
CRED: Cloud Right-sizing to Meet Execution
Deadlines and Data Locality

Sultan Alamro, Maotong Xu, Tian Lan, and Suresh Subramaniam
Department of Electrical and Computer Engineering

The George Washington University, USA
{alamro, htfy8927, tlan, suresh}@gwu.edu

Abstract—As demands for cloud-based data processing
continue to grow, cloud providers seek effective techniques
that deliver value to the business without violating Service
Level Agreements (SLAs). Cloud right-sizing has emerged
as a very promising technique for making cloud services
more cost-effective. In this paper,1 we present CRED,
a novel framework for cloud right-sizing with execution
deadlines and data locality constraints. CRED jointly opti-
mizes data placement and task scheduling in data centers
with the aim of minimizing the number of nodes needed
while meeting users’ SLA requirements. We formulate
CRED as an integer optimization problem and present a
heuristic algorithm with provable performance guarantees
to solve the problem. Competitive ratios of the proposed
algorithm are quantified in closed form for arbitrary task
parameters and cloud configurations. Simulation results
using Google trace show that our proposed algorithm
significantly outperforms existing heuristics such as first-
fit by reducing up to 47% of required active servers, and
achieves nearly-optimal performance in terms of cloud-
right sizing.

I. INTRODUCTION

With an increasing number of cloud-based solutions
such as enterprise IT, social networks, financial services
and scientific research, an explosive amount of data is
being created, processed, and consumed online. Analyt-
ics over such data on the cloud are becoming more cost-
sensitive, and cloud right-sizing has quickly emerged
as a very promising technique for making clouds more
cost-effective by dynamically adapting the number of
active servers to match the target workload. Cloud
right-sizing enables significant cost savings and power
savings by auto-tuning the amount of active resources
to handle the current workload [1, 2].

Existing work on cloud right-sizing mainly focuses
on reducing energy consumption by dynamically al-
locating resources for given workloads [2, 3]. There
is much less study on cloud right-sizing under both
execution deadline and data locality constraints. Indeed,
processing and analyzing data within certain deadlines
have become more and more important, particularly due
to the introduction of differentiated-QoS classes and
time-dependent pricing mechanisms [4–6]. To improve
data access efficiency and task throughput, data locality
is often maximized by assigning tasks only to nodes

1This work is supported by NSF grant CSR-1320226.

C1 C2

(a)  Deadline Oblivious

(b)  First-Fit

(c)  Optimal Solution

C3 C4 C5

C1 C1 C2 C3 C4 C5

C1 C2 C1 C3 C4 C5
Ti

m
e 

Sl
ot

s Deadline

Job 1

Job 2

Job 3
Ti

m
e 

Sl
ot

s
Ti

m
e 

Sl
ot

s

Deadline

Deadline

Fig. 1: An illustrative example of joint job scheduling
and chunk placement for a cloud processing 3 jobs.

that contain their input data [7–11]. However, pursuing
these two objectives together could give rise to a conflict
between “meeting deadlines” and “achieving locality” -
for instance, a node with sufficient computing resources
to complete a task on time may not possess the de-
sired input data, and vice versa. The nature of cloud
applications is becoming increasingly mission-critical
and deadline-sensitive, e.g., traffic simulation and real-
time web indexing. These applications are evolving in
the direction of demanding hard completion times [5],
and are likely to play crucial roles in the national
infrastructure in the not too distant future. The cloud
right-sizing problem is of interest to cloud providers in
both private and public cloud settings.

The need to solve cloud right-sizing under both
execution deadline and data locality constraints can
be illustrated by a very simple example, as shown
in Figure 1. Consider a set of 3 jobs, j1, j2, and
j3, to be executed on a cloud for processing 5 data
chunks C1, . . . , C5. The jobs’ resource requirements are
heterogeneous – job j1 accesses a single chunk C1

and needs 6 time slots to process it, job j3 accesses
C5 and needs 3 time slots, and job j2 accesses three
chunks, C2, C3, C4, each requiring only one time slot
to process. Our goal is to place the chunks in the nodes
and schedule the jobs so as to minimize the number
of active nodes needed to finish all three jobs before a
deadline d = 4. Suppose each node has only one virtual
machine (VM) (i.e., only one job can be processed by



a node at each time slot), and is able to host 2 data
chunks. The deadline-oblivious solution in Figure 1(a)
considers only data locality constraint, i.e., assigns jobs
to nodes that have the input data. It sequentially fills
3 nodes with the data chunks and assigns each job
to nodes hosting its input chunks. While this solution
minimizes the number of active nodes, it results in job
j1 failing to meet its deadline. The first-fit solution in
Figure 1(b) finds the first node with both available time
slots and storage space to accommodate a new job.
A fraction of the job is assigned to the node until it
either has no more time slots left before the deadline or
cannot host any more chunks. This solution is able to
meet all three jobs’ deadlines, but increases the number
of necessary nodes to 4 (i.e., over-sizing). Finally, the
optimal solution in this example that uses only 3 nodes
to meet the job deadlines is shown in Figure 1(c). The
key insight is that we need to optimize the cloud over
both chunk placement and job scheduling in order to
achieve optimal right-sizing.

