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Abstract—As demands for cloud-based data processing continue to grow, cloud providers seek effective techniques that
deliver value to the businesses without violating Service Level Agreements (SLAs). Cloud right-sizing has emerged as a
very promising technique for making cloud services more cost-effective. In this paper, we present CRED, a novel
framework for cloud right-sizing with execution deadlines and data locality constraints. CRED jointly optimizes data
placement and task scheduling in data centers with the aim of minimizing the number of nodes needed while meeting
users’ SLA requirements. We formulate CRED as an integer optimization problem and present a heuristic algorithm with
provable performance guarantees to solve the problem. Competitive ratios of the proposed algorithm are quantified in
closed form for arbitrary task parameters and cloud configurations. We also extend our work to obtain a resilient solution,
which allows successful recovery at run time from any single node failure and is guaranteed to meet both deadline and
locality constraints. Simulation results using Google trace show that our proposed algorithm significantly outperforms
existing heuristics such as first-fit by reducing the number of required active servers by up to 47%, and achieves
near-optimal performance. We also show that our algorithm can significantly improve utilization of both computational
resources and storage space by up to 28% and 15%, respectively.
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1 INTRODUCTION

W ITH an increasing number of cloud-based so-
lutions such as enterprise IT, social networks,

financial services and scientific research, an explo-
sive amount of data is being created, processed, and
consumed online. Analytics over such data in the
cloud are becoming more cost-sensitive, and cloud
right-sizing has quickly emerged as a very promising
technique for making clouds more cost-effective by
dynamically adapting the number of active servers to
match the target workload. Cloud right-sizing enables
significant cost savings and power savings by auto-
tuning the amount of active resources/nodes to han-
dle the current workload [2], [3].

Existing work on cloud right-sizing mainly focuses
on reducing energy consumption by dynamically al-
locating resources for given workloads [3], [4]. There
is much less study on cloud right-sizing under both
execution deadline and data locality constraints. In-
deed, processing and analyzing data within certain
deadlines have become more and more important,

This paper is an extended version of [1].

particularly due to the introduction of differentiated-
QoS classes and time-dependent pricing mechanisms
[5], [6], [7]. To improve data access efficiency and
task throughput, data locality is often maximized by
assigning tasks only to nodes that contain their input
data [8], [9], [10], [11], [12]. However, pursuing these
two objectives together could give rise to a conflict
between “meeting deadlines” and “achieving local-
ity” - for instance, a node with sufficient computing
resources to complete a task on time may not possess
the desired input data, and vice versa. The nature of
cloud applications is becoming increasingly mission-
critical and deadline-sensitive, e.g., traffic simulation
and real-time web indexing. These applications are
evolving in the direction of demanding hard comple-
tion times [6], and are likely to play crucial roles in the
national infrastructure in the not too distant future.
The cloud right-sizing problem is of interest to cloud
providers in both private and public cloud settings.

The need to solve cloud right-sizing under both
execution deadline and data locality constraints can be
illustrated by a simple example, as shown in Figure 1.
Consider a set of 3 jobs, j1, j2, and j3, to be executed
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Fig. 1: An illustrative example of joint job scheduling
and chunk placement for a cloud processing 3 jobs.

on a cloud for processing 5 data chunks C1, . . . , C5.
The jobs’ resource requirements are heterogeneous –
job j1 accesses a single chunk C1 and needs 6 time
slots to process it, job j3 accesses C5 and needs 3
time slots, and job j2 accesses three chunks,C2, C3, C4,
each requiring only one time slot to process. Our goal
is to place the chunks in the nodes and schedule the
jobs so as to minimize the number of active nodes
needed to finish all three jobs before a deadline d = 4.
Suppose each node has only one virtual machine (VM)
(i.e., only one job can be processed by a node at each
time slot), and is able to host 2 data chunks. The
deadline-oblivious solution in Figure 1(a) considers only
data locality constraint, i.e., assigns jobs to nodes that
have the input data. It sequentially fills 3 nodes with
the data chunks and assigns each job to nodes hosting
its input chunks. While this solution minimizes the
number of active nodes, it results in job j1 failing to
meet its deadline. The deadline-aware first-fit solution
in Figure 1(b) finds the first node with both available
time slots and storage space to accommodate a new
job. A fraction of the job is assigned to the node until
it either has no more time slots left before the deadline
or it cannot host any more chunks. This solution is
able to meet all three jobs’ deadlines, but increases
the number of necessary nodes to 4 (i.e., over-sizing).
Finally, the optimal solution in this example that uses
only 3 nodes to meet the job deadlines is shown
in Figure 1(c). The key insight is that we need to
optimize the cloud over both chunk placement and job
scheduling in order to achieve optimal right-sizing.

While adding new nodes can always improve
cloud performance and increase its ability to meet
deadlines [8], such a provisioning strategy is not cost-
effective since servers and networks in datacenters
contribute about 60% of the total expenses [13], [14].
It also may not always contribute to performance en-
hancements due to data locality [10], [11], [15]. In this

paper, we introduce an optimization framework called
CRED (cloud right-sizing with execution deadlines
and data locality). To the best of our knowledge, this
is the first work to consider cloud right-sizing under
both deadline and locality constraints. Using a time-
slotted system model, we present an algorithm for
joint task scheduling and data placement. Then, we
analyze the performance of the proposed algorithm
and quantify its competitive ratio through closed-form
bounds. In particular, we show that the proposed al-
gorithm has a worst-case competitive ratio of 1.5, and
is able to achieve the optimal solution under certain
conditions. Extensive simulation results are presented,
including a trace-driven simulation using 110 hours
of Google Trace [16]. It is shown that our proposed
algorithm outperforms heuristics such as first-fit by
up to 47% node reduction. This saving indeed comes
from the fact that our algorithm can significantly im-
prove utilization of both computational resources and
storage space by up to 28% and 15%, respectively.

The paper makes the following novel contribu-
tions:

• We formulate the CRED problem, which jointly
optimizes job scheduling and data placement
in cloud-based data processing in order to min-
imize the number of active nodes under task
deadline and data locality constraints.

• We propose novel algorithmic solutions to the
CRED problem and quantify their competitive
ratio in closed form. Tight upper bounds for
the proposed algorithms are derived and com-
pared to lower bounds.

• The CRED problem and proposed algorithms
are extended to obtain a resilient solution,
which allows successful recovery at run time
from any single node failure and is guaranteed
to meet both deadline and locality constraints.

• Our work is validated through extensive simu-
lations and compared with a first-fit heuristic.
Significant cloud size reduction is verified.

The rest of this paper is organized as follows.
In Section 3, we introduce our system model and
problem formulation. Sections 4 and 5 present our
solution to CRED in the cases of no failure and single
node failure, respectively. We present the experimental
evaluation of CRED in Section 6, and conclude the
paper in Section 7.

