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Abstract—Meeting desired application deadlines in cloud pro-
cessing systems such as MapReduce is crucial as the nature of
cloud applications is becoming increasingly mission-critical and
deadline-sensitive. It has been shown that the execution times of
MapReduce jobs are often adversely impacted by a few slow
tasks, known as stragglers, which result in high latency and
deadline violations. While a number of strategies have been
developed in existing work to mitigate stragglers by launching
speculative or clone task attempts, none of them provides a
quantitative framework that optimizes the speculative execution
for offering guaranteed Service Level Agreements (SLAs) to
meet application deadlines. In this paper, we bring several
speculative scheduling strategies together under a unifying op-
timization framework, called Chronos, which defines a new
metric, Probability of Completion before Deadlines (PoCD), to
measure the probability that MapReduce jobs meet their desired
deadlines. We systematically analyze PoCD for popular strategies
including Clone, Speculative-Restart, and Speculative-Resume,
and quantify their PoCD in closed-form. The result illuminates
an important tradeoff between PoCD and the cost of speculative
execution, measured by the total (virtual) machine time required
under different strategies. We propose an optimization problem
to jointly optimize PoCD and execution cost in different strate-
gies, and develop an algorithmic solution that is guaranteed to
be optimal. Chronos is prototyped on Hadoop MapReduce and
evaluated against three baseline strategies using both experiments
and trace-driven simulations, achieving 50% net utility increase
with up to 80% PoCD and 88% cost improvements.

I. INTRODUCTION
Distributed cloud computing frameworks, such as MapRe-

duce, have been widely employed by social networks, financial
operations and big data analytics due to their ability to process
massive amounts of data by splitting large jobs into smaller,
parallel tasks. Such frameworks are known to be susceptible to
heavy tails in response time. The challenge arises from the fact
that execution times of MapReduce jobs are often adversely
impacted by a few slow tasks, causing the jobs to possibly
suffer high latency and miss their application deadlines.

Prior work has reported that these slow tasks could run up to
8 times slower than the median task [1–4]. These slow tasks,
known as stragglers, could significantly impact the overall
performance of deadline-sensitive cloud applications and result
in the violation of Service Level Agreements (SLAs).

Stragglers are inevitable in cloud environments due to a
number of reasons. First, data center computing nodes are typ-
ically composed of commodity components, which could be

heterogeneous in nature and thus cause various nodes to per-
form differently. Second, various sources of hardware/software
errors exist in large-scale data centers and could lead to node
failures interrupting task execution on the failed nodes. Finally,
with virtualization and resource sharing, co-scheduled tasks
running simultaneously on the same physical machines could
create an environment with resource contention and network
congestion, which are shown to contribute significantly to-
wards the occurrence of stragglers [2–4]. It has been observed
that links in data centers could remain under congestion for
up to several hundreds of seconds [5].

Hadoop has a speculation mode available (which we call
Hadoop-S) to mitigate the straggler effect. In this mode,
Hadoop can launch extra attempts for map (reduce) tasks
after at least one map (reduce) task from the same job
has finished. Periodically, Hadoop calculates the difference
between the estimated completion time of each running task
and the average completion time of finished tasks. It launches
one extra attempt for the task that has the largest difference.
Thus, if task sizes have large variation, Hadoop-S will launch
extra attempts for a large number of tasks, and waste cluster
resources. On the other hand, if task sizes are uniform, extra
attempts are rarely launched; and so stragglers continue to
straggle.

Several better approaches, both proactive and reactive, have
been proposed recently to deal with the straggler problem [2–
4, 6–10]. In particular, reactive approaches typically detect
stragglers by monitoring the progress of tasks and then
launch speculative copies of slow-running tasks. For exam-
ple, Dryad [11] employs a heuristic scheme to detect tasks
that are running slower than others, and schedules duplicate
attempts. LATE [2] proposes a scheduling algorithm to launch
speculative copies based on progress score. The progress score
is the fraction of data processed. Later, Mantri [3] presents
techniques to detect stragglers and act based on their causes.
Dolly [4] is a proactive cloning approach. It launches replica
task clones along with the originals and before straggler oc-
curs, to avoid waiting and speculation altogether. Wrangler [8]
applies a statistical learning technique and predicts stragglers
before they occur and aborts their launch. Of the existing
approaches, Mantri achieves a large amount of reduction in job
completion time and resource usage compared with LATE [2]



and Dryad [11]. In Mantri, if there is an available container
and there is no task waiting for a container, it keeps launching
new attempts for a task whose remaining execution time is
30 sec larger than the average task execution time, until
the number of extra attempts of the task is larger than 3.
Mantri also periodically checks the progress of each task, and
leaves one attempt with the best progress running. However,
all these existing works only focus on mitigating stragglers
without considering deadlines, and therefore cannot provide
any guarantee to meet individual application deadlines which
can vary significantly in practice.

Meeting desired deadlines is crucial as the nature of cloud
applications is becoming increasingly mission-critical and
deadline-sensitive [12, 13]. In this paper, we bring various
scheduling strategies together under a unifying optimization
framework, called Chronos, which is able to provide prob-
abilistic guarantees for deadline-critical MapReduce jobs. In
particular, we define a new metric, Probability of Completion
before Deadlines (PoCD), to measure the probability that
MapReduce jobs meet their desired deadlines. Assuming that
a single task execution time follows a Pareto distribution
[6, 7, 14, 15], we analyze three popular classes of (proactive
and reactive) strategies, including Clone, Speculative-Restart,
and Speculative-Resume, and quantify their PoCD in closed-
form under the same framework. We note that our analysis also
applies to MapReduce jobs, whose PoCD for map and reduce
stages can be optimized separately. The result allows us to
analytically compare the achievable PoCD of various existing
strategies with different context and system configurations.
In particular, we show that for the same number of specu-
lative/clone attempts, Clone and Speculative-Resume always
outperform Speculative-Restart, and we derive the sufficient
conditions under which these strategies attain their highest
PoCD. The result also illuminates an important tradeoff be-
tween PoCD and the cost of speculative execution, which is
measured by the total (virtual) machine time that is required
to cover the speculative execution in these strategies. The
optimal tradeoff frontier that is characterized in this paper
can be employed to determine user’s budget for desired PoCD
performance, and vice versa. In particular, for a given target
PoCD (e.g., as specified in the SLAs), users can select the
corresponding scheduling strategy and optimize its parameters,
to optimize the required budget/cost to achieve the PoCD
target.

The main contributions of this paper are summarized as
follows:
• We propose a novel framework, Chronos, which uni-

fies Clone, Speculative-Restart, and Speculative-Resume
strategies and enable the optimization of speculative
execution of deadline-sensitive MapReduce jobs.

• We define PoCD to quantify the probability that a
MapReduce job meets its individual application deadline,
and analyze PoCD and execution (VM time) cost for the
three strategies in closed-form.

• A joint optimization framework is developed to balance
PoCD and cost through a maximization of net utility.

We develop an efficient algorithm that solves the non-
convex optimization and is guaranteed to find an optimal
solution.

• Chronos is prototyped on Hadoop MapReduce and eval-
uated against three baseline strategies using both experi-
ments and trace-driven simulations. Chronos on average
outperforms existing solutions by 50% in net utility
increase, with up to 80% PoCD and 88% cost improve-
ments.

II. RELATED WORK

There have been several research efforts to improve the ex-
ecution time of MapReduce-like systems to guarantee meeting
Quality of Service (QoS) [12, 16–40]. Some focus on static
resource provisioning to meet a given deadline in MapReduce,
while others propose resource scaling in response to resource
demand and cluster utilization in order to minimize the overall
cost. Moreover, [41–43] proposed frameworks to improve
MapReduce job performance. These papers are similar to
our proposed work in the sense that resources are optimized
to minimize energy consumption and reduce operating cost.
However, the above mentioned works do not optimize job
execution times in the presence of stragglers, as we do in
this work.