While adding new nodes can always improve cloud
performance and increase its ability to meet dead-
lines [7], such a provisioning strategy is not cost-
effective since servers and networks in datacenters
contribute about 60% of the total expenses [12, 13].
It also may not always contribute to performance en-
hancements due to data locality [9, 10, 14]. In this
paper, we introduce an optimization framework called
CRED (cloud right-sizing with execution deadlines and
data locality). To the best of our knowledge, this is
the first work to consider cloud right-sizing under both
deadline and locality constraints. Using a time-slotted
system model, we present an algorithm for joint task
scheduling and data placement. Then, we analyze the
performance of the proposed algorithm and quantify
its comparative ratio through closed-form bounds. In
particular, we show that the proposed algorithm has
a worst-case competitive ratio of 1.5 and is able to
achieve the optimal solution under certain conditions.
Extensive simulation results are presented, including
a trace-driven simulation using 110 hours of Google
Trace [15]. It is shown that our proposed algorithm
outperforms heuristics such as first-fit by up to 44%
node reduction. This saving indeed comes from the fact
that our algorithm can significantly improve utilization
of both computational resources and storage space by
up to 25% and 35%, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a set of J jobs that need to be processed
by a cloud consisting of N physical machines (i.e.,
nodes) which are homogeneous [16, 17]. Note that the
homogeneity assumption is only a technical condition
required to quantify performance bounds in closed-
form; all algorithms proposed in this paper work with
heterogeneous nodes. Each job j has a deadline dj and

is required to access a data object that is split into a
set Cj of equal-sized chunks. The chunks are stored
in a distributed file system on the cloud. Each node is
capable of hosting up to B data chunks and is equipped
with S VMs. We consider a cloud framework similar
to MapReduce, where jobs are partitioned into small
tasks that are processed in parallel by different VMs.
Thus, each node is able to simultaneously process S
jobs. In this paper, we consider heterogeneous jobs with
different processing times. In particular, the time for
each job j to process a required data chunk, denoted
by Tj , can vary from job to job. Note that Tj in our
framework is known a priori. This follows from the
model used in [14, 18, 19], which shows that 40%
of the jobs are recurring and their characteristics, e.g.,
input data size, can be predicted with a small error of
6.5% on average, and the completion time’s coefficient
of variation is low. A job is completed once all required
chunks are processed and will then exit the system.

Our goal is to minimize the total number of active
nodes needed to complete the jobs satisfying a deadline
constraint dj for each job j, the data locality constraint
and physical resource constraints on each node, i.e.,
B and S. We consider a time-slotted model where
jobs are scheduled to execute in fixed-length time slots.
Since each node is equipped with S VMs, it has S
slots available at each time t. Our control knobs in
the optimization include data chunk placement, job
scheduling, and cloud sizing. We will first formulate this
cloud right-sizing problem as an integer optimization.

Completing a job j before deadline dj is equivalent
to processing all the required chunks c ∈ Cj before the
deadline.2 When a chunk is accessed by multiple jobs,
we need to guarantee that the chunk receives sufficient
processing time (i.e., time slots) before each target
deadline in order to support all the jobs. Therefore,
we can formulate the job scheduling problem in terms
of required processing time for each chunk. Denote
D↑=∪j{dj} to be the set of D distinct deadlines. With-
out loss of generality, we assume the deadlines in D↑ are
ordered, so that d↑i < d↑s for all i < s and d↑i , d

↑
s ∈ D↑.

We now formulate the job scheduling problem with
respect to variables fc,n,i, which is defined as the
number of time slots on node n that are scheduled to
process chunk c before the ith smallest deadline d↑i .
More precisely, the total time slots received by chunk c
from all nodes (i.e.,

∑
n fc,n,i) before d↑i must satisfy:

N∑
n=1

fc,n,i ≥
∑

j:dj≤d↑i ,c∈Cj

Tj , Fc,i, ∀c, d↑i (1)

2In this paper, we ignore the time to set up a new machine including
data transfer time from central storage, and assume that this time can
be absorbed into job deadlines in online setting.

2



where a job j requires to access the chunk for Tj time-
slots before time d↑i if we have c ∈ Cj and dj ≤ d↑i .
We define Fc,i as the minimum number of required
time slots for chunk c before deadline d↑i . Equation
(1) introduces a deadline constraint for the cloud right-
sizing problem.