2 RELATED WORK

There has been intensive research on improving the
performance of cloud-based frameworks. Data locality
has a significant impact on system performance and is
considered to be an important factor for scheduling
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[10]. Achieving efficient data locality in a cloud cluster
is critical for performance and reduces the cost of
transferring data over the network. [17] designed and
implemented a resource-aware scheduler to alleviate
job starvation and avoid unfavorable data locality.
ActCap [18], and MRA++ [19] proposed solutions for
data placement to improve MapReduce performance
on a heterogeneous cluster. [20] presented RCFile
(Record Columnar File) as a fast and space-efficient
data placement structure. [21] proposed scheduling
techniques to enhance jobs’ data locality. Similar to our
work, Purlieus [11] proposed to couple data and VM
placement in MapReduce cluster. However, unlike our
work, they did not consider minimizing the number of
nodes for a given cluster while meeting the execution
deadlines for submitted jobs.

Deadline-aware schedulers for cloud-based frame-
works have also been well studied. For example,
[22] developed a deadline constraint scheduler and
derived closed-form expressions for the minimum
Map/Reduce tasks required to meet deadlines in
the MapReduce framework. SAMES [23] proposed a
scheduling algorithm for MapReduce jobs with dead-
lines. Its goal is to maximize the number of jobs that
finish before their deadlines. AIRA [24] is proposed to
allocate the appropriate amount of resources for a job
to meet its required SLA, and [25] aims to improve re-
source utilization while observing deadlines. A frame-
work designed to schedule Hadoop workflows with
deadlines is proposed in [26] . It allows client nodes
to locally generate scheduling plans of workflows,
which a master node can use to prioritize jobs among
multiple workflows.

While the above challenges have been extensively
studied in the literature, to the best of our knowledge,
no work considers optimizing data locality and task
scheduling jointly to reduce cost of operation while
meeting a given time constraint. We argue that the
fundamental cause of violating users’ requirement is
neglecting optimizing data placement and scheduling
jointly.

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

Consider a set of J jobs that need to be processed
by a cloud consisting of N physical machines (i.e.,
nodes) that are homogeneous [27], [28]. Note that
the homogeneity assumption is only a technical con-
dition required to quantify performance bounds in
closed-form; all algorithms proposed in this paper
work with heterogeneous nodes. Each job j has a
deadline dj and is required to access a data object
that is split into a set Cj of equal-sized chunks. The

chunks are stored in a distributed file system on the
cloud. Each node is capable of hosting up to B data
chunks and is equipped with S VMs. We consider a
cloud framework similar to MapReduce, where jobs
are partitioned into small tasks that are processed in
parallel by different VMs. Thus, each node is able
to simultaneously process S jobs. In this paper, we
consider heterogeneous jobs with different processing
times. In particular, the time for each job j to process
a required data chunk, denoted by Tj , can vary from
job to job. Note that Tj in our framework is assumed
to be known a priori. This follows from the model
used in [15], [29], [30], which shows that 40% of the
jobs are recurring, and their characteristics, e.g., input
data size, can be predicted with a small error of 6.5%
on average, and the completion time’s coefficient of
variation is low. A job is completed once all required
chunks are processed and will then exit the system.

Our goal is to minimize the total number of ac-
tive nodes needed to complete the jobs satisfying a
deadline constraint dj for each job j, the data locality
constraint, and physical resource constraints on each
node. We consider a time-slotted model where jobs
are scheduled to execute in fixed-length time slots.
Since each node is equipped with S VMs, it has S
slots available at each time t. Our control knobs in
the optimization include data chunk placement, job
scheduling, and cloud sizing. We first formulate this
cloud right-sizing problem as an integer optimization.

Completing a job j before deadline dj is equiv-
alent to processing all the required chunks c ∈ Cj
before the deadline.1 When a chunk is accessed by
multiple jobs, we need to guarantee that the chunk
receives sufficient processing time (i.e., time slots)
before each target deadline in order to support all the
jobs. Therefore, we can formulate the job scheduling
problem in terms of required processing time for each
chunk. Denote D↑=∪j{dj} to be the set of D distinct
deadlines. Without loss of generality, we assume the
deadlines in D↑ are ordered, so that d↑i < d↑s for all
i < s and d↑i , d

↑
s ∈ D↑. We now formulate the job

scheduling problem with respect to the variable fc,n,i,
which is defined as the number of time slots on node
n that are scheduled to process chunk c before the ith
smallest deadline d↑i . More precisely, the total number
of time slots received by chunk c from all nodes (i.e.,∑

n fc,n,i) before d↑i must satisfy:

N̂∑
n=1

fc,n,i ≥
∑

j:dj≤d↑
i

Tj , Fc,i, ∀c, d↑i (1)

1. In this paper, we assume that the time to set up a new
machine including data transfer time from central storage can
be absorbed into job deadlines in the online setting.
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where a job j needs to access a chunk c∈Cj for Tj
time-slots before time d↑i and dj ≤ d↑i , and N̂ is the
number of active nodes needed. We define Fc,i as the
minimum number of required time slots for chunk c
before deadline d↑i . Equation (1) introduces a deadline
constraint for the cloud right-sizing problem.

Let pc,n be a binary chunk placement variable that
is 1 if a chunk c is hosted by node n and 0 otherwise.
Similarly, we use un = 1 to denote that node n is
active and un = 0 otherwise. Due to our data locality
constraint, job i can be scheduled on node n only if
the node is active and its required data chunks are
available locally, i.e.,

fc,n,i = 0 if (pc,n = 0 or un = 0), ∀c, n, d↑i . (2)

Let C = ∪jCj be the set of all data chunks. There are
two types of physical resource constraints: (i) a storage
constraint that requires no more than B chunks to be
placed on any active node, i.e.,∑

c∈C
pc,n ≤ B · un, ∀n (3)

and (ii) a computational constraint that limits the num-
ber of time slots available:∑

c:pc,n>0

fc,n,i ≤ d↑i · S · un,∀n, d
↑
i (4)

where
∑

c:pc,n>0 fc,n,i is the total number of time slots
assigned to different chunks before d↑i . On the other
hand, there are d↑i time slots available for each VM on
node n that is equipped with S VMs.

Our proposed optimization problem aims to min-
imize the total number of active nodes to process all
jobs, under the above constraints. It can be formulated
as an integer optimization over the decision variables
{fc,n,i, pc,n, un}:

minimize N̂ =
N∑

n=1

un, (5)

s.t. (1), (2), (3), and (4) are satisfied.

4 OUR SOLUTION TO CRED PROBLEM

The key idea from our illustrative example in Fig. 1
is that solving the CRED problem requires a joint
optimization of job scheduling and chunk placement
that addresses both execution deadline and data lo-
cality constraints in a collaborative fashion. In this
section, we propose a novel algorithm that harnesses
workload-aware chunk placement to partition data
chunks based on their workload and schedules jobs
to efficiently utilize both space and computing re-
sources on active nodes, thus minimizing the number
of nodes required to process all jobs. To illustrate our

key solution concept, we will first focus on a special
case where all jobs require equal execution deadlines.
Next, we extend it to solve the CRED problem for
arbitrary number of deadlines. The performance of the
proposed algorithms is quantified through analytical
upper and lower bounds.

