical analysis can accurately estimate the reliability
values received in the proposed protocol, with a small error
margin of ±1%. This implies that our theoretical reliability
analysis provides a powerful tool for reliability estimation and
optimization.

Example for reliability optimization. To give a numerical
example of the proposed reliability optimization, consider a
datacenter with 2 classes of jobs: 10 large jobs that contain
10 VMs each and 100 small jobs that contain 2 VMs each. As-
sume that at most 2 jobs can take non-contending checkpoints
at each time, average checkpoint overhead is τ c1 = 50 seconds
for large jobs and τ c2 = 25 for small jobs, and the recovery
time is τ r1 = 400 seconds and τ r2 = 200 seconds. Assume
that each host has independent failures with rate f0 = 2/year.
Then, large jobs have failure rates f1 = 10 · f0 = 6.43e − 7
and small jobs f2 = 2 · f0 = 1.29e − 7. Finally, the total
checkpoint time is 1/µlarge = 200 seconds for a large job
and 1/µsmall = 100 seconds for a small job. We implement
Hill Climbing local search [35] to find the optimal sensing
rates λ1, λ2 that maximize a utility 2R1 + R2. As shown in
Figure 8, the algorithm converges within a few local updates
to the optimal sensing rates. At optimum, large jobs receive a
higher reliability R1 = 0.99 than small jobs R = 0.90 because
the weight of large jobs is twice as that of small jobs in the
optimization objective 2R1 +R2.

V. IMPLEMENTATION AND EVALUATIONS

We have implemented a prototype of the contention-free
checkpoint scheduling in C. In particular, each job employs an
individual timer to perform required back-offs and determine
when to perform the next checkpoint attempt. A controller is
implemented in the hypervisor of each host to monitor the
timers of different jobs/VMs and update the busy/idle state.
We use a cluster of four machines with Intel Atom CPU D525,
4GB DRAM, 7200 RPM 1TB hard drives, and interconnected
with a 1GB/s network. Note that I/O and network bandwidths
rather than CPU and memory are the major limiting factors
for our tests. To simulate the workload, each VM runs a
CPU-intensive benchmark [37] with 1 VCPU, 512MB or 1GB
DRAM, and 10GB VDisk. The host OS is Linux 2.6.32 and
Xen 4.0. If not specified, the failure rate is eight times per
year, and each reliability result is the average of three runs.

We perform a hybrid experiment. First, we run the proposed
checkpoint scheduling algorithm on the testbed and obtain a
number of measurements through an average of 20 runs: (i)
the time to checkpoint each VM and save that checkpoint file
locally; (ii) the time for transferring each checkpoint file to a
remote server (located in the same rack) that is dedicated for
storing the checkpoint images; (iii) the total time for transfer-
ring the required checkpoint images during a recovery from the
remote server; and (iv) the total time for a job and all its VMs
to restore from an available checkpoint. Then, based on these
measurements and traces, we simulate datacenter failures with
the desired failure rate fi, e.g., in the range of 4 to 128 failures
per year, and compute the corresponding reliability values.
Since the failure rate is independent of the checkpointing and
recovery overhead, this hybrid approach allows us to evaluate
the proposed algorithm under different failure rates without
having to cope with prohibitive experiment running time.

Figure 9 shows the reliability of a job when the annual
failure rate varies from 4 times to 128 times per year. In this
experiment, we run three jobs (two VMs per job, and six
VMs in total) and present the average reliability. For small
failure rates, the reliabilities for both contention-oblivious
and contention-free scheduling are very high. But as more
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Fig. 11. Reliability of 128 jobs for both contention-free and
contention-oblivious checkpoint scheduling.

failures occur, the relative benefit of contention-free schedul-
ing becomes more obvious. This is because as failure rate
increases, the checkpointing frequency, and thus contentions in
the system, increases accordingly. It becomes more important
to mitigate contentions in the system. Thus, our proposed
optimization algorithm for the contention-free strategy would
be able to achieve higher relative improvement.

Reliability as a function of checkpoint interval is shown in
Figure 10. Overall, our proposed contention-free scheduling
with optimized solution can achieve a reliability of two nines
(> 99%), which is “one nine” improvement over contention-
oblivious schemes (> 90%). For contention-free scheduling,
the reliability of the system keeps increasing as the checkpoint
interval becomes larger. At the same time, the contention-
oblivious mechanism increases at a slower pace, but it can
also potentially reach as high reliability as contention-free
scheduling. This happens because when the checkpoint in-
terval becomes large enough, the probability of checkpoint
contention from different jobs becomes small. To demonstrate
the scale of our approach, we also extend this test to simulate
128 jobs. In this experiment, we intentionally intensify the
job checkpointing rate in our cluster. As shown in Figure
11, almost all contention-free configuration jobs can achieve a
reliability of two nines but the major percentage of contention-
oblivious jobs falls into one nine reliability range. In addition,
we present the normalized downtime for different annual
failure rate settings in Figure 12. Note that the downtime of
a system includes the checkpoint time, and recovery time if
the host is down. All times are normalized to the downtime
for contention-oblivious scheduling with 128 failures per year.
One can see that our contention-free checkpointing can achieve
a reduction in service downtime of upto 18.3% compared to
contention-oblivious schemes.

In Figure 13, we show the effect of VM memory size (and,
therefore, checkpoint duration) on reliability. Under the same
checkpoint interval and failure rate, a job with VM memory
size of 512 MB achieves higher reliability due to its smaller
memory footprint. The reason is that a larger DRAM size
requires more time to suspend the VM and transfer the VM
image from the host machine to the destination storage. But the
overall trend still shows that our contention-free checkpoint-
ing mechanism significantly outperforms contention-oblivious

scheduling.

VI. CONCLUSIONS

Inspired by the CSMA protocol for wireless interference
management, we propose a new protocol for distributed and
contention-free checkpoint scheduling in datacenters, where
jobs’ requirements for reliability vary significantly. The pro-
tocol enables datacenter operators to provide elastic reliability
as a transparent service to their customers. Using Markov
Chain analysis of system stationary behaviours, the reliability
that each job receives in our protocol is characterized in
closed form. We also present optimization algorithms to jointly
maximize all reliability levels with respect to an aggregate
utility. Our design is validated through prototype implemen-
tations in Xen and Linux, and significant reliability improve-
ments over contention-oblivious scheduling checkpointing are
demonstrated via experiments in realistic settings. We will
consider checkpointing on a sub-job level and further refine
our model, e.g., based on datacenter network topology and
using better estimate of modeling parameters, in our future
work.
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