Let pc,n be a binary chunk placement variable that
is 1 if a chunk c is hosted by node n and 0 otherwise.
Similarly, we use un = 1 to denote that node n is
active and un = 0 otherwise. Due to our data locality
constraint, job i can be scheduled on node n only if the
node is active and its required data chunks are available
locally, i.e.,

fc,n,i = 0 if (pc,n = 0 or un = 0), ∀c, n, d↑i . (2)

Let C = ∪jCj be the set of all data chunks. There are
two types of physical resource constraints: (i) a space
constraint that requires no more than B chunks to be
placed on any active node, i.e.,∑

c∈C
pc,n ≤ B · un, ∀n (3)

and (ii) a computational-resource constraint that limits
the number of time slots available:∑

c:pc,n>0

fc,n,i ≤ d↑i · S · un,∀n, d
↑
i (4)

where
∑

c:pc,n>0 fc,n,i is the total number of time slots
assigned to different chunks before d↑i . On the other
hand, there are d↑i time slots available for each VM on
node n that is equipped with S VMs.

Our proposed optimization problem aims to mini-
mize the total number of active nodes to process all
jobs, under the above constraints. It can be formulated
as an integer optimization over the decision variables
{fc,n,i, pc,n, un}:

minimize N =

N∑
n=1

un, (5)

s.t. (1), (2), (3), and (4).

III. OUR SOLUTION TO CRED PROBLEM

The key idea from our illustrative example in Fig. 1
is that solving the CRED problem requires a joint
optimization of job scheduling and chunk placement
that addresses both execution deadline and data locality
constraints in a collaborative fashion. In this section,
we propose a novel algorithm that harnesses workload-
aware chunk placement to partition data chunks based
on their workload and schedules jobs to efficiently
utilize both space and computing resources on active
nodes, thus minimizing the number of nodes required to
process all jobs. To illustrate our key solution concept,
we will first focus on a special case where all jobs

require equal execution deadlines. Next, we extend
it to solve CRED problem for the arbitrary number
of deadlines. Performance of proposed algorithms is
quantified through analytical upper and lower bounds.

We first introduce some notations. Consider the
chunk set Ci for d↑i with size Ci. We sort all chunks
in descending order based on the number of required
time slots for d↑i and record the order in an array,
i.e., Rd↑i

. The chunk recorded in the head of Rd↑i
has

the largest number of required time slots for d↑i . In
following discussion, each algorithm has multiple steps
and each step needs multiple iterations. So, we denote
H(r)

B,d↑i
as the first set of B chunks, from the tail of the

array, with the total number of required time slots larger
than or equal to Sd↑i , at the beginning of rth iteration.
We denote

∑
c∈Hb

F
(r)
c,i and

∑
c∈Lb

F
(r)
c,i as the number

of required time slots of the b chunks at the head of Rd↑i
and at the tail of Rd↑i

, at the beginning of rth iteration,
respectively. We denote Cb,i as a set of b chunks from
Ci.

A. Solving CRED with equal deadlines

Consider the case where all jobs require the same
execution deadline, i.e., dj = d↑1 ∀j and chunks need
time slots Fc,1 ∀c. The algorithm, as shown in Algo-
rithm 2 is comprised of 2 steps. As mentioned above,
each step of the algorithm consists of multiple iterations
and we use r to denote the rth iteration.

When
∑

c∈HB
F

(r)
c,1>Sd

↑
1, we place H(r)

B,d↑1
into a

node and call Algorithm 1 for time-slots’ scheduling.
The condition

∑
c∈HB

F
(r)
c,1>Sd

↑
1 guarantees that H(r)

B,d↑i

exists. By choosing H(r)

B,d↑1
, we can schedule Sd↑1 time

slots in each node. Choosing H(r)

B,d↑1
and calling Algo-

rithm 1 guarantees that we can remove as many number
of chunks as possible while scheduling Sd↑i time slots
in each iteration. If the remaining number of required
time slots of chunk c is 0, we can remove the chunk c
from the chunk set C1 and reduce the size of the chunk
set C1. When

∑
c∈HB

F
(r)
c,1≤Sd

↑
1, we can place any B

chunks, CB,1, into one node and remove all of them.
The pseudocode is shown in Algorithm 2.

The basic idea of Algorithm 1 is that by scheduling
time slots from the chunks with the smallest number of
required time slots, we can remove more chunks. The
inputs to Algorithm 1 are a set of chunks and the number
of time slots needed for d↑1. The number of time slots
needed is the maximum number of time slots we want
to schedule in the node. We denote the number of time
slots needed in rth iteration as NTS(r)

d↑1
. If the remaining

number of required time slots of chunk c is less than or
equal to NTS

(r)

d↑1
, we schedule the remaining number

of required time slots of the chunk c in the node. We

3



deduct the remaining number of required time slots of
the chunk c from NTS

(r)

d↑1
. We mark the remaining

number of required time slots of the chunk c as 0 and
then remove the chunk c. If the remaining number of
required time slots of the chunk c is larger than NTS(r)

d↑1
,

we schedule the NTS(r)

d↑1
from chunk c in the node. We

deduct NTS(r)

d↑1
from the remaining number of required

time slots of chunk c and mark NTS(r)

d↑1
as 0.