We first introduce some notations. Consider the
chunk set Ci for d↑i with size Ci. We sort all chunks
in descending order based on the number of required
time slots for d↑i and record the order in an array,
Rd↑

i
. The chunk recorded in the head of Rd↑

i
has

the largest number of required time slots for d↑i . In
the following discussion, each algorithm has multiple
steps and each step needs multiple iterations. So, we
denote H(r)

B,d↑
i

as the first set of B contiguous chunks,
from the tail of the array, with the total number of
required time slots larger than or equal to S·d↑i , at the
beginning of the rth iteration. We denote

∑
c∈Hb

F
(r)
c,i

and
∑

c∈Lb
F

(r)
c,i as the number of required time slots

for the b chunks at the head of Rd↑
i

and at the tail of
Rd↑

i
, respectively, at the beginning of the rth iteration.

We denote Cb,i as a set of b chunks from Ci. We define
Ki as the minimum number of nodes necessary to
provide enough time slots for all jobs whose deadlines
are equal to d↑i , which equals

∑
c Fc,i

S·d↑
i

. Also, we define

k
(r)
i as the minimum number of nodes necessary to

provide enough time slots for jobs remaining at the
beginning of the rth iteration, whose deadlines are
equal to d↑i . Therefore, Ki = k

(0)
i .

4.1 Solving CRED with equal deadlines

Consider the case where all jobs require the same
execution deadline, i.e., dj = d↑1 = d ∀j. In this case,
we drop the subscript for simplicity and denote the
variables as C, Cb, K , and k(r). Chunks need time
slots Fc ∀c. The algorithm, shown in Algorithm 2
(CRED-S), is comprised of two steps. As mentioned
above, each step of the algorithm consists of multiple
iterations and we use r to denote the rth iteration.

When
∑

c∈HB
F

(r)
c > S·d, we place H(r)

B,d into a
node and call SCHEDULE for time-slots’ scheduling.
The condition

∑
c∈HB

F
(r)
c > S·d guarantees that

H(r)
B,d exists. By choosing H(r)

B,d, we can schedule S·d
time slots in each node. Choosing H(r)

B,d and calling
SCHEDULE guarantees that we can take care of as
many chunks as possible while scheduling S·d time
slots in each iteration. If the remaining number of
required time slots for chunk c is 0, we can remove
the chunk c from the chunk set C and reduce the size
of the chunk set C. When

∑
c∈HB

F
(r)
c ≤S·d, we can
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place any B chunks into one node and remove all of
them.

The basic idea of SCHEDULE is that by scheduling
time slots from the chunks with the smallest number
of required time slots, we can remove more chunks.
The inputs to SCHEDULE are a set of chunks and the
number of time slots needed for d. The number of
time slots needed is the number of time slots waiting
for scheduling in a node. We denote the number of
time slots needed in the rth iteration as NTS(r)

d . If
the remaining number of required time slots of chunk
c is less than or equal to NTS

(r)
d , we schedule the

remaining number of required time slots of the chunk
c in the node. We deduct the remaining number of
required time slots of the chunk c from NTS

(r)
d , mark

the remaining number of required time slots of the
chunk c as 0, and then remove the chunk c. If the
remaining number of required time slots of the chunk
c is larger than NTS(r)

d , we schedule the NTS(r)
d from

chunk c in the node. We then deduct NTS(r)
d from the

remaining number of required time slots of chunk c

and mark NTS(r)
d as 0.

Algorithm 1: SCHEDULE(C, NTS(r)
d )

1: sort C based on the remaining number of required
time slots for d in ascending order

2: for c = 1 : C do
3: if F (r)

c −NTS(r)
d > 0 then

4: F
(r)
c = F

(r)
c −NTS(r)

d

5: NTS
(r)
d = 0

6: break
7: else
8: NTS

(r)
d = NTS

(r)
d − F (r)

c

9: F
(r)
c = 0

10: remove the chunk c
11: end if
12: end for

It is easy to see that CRED-S will keep adding
new nodes until all chunks get their required time
slots

∑
c Fc scheduled. Processing chunk c is only per-

mitted on a node where chunk c is placed. Thus, the
algorithm is guaranteed to generate a feasible solution
to the CRED problem. To analyze the performance, we
first consider time complexity, and space complexity of
CRED-S. Then, we derive an upper bound to quantify
the maximum number of active nodes needed by
CRED-S. The upper bound is compared to a theoreti-
cal lower bound that establishes the minimum number
of active nodes necessary for any feasible solution to
the CRED problem.

The time complexity of CRED-S is dominated by

Algorithm 2: CRED-S

1: Input: C,
∑C

i=1f
d
i , B, d

2: Output: N̂
3: C(r) = C
4: while C(r) > 0 do
5: sort chunks based on the number of required

time slots
6: if

∑
c∈HB

F
(r)
c > S·d then

7: place H(r)
B,d into one node

8: SCHEDULE(H(r)
B,d,S·d)

9: else
10: break
11: end if
12: end while
13: while C(r) > 0 do
14: place CB into one node
15: SCHEDULE(CB ,S·d)
16: end while

the sort, and the time complexity is O(K·C· lg(C)),
where K is the maximum number of iterations, and C
is the maximum number of remaining chunks. We can
use HashMap to store chunks, where keys are chunk
indexes, and values are chunk time slots needed. So,
the space complexity is O(C). Next, we will analyze
each step in CRED-S to derive upper and lower
bounds on the number of nodes needed, denoted by
N̂ . The basic idea of deriving the lower bound is to
only consider time slots or block constraint in each
node. The basic idea of deriving the upper bound is to
fix the number of removable chunks in each iteration
of each step.

Theorem 1. When K > b 2CB c, the bounds are given by
K≤N̂≤K+1. When b 2CB c≥K ≥ b

C
B−1c, the bounds are

given by max(dCB e,K) ≤ N̂ ≤ K
2 + C

B + 1. When K <

b C
B−1c, the bounds are given by dCB e ≤ N̂ ≤

K
B + C

B + 1.

Proof. In each node, we can place at most B chunks or
schedule S·d time slots. To place C chunks, we need
at least dCB e nodes. To schedule

∑
j Tj required time

slots, we need at leastK nodes. To place C chunks and
schedule

∑
jTj required time slots, we need at least

max(dCB e,K) nodes. As a result, the lower bound is
max(dCB e,K).