Efficient task scheduling is critical to reduce the execution
time of MapReduce jobs. A large body of research exists
on task scheduling in MapReduce with deadlines. These
works range from deadline-aware scheduling [12, 13, 44–49]
to energy- and network-aware scheduling [50–54]. However,
these works do not consider dealing with stragglers which
might severely prolong a job’s execution time and violate the
QoS [2–4, 8].

The complexity of cloud computing continues to grow
as it is being increasingly employed for a wide range of
domains such as e-commerce and scientific research. Thus,
many researchers have shown interest in mitigating stragglers
and improving the default Hadoop speculation mechanism.
They proposed new mechanisms to detect stragglers reactively
and proactively and launch speculative tasks accordingly [2–
4, 6–10]. This is important to ensure providing high reliability
to satisfy a given QoS, as it can be at risk when stragglers
exist or when failures occur. Different from these works, we
jointly maximize the probability of meeting job deadlines and
minimize the cost resulting from speculative/duplicate task
execution and find the optimal number of speculative copies
for each task. Note that in contrast to launching one copy,
we launch r extra attempts. Moreover, our work includes
introducing an accurate way to estimate the task finishing
time by taking the JVM launching time into account, which in
turn reduces the number of false positive decisions in straggler
detection.

In addition, a number of works have considered avoiding re-
executing the work done by the original tasks (stragglers) [55–
58]. Basically, the key idea is to checkpoint running tasks and
make the speculative task start from the checkpoint. This idea
is similar to our Speculative-Resume strategy. However, in our
strategy, we detect stragglers based on jobs’ deadlines and



launch the optimal number of extra attempts for each straggler
in order to jointly optimize PoCD and cost. To save cost, we
check the progress of all attempts and keep the fastest one
when attempts’ progress can be relatively accurately estimated.
To save overhead, we only check progress of tasks two times,
once for detecting stragglers, and another time to kill slower
extra attempts.

III. BACKGROUND AND SYSTEM MODEL

Consider M MapReduce jobs that are submitted to a
datacenter, where job i is associated with a deadline Di

and consists of Ni tasks for i = 1, 2, . . . ,M . Job i meets
the desired deadline if all its Ni tasks are processed by the
datacenter before time Di.1 Tasks whose completion time
exceed D are considered as stragglers. To mitigate stragglers,
we launch multiple parallel attempts for each task belonging to
job i, including one original attempt and ri speculative/extra
attempts. A task is completed as soon as one of its ri + 1
attempts is successfully executed. Let Ti,j,k denote the (ran-
dom) execution time of attempt k of job i’s task j. Thus, we
find job completion time Ti and task completion time Ti,j by:

Ti = max
j=1,...,Ni

Ti,j , where Ti,j = min
k=1,...,ri+1

Ti,j,k, ∀j. (1)

The Pareto distribution is proposed to model the execution
times of tasks in [59], and is used in [6, 7, 14] to analyze
the straggler problem. Following these papers, we assume
the execution time Ti,j,k of each attempt follows a Pareto
distribution with parameters tmin and β. The probability
density function of Ti,j,k is

fTi,j,k(t) =


β·tβmin
tβ+1 t≥tmin,

0 t < tmin,
(2)

where tmin is the minimum execution time and β is the tail in-
dex, while different attempts are assumed to have independent
execution times.

As introduced earlier, Chronos consists of three scheduling
strategies to mitigate stragglers, namely Clone, Speculative-
Restart, and Speculative-Resume. Clone is a proactive ap-
proach, wherein r + 1 copies of a task (i.e., one original
attempt and r extra attempts) are launched simultaneously.
Here, r is a variable that is optimized to balance the PoCD
with the cost of execution. Speculative-Restart launches r
extra copies for each straggler detected. Speculative-Resume
is a work-preserving strategy, where the r extra copies of
a detected straggler start processing right after the last byte
offset processed by the original task. To model the cost of
executing job i under each strategy, we consider an on-spot
price of γi dollars per unit time for each active virtual machine
(VM) running attempts/tasks of job i. The price γi depends on
the VM-type subscribed by job i, and is assumed to be known
when optimizing job scheduling strategies. Our goal is to
jointly maximize the probability of meeting job deadlines and
minimize the cost resulting from speculative/extra task/attempt

1When speaking in the context of a single task or job, we drop the
subscript(s) for clarity.

scheduling. In Chronos, we use progress score to determine
if extra attempts are needed. The progress score is defined as
the percentage of workload processed at a given time t.
Clone Strategy. Under this strategy, r + 1 attempts of each
task are launched at the beginning. The progress scores of the
r+ 1 attempts are checked at time τkill, and the attempt with
the best progress is left for processing data, while the other r
attempts are killed to save machine running time. Figure 1(a)
illustrates the Clone strategy for a single task.
Speculative-Restart Strategy. Under this strategy, one at-
tempt (original) of each task is launched at the beginning.
At time τest, the task attempt completion time is estimated,
and if it exceeds D, r extra attempts are launched that start
processing data from the beginning.2 At time τkill, the progress
scores of all r + 1 attempts are checked, and the attempt
with the smallest estimated completion time is left running,
while the other r attempts are killed. Figure 1(b) illustrates
the Speculative-Restart strategy for a task when the execution
time of the original attempt exceeds D.
Speculative-Resume Strategy. This strategy is similar to the
Speculative-Restart strategy in its straggler detection. The
difference is that the detected straggler is killed and r + 1
attempts are launched for the straggling task. These attempts,
however, do not reprocess the data that has already been
processed by the original attempt, and start processing the
data after the last byte offset when the straggler is detected.
At time τkill, the progress scores of all attempts are checked,
and the attempt with the smallest estimated completion time is
left running while the other r attempts are killed. Figure 1(c)
illustrates the Speculative-Resume strategy for a task for the
case when the execution time of the original attempt exceeds
D. Here, the processed byte offset of the original attempt at
τest is b. Extra attempts launched at τest start to process data
from byte offset b.

IV. ANALYSIS OF POCD AND MACHINE RUNNING TIME

We now formally define PoCD, and analyze PoCD for each
strategy. PoCD expressions for the three strategies, under the
assumption that task attempt execution times are iid Pareto,
are presented in Theorems 1, 3, and 5. We also analyze
the machine running time for each strategy, and present
expressions for these in Theorems 2, 3, and 5.

Definition PoCD is the probability that an arriving job com-
pletes before its deadline.

We use the notation Rstrategy to denote the PoCD of a
particular strategy, which can be Clone, Speculative-Restart,
or Speculative-Resume.

A. Clone

We start by analyzing Clone, and derive PoCD and ma-
chine running time expressions in Theorem 1 and Theorem 2,
respectively.

2No extra attempts are launched if the estimated finishing time is not greater
than D.
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Figure 1. (a) Clone Strategy, (b) Speculative-Restart Strategy, (c) Speculative-Resume Strategy.

Theorem 1. Under Clone strategy, the PoCD

RClone =

[
1−

(
tmin

D

)β·(r+1)
]N

. (3)

Proof. We first derive the probability that a single task com-
pletes before the deadline, and then derive the PoCD by
considering all N tasks of the job.

Let us denote the probability that a single attempt of a task
fails to finish before deadline D by PClone. Then, we have

PClone =

∫ ∞
D

βtβmin

tβ+1
dt =

(
tmin

D

)β
. (4)

The task fails to finish before D when all r+1 attempts fail
to finish before D. Thus, the probability that a task finishes
before Dis 1− (PClone)

r+1. The job finishes before deadline
D when all its N tasks finish before D. Thus, the PoCD is
given by

RClone = [1− (PClone)
r+1]N =

[
1−

(
tmin

D

)β·(r+1)
]N

.

(5)

Before moving to Theorem 2, we first introduce and prove
Lemma 1 for computing the expected execution time of
min(Tj,1, ..., Tj,n), where n is a positive integer.