Algorithm 1: schedule(C1, NTS(r)

d↑1
)

sort C1 based on the remaining number of required
time slots for d↑1 in ascending order
for c=1:C1 do

if Fc,1-NTSd↑1
>0 then

Fc,1=Fc,1-NTSd↑i
NTSd↑1

=0
break

else
NTSd↑1

=NTSd↑1
-Fc,1

Fc,1=0
remove the chunk c

end if
end for

Algorithm 2: CRED-S

Input: C1,
∑C1

i=1f
d↑1
i , B, d↑1

Output: # of nodes
C(r)=C1

while C(r)>0 do
sort chunks based on the number of required time
slots
if
∑

c∈HB
F

(r)
c,1>Sd

↑
1 then

place H(r)

B,d↑1
into one node

schedule(H(r)

B,d↑1
,Sd↑1)

else
break

end if
end while
while C(r)>0 do

place CB,1 into one node
schedule(CB,1,Sd↑1)

end while

It is easy to see that Algorithm 2 will keep adding
new nodes until all chunks get their required time slots∑

cFc,1 scheduled. Processing chunk c is only permitted
on a node where chunk c is placed. This is to improve
data access efficiency and task throughput. Thus, the
algorithm is guaranteed to generate a feasible solution
to the CRED problem. To analyze the performance,
we derive an upper bound to quantify the maximum

number of active nodes needed by a solution obtained
from Algorithm 2. The upper bound is compared to a
theoretical lower bound that establishes the minimum
number of active nodes necessary for any feasible solu-
tion to CRED problem. We define Ki as the minimum
number of nodes necessary to provide enough time
slots for all jobs whose deadlines are equal to d↑i . We
define k(r)i as the minimum number of nodes necessary
to provide enough time slots for job remaining at the
beginning of rth iteration, whose deadlines are equal to
d↑i . Therefore, Ki=k

(0)
i .

Next, we will analyze each step in Algorithm 2 to
derive upper and lower bounds on the number of nodes
needed, denoted by N̂ . The basic idea of deriving lower
bound is only considering time slots or block constraint
in each node. The basic idea of deriving the upper
bound is fixing the number of removable chunks in each
iteration of each step.
Theorem 1. When K1>b 2C1

B c, the bounds are given
by K1≤N̂≤K1+1. When b 2C1

B c≥K1≥b C1

B−1c, the
bounds are given by max(dC1

B e,K1)≤N̂≤K1

2 +C1

B +1.
When K1<b C1

B−1c, the bounds are given by
dC1

B e≤N̂≤
K1

B +C1

B +1.

Proof: In each node, we can place at most B
chunks or schedule Sd↑1 time slots. To place C1 chunks,
we need at least dC1

B e nodes. To schedule
∑

jTj re-
quired time slots, we need at least K1 nodes. To place
C1 chunks and schedule

∑
jTj required time slots, we

need at least max(dCB e,K1) nodes. As the result, the
lower bound is max(dCB e,K1).

We now derive the upper bound for Algorithm 2.
Instead of removing as many chunks as possible, we
only remove the assigned number of chunks in each
iteration of each step. In following, we call it as the
simplified version of Algorithm 2. If assigned number
of chunks has been removed, even though the remaining
number of required time slots of other chunks equal
0, we still consider those chunks in the following
cases. For the simplified version, in step 1, when
bC

(r)
1

B−1c≤k
(r)
1 ≤b

2C
(r)
1

B c, we remove B
2 chunks in each

iteration. When k
(r)
1 ≤b

C
(r)
1

B−1c and
∑

c∈HB
F

(r)
c,1>Sd

↑
1,

we remove B−1 chunks in each iteration. In step 2, the
simplified version also removes any B chunks in each
iteration.

In the following, we first derive upper bounds for
the simplified version. Secondly, we show the number
of nodes needed by simplified version is no less than for
Algorithm 2. Therefore, the upper bounds of the sim-
plified version are also the upper bounds of Algorithm
2.

We introduce Lemma 1 to verify that for simplified
version, once bC

(r)
1

B−1c≤k
(r)
1 ≤b

2C
(r)
1

B c, in each iteration,
we can remove at least B

2 chunks. Also, we introduce

4



Lemma 2 to verify that once k
(r)
1 ≤b

C
(r)
1

B−1c, in each
iteration, we can remove at least B − 1 chunks.
Lemma 1. For simplified version, when k(r)1 ≤b 2C

(r)

B c,
where C(r)=C1-r·B2 , we have the

∑
c∈LB/2

F
(r)
c,1≤Sd

↑
1.

Here C1 means the size of remaining chunk set when
r = 0.