We now derive the upper bound for CRED-S.
Instead of removing as many chunks as possible, we
only remove the assigned number of chunks in each
iteration of each step. In the following, we call this
as the simplified version of CRED-S (CRED-SS). If the
assigned number of chunks has been removed, even
though the remaining number of required time slots of
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other chunks equals 0, we still consider those chunks
in the following cases. For CRED-SS, in step 1, when
bC

(r)

B−1c ≤ k
(r) ≤ b 2C

(r)

B c, we remove B
2 chunks in each

iteration. When k(r) ≤ bC
(r)

B−1c and
∑

c∈HB
F

(r)
c > S·d,

we remove B − 1 chunks in each iteration. In step
2, CRED-SS also removes any B chunks in each
iteration.

In the following, we first derive upper bounds for
CRED-SS. Then, we show that the number of nodes
needed by CRED-SS is no fewer than the number
needed by CRED-S. Therefore, the upper bounds for
CRED-SS are also upper bounds for CRED-S.

We introduce Lemma 1 to verify that for CRED-
SS, once bC

(r)

B−1c ≤ k(r) ≤ b 2C
(r)

B c, in each iteration,
we can remove at least B

2 chunks. Also, we introduce
Lemma 2 to verify that once k(r) ≤ bC

(r)

B−1c, in each
iteration, we can remove at least B − 1 chunks. Proofs
of these lemmas, as well as Lemma 3, can be found in
the Appendix.

Lemma 1. For CRED-SS, when k(r) ≤ b 2C
(r)

B c, where
C(r) = C − r · B2 , we have

∑
c∈LB/2

F
(r)
c ≤S·d. Here C

is the size of the chunk set when r = 0.

We denote theB−1 chunks with the smallest num-
ber of required time slots among H(r)

B,d as LH(r)
B−1,d.

Lemma 2. For CRED-SS, when k(r)≤bC
(r)

B−1c and∑
c∈HB

F
(r)
c > S·d, where C(r) = C − r·(B − 1), the

total number of required time slots of LHB−1,d is less than
or equal to S·d. Here C is the size of the chunk set when
r = 0.

The basic idea of the following discussion is to
consider the value of K in three cases. By introducing
the three cases, we can get tighter upper bounds.

Case 1: K > b 2CB c. Assume we need r11 itera-

tions of step 1 to make k(r
1
1) ≤ b 2C

(r11)

B c. Assume
we need another r12 iterations of step 1 to make

k(r
1
1+r12) ≤ bC

(r11+r12)

B−1 c. Assume we need another r13
iterations of step 1 to make

∑
c∈HB

F
(r11+r12+r13)
c ≤S·d.

So, the total number of nodes for step 1 and step 2 is

r11 + r12 + r13 +

⌈
C − r12B/2− r13(B − 1)

B

⌉
. (6)

We know that B≥2 and r11 + r12 + r13≤K . Since we
do not remove any chunks within r11 iterations, so r11
equals K − b 2CB c. Thus, (6) is less than or equal to
K + 1.

Case 2: b 2CB c≥K ≥ b C
B−1c. Assume we need r21

iterations of step 1 to make kr
2
1 ≤ b C

r21

B−1c. Assume
we need another r22 iterations of step 1 to make

∑
c∈HB

F
(r21+r22)
c ≤S·d. So, the total number of nodes

for step 1 and step 2 is

r21 + r22 +

⌈
C1 − r21B/2− r22(B − 1)

B

⌉
. (7)

We know that B≥2 and r21 + r22≤K . So, (7) is less than
or equal to K

2 + C
B + 1.

Case 3: K < b C
B−1c. Assume we need another r31

iterations of step 1 to make
∑

c∈HB
F

r31
c ≤S·d. So, the

total number of nodes for step 1 and step 2 is

r31 +

⌈
C − r31(B − 1)

B

⌉
. (8)

We know that r31≤K . So, (8) is less than or equal to
K
B + C

B + 1.

Lemma 3. In each iteration of step 1, for each chunk, the
number of time slots scheduled by CRED-S and CRED-SS
are exactly the same.

After finishing step 1, the size of the remaining
chunk set of CRED-SS is no less than CRED-S’s. For
step 2, we can remove B chunks in each iteration.
Thus, the number of nodes needed by CRED-SS is
larger than or equal to the number of nodes needed
by CRED-S.

Remark. As K →∞, the upper bound K+1 is tight and
the competitive ratio equals 1. As K→0, the upper bound
K
2 + C

B + 1 and K
B + C

B + 1 are tight and the competitive
ratio equals 1. For the general case, the competitive ratio
varies in the interval [1, 1.5].

It is easy to check the tightness of these upper
bounds by simple examples.

4.2 Solving CRED with multiple deadlines

We propose a heuristic algorithm to solve CRED with
multiple, arbitrary deadlines. Our idea is to iteratively
apply CRED-S to incrementally find the chunk place-
ment and time-slot schedules to meet each deadline
one by one. More precisely, after finding a solution
for placing chunks c ∈ C1, . . . , Ci to meet deadlines
d↑1, . . . , d

↑
i , we reuse the already placed chunks on

existing nodes (if there are remaining computation
resources available) and optimize for the next deadline
d↑i+1 and minimize the number of new nodes we
need to add in order to support Fc,i+1 for all chunks
c ∈ Ci+1. This process continues until all the dead-
lines are considered. The algorithm is summarized in
CRED-M. N̂i denotes the number of nodes needed for
scheduling jobs with deadline d↑i . CRED-M’s perfor-
mance is characterized in Theorem 2. Assume there
are D distinct deadlines. We consider chunk place-
ment and time slots scheduling of distinct deadlines
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one-by-one, from d↑1 to d↑D . For deadline d↑i , CRED-M
first calls CRED-S for d↑i and then schedules time slots
for deadlines from d↑i to d↑D .

Algorithm 3: CRED-M
1: for i = 1 : D do
2: N̂i= CRED-S (Ci,

∑
c F

(r)
c,i , B, d↑i )

3: for n = 1 : N̂i do
4: for i1 = i+ 1 : D do
5: SCHEDULE(the set of chunks in node n,

S·d↑i1 −#scheduled time slots in node n)
6: end for
7: end for
8: N̂+ = N̂i

9: end for

Theorem 2. Let the number of nodes needed be

N̂ . Then, max

(
maxi(Ki),

∑
j |Cj |·Tj

S·d↑
D

, CB

)
≤ N̂ ≤∑D

i=1 max
(
Ki,

Ki

2 + Ci

B

)
+D.

Proof. We first prove the lower bound and then prove
the upper bound.

Based on Theorem 1, the lower bound of
max(maxi(Ki),

C
B ) is obvious. Another lower bound

can be obtained by dividing the total number of time
slots needed for all jobs (

∑
j |Cj |·Tj) by the maximum

possible number of time slots that can be accommo-
dated in each node (S·d↑D). Thus, the lower bound is

max

(
maxi(Ki),

∑
j |Cj |·Tj

S·d↑
D

, CB

)
.