Lemma 1. Let W = min(Tj,1, ..., Tj,n), where Tj,a, a =
1, 2, . . . , n follows the Pareto distribution with parameters
tmin and β. Then, E(W ) can be computed as:

E(W ) =
tmin·n·β
n·β − 1

. (6)

Proof. We introduce

W − tmin =

∫ W

tmin

dt =

∫ ∞
tmin

I(t)dt, (7)

where I(t) is the indicator function for event {W > t}:

I(t) = I{W > t}def
=

{
1, W > t;

0, W≤t.
(8)

Taking expectations we have that

E(W ) =

∫ ∞
tmin

E(I(t))dt+ tmin =

∫ ∞
tmin

P (W > t)dt+ tmin.

(9)

Since P (W > t) = [P (Tj,a > t)]
n, we have:

E(W ) =

∫ ∞
tmin

(
tmin

t

)n·β
dt+ tmin =

tmin·n·β
n·β − 1

(10)

Theorem 2. Under Clone strategy, the expected execution time
of a job

EClone(T ) = N ·
[
r·τkill + tmin +

tmin

β·(r + 1)− 1

]
, (11)

where T denotes execution time of a job.

Proof. We first derive the machine running time of a task by
adding the machine running time of attempts killed at τkill
and the machine running time of the attempt that successfully
completes, and then get the job’s machine running time by
adding the machine running time of all N tasks.
EClone(T ) equals the expectation of the machine running

time of all N tasks, i.e., EClone(T ) = N ·E(Tj), where Tj is
the machine running time of task j. Also, E(Tj) equals the
sum of the machine running times of the rkilled attempts and
the execution time of the attempt with the best progress score
at τkill. Denote min{Tj,1, ..., Tj,r+1} as W all

j , where Tj,a is
the execution time of attempt a belonging to task j. Then,

E(Tj) = r·τkill + E(W all
j ). (12)

We can use the result from Lemma 1 to compute E(W all
j ).

The parameter n in Lemma 1 equals r + 1. Thus,

E(W all
j ) =

tmin·β·(r + 1)

β·(r + 1)− 1
= tmin +

tmin

β·(r + 1)− 1
. (13)

B. Speculative-Restart

Here we present the PoCD and machine running time
analysis for the Speculative-Restart strategy in Theorem 3 and
Theorem 4, respectively.

Theorem 3. Under Speculative-Restart, the PoCD

RS−Restart =

[
1− t

β·(r+1)
min

Dβ ·(D − τest)β·r

]N
. (14)

Proof. As in the proof of Theorem 1, we first derive the
probability that a task completes before the deadline. Then,



we can obtain the PoCD by considering that all N tasks of
the job complete before the deadline.

Theorem 4. Under Speculative-Restart, the expected execu-
tion time of a job, ES−Restart(T ), equals

E(Tj |Tj,1≤D)·P (Tj,1≤D) + E(Tj |Tj,1>D)·P (Tj,1>D),
(15)

where

P (Tj,1>D) = 1− P (Tj,1≤D) =

(
tmin

D

)β
,

E(Tj |Tj,1≤D) =
tmin·D·β·(tβ−1min −Dβ−1)

(1− β)·(Dβ − tβmin)
,

E(Tj |Tj,1>D) = τest + r·(τkill − τest)

+
tmin

β·r − 1
− tβ·rmin

(β·r − 1)·(D − τest)β·r−1

+

∫ ∞
D−τest

(
D

ω + τest

)β
·
(
tmin

ω

)β·r
dω + tmin (16)

Proof. We first derive the machine running time of a task
by considering if the execution time of the original attempt
is larger than D. If the execution time is no more than D
(denoted by E(Tj |Tj,1≤D) in (16)), there is no extra attempt
launched, and the machine running time is the execution time
of the original attempt.

In the case that execution time is larger than D, the machine
running time (denoted by E(Tj |Tj,1 > D) in (16)) consists of
three parts, i.e., (i) execution of the original attempt from start
to τest, (ii) machine time need to run r+1 attempts between
τest and τkill, and (iii) execution of the fastest attempt from
τkill until it finishes. Due to space limitation, we omit the
proof details and refer to Section IX.

C. Speculative-Resume

Finally, we obtain PoCD and machine running time ex-
pressions for Speculative-Resume in Theorems 5 and 6, re-
spectively. Let us denote the average progress of the original
attempts at time τest as ϕj,est.

Theorem 5. Under Speculative-Resume, the PoCD

RS−Resume =

[
1− (1− ϕj,est)β·(r+1)·tβ·(r+2)

min

Dβ ·(D − τest)β·(r+1)

]N
. (17)

Proof. The proof is similar to the proof of Theorem 1, and
details are omitted.

Theorem 6. Under Speculative-Resume, the expected execu-
tion time of a job ES−Resume(T ) equals

E(Tj |Tj,1≤D)·P (Tj,1≤D) + E(Tj |Tj,1>D)·P (Tj,1>D),
(18)

where

P (Tj,1>D) = 1− P (Tj,1≤D) =

(
tmin

D

)β
, (19)

E(Tj |Tj,1≤D) =
tmin·D·β·(tβ−1min −Dβ−1)

(1− β)·(Dβ − tβmin)
, and (20)

E(Tj |Tj,1>D) = τest + r·(τkill − τest) (21)

+
tmin·(1− ϕj,est)β·(r+1)

β·(r + 1)− 1
+ tmin (22)

Proof. The proof is similar to the proof of Theorem 4, and is
omitted.

We note that our analysis of PoCD and cost (including proof
techniques of Theorems 1-6) actually works with other distri-
butions as well (even though the exact equations/values may
change in the derived results, depending on the distribution).

D. Comparing PoCD of different strategies

In this subsection, we compare the PoCDs of three strate-
gies, and present results in Theorem 7. We denote D− τest as
D, and 1− ϕj,est as ϕj,est.

Theorem 7. Given r, we can get three conclusions:
1) Rclone > RS−Restart,
2) RS−Resume > RS−Restart,
3) if r > β· ln(ϕj,est·tmin)−lnD

lnD−ln(ϕj,est·D)
, Rclone > RS−Resume;

Otherwise, Rclone≤RS−Resume.

We provide an outline of our proof. Given r, Clone strategy
launches r extra attempts for each task from the beginning.
For each straggler detected at τest, S-Restart strategy launches
r extra new attempts (that restart from zero) and keeps the
original attempt, while S-Resume strategy launches r extra
attempts, which resume to process the remaining ϕj,est data,
for each straggler. If r is not large, it is clearly better to kill the
straggler, and launch extra r+1 attempts to process remaining
workload, instead of leaving straggler running.

V. JOINT POCD AND COST OPTIMIZATION

Starting multiple speculative/clone tasks leads to higher
PoCD, but also results in higher execution cost, which is
proportional to the total VM time required for both original
and speculative/clone tasks, e.g., when VMs are subscribed
from a public cloud with a usage-based pricing mechanism.
To exploit this tradeoff, we consider a joint optimization
framework for the three proposed strategies, to maximize a
“net utility” defined as PoCD minus execution cost. More
precisely, we would like to:

max U(r) = f(R(r)−Rmin)− θ·C·E(T ), (23)
s.t. r ≥ 0, (24)
var. r ∈ Z. (25)

Here, R(r) is the PoCD that results by initiating r specula-
tive/clone tasks in Clone, S-Restart, or S-Resume strategies.
To guarantee a minimum required PoCD, we consider a utility
function f(R(r)−Rmin), which is an increasing function and



drops to negative infinity if R(r) < Rmin. The usage-based
VM price per unit time is C.

We use a tradeoff factor θ ≥ 0 to balance the PoCD
objective f(R(r)−Rmin) and the execution cost C·E(T ). By
varying θ, the proposed joint optimization can generate a wide
range of solutions for diverse application scenarios, ranging
from PoCD-critical optimization with small tradeoff factor θ
and cost-sensitive optimization with large θ. Finally, while our
joint optimization framework applies to any concave, increas-
ing utility function f , in this paper, we focus on logarithmic
utility functions, f(R(r)−Rmin) = lg(R(r)−Rmin), which is
known to achieve proportional fairness [60]. In the following,
we will prove the concavity of the optimization objective U(r)
for different strategies and propose an efficient algorithm to
find the optimal solution to the proposed joint PoCD and cost
optimization.