We denote the B-1 chunks with the smallest number
of required time slots among H(r)

B,d↑i
as LH(r)

B−1,d↑i
.

Lemma 2. For simplified version, when k
(r)
1 ≤bC

(r)

B−1c
and

∑
c∈HB

F
(r)
c,i >Sd

↑
1, where C(r)=C1-r·(B-1), we

have the total required time slots of LHB−1,d↑1
is less

than Sd↑1. Here C1 means the size of remaining chunk
set when r=0.

The basic idea of following discussion is to consider
the value of K1 in three cases. By introducing the three
cases, we can get tighter upper bounds.

Case 1: K1>b 2C1

B c. Assume we need r11 iter-

ations of step 1 to make k
(r11)
1 ≤b 2C

(r11)

1

B c. Assume
we need another r12 iterations of step 1 to make

k
(r11+r12)
1 ≤bC

(r11+r12)

1

B−1 c. Assume we need another r13 it-

erations of step 1 to make
∑

c∈HB
F

(r11+r12+r13)
c,1 ≤Sd↑1.

So, the total number of nodes for step 1 and step 2 is

r11 + r12 + r13 +

⌈
C1 − r12B/2− r13(B − 1)

B

⌉
. (6)

We know that B≥2 and r11+r12+r13≤K1. Since we do
not remove any chunks within r11 iterations, so r11 equals
K1−b 2C1

B c. Thus, (6) is less than or equal to K1+1.

Case 2: b 2C1

B c≥K1≥b C1

B−1c. Assume we need r21

iterations of step 1 to make k
r21
1 ≤b

C
r21
1

B−1c. Assume
we need another r22 iterations of step 1 to make∑

c∈HB
F

(r21+r22)
c,1 ≤Sd↑1. So, the total number of nodes

for step 1 and step 2 is

r21 + r22 +

⌈
C1 − r21B/2− r22(B − 1)

B

⌉
. (7)

We know that B≥2 and r21+r22≤K1. So, (7) is less than
or equal to K1

2 +C1

B +1.

Case 3: K1<b C1

B−1c. Assume we need another r31
iterations of step 1 to make

∑
c∈HB

F
r31
c,1≤Sd

↑
1. So, the

total number of nodes for step 1 and step 2 is

r31 +

⌈
C1 − r31(B − 1)

B

⌉
. (8)

We know that r31≤K1. So, (8) is less than or equal to
K1

B +C1

B +1.
Lemma 3. We show that in each iteration of step 1,
for each chunk, the number of time slots scheduled by
Algorithm 2 and simplified version are exactly the same.

After finishing step 1, the size of remaining chunk
set of simplified version is no less than Algorithm 2’s.
For step 2, we can remove B chunks in each iteration.
Thus, the number of nodes needed of simplified version
is larger than or equal to the number of nodes needed
of Algorithm 2.
Remark. As K1→∞, the upper bound K1+1 is achiev-
able and competitive ratio equals 1. As K1→0, the
upper bound K1

2 +C1

B +1 and K1

B +C1

B +1 are achievable
and competitive ratio equals to 1. For general case, the
competitive ratio varies in the interval [1, 1.5]
B. Solving CRED with multiple deadlines

We propose a heuristic algorithm to solve CRED
with multiple, arbitrary deadlines. Our idea is to iter-
atively apply Algorithm 2 to incrementally find chunk
placement and time-slot scheduling to meet each dead-
line one-by-one. More precisely, after finding a solution
for placing chunks c ∈ C1, . . . , Ci to meet deadlines
d↑1, . . . , d

↑
i , we reuse the already placed chunks on exist-

ing nodes (if there are remaining computation resources
available) and optimize for the next deadline d↑i+1 and
minimize the number of new nodes we need to add in
order to support Fc,i+1 for all chunks c ∈ Ci+1. This
process continues until all the deadlines are considered.
The algorithm is summarized in Algorithm 3. Its perfor-
mance is characterized in Theorem 2. We assume there
are D distinct d↑i . We consider chunk placement and
time slots scheduling of distinct deadlines one-by-one,
from d↑1 to d↑D. For deadline d↑i , the Algorithm 3 first
calls Algorithm 2 for d↑i and then schedules time slots
for deadlines from d↑i to d↑D.

Algorithm 3: CRED-M
for i=1:D do
# of nodes= Algorithm 2 (Ci,

∑
j:dj=d↑i

Tj , B,

d↑i )
for n=1:# of nodes do

for i1=i:D do
schedule(the set of chunks in node n, Sd↑i1 -
#scheduled time slots in node n)

end for
end for

end for

Theorem 2. The number of nodes needed is

N̂ . max

(
maxi(Ki),

∑D
i=1

∑
j:dj=d

↑
i

Tj

Sd↑D
, CB

)
≤N̂

≤
∑D

i=1max
(
Ki,

Ki

2 + Ci

B

)
+D.