Next, we prove the upper bound. From Theo-
rem 1, for single deadline d↑i , the upper bound is
max

(
Ki,

Ki

2 + Ci

B

)
+ 1.

For D distinct deadlines, we consider deadlines
iteratively one by one. Therefore, the upper bound is∑D

i=1 max
(
Ki,

Ki

2 + Ci

B

)
+D

Remark. When D = 1, the lower bound and upper bound
are max(K1,

C
B ) and max(K1,

K1

2 + C
B )+1, respectively.

5 OUR SOLUTION TO RESILIENT CRED
PROBLEM

In this section, we consider a resilient CRED problem
(CRED-R) that aims to find the optimal cloud right-
sizing while guaranteeing survivability under arbi-
trary single node failure. We assume that a failure
could occur on any node and at any time during the
execution of jobs. Once a failure happens, we assume
that the node becomes unavailable from then on and
its data chunks are lost. We consider an online recov-
ery strategy, which updates the job schedules after

failure in order to obtain a new solution that meets
both execution deadline and data locality constraints.
Due to low overhead for rescheduling jobs on the fly,
such an online recovery strategy allows the cloud to
perform efficient, on-demand recovery without acti-
vating new nodes or migrating data chunks.

To solve the resilient CRED problem under arbi-
trary single node failure, a solution must guarantee
that (1) each chunk has replicas on different nodes,
and (2) there exists a feasible job scheduling after the
failure without changing chunk placement. The key
steps in our solution are: (a) choose a group of chunks,
(b) make copies of each group of chunks, and (c) place
copies of each group on different nodes. The details
are given in Section 5.1.

In the following, we denote the ath group of
chunks as Ga and the mth copy of Ga as Ga,m. The
proposed solution can be illustrated using a directed
graph G(V, E) in Figure 2. Each vertex represents a
node/machine. Two vertices are connected by an arc
if the corresponding time slots are redirected from the
source node to the destination node. W i

n,a,m denotes
the number of time slots needed by Ga,m in node n for
deadline d↑i .

It is easy to see that cloud right-sizing now be-
comes the problem of minimizing the number of
nodes |V| in G. A chunk placement and job schedul-
ing scheme represented by G satisfies the storage
constraint in the CRED problem, because each node
hosts exactly B chunks. The deadline constraint now
becomes

W i
n,a,m≤

S·d↑i
2

, ∀n, a,m. (9)

Let W i
n,a,m,c be the number of time slots needed for

chunk c by Ga,m in node n for deadline d↑i . The
computing resource constraint is satisfied if∑

n,a,m

W i
n,a,m,c ≥ Fc,i, ∀c, i. (10)

Also, the storage constraint becomes

|Ga,m| ≤
B

2
, ∀a,m (11)

where |Ga,m| is the number of chunks in the group
Ga,m. Therefore, a solution represented by G satisfy-
ing (9), (10), and (11), is a feasible solution to the
CRED problem. The solution can survive arbitrary
single node failure if condition (12) is satisfied and
SYMMETRIC RECOVERY METHOD is used for placing
groups in nodes. The details are given in Section 5.1.∑

j |Cj |·Tj + S·d↑D≤N̂ ·S·d
↑
D (12)

Here, we give a toy example to explain how our
resilient algorithm works. In an S = 2 and B = 4
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node 1

G1,1 G3,2

W1,1,1 W1,3,2

extra 
node

G1,3 G2,3

W4,1,3 W4,2,3

node 2

G1,2 G2,1

W2,1,2 W2,2,1

node 3

G2,2 G3,1

W3,2,2 W3,3,1

Fig. 2: Symmetric recovery graph.

system, we have 6 jobs and Tj = 2, ∀ j ∈ [1, 6]. All jobs
have equal deadlines, i.e., dj = 2. We have 6 chunks
and each chunk is accessed by one job. We make
groups Ga, a ∈ [1, 3]. Each group has two chunks, e.g.,
Ga contains the chunk 2a − 1 and the chunk 2a. We
first make two copies of each group. The number of
scheduling time slots of each copy is 2, which equals
S·dj

2 , and the number of scheduling time slots of each
chunk in each copy is 1. We place Ga,1 into node a and
place Ga,2 into node (a mod 3) + 1, where 3 is the
total number of groups. Figure 2 shows the symmetric
recovery graph for this example. We need one extra
node ne for failure recovery. On the extra node, G1,3
and G2,3, which are two extra copies from randomly
selected groups, are hosted and no processing slots are
allocated at this time. Suppose node 1, hosting G1,1
and G3,2, fails. We redirect 2 scheduled time slots of
G1,1 to G1,2 and redirect 2 scheduled time slots of G1,2
to G1,3 hosted in ne. Also, we redirect 2 scheduled
time slots of G3,2 to G3,1 and redirect 2 scheduled time
slots of G2,2 to G2,3 hosted in ne. Now, the number of
scheduled time slots of each chunk is still 2. Thus, the
failure has been recovered.

In Section 5.1, we first consider the single-deadline
case and then use the result from Section 5.1 to derive
the upper bound for the multiple-deadline case in
Section 5.2.

5.1 Solving resilient CRED with equal deadlines
As before, we first consider the special case where all
jobs have equal deadlines di = d↑1 = d ∀i, and propose
an algorithm CRED-RS, which consists of two parts,
i.e., GROUPCHUNKS and PLACINGGROUPS, to find a
graph G that provides a solution to the resilient CRED
problem. Also, we use the notations introduced in
Section 4.1.

In GROUPCHUNKS, when
∑

c∈HB/2
F

(r)
c > S·d, in

each iteration, we chooseH(r)
B/2,d as a group and make

two copies of H(r)
B/2,d. After making copies, we use

SCHEDULE for time slots scheduling for each copy and
the maximum number of scheduling time slots of each
copy is S·d

2 . The condition
∑

c∈HB/2
F

(r)
c >S·d guaran-

tees that we can always find H(r)
B/2,d. In each iteration,

we satisfy two goals: scheduling more time slots and
removing more chunks. When

∑
c∈HB/2

F
(r)
c ≤S·d, in

each iteration, we choose B/2 as a group and make
two copies of the group. After making copies, we use
SCHEDULE for time slots scheduling for each copy and
the number of time slots for scheduling of each copy
is at most S·d

2 .
The main purpose of PLACINGGROUPS is to place

copies from GROUPCHUNKS into nodes. The key idea
is that we need to put copies from the same group into
different nodes.

Suppose the total number of groups is G. Ga,1
is placed on node a and Ga,2 is placed on node (a
mod G)+1 and we call this method for placing groups
as SYMMETRIC RECOVERY METHOD in the following.
For failure recovery, we need one extra node (ne)
hosting any two extra copies without any processing
time slots scheduled. For simplicity, we suppose GG,3

and GG,4 are placed in the extra node ne.
The time complexity of CRED-RS is dominated by

the sort, and so the time complexity is O(K·C· lg(C)),
where K is the maximum number of iterations, and
C is the maximum number of remaining chunks.
We can use HashMap to store chunks, where keys
are chunk indexes, and values are chunk time slots
needed. So, the space complexity is O(C). Next, we
analyze CRED-RS and obtain bounds on the number
of nodes needed. The basic idea of deriving the upper
bound is to introduce a simplified version CRED-RSS
of CRED-RS, derive the upper bound for CRED-RSS,
and prove that the upper bound of CRED-RSS is also
an upper bound for CRED-RS.