A. Optimizing Chronos

To evaluate convexity of the optimization objective
Ustrategy(r), we first present the following lemma on function
compositions.
Lemma 2. [61] Suppose H(x) is a composite of f(x) and
g(x), i.e., H(x) = f(g(x)). If f(x) is increasing and both
f(x) and g(x) are concave, then H(x) is a concave function.

Theorem 8. The optimization objective Ustrategy(r) under
Clone, S-Restart, and S-Resume, i.e.,

Ustrategy(r) = lg(Rstrategy(r)−Rmin)− θ·C·Estrategy(T ),
(26)

is a concave function of r, when r > Γstrategy, where

ΓClone = −β−1· logtmin/DN − 1. (27)

ΓS−Restart = β−1· logtmin/(D−τest)

Dβ

N ·tβmin

. (28)

ΓS−Resume = β−1· log (1−ϕj,est)·tmin
D−τest

Dβ

N ·tβmin

− 1. (29)

Proof. lg(Rstrategy(r) − Rmin) is an increasing and concave
function of Rstrategy(r). Also, when r>Γstrategy, the second
derivative of Rstrategy is less than 0. So, Rstrategy is a concave
function of r, when r>Γstrategy. Based on Lemma 2, we
know that lg(RClone−Rmin) is a concave function of r, when
r>Γstrategy.

The second derivative of −Estrategy(T ) is less than 0. Since
the sum of two concave functions is also a concave function,
Ustrategy(r) is a concave function when r>Γstrategy.

We note that for non-deadline sensitive jobs, as job dead-
lines increase and become sufficiently large, the optimal r will
approach zero. Thus, there is no need to launch speculative or
clone attempts for these non-deadline sensitive jobs.

B. Our Proposed Optimization Algorithm
We present the algorithm for solving the optimal r to

maximize the “PoCD minus cost” objective for the three
strategies. First, our analysis shows that the optimization
objective is guaranteed to be concave when r is above a certain
threshold, i.e., r > Γstrategy, for Clone, Speculative-Restart,
and Speculative-Resume strategies. Thus, we can leverage the
concavity property and employ a gradient descent method
to find the optimal objective Ustrategy,opt(ropt) and solution
ropt, when the objective is concave, i.e., r > Γstrategy for
different threshold Γstrategy. Second, for the non-concave
regime, r ≤ Γstrategy, which contains a limited number of
integer points (typically, less than 4, as we will see later),
we use a simple search to find the maximum objective value
over all integers r ≤ Γstrategy. This hybrid algorithm can
efficiently find the optimal solution to the joint PoCD and
cost optimization, due to the optimality of convex optimization
when r > Γstrategy, as well as the limited complexity for
searching r ≤ Γstrategy. The proposed algorithm is summa-
rized in Algorithm 1. In Algorithm 1, η, α and ξ determine
the accuracy and complexity of the algorithm, and their values
depend on the values of N , θ, τest, τkill and C.

Theorem 9. Algorithm 1 finds an optimal solution for the net
utility optimization problem in (23).

Proof. For r≥dΓstrategye, UStrategy(r) is a concave function
of r, and the Gradient-based Line Search can find the maxi-
mum value of UStrategy(r) in polynomial time, where strategy
can be either Clone, S-Restart, or S-Resume. We can then
compute the UStrategy(r), ∀ r ∈ 0, ..., dΓstrategye − 1, and
compare the result from Gradient-based Line Search to get
the maximum value of UStrategy(r), ∀ r≥0. Since Γstrategy is
typically a small number, Algorithm 1 can find the optimal r
for maximizing net utility.

VI. IMPLEMENTATION

We develop Chronos (including Clone, Speculative-Restart
and Speculative-Resume) using Hadoop YARN, which con-
sists of a central Resource Manager (RM), a per-application
Application Master (AM) and a per-node Node Manager
(NM). The AM negotiates resources from the RM and works
with the NMs to execute and monitor an application’s tasks.
Our optimization algorithm is implemented in the AM to
calculate the optimal r upon job submission to be used by all
strategies. Chronos uses the progress score which is provided
by Hadoop to estimate the expected completion time of a
given task. The progress score of the map phase represents
the fraction of data processed. In Chronos, we modified the
default Hadoop speculation method and implemented our new
progress estimation mechanism, which significantly improves
the estimation accuracy by taking into account the time
overhead for launching MapReduce tasks, which is ignored
by Hadoop.

A. Implementing Clone Strategy
Upon submission of a job, the AM creates tasks and queues

them for scheduling. Then, the AM asks the RM for containers



Algorithm 1: Unifying Optimization Algorithm
strategy={Clone, S-Restart, S-Resume}
//Phase 1 : Gradient-based Line Search [61]
r = dΓstrategye
while |∇UStrategy(r)|>η do
4r = −∇UStrategy(r)
ε = 1
while UStrategy(r + ε·4r) >
UStrategy(r) + α·ε·∇UStrategy(r)·4r do
ε = ξ·ε

end while
x = x+ t·4r

end while
Ustrategy,opt(ropt) = Ustrategy(r)
ropt = r
//Phase 2 : Finding optimal solution for r≥0
for r = 0 : dΓstrategye − 1 do

Compute utility function Ustrategy(r)
if Ustrategy(r) > Ustrategy,opt(ropt) then
Ustrategy,opt(ropt) = Ustrategy(r)
ropt = r

end if
end for

to run its tasks. In Clone, the AM solves the proposed
joint optimization problem to determine the optimal r before
creating tasks for a given job. As discussed in Section V,
r is the number of extra attempts for each task. Once r is
found, whenever a map task belonging to the job is created,
the AM also creates extra r copies of the same task, which
start execution simultaneously with the original one. After
launching the r + 1 attempts, the AM monitors all attempts’
progress scores, and after τkill, the attempt with the highest
progress score is kept alive and will continue running, while
all other slower clone tasks are killed.

B. Implementing Speculation Strategies

Unlike Hadoop, Chronos launches r speculative attempts
for each straggler task whose estimated completion time falls
behind the target deadline. The optimal number of attempts r
is calculated by the AM after a job is submitted, by solving the
joint PoCD and cost optimization. The AM monitors all active
tasks and launches speculative attempts for the tasks that have
an estimated completion time (tect) larger than their target
deadline D. In particular, we have tect = tlau + teet, where
tlau and teet are the time at which the task is launched and the
estimated execution time, respectively.3 In our experiments,
we observed that Hadoop’s default task completion time
estimation is highly unreliable. In Hadoop, the task estimated
execution time equals the difference between the current time
and the time at which the task is launched, divided by the
reported progress score.

3All times are relative to the start time of a job, which is assumed to be 0.
Tasks are launched a little after time 0, namely tlau.

The task completion time estimation error is mainly caused
by Hadoop’s assumption that a task starts running right after
it is launched. However, this is not true especially in highly
contended environments where JVM startup time is significant
and cannot be ignored. We therefore take into consideration
the time to launch a JVM when estimating task progress and
completion time. Task execution time consists of two parts,
i.e., the time for launching JVM, and the time for processing
the workload. Chronos calculates the time for launching JVM
by finding the difference between the time when the first
progress report is received (tFP) and tlau. Therefore, the new
estimated completion time is given by

tect = tlau + (tFP − tlau) +
tnow − tFP
CP − FP

, (30)

where tnow−tFP

CP−FP is the time for processing the workload, and
FP and CP are the first reported progress value and current
reported progress value, respectively.