Proof: We first prove the lower bound and then
prove the upper bound.

Based on Theorem 1, max(maxi(Ki),CB ) is obvious.
Assume all jobs have the same deadlines and their
deadlines are equal to d↑D. Under this assumption, the

5



(a) (b) (c)
Fig. 2: Experiments with proposed algorithms CRED-S and CRED-M: (a) Effect of number of blocks to the number
of nodes. (b) Effect of the ratio between d1 and d2 type of jobs to the number of nodes needed. (c) Effect of the
ratio between d1 and d2 type of jobs to the time-slots and blocks utilization.

(a) (b) (c)
Fig. 3: Trace-driven comparison between CRED-M and First-Fit algorithm: (a) Effect of number of slots to the
number of nodes. (b) Effect of the ratio between Ds and Dl type of jobs to the number of nodes needed. (c)
Number of nodes needed in each scheduling interval.

minimal number of nodes is
∑D

i=1

∑
j:dj=d

↑
i

Tj

Sd↑D
. Thus, the

lower bound is max

(
maxi(Ki),

∑D
i=1

∑
j:dj=d

↑
i

Tj

Sd↑D
, CB

)
.

Next, we prove the upper bound. From Theo-
rem 1, for single deadline d↑i , the upper bound is
max

(
Ki,

Ki

2 + Ci

B

)
+1.

For D distinct deadlines, we consider deadlines
iteratively one by one. Therefore, the upper bound is∑D

i=1max
(
Ki,

Ki

2 + Ci

B

)
+D

Remark. When D=1, the lower bound and upper
bound are max(K1,CB ) and max(K1, K1

2 +C
B )+1, re-

spectively.
IV. EVALUATION

In this section, we perform various simulation ex-
periments for equal and two deadlines to evaluate our
algorithmic solution to the CRED problem. We focus
on two aspects: first, we show that CRED is within the
closed-form bounds we proved in Section III. Second,
we compare CRED and First-Fit algorithm in terms of
number of nodes and resource utilization.

To perform simulation experiments, we set the fol-
lowing global simulation parameters for all experiments,
unless otherwise stated. Each node is set to have S
= 4 slots (VMs) and B = 128 blocks. We create two
classes of jobs: elephants and mice jobs. Elephants jobs
are computation-intensive jobs; each job requires 300

time slots to process a chunk. Each mice job requires
only one unit of time to process a chunk. Elephants
and mice jobs form 5% and 95% of the total jobs (200
jobs in equal deadlines and 400 jobs in two deadlines),
respectively. We make the number of files equal to 100,
and each file contains 64 chunks. All jobs are assigned
to files randomly. For equal deadline experiments, we
fix the deadline to be equal to 500 for all experiments,
and for two-deadline experiments, we fix d1 and d2 to be
equal to 500 and 900, respectively. For all experiments,
the figures show the average of 20 runs.

Figure 2(a) shows the effect of changing the number
of blocks in each node to the number of nodes needed.
It can be clearly seen that as we increase the number
of blocks in each node, the problem moves from blocks
constraint to time slots constraint. In addition, the figure
shows, as expected, our simulation results outperform
the first-fit algorithm. CRED is able to match the lower
bound when B ≥ 64 blocks and exceeds the lower
bound by less than 2% on average when B ≤ 32.
Notice that when there is mixed of time-slots and blocks
constraints, our algorithm outperforms FF by up to 44%
in number of nodes.

Figure 2(b) shows that CRED-M is within the
closed-form bounds we proved in Section III. In this
experiment, each job is associated with either deadline
d1 or d2. The x-axis shows the ratio of d1 type of jobs to
the total number of jobs. All files are accessed by both
d1 and d2 type of jobs when 0 < ratio < 1. As we

6



increase the ratio, consequently, the number of nodes
increases since d1 < d2.

Figure 2(c) compares CRED-M and FF in terms
of time slots and blocks utilization defined as the
ratio of number of processing time slots and blocks
actually utilized to the total number available. In this
figure, we use the same parameters as Figure 2(b). The
figure shows for any ratio, CRED-M achieved higher
utilization in both time-slots (up to 25%) and blocks
(up to 35%). This is because, unlike FF, CRED always
tries to fully utilize the time-slots and blocks in each
node.

V. TRACE-DRIVEN EVALUATION

In this section, we compare the performance of
CRED-M with First-Fit algorithm through a trace-driven
simulation using data from a publicly available Google
trace [15]. The results show that CRED-M outperforms
FF by up to 20% node (and cost) saving on average, and
reduces the number of nodes required at peak utilization
by 47%.