Theorem 3. If K > b 2CB c, then K+1≤N̂≤K+ 4C
B2 +2.

If K≤b 2CB c, then max(C
B ,K) + 1≤N̂≤ 2K

B + 2C
B + 2.

Proof. Recall that any node can fail at any time. Sup-
pose that either a node with S·d scheduled time slots
or a node hosting B chunks fails, then we need at least
one extra node for failure recovery. Thus, the lower
bound is max(C

B ,K) + 1 nodes.
From PLACINGGROUPS, we know the number of

nodes needed equals the number of groups. Thus, we
just need to derive the upper bound for the number of
groups.

We modify step 1 of GROUPCHUNKS. Instead of
removing as many chunks as possible in each iteration
of step 1, CRED-RSS only removes specific num-
ber of chunks. For the CRED-RSS, in step 1, when
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k(r1)≤b 2C
(r1)

B c and
∑

c∈HB/2 F
(r1)
c > S·d, in each

iteration, we remove B
2 − 1 chunks. In step 2, CRED-

RSS also removes any B/2 chunks in each iteration.
Based on Lemma 1, when k(r1)≤b 2C

(r1)

B c, we can
remove B

2 − 1 chunks in each iteration and based
on similar principles of Lemma 3, the number of
scheduled nodes before the rth iteration of step 1 for
GROUPCHUNKS and CRED-RSS should be the same.
For step 2, the number of remaining chunks, including
chunks with zero required time slots, of CRED-RSS
is larger than the number of remaining chunks of
GROUPCHUNKS. Also, we can remove B/2 chunks in
each scheduling node of step 2. Thus, the number of
nodes needed for CRED-RSS is larger than or equal
to the number of nodes needed for GROUPCHUNKS.

In the following, we derive the upper bound of
CRED-RSS for two cases.

Case 1: K > b 2CB c. Assume we need r11 it-
erations of step 1 to make K≤b 2CB c, and assume
we need another r12 iterations of step 1 to make∑

c∈HB/2 F
(r11+r12)
c ≤S·d↑1. The total number of groups

for both step 1 and step 2 is no more than

r11 + r12 +

⌈
C − (B

2 − 1)r12
B
2

⌉
. (13)

We know that r11 = K − b 2CB c and r≤b 2CB c. Thus, the
total number of groups is no more than K + 4C

B2 + 1.
Also, in PLACINGGROUPS, we might need one extra
node, thus the upper bound is K + 4C

B2 + 2.
Case 2: K≤b 2CB c. Assume we need another r21

iterations of step 1 to make
∑

c∈HB/2 F
(r11+r12)
c ≤S·d.

The total number of groups is no more than

r21 +

⌈
C − (B

2 − 1)r21
B
2

⌉
. (14)

We have r21≤K . Thus, the total number of groups is
no more than 2K

B + 2C
B + 1. Also, in PLACINGGROUPS,

we might need one extra node, thus the upper bound
is 2K

B + 2C
B + 2.

Algorithm 4: CRED-RS

1: Input: C ,
∑C1

i=1f
d
i , B, d

2: Output: N̂
3: GROUPCHUNKS(C ,

∑C
i=1f

d
i , B, d)

4: PLACINGGROUPS: put copies of groups into
nodes by using SYMMETRIC RECOVERY METHOD
and add one extra node

The basic idea of failure recovery is that we can
redirect scheduled time slots among copies of the
same group and eventually redirect scheduled time

Algorithm 5: GROUPCHUNKS

1: Input: C ,
∑C

i=1f
d
i , B, d

2: Output: groups
3: C(r) = C
4: while C(r) > 0 do
5: sort C(r) chunks based on the remaining

number of required time slots
6: if

∑
c∈HB/2 F

(r)
c > S·d then

7: make two copies of H(r)
B/2,d

8: SCHEDULE(H(r)
B/2,d,S·d2 ) for each copy

9: else
10: break
11: end if
12: end while
13: while C(r) > 0 do
14: make two copies of CB/2

15: SCHEDULE(CB/2,S·d2 ) for each copy
16: end while

slots from the failed node to healthy nodes. Suppose
the node n1 hosting Ga1,1 and Ga2,2 fails. We redirect
processing time slots of Ga1,1 and Ga2,2 to copies of Ga1

and Ga2
, respectively. Copies whose scheduled time

slots have been redirected are marked, and will not
be the target of any further redirection. If the total
number of scheduled time slots in a node becomes
more than S·d, we redirect scheduled time slots of
unmarked copy to another copy of the same group.
If there is an extra copy in ne for any group, we first
redirect time slots to that extra copy.

Theorem 4. Suppose the group set is G and the total
number of nodes needed is N̂ . The sufficient conditions for
successful recovery are:∑

n,a,mWn,a,m,c ≥ Fc, ∀c (15)

|Ga,m| ≤ B
2 , ∀a,m (16)

Wn,a,m≤S·d
2 , ∀n, a,m (17)∑

j |Cj |·Tj + S·d≤N̂ ·S·d, (18)
Using SYMMETRIC RECOVERY METHOD.

Proof. (15) means that the required time slots for
chunk c are scheduled before the deadline and it
corresponds to (1) in Section 3. (16) means the number
of chunks in each group is no more than B/2, and
(17) means the number of scheduled time slots in each
group is no more than S·d

2 . Also, PLACINGGROUPS
guarantees that at most two groups are hosted in a
node; so, the storage and computational constraints
are satisfied. Thus, a solution that satisfies (15), (16),
and (17) is a feasible solution to the CRED problem.
Also, (17) guarantees that the number of scheduled
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time slots in a node after redirection does not exceed
S·d. (18) ensures that the number of available time
slots in all nodes is sufficient to accommodate the total
number required time slots even after a single node
failure.

To see this, suppose that the above online recovery
algorithm can not recover from single node failure.
This means that the redirection of time slots in the
SYMMETRIC RECOVERY METHOD results in a solution
where there are no available slots in the system. More
precisely,

(N − 1)·S·d <
∑
j

Tj . (19)

But this is contrary to our constraint
∑

j Tj + S·d ≥
N̂ ·S·d, so we have enough available time slots for
scheduling time slots of all copies after one node
failure.

Remark. GROUPCHUNKS guarantees (15), (16), and
(17). PLACINGGROUPS guarantees (18), and ensures that
the SYMMETRIC RECOVERY METHOD is feasible.