1) Speculative-Restart: For this strategy, the AM monitors
all running tasks and estimates their tect. If the AM finds
that a task’s estimated completion time tect at τest exceeds
deadline D, an optimal number r of extra attempts are created
and launched. At τkill, all attempts are killed except for the
one with the highest progress score. Unlike default Hadoop,
Chronos launches speculative copies once it detects a straggler
at τest.

2) Speculative-Resume: Our implementation of
Speculative-Resume employs a work-preserving mechanism.
The key idea is that the AM keeps track of an (original)
attempt’s data processing progress, maintains the latest (data)
record’s offset, and passes the offset to the new speculative
attempts at τest if speculation is determined to be necessary.
It ensures that the speculative attempts do not process the
already processed data and can seamlessly “resume” executing
data where the original attempt left off.

A challenge in implementing Speculative-Resume is that
Chronos needs to consider the launching time of new specu-
lative attempts, since JVM startup time postpones the actual
start of execution of new attempts. Our solution estimates the
number of bytes that will be processed (bextra) by the original
attempt during speculative attempts’ launching time. Then, the
speculative attempts will skip these bytes and start processing
data from an anticipated offset. The speculative launching
mechanism allows the original and speculative attempts to
switch seamlessly and effectively avoids any JVM startup time
overhead. More precisely, at τest, Chronos records the number
of bytes processed by the original attempt (best), and then
estimates the number of bytes to be processed by the original
attempt during speculative attempt’s startup time (bextra) as
follows:

best
τest − tFP

·(tFP − tlau). (31)

Next, our new byte offset to be used by the speculative
attempts to start processing data is calculated as bnew =
bstart + best + bextra, where bstart is the offset of the first byte
of the split, which is the data to be processed by a task. Note
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Figure 2. Comparisons of HNS, HS, Clone, S-Restart and S-Resume with respect to PoCD, Cost and Utilities with different benchmarks.

that in this strategy, Chronos launches r + 1 new copies for
each straggler after killing the original one. This is because the
original attempt was deemed to be a straggler (for reasons such
as node malfunction or operating system disruption), and since
all new attempts start from bnew, there is no data-processing
delay for relaunching (and rejuvenating) the original attempt
at a new location.

VII. EVALUATION

We evaluate Clone, Speculative Restart (S-Restart), and
Speculative Resume (S-Resume) through both testbed experi-
ments and large-scale simulations with real-world data center
trace. In all three strategies, the optimal number ropt of
clone/speculative attempts are found by solving our proposed
PoCD and cost optimization. We compare the three strategies
with Default Hadoop without Speculation (Hadoop-NS), De-
fault Hadoop with Speculation (Hadoop-S), and Mantri, which
serve as baselines in our evaluation.
A. Experiment Results

1) Setup: We deploy our prototype of Clone, Speculative
Restart, and Speculative Resume strategies on Amazon EC2
cloud testbed consisting of 40 nodes. Each node has 8 vCPUs
and 2GB memory.The three strategies are evaluated by using
the Map phases of four classic benchmarks, i.e., Sort, Sec-
ondarySort, TeraSort, and WordCount. Sort and SecondarySort
are I/O bound applications, whereas WordCount and the map
phase of TeraSort are CPU-bound. We generate workloads for
Sort and TeraSort by using RandomWriter and TeraGen appli-
cations, respectively. Also, we generate random number pairs
as workload for SecondarySort. The sizes of all workloads
are 1.2GB. To emulate a realistic cloud infrastructure with
resource contentions, we introduce background applications in
the host OS of the physical servers, which repeatedly execute
some computational tasks and inject background noise in our
testbed. We observe that the task execution time measured on
our testbed follows a Pareto distribution with an exponent β <
2. This is consistent with observations made in [6, 7, 14, 59].
As shown in Morpheus [62] and Jockey [63], job deadlines
can be introduced by third parties and/or specified in Service
Level Agreements (SLAs). In our experiments, we consider
jobs with different deadline sensitivities by setting deadlines as
different ratios of average job execution time. To evaluate the
impact of background noise (in resource utilization), We use

the Stress utility to generate background applications. Stress
is a tool to imposes a configurable amount of CPU, memory,
I/O, and disk stress on the system, and it is widely used to
evaluate cloud and VM performance, such as in [64–67].

2) Results: In the following, we compare Hadoop-NS,
Hadoop-S, Clone, S-Restart, and S-Resume with respect to
PoCD, cost, and total net utility. We execute 100 MapReduce
jobs using Chronos on our testbed. Each job has 10 tasks
and a deadline equal to 100 sec or 150 sec (emulating jobs
with different deadline sensitivities). We measure the PoCD
by calculating the percentage of jobs that finish before their
deadlines, and the cost by multiplying the machine running
time, i.e., the average job running time (i.e., VM time re-
quired), and a fixed price per unit VM time that is obtained
by Amazon EC2 average spot price (C). In all experiments, we
set the tradeoff factor as θ = 0.0001, i.e., 1% of PoCD utility
improvement is equivalent to 100 units of VM cost reduction
(since 1% = θ · 100). We then solve the corresponding joint
PoCD and cost optimization and compare the performance of
various algorithms.

Figure 2(a) and Figure 2(b) show PoCD and cost of the
five strategies with different benchmarks, respectively. The
deadline is 100 sec for Sort and TeraSort, and is 150 sec
for SecondarySort and WordCount. For our three strategies,
τest and τkill are set to 40 sec and 80 sec, respectively.
Hadoop-NS has the lowest PoCD, and relatively large cost.
Even though Hadoop-NS does not launch extra attempts, the
large execution time of stragglers increases the cost. Hadoop-
S can launch extra attempts for slow tasks, but only after at
least one task finishes. Because Hadoop-S does not consider
deadlines, it might launch extra attempts for tasks that may
finish before the deadline. Clone launches extra attempts for
each task, and it makes both PoCD and cost be the largest
among the five strategies. S-Restart and S-Resume launch extra
attempts for tasks whose estimated execution time is larger
than the deadline. Due to the fact that S-Resume does not
re-process data and kills the original attempt, S-Resume can
achieve larger PoCD and smaller cost. Figure 2(c) compares
the performance of the five strategies in terms of the overall net
utility. The results show that our three strategies outperform
Hadoop-NS and Hadoop-S by up to 33% on net utility value.
In particular, the three strategies can improve PoCD by up to



80% and 19% over Hadoop-NS and Hadoop-S, respectively,
while S-Resume introduces little additional cost compared
with Hadoop-NS and Hadoop-S. This significant improvement
comes from not only launching multiple (optimal number of)
attempts for stragglers, but also maintaining only the fastest
progress attempt at τkill, thereby introducing limited execution
time overhead. For net utility, since we use the PoCD of
Hadoop-NS as Rmin, its utility is negative infinity.

Table I
PERFORMANCE COMPARISON WITH VARYING τest AND FIXED

τkill − τest = 0.5·tmin .

τest τkill PoCD Cost Utility
Clone 0 0.5·tmin 0.722 9373 -0.376

S-Restart
0.1·tmin 0.6·tmin 0.996 11458 -0.213
0.3·tmin 0.8·tmin 0.988 9650 -0.199
0.5·tmin 1.0·tmin 0.938 9486 -0.226

S-Resume
0.1·tmin 0.6·tmin 0.997 9121 -0.189
0.3·tmin 0.8·tmin 0.992 8612 -0.187
0.5·tmin 1.0·tmin 0.941 8712 -0.217

Table II
PERFORMANCE COMPARISON WITH VARYING τkill AND FIXED τest .