We select a subset data from Google trace with a
length of 110 hours. Each job has a number of parame-
ters, including job submission time, job ID, scheduling
class, number of tasks and execution time of tasks. The
scheduling class represents how latency-sensitive the job
is. There exists 4 scheduling classes and jobs with level
3 are the most latency-sensitive. In this simulation, we
consider jobs belonging to scheduling classes 1 and 2.
For each class, we assign a deadline (Dl and Ds). We
denote Ai as the average execution time of all jobs with
scheduling class i in a scheduling interval. Ds equals A2

and Dl equals to max(A1, Ds). We set the scheduling
interval to be 20 minutes. At the beginning of each
scheduling interval, we schedule jobs arriving in the
previous scheduling interval. At the end of each hour,
we identify all nodes that have finished processing all
the workload and release them to the system, in a way
similar to Amazon’s EC2 cloud (on-demand instances).

Figure 3 (a) compares the average number of active
nodes (i.e., VM hours or cost) for the proposed CRED-
M algorithm and FF, to meet the same job deadlines.
Here, we set the number of blocks to be 16, while
changing the number of slots from 8 to 16. The figure
shows that CRED-M outperforms FF by up to 20% in
average number of nodes that are required to meet all
deadlines. It can be observed that as the number of
slots increases, the number of nodes to meet the same
deadlines decrease (since more tasks can be packed
into a node), while our proposed algorithm achieves a
consistent node reduction of 20%.

Figure 3 (b) compares the average number of active
nodes for CRED-M algorithm and FF to meet various
deadlines. Here, we set both the number of blocks and
the number of slots to be 16. Dl equals to max(A1,
α·Ds) and we change α from 1 to 5. The figure shows
that CRED-M algorithm outperforms FF by 17% in

average number of nodes.
Figure 3 (c) shows the number of active nodes

required by CRED-M algorithm for each scheduling
interval during the entire simulation. Again, we set the
number of blocks and the number of slots to be 16. The
numbers are normalized by the number of nodes used
by the FF algorithm, and thus any number smaller than
100% indicates node (or cost) saving. It is shown that
CRED-M reduces the number of nodes required at peak
utilization by 47%. The dashed line shows that CRED-
M outperforms FF by 21% in average number of nodes.

VI. CONCLUSIONS

In this paper, we introduce an optimization frame-
work, namely CRED, for cloud right-sizing under dead-
line and locality constraints. Algorithms are proposed
to solve the CRED optimization, which minimizes the
number of nodes needed by jointly optimizing task
scheduling and data placement while the jobs’ deadlines
and data locality are met. We analyze the competitive
ratio of the proposed algorithms in closed-form. The
algorithms significantly outperform a first-fit heuristic in
terms of cloud-size (i.e., number of active nodes needed)
and node utilization. We compare the performance of
CRED-M with First-Fit algorithm through a trace-driven
simulation. The results show that CRED-M algorithm
outperforms FF by up to 20% node (and cost) saving
on average.

In our future work, we plan to consider hetero-
geneous nodes and multi-phase cloud systems, e.g.,
MapReduce [7], involving communication between
tasks. We also intend to obtain a resilient solution,
which allows successful recovery at run time from any
node failure and is guaranteed to meet both deadline
and locality constraints.

VII. APPENDIX

Lemma 1. When k
(r)
1 ≤b 2C

(r)

B c, where C(r)=C1-rB2 ,
we have

∑
c∈LB/2

F
(r)
c,1≤Sd

↑
1

Proof: We use contradiction method to prove this
lemma. Assume when k

(r)
1 ≤b 2C

(r)

B c, where C(r)=C-
rB2 , we have

∑
c∈LB/2

F
(r)
c,1>Sd

↑
1. Suppose we partition

C(r) chunks into b 2C
(r)

B c sets whose size is B
2 . Since∑

c∈LB/2
F

(r)
c,1>Sd

↑
1, so the number of required time

slots of any set should be larger than Sd↑1. So, the
total number of required time slots should be larger
than b 2C

(r)

B c·Sd↑1. This is contrary to the condition that
k
(r)
1 ≤b 2C

(r)

B c and the proof is complete.
We denote the B-1 chunks with the smallest number

of required time slots among H(r)

B,d↑i
as LH(r)

B−1,d↑i
.

Lemma 2. When k(r)1 ≤bC
(r)

B−1c and
∑

c∈HB
F

(r)
c,i >Sd

↑
1,

where C(r)=C1-r(B-1), we have the total number of
required time slots of LHB−1,d↑1

is less than Sd↑1.

7



Proof: We use contradiction method to prove this
lemma. Because

∑
c∈HB

F
(r)
c,1≥Sd

↑
1, we can find B

chunks whose total required time slots is larger than
Sd↑1. Based on similar proving method of Lemma 1,
we know that

∑
c∈LB−1

F
(r)
c,1≤Sd

↑
1. Assume the total

required time slots of LH(r)

B−1,d↑i
is larger than or

equal to Sd↑1, then we choose a chunk c with the
smallest number of required time slots and combine the
LH(r)

B−1,d↑i
and the chunk c to be a new set of chunks C′.