5.2 Solving resilient CRED with multiple dead-
lines
Now we present our proposed algorithm to solve the
resilient CRED problem with multiple deadlines. Our
idea is to iteratively apply CRED-RS for deadline d↑i ,
∀i. The algorithm is summarized in CRED-RM. Ĝi

denotes the number of groups needed for scheduling
jobs with deadline d↑i . CRED-RM’s performance is
characterized in Theorem 5. As before, suppose we
have D distinct deadlines.

Theorem 5. max

(
maxi(Ki),

∑D
i=1

∑
j:dj=d

↑
i

Tj

Sd↑
D

, maxi Ci

B

)
+

1 ≤ N̂ ≤
∑D

i=1 max
(
Ki + 4Ci

B2 ,
2Ki

B + 2Ci

B

)
+D + 1.

Proof. We first consider the lower bound. Con-
sider storage constraint, computational constraint,
and all jobs are for d↑D . We can get the
same lower bound as for CRED-M. Since any
node can fail at any time, the lower bound is

max

(
maxi(Ki),

∑D
i=1

∑
j:dj=d

↑
i

Tj

Sd↑
D

, maxi Ci

B

)
+ 1. From

Theorem 3, we know that for single deadline d↑i , the
upper bound is max

(
Ki + 4C

B2 ,
2Ki

B + 2C
B

)
+1. We add

the extra node at the end of the proof. For deriving the
upper bound for multiple deadlines, we iteratively use
the result of Theorem 3 for deadline d↑1, . . . , d

↑
D. Thus,

the upper bound for the total number of groups is

D∑
i=1

max

(
Ki +

4Ci

B2
,

2Ki

B
+

2Ci

B

)
+D. (20)

We use PLACINGGROUPS to place groups into nodes
and add one extra node without scheduling any time
slot on that node. Thus, the upper bound for the total
number of nodes is the same as

D∑
i=1

max

(
Ki +

4Ci

B2
,

2Ki

B
+

2Ci

B

)
+D + 1. (21)

Algorithm 6: CRED-RM
1: for i = 1 : D do
2: Ĝi=GROUPCHUNKS(Ci,

∑
c F

(r)
c,i , B, d↑i )

3: for a = 1 : Ĝi do
4: for m: copies in group a do
5: for i1 = i : D do

6: SCHEDULE(Ga,m,
S·d↑

i1

2 −# scheduled
time slots in Ga,m)

7: end for
8: end for
9: end for

10: G+ = Ĝi

11: end for
12: PLACINGGROUPS: put copies of groups into

nodes by using SYMMETRIC RECOVERY METHOD
and add an extra node

Theorem 6. Suppose the group set is G and the total num-
ber of nodes is N̂ . The sufficient conditions for successful
recovery are: ∑

n,a,mW i
n,a,m,c ≥ Fc,i, ∀c, i (22)

|Ga,m| ≤ B
2 , ∀a,m (23)

W i
n,a,m≤

S·d↑
i

2 ∀i, n, a,m (24)∑
j |Cj |·Tj + S·d↑D≤N̂ ·S·d

↑
D (25)

Using SYMMETRIC RECOVERY METHOD

Proof. The failure recovery method for multiple dead-
lines is the same as the failure recovery method for
equal deadlines case. We give a brief proof here. (22),
(23), and (24) guarantee that computational, storage,
and deadline constraints are satisfied. (25) makes the
number of available time slots be no less than S·d↑D ,
and SYMMETRIC RECOVERY METHOD guarantees that
the redirection can go through all nodes. To see this,
suppose that the online recovery algorithm cannot
recover from a single node failure. This means there
are no available time slots in any node in the system.
More precisely,

(N − 1)·S·d↑D <
∑
j

Tj , (26)
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but this is contrary to our constraint
∑

j Tj + S·d↑D ≥
N̂ ·S·d↑D , so the assumption is incorrect. Thus, the
system can recover from any single node failure.

Remark. GROUPCHUNKS guarantees (22), (23), and
(24). PLACINGGROUPS guarantees (25), and ensures that
the SYMMETRIC RECOVERY METHOD is feasible.

6 EVALUATION

In this section, we perform various simulation ex-
periments for the single- and two- deadline cases to
evaluate our algorithmic solution to the CRED prob-
lem. We focus on two aspects: first, we show that
CRED’s performance is within the closed-form bounds
we proved in Sections 4 and 5. Second, we compare
CRED’s performance and deadline-aware first-fit (FF)
algorithm in terms of number of nodes and resource
utilization.

6.1 Evaluation by simulation

To perform simulation experiments, we set the follow-
ing global simulation parameters for all experiments,
unless otherwise stated. Each node is set to have
S = 4 slots (VMs) and B = 128 blocks. We create
two classes of jobs: elephant and mouse jobs. Elephant
jobs are computation-intensive jobs; the number of
time slots required to process a chunk is randomly
chosen between 200 and 500. The number of time
slots required to process a chunk of a mouse job is
randomly chosen between 1 and 10. Elephants and
mice jobs form 2% and 98% of the total jobs (100 jobs
with equal deadlines and 200 jobs with two deadlines),
respectively. The number of files is 100, and the num-
ber of chunks per file is randomly chosen between 16
and 64. All jobs are assigned to files randomly. For
equal-deadline experiments, we fix the deadline to be
equal to 600 (time slots) for all experiments; for two-
deadline experiments, we fix d1 and d2 to be equal
to 600 and 1200, respectively. For all experiments,
the figures show the average over 20 trials. Error
bars, where are shown in Figure 3(a), 3(b), and 4(a),
represent 95% confidence intervals.

Figure 3(a) shows the effect of changing the num-
ber of blocks in each node on the number of nodes
needed. It can be clearly seen that as we increase the
number of blocks in each node, the problem moves
from blocks constraint to time slots constraint. In
addition, the figure shows, as expected, our simulation
results outperform the first-fit algorithm. CRED is able
to match the lower bound when B ≥ 64 blocks
and exceeds the lower bound by less than 2% on
average when B ≤ 32. Notice that when there is a

mix of time-slots and blocks constraints, our algorithm
outperforms FF by up to 18% in the number of nodes.

In Figure 3(b), we compare CRED-S and CRED-
RS in terms of number of nodes needed. In this
experiment, the results show that we always meet the
lower bound for CRED-S and CRED-RS. The lower
bound here for CRED-S and CRED-RS are K and
K+ 1, respectively. This validates our proof in Section
5.

In Figure 3(c), we compare CRED-S with the first-
fit algorithm in terms of scalability. In this experiment,
we have two classes of jobs, elephants and mice jobs.
Elephants and mice jobs form 20% and 80% of the
total jobs, respectively. We show two experiments,
with B = 64 and B = 128. The figure shows that
on average the first-fit algorithm requires about 23%
and 18% more nodes than CRED-S when B = 64
and B = 128, respectively. These percentages stay the
same for any number of jobs. This means that CRED-
S is scalable and works even if the system is large.
The figure also shows that when the number of jobs
is greater than 100, the number of nodes increases due
to time-slots constraint.