τest τkill PoCD Cost Utility

Clone
0 0.4·tmin 0.718 9113 -0.376
0 0.6·tmin 0.733 9713 -0.369
0 0.8·tmin 0.731 10434 -0.378

S-Restart
0.3·tmin 0.4·tmin 0.981 8235 -0.189
0.3·tmin 0.6·tmin 0.993 8848 -0.188
0.3·tmin 0.8·tmin 0.988 9650 -0.199

S-Resume
0.3·tmin 0.4·tmin 0.987 7935 -0.183
0.3·tmin 0.6·tmin 0.993 8220 -0.182
0.3·tmin 0.8·tmin 0.992 8612 -0.187

B. Simulation Results

Next, to evaluate our proposed Chronos system at scale, we
conduct a trace-driven simulation of a large-scale datacenter.
We (i) leverage Google trace [68] to generate MapReduce jobs
with different parameters and arrival times, and (ii) make use
of spot instance price history from Amazon EC2 to calculate
the cost of executing different strategies. We simulate 30 hours
of job trace including a total of 2700 jobs with 1 million tasks
from Google trace. For each job, we get the start time, the
execution time distributions, the number of tasks, and job ID,
and use Pareto distribution to generate the execution times of
tasks that match the execution time distribution in the real-
world trace.

To provide insights on determining the optimal parameters
(such as τest and τkill) of Chronos, we first study the impact
of choosing different parameters in Clone, S-Restart, and S-
Resume. Table I shows the performance comparison with
varying τest and fixed difference between τest and τkill, which
implies fixed execution time τkill−τest for all clone/speculative
attempts.

Under Clone strategy, τest has only one value, which is
0. Under S-Restart and S-Resume, there exists an interest-
ing tradeoff between estimation accuracy and timeliness of
speculation, which is characterized by τest. Initially, as τest
increases, both PoCD and cost decrease. This is because with

limited observation available for a small τest, Hadoop tends to
overestimate the execution time of attempts at the beginning,
while making more accurate estimations as more observations
become available for large τest. More precisely, when τest
is small, more tasks are considered as stragglers, and extra
attempts are launched more aggressively. This leads to both
high PoCD and large cost. On the other hand, when τest
becomes too large, it might be too late to meet the deadline for
straggling tasks. Based on the table, S-Restart and S-Resume
can achieve the highest net utilities when τest = 0.3·tmin.

Table II shows the performance comparisons for varying
τkill and fixed τest. We can see that as τkill increasing,
the execution time of clone/speculative attempts increases,
resulting in higher cost, while more accurate estimation of
progress and execution time can be obtained. Due to higher
cost for executing clone/speculative attempts as τkill increases,
the value of optimal r decreases, in order to re-balance PoCD
and cost in the joint optimization. As a result, PoCDs are not
monotonically increasing or decreasing. Based on the results,
the best PoCD can be achieved when τkill = 0.3·tmin.

In Figure 3(a), 3(b), and 3(c), we compare Mantri, Clone,
S-Restart, and S-Resume in terms of PoCD, Cost, and Utility
with different θ values to illustrate the tradeoff achieved by
different strategies.

Figure 3(a) shows the effect of varying tradeoff factor θ
on PoCD. As θ increases, the cost has a higher weight and
becomes more critical in the joint optimization. Thus, fewer
clone/speculative attempts are launched, and PoCD decreases,
leading to decreased r to re-balance PoCD and cost in the
optimal solution. It is seen that the PoCD of Clone decreases
more than others since it incurs higher cost to execute clone
attempts than speculative attempts. To validate this, we also
present the histograms of the optimal value of r for Clone
with θ = 1e-5, Clone with θ = 1e-4, S-Resume with θ = 1e-
5, and S-Resume with θ = 1e-4 in Figure 5. As θ increases
from 1e-5 to 1e-4, the optimal r for the vast majority of jobs
decreases from r = 2 to r = 1 under Clone strategy, whereas
the optimal majority r decreases from r = 4 to r = 3 under
S-Resume strategy. Recall that Mantri aggressively launches
and kills extra attempts. Thus, with a larger number of extra
attempts running along with original tasks, Mantri can achieve
high PoCD, but it also runs up significant cost to execute the
speculative attempts. Our results show that S-Resume has the
highest PoCD and outperforms Clone strategy by 56%.

Figure 3(b) shows the effect of varying θ on Cost. As θ
increases, fewer clone/speculative attempts are launched, and
the costs of Clone, S-Restart, and S-Resume all decrease. With
a larger number of clone/speculative attempts running along
with original tasks, the cost of Mantri is much higher than
others. The results show that Mantri introduces 50%, 67%,
and 88% higher cost compared with Clone, S-Restart, and S-
Resume, respectively, making it non-optimal in terms of net
utility optimization.

Figure 3(c) compares the net utility for varying θ. The
utility of Mantri decreases the most as θ increases, since it
introduces the largest cost compared with other strategies. S-
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Figure 3. Comparisons of Mantri, Clone, S-Restart and S-Resume on PoCD, Cost, and Utility with different tradeoff factors θ.
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Figure 4. Comparisons of HNS, HS, Clone, S-Restart and S-Resume in terms of PoCD, MRT and net utilities with different βs.
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Figure 5. Histogram of the optimal r values for different strategies

Resume attains the best net utility, since it has the highest
PoCD and lowest cost. Clone, S-Restart, and S-Resume can
outperform Mantri by 31%, 43%, and 50%, respectively.

Figure 4(a) and 4(b) compares the performance of different
strategies by varying β, the exponent in Pareto distribution. A
smaller β corresponds to a smaller decaying in task execution
time distribution, implying a heavier tail. In this simulation,
we set deadline as 2 times the average task execution time.
Because average execution time is tmin+ tmin

β−1 under Pareto dis-
tribution, as β increases, the average execution time decreases,
which results in decreasing costs. Also, as β increasing, the
value of optimal r decreases due to a smaller tail in task
execution time.

Figure 4(c) shows net utility achieved by different strategies

under various β. We observe that Clone, S-Restart and S-
Resume outperform Hadoop-NS and Hadoop-S when β varies
from 1.1 to 1.9.

In summary, as our analysis and experiment results show,
if the unit cost of machine running time decreases, Clone be-
comes more preferable than S-Resume due to smaller up-front
cost that is resulted from running the clone attempts (starting
from t = 0). Further, S-Resume always outperforms S-Restart,
since it is able to capitalize on the partially computed results
and pick up the task execution from the breakpoint. But
we also note that S-Resume may not be possible in certain
(extreme) scenarios such as system breakdown or VM crash,
where only S-Restart is feasible.

VIII. CONCLUSION

In this paper, we present Chronos, a unifying optimization
framework to provide probabilistic guarantees for jobs with
deadlines. Our framework aims to maximize the probability
of meeting job deadlines and minimize the execution cost.
We present and optimize three different strategies to mitigate
stragglers proactively and reactively. Our solution includes an
algorithm to search for the optimal number of speculative
copies needed. Moreover, we present an improved technique to
estimate the expected task completion time. Our results show
that Chronos can outperform by up to 80% in terms of PoCD
over Hadoop-NS, and by 88% in terms of cost over Mantri.
Multi-wave executions will be considered in our future work.



REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments.” in
OSDI, vol. 8, no. 4, 2008, p. 7.

[3] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri.” in OSDI, vol. 10, no. 1, 2010, p. 24.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 13), 2013, pp. 185–198.

[5] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement con-
ference. ACM, 2009, pp. 202–208.

[6] H. Xu and W. C. Lau, “Optimization for speculative execution in big
data processing clusters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 2, pp. 530–545, 2017.

[7] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 3, pp. 7–11, 2015.

[8] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler: Pre-
dictable and faster jobs using fewer resources,” in Proceedings of the
ACM Symposium on Cloud Computing. ACM, 2014, pp. 1–14.

[9] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Maestro:
Replica-aware map scheduling for mapreduce,” in Cluster, Cloud and
Grid Computing (CCGrid), 2012 12th IEEE/ACM International Sympo-
sium on. IEEE, 2012, pp. 435–442.

[10] J. Rosen and B. Zhao, “Fine-grained micro-tasks for mapreduce skew-
handling,” White Paper, University of Berkeley, 2012.

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” ser.
EuroSys ’07. New York, NY, USA: ACM, 2007, pp. 59–72.

[12] D. Cheng, J. Rao, C. Jiang, and X. Zhou, “Resource and deadline-aware
job scheduling in dynamic hadoop clusters,” in Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International. IEEE, 2015,
pp. 956–965.