At this time, the total number of required time slots of C′
should be less than the total required time slots ofH(r)

B,d↑i

and the number of required time slots is larger than Sd↑1.
So, it is contrary to our condition that H(r)

B,d↑1
is a set

of B chunks with the smallest number of required time
slots, while the total number of required time slots is
larger than Sd↑i .
Lemma 3. We show that in each iteration of step 1,
for each chunk, the number of time slots scheduled by
Algorithm 2 and simplified version are exactly the same.

Proof: In each iteration of step 1 of both Algorithm
2 and simplified version, we first sort chunks based
on the remaining number of required time slots in
descending order and choose H(r)

B,d↑i
. We use C(r)min to

denote a subset of H(r)

B,d↑i
. C(r)min is chosen from the tail

of the sorted H(r)

B,d↑i
. The number of required time slots

of C(r)min is larger or equal to Sd↑1. Also, the remaining
number of required time slots of any chunk c∈C(r)min is
non-zero. So, C(r)min is the chunk set used by Algorithm
1 for time slots scheduling. Because the total chunks
set C, before the first iteration, for both versions are
the same. Thus, to prove Lemma 3, we only need to
prove, in each iteration, C(r)min for both Algorithm 2 and
simplified version are exactly the same.

When r=1, before calling Algorithm 1, the chunk
set H(r)

B,d↑i
for both Algorithm 2 and simplified version

are the same. Thus, C(1)min should be the same.
When r=r′, we assume C(r

′)
min for both Algorithm 2

and simplified version are the same.
When r=r′+1, we need to prove the chunk sets

C(r′+1) are the same.
For any iteration r, after calling Algorithm 1, there

is at most one chunk c, whose remaining number of
required time slots is non-zero and has been scheduled
by Algorithm 1. It means, for rth iteration, after calling
Algorithm 1, the remaining chunk sets C(r) at most have
one chunk, whose the number of remaining required
time slots is larger than 0, scheduled by Algorithm 1.
Also, the chunk c is the chunk with the smallest number
of required time slots for next iteration r+1. It means,

for r+1th iteration, the chunk c∈C(r+1)
min .

C(r
′)

min for both Algorithm 2 and simplified version
are the same. Thus, in r′th iteration, C(r′) for both
Algorithm 2 and simplified version are the same. Thus,
the chunk sets C(r′+1) are the same. Thus, in each
iteration of step 1, for each chunk, the number of time
slots scheduled by Algorithm 2 and simplified version
are exactly the same.

REFERENCES

[1] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
mapreduce: An in-depth study,” Proc. VLDB Endow., vol. 3,
pp. 472–483, Sep. 2010.

[2] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in INFO-
COM, 2011.

[3] Q. Zhang, M. Zhani, R. Boutaba, and J. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” Cloud
Computing, IEEE Transactions on, vol. 2, pp. 14–28, Jan 2014.

[4] A. Verma, L. Cherkasova, V. Kumar, and R. Campbell,
“Deadline-based workload management for mapreduce envi-
ronments: Pieces of the performance puzzle,” in NOMS, 2012.

[5] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee,
“An empirical analysis of scheduling techniques for real-time
cloud-based data processing,” in SOCA, 2011.

[6] S. Shi, C. Wu, and Z. Li, “Cost-minimizing online vm purchas-
ing for application service providers with arbitrary demands,”
in CLOUD, 2015.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, pp. 107–
113, Jan. 2008.

[8] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly
Media, Inc., 2009.

[9] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality
in mapreduce,” in CCGrid, 2012.

[10] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus:
Locality-aware resource allocation for mapreduce in a cloud,”
in SC, 2011.

[11] S. Tang, B. S. Lee, and B. He, “Dynamicmr: A dynamic
slot allocation optimization framework for mapreduce clusters,”
IEEE Transactions on Cloud Computing, vol. 2, no. 3, pp. 333–
347, July 2014.

[12] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
cost of a cloud: Research problems in data center networks,”
SIGCOMM Comput. Commun. Rev., 2008.

[13] J. Hamilton, “Cost of power in large-scale data centers.”
[Online]. Available: http://goo.gl/FLa4CX.

[14] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar, “Network-aware scheduling for data-parallel jobs:
Plan when you can,” in SIGCOMM, 2015.

[15] “Google trace,” https://github.com/google/cluster-data, 2011.
[16] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On

scheduling in map-reduce and flow-shops,” in SPAA, 2011.
[17] H. Xu and W. C. Lau, “Speculative execution for a single job

in a mapreduce-like system,” in CLOUD, 2014.
[18] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and

J. Zhou, “Re-optimizing data-parallel computing,” in NSDI,
2012.

[19] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fon-
seca, “Jockey: Guaranteed job latency in data parallel clusters,”
in EuroSys, 2012.

8