Figure 4(a) shows that CRED-M’s performance is
within the closed-form bounds we proved in Section
4. In this experiment, each job is associated with either
deadline d1 or d2. The x-axis shows the ratio of d1-
type of jobs to the total number of jobs. All files are
accessed by both d1- and d2- type of jobs when 0 <
ratio < 1. As we increase the ratio, the number of
nodes increases since d1 < d2.

Figure 4(b) compares CRED-M and FF in terms
of time slots and blocks utilization, defined as the
ratio of the number of processing time slots and blocks
actually utilized to the total number available. In this
figure, we use the same parameters as Figure 4(a). The
figure shows that for any ratio, CRED-M achieves
higher utilization in both time-slots (up to 28%) and
blocks (up to 15%). This is because, unlike FF, CRED
always tries to fully utilize the time-slots and blocks
in each node.

Figure 4(c) shows how CRED-M performs as we
adjust the time difference between d1 and d2. In this
experiment, we set d1 = 600 and increase d2 from 600
to 2000. The total number of jobs equals 200, and 100
jobs are associated with d1. As we increase d2, the
number of nodes needed decreases dramatically at
the beginning. But as d2 increases further, we reach
a point of diminishing returns where the number of
nodes stays almost the same. In fact, this shows the
benefit of having multiple deadlines for different jobs.
By treating all jobs equally, d1 = d2, the number of
nodes needed is about 232. If we increase some of the
non-delay sensitive jobs’ deadline by just 200, we can
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Fig. 3: Experiments with proposed algorithms CRED-S and CRED-RS: (a) Effect of number of blocks on the
number of nodes. (b) Comparison between CRED-S and CRED-RS in terms of number of nodes needed. (c)
Comparison between CRED-S and FF in terms of scalability.
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Fig. 4: Experiments with proposed algorithm CRED-M: (a) Effect of the ratio of d1- to d2-type of jobs on the
number of nodes needed. (b) Effect of the ratio of d1- and d2-type jobs on the time-slots and blocks utilization.
(c) Effect of the time difference between d1 and d2 on the total number of nodes.
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Fig. 5: Trace-driven comparison between CRED-M and First-Fit algorithm: (a) Effect of the number of slots on
the number of nodes. (b) Effect of the ratio of Ds- and Dl-type jobs to the number of nodes needed. (c) Number
of nodes needed in each scheduling interval.

reduce the number of nodes by 18%. Starting from d2
= 1200, the blocks constraint becomes dominant, and
the number of nodes stays more or less the same.

6.2 Trace-driven evaluation

In this section, we compare the performance of CRED-
M with deadline-aware First-Fit algorithm through
a trace-driven simulation using data from a publicly

available Google trace [16]. The results show that
CRED-M outperforms FF by up to 20% in nodes
saving on average, and reduces the number of nodes
required at peak utilization by 47%.

We select a subset data from Google trace with a
length of 110 hours. Each job has a number of parame-
ters, including job submission time, job ID, scheduling
class, number of tasks, and execution time of tasks.
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TABLE 1: Statistics of Google trace for trace-drive evaluation

Class # of jobs avg # of tasks Min task exec time Avg task exec time Max task exec time First 5% First 10%
1 11084 261 320 sec 1428 sec 49462 sec 10356 10774
2 1656 223 313 sec 1511 sec 50260 sec 1504 1572

The scheduling class represents how latency-sensitive
the job is. There exist 4 scheduling classes, with jobs
at level 3 being the most latency-sensitive. In this
simulation, we consider jobs belonging to scheduling
classes 1 and 2. Summary statistics of the Google trace
used for evaluation are presented in Table 1. The table
shows show the number of jobs, average number of
tasks, minimum execution time of a task, average
execution time of a task, maximum execution time of
a task, the number of first 5% of jobs with the smallest
average execution time of tasks, and the number of
first 10% of jobs with the smallest average execution
time of tasks. For each class, a deadline Dl or Ds

is assigned. We denote Ai as the average execution
time of all jobs with scheduling class i in a scheduling
interval. Ds equals A2 and Dl equals max(A1, Ds).
We set the scheduling interval to be 20 minutes. At the
beginning of each scheduling interval, we schedule
jobs arriving in the previous scheduling interval. At
the end of each hour, we identify all nodes that have
finished processing all the workload and release them
to the system, in a way similar to Amazon’s EC2 cloud
(on-demand instances).

Figure 5(a) compares the average number of active
nodes (i.e., VM hours or cost) for the proposed CRED-
M and FF, to meet the same job deadlines. Here, we
set the number of blocks to be 16, while changing
the number of slots from 8 to 16. The figure shows
that CRED-M outperforms FF by up to 20% in av-
erage number of nodes that are required to meet all
deadlines. It can be observed that as the number of
slots increases, the number of nodes to meet the same
deadlines decrease (since more tasks can be packed
into a node), while our proposed algorithm achieves a
consistent node reduction of 20%.

Figure 5(b) compares the average number of active
nodes for CRED-M and FF to meet various deadlines.
Here, we set both the number of blocks and the
number of slots to be 16. Dl equals max(A1, α·Ds)
and we change α from 1 to 5. The figure shows that
CRED-M outperforms FF by 17% in average number
of nodes.

Figure 5(c) shows the number of active nodes
required by CRED-M for each scheduling interval
during the entire simulation. Again, we set the num-
ber of blocks and the number of slots to be 16. The
numbers are normalized by the number of nodes used
by the FF algorithm, and thus any number smaller

than 100% indicates node (or cost) saving. It is shown
that CRED-M reduces the number of nodes required
at peak utilization by 47%. The dashed line shows that
CRED-M outperforms FF by 21% in average number
of nodes.

7 CONCLUSIONS

In this paper, we introduce an optimization frame-
work, namely CRED, for cloud right-sizing under
deadline and locality constraints. Algorithms are pro-
posed to solve the CRED optimization, which min-
imizes the number of nodes needed by jointly op-
timizing task scheduling and data placement while
the jobs’ deadlines and data locality constraints are
met. We analyze the competitive ratio of the proposed
algorithms in closed-form and extend all results to
solve a resilient CRED problem with arbitrary single
node failure. The algorithms significantly outperform
a first-fit heuristic in terms of cloud-size (i.e., number
of active nodes needed) and node utilization.

In our future work, we will extend our work to
heterogeneous cloud nodes equipped with different
computing and storage resources. We plan to allocate
different types of jobs to nodes equipped with differ-
ent resources. Also, we plane to consider energy uti-
lization and energy efficiency in the joint optimization
problem. In addition, we plan to investigate deadline-
aware scheduling algorithms for multi-phase cloud
systems, e.g., MapReduce, which involve communi-
cation among tasks.
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