[13] D. Li, C. Chen, J. Guan, Y. Zhang, J. Zhu, and R. Yu, “Dcloud: deadline-
aware resource allocation for cloud computing jobs,” IEEE Transactions
on Parallel and Distributed Systems, 2016.

[14] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,” ACM SIG-
COMM Computer Communication Review, vol. 45, no. 4, pp. 379–392,
2015.

[15] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “Laser: A deep learning
approach for speculative execution and replication of deadline-critical
jobs in cloud,” in Computer Communication and Networks (ICCCN),
2017 26th International Conference on. IEEE, 2017, pp. 1–8.

[16] X. Xu, M. Tang, and Y.-C. Tian, “Theoretical results of qos-guaranteed
resource scaling for cloud-based mapreduce,” IEEE Transactions on
Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[17] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic resource
inference and allocation for mapreduce environments,” in Proceedings of
the 8th ACM international conference on Autonomic computing. ACM,
2011, pp. 235–244.

[18] P. Lama and X. Zhou, “Aroma: Automated resource allocation and
configuration of mapreduce environment in the cloud,” in Proceedings
of the 9th international conference on Autonomic computing. ACM,
2012, pp. 63–72.

[19] K. Chen, J. Powers, S. Guo, and F. Tian, “Cresp: Towards optimal
resource provisioning for mapreduce computing in public clouds,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 6, pp.
1403–1412, 2014.

[20] M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta, M. Passacan-
tando, and A. Movaghar, “Optimal capacity allocation for executing
mapreduce jobs in cloud systems,” in Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2014 16th International Symposium
on. IEEE, 2014, pp. 385–392.

[21] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 18.

[22] E. Hwang and K. H. Kim, “Minimizing cost of virtual machines for
deadline-constrained mapreduce applications in the cloud,” in 2012
ACM/IEEE 13th International Conference on Grid Computing. IEEE,
2012, pp. 130–138.

[23] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet deadlines,”
in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on. IEEE, 2010, pp. 388–392.

[24] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,
“Performance-driven task co-scheduling for mapreduce environments,”
in 2010 IEEE Network Operations and Management Symposium-NOMS
2010. IEEE, 2010, pp. 373–380.

[25] W. Shi and B. Hong, “Clotho: an elastic mapreduce workload/runtime
co-design,” in Proceedings of the 12th International Workshop on
Adaptive and Reflective Middleware. ACM, 2013, p. 5.

[26] W. Zhang, S. Rajasekaran, T. Wood, and M. Zhu, “Mimp: deadline
and interference aware scheduling of hadoop virtual machines,” in
Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on. IEEE, 2014, pp. 394–403.

[27] M. AbdelBaky, H. Kim, I. Rodero, and M. Parashar, “Accelerating
mapreduce analytics using cometcloud,” in Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on. IEEE, 2012, pp. 447–454.

[28] M. Mattess, R. N. Calheiros, and R. Buyya, “Scaling mapreduce
applications across hybrid clouds to meet soft deadlines,” in Advanced
Information Networking and Applications (AINA), 2013 IEEE 27th
International Conference on. IEEE, 2013, pp. 629–636.

[29] M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh, “Stea-
mengine: Driving mapreduce provisioning in the cloud,” in 2011 18th
International Conference on High Performance Computing. IEEE,
2011, pp. 1–10.

[30] B. T. Rao and L. Reddy, “Scheduling data intensive workloads through
virtualization on mapreduce based clouds,” International Journal of
Computer Science and Network Security (IJCSNS), vol. 13, no. 6, p.
105, 2013.

[31] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
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IX. APPENDIX

In this section, we present details for proving Theorem 3,
4, 5, 6, 7, 8. To prove Theorem 4. To prove Theorem 4, we
first present Lemma 3.

Lemma 3. Let A and B follow Pareto distribution with
(amin, β) and (bmin, β), respectively. Given amin≤bmin, then

fB(b) = fA(b|A > bmin) (32)

PROOF OF THEOREM 3

Proof. In this proof, we first derive the probability of a task
completes before the deadline, and then derive the PoCD by
considering all N tasks completing before the deadline.

We first compute the probability that an original attempt
fails to finish before D. We denote the probability that an
original attempt fails to finish before D as PRestart,o, which
equals

PRestart,o = P (Tj,1 > D) =

(
tmin

D

)β
. (33)

If the original attempt’s execution time is larger than D, r
extra attempts are launched at τest. If an extra attempt fails to
finish before D, it means that the execution time is more than
D− τest. We denote the probability that an extra attempt fails
to finish before D as PRestart,e, which equals

PRestart,e = P (Tj,a > D−τest) =

∫ ∞
D−τest

βtβmin

tβ+1
dt =

(
tmin

D − τest

)β
.

(34)
A task fails to finish before D when the original attempt

and r extra attempts launched at τest fail to finish before
D. Thus, the probability that a task can finish before D is
1 − PRestart,o·P rRestart,e. Also, a job can finish before the
deadline D when all N tasks can finish before D. Thus, PoCD
RS−Restart equals

(1− Prestart,o·(Prestart,e)
r)N =

[
1− t

β·(r+1)
min

Dβ ·(D − τest)β·r

]N
.

(35)



PROOF OF THEOREM 4

Proof. In this proof, we first derive machine running time of
a task by considering if the execution time of the original
attempt is larger than D. If execution time is no more than
D, there is no extra attempt launched. The machine running
time is execution time of original attempt. If the execution
time is larger than D, task machine time is the summation
of machine running time of extra attempts killed at τkill and
machine running time of the attempt successfully completed,
and then get job’s machine running time by adding machine
running time of N tasks together.
ES−Restart(T ) equals the expectation machine running time

of all N tasks, i.e., ES−Restart(T ) = N ·E(Tj), where Tj
is the machine running time of task j. For task j, if the
execution time of the original attempt exceeds D (Tj,1>D),
extra attempts are launched at τest. Thus, we consider E(Tj)
in whether the execution time of the original attempt exceeds
D or not, i.e., Tj,1≤D, or Tj,1>D, and E(Tj) equals

E(Tj |Tj,1≤D)·P (Tj,1≤D) + E(Tj |Tj,1>D)·P (Tj,1>D),
(36)

where

P (Tj,1>D) = 1− P (Tj,1≤D) =

(
tmin

D

)β
. (37)

Case 1. Tj,1≤D.

The execution time of the original attempt is no more than
D, and there is no extra attempt launched at time τest. Because

E(Tj |Tj,1≤D) =

∫ ∞
tmin

t·fTj (t|Tj,1≤D)dt, (38)

we first compute fTj (t|Tj,1≤D), which is

fTj (t|Tj,1≤D) =

{
β·tβmin·D

β

(Dβ−tβmin)·tβ+1
, D>t>tmin;

0, otherwise,
(39)

By deriving Equ. (38), we can get

E(Tj |Tj,1≤D) =
tmin·D·β·(tβ−1min −Dβ−1)

(1− β)·(Dβ − tβmin)
. (40)

Case 2. Tj,1>D.

The execution time of the original attempt is more than D,
and r extra attempts are launched at time τest. At time τkill,
a attempt with the smallest finish time is left for running, and
other r attempts are killed.
E(Tj |Tj,1>D) consists of three parts, i.e., machine running

time of the original attempt before τest, machine running time
of r killed attempts between τest and τkill, and execution time
of the attempt with the smallest finish time after τest. Since the
original attempt starts τest earlier than extra attempts, Tj,1 −
τest is the execution time of the original attempt after τest,
and min(Tj,1 − τest, Tj,2, ..., Tj,r+1) is the execution time of
the attempt with the smallest finish time after τest. We denote

min(Tj,1 − τest, Tj,2, ..., Tj,r+1) as W all
j . So, E(Tj |Tj,1>D)

equals

τest + r·(τkill − τest) + E(W all
j |Tj,1>D). (41)

Based on Lemma 3, we can transform E(W all
j |Tj,1>D)

to E(Ŵ all
j ), where Ŵ all

j = min(T̂j,1 − τest, Tj,2, .., Tj,r+1),
and the minimum values of T̂j,1 is D. Also, we denote
min(Tj,2, ..., Tj,r+1) as W extra

j .
We compute E(Ŵ all

j ) by using Lemma 1, i.e.,

E(Ŵ all
j ) =

∫ ∞
tmin

P (T̂j,1 − τest≥ω)·P r(Tj,a≥ω)dω + tmin,

(42)
where

P (T̂j,1 − τest≥ω) =

{
( D
ω+τest

)β , ω≥D − τest;
1, ω<D − τest,

(43)

and

P (Tj,a≥ω) =

{
( tmin

ω )β , ω≥tmin;

1, ω<tmin.
(44)

Because D − τest should be no less than tmin, otherwise
there is no reason for launching extra attempts, thus

E(Ŵ all
j ) =

tmin

β·r − 1
− tβ·rmin

(β·r − 1)·(D − τest)β·r−1

+

∫ ∞
D−τest

(
D

ω + τest

)β
·
(
tmin

ω

)β·r
dω + tmin (45)

PROOF OF THEOREM 5

Proof. In this proof, we first derive the probability that a task
completes before the deadline, and then derive the PoCD by
considering all N tasks complete before the deadline.

We first compute the probability of an original attempt failed
to finish before D. We denote the probability that an original
attempt fails to finish before D as PResume,o that

PResume,o = P (Tj,1 > D) =

(
tmin

D

)β
. (46)

If the original attempt’s execution time is larger than D, the
original attempt is killed, and r+1 extra attempts are launched
at τest. Suppose the original attempt processed ϕj,est fraction
of data, extra attempts continue to process the remaining 1−
ϕj,est fraction of data. An extra attempt failed to finish before
D means the execution time is more than D−τest. We denote
the probability that an extra attempt fails to finish before D
as PResume,e that

PResume,e = P ((1−ϕj,est)·Tj,a > D−τest) =

[
(1− ϕj,est)·tmin

D − τest

]β
.

(47)
A task fails to finish before D when the original attempt

and the r extra attempts launched at τest fail to finish before
D. Thus, the probability that a task finishes before D is 1 −



PResume,o·P r+1
Resume,e. Also, the job finishes before the deadline

D when all N tasks finish before D. Thus, PoCD RS−Resume

equals

RS−Resume = (1− Presume,o·(Presume,e)
r+1)N

=

[
1− (1− ϕj,est)

β·(r+1)·tβ·(r+2)
min

Dβ ·(D − τest)β·(r+1)

]N
. (48)

PROOF OF THEOREM 6

Proof. In this proof, we first derive machine running time of
a task by considering if the execution time of the original
attempt is larger than D. If execution time is no more than
D, there is no extra attempt launched. The machine running
time is execution time of original attempt. If the execution
time is larger than D, task machine time is the summation
of machine running time of extra attempts killed at τkill and
machine running time of the attempt successfully completed,
and then get job’s machine running time by adding machine
running time of N tasks together.
ES−Resume(T ) equals the expectation machine running

time of all N tasks, i.e., ES−Resume(T ) = N ·E(Tj), where
Tj is the machine running time of task j. For task j, if the
execution time of the original attempt exceeds D (Tj,1>D),
extra attempts are launched at τest. Thus, we consider E(Tj)
in whether the execution time of the original attempt exceeds
D or not, i.e., Tj,1≤D, or Tj,1>D, and E(Tj) equals

E(Tj |Tj,1≤D)·P (Tj,1≤D) + E(Tj |Tj,1>D)·P (Tj,1>D),
(49)

where

P (Tj,1>D) = 1− P (Tj,1≤D) =

(
tmin

D

)β
. (50)

Case 1. Tj,1≤D.

The execution time of the original attempt is no more than
D, and there is no extra attempt launched at time τest. Because

E(Tj |Tj,1≤D) =

∫ ∞
tmin

t·fTj (t|Tj,1≤D)dt, (51)

we first compute fTj (t|Tj,1≤D), which is

fTj (t|Tj,1≤D) =

{
β·tβmin·D

β

(Dβ−tβmin)·tβ+1
, D>t>tmin;

0, otherwise,
(52)

By deriving Equ. (51), we can get

E(Tj |Tj,1≤D) =
tmin·D·β·(tβ−1min −Dβ−1)

(1− β)·(Dβ − tβmin)
. (53)

Case 2 Tj,1>D

The execution time of the original attempt is more than D,
and the original attempt is killed at τest. r + 1 extra attempts
are launched at τest, and continue to process remaining

(1 − ϕj,est) data. At τkill, r extra attempts are killed and
leave an extra attempt with the smallest finishing time running.
E(Tj |Tj,1>D) consists of three parts, i.e., machine running
time of the original attempt before τest, machine running time
of killed extra attempts between τest and τkill, and execution
time of the extra attempt with the smallest finish time. So,

E(Tj |Tj,1>D) = τest + r·(τkill − τest) + E(Wnew
j ), (54)

where Wnew
j = min(Tj,2, ..., Tj,r+1), and Tj,a = (1 −

ϕj,est)·Tj,1, ∀a ∈ 2, ..., r + 1. Based on Lemma 1,

E(Wnew
j ) =

∫ ∞
tmin

P r+1((1− ϕj,est)·Tj,1 > t)dt+ tmin

(55)

=
tmin·(1− ϕj,est)β·(r+1)

β·(r + 1)− 1
+ tmin. (56)

PROOF OF THEOREM 7

Proof. Suppose function f(x) equals (1 − x)N , where N is
an integer. f(x) is a monotonic non-increasing function, i.e.,
f(x1)≥f(x2), if and only if x1≤x2.

In following, we compare among (1 − Rclone)
1/N , (1 −

RS−Restart)
1/N , and (1−RS−Resume)

1/N .
1) PoCD comparison between Clone and Speculative-

Restart:

(1−Rclone)
1/N

(1−RS−Restart)1/N
=

(
D − τest

D

)β·r
< 1 (57)

Thus, Rclone > RS−Restart.
2) PoCD comparison between Speculative-Restart and

Speculative-Resume:

(1−RS−Restart)
1/N

(1−RS−Resume)1/N
=

(D − τest)β

tβmin·(1− ϕj,est)β·(r+1)
(58)

Given D − τest≥tmin·(1 − ϕj,est), we can get
RS−Restart<RS−Resume.

3) PoCD comparison between Clone and Speculative-
Resume:

(1−Rclone)
1/N

(1−RS−Resume)1/N
=

(D − τest)β·(r+1)

(1− ϕj,est)β·(r+1)·Dβ·r·tβmin

(59)

Given the original attempt misses the deadline, then D−τest <
(1− ϕj,est)·D. Thus, if

r > log D−τest
(1−ϕj,est)·D

(1− ϕj,est)β ·tβmin

D − τest
, (60)

then Rclone>RS−Resume. Otherwise, Rclone≤RS−Resume.

PROOF OF THEOREM 8

Proof. In following, we prove lg(RClone(r) − Rmin) is a
concave function when r>ΓClone = −β−1· logtmin/DN − 1,
and −θ·C·EClone(T ) is a concave function for all values of
r.



lg(RClone(r)−Rmin) is an increasing and concave function
of RClone(r). Also, when r>ΓClone, the second order deriva-
tive of RClone is less than 0. So, RClone is a concave function
of r, when r>ΓClone. Based on Lemma 2, we know that
lg(RClone−Rmin) is a concave function of r, when r>ΓClone.

The second order derivative of −EClone(T ) equals

− 2·N ·tmin

[β·(r + 1)− 1]3
, (61)

which is less than 0. Given the summation of two concave
functions is also a concave function, thus UClone(r) is a
concave function when r>ΓClone.

Proof. In following, we prove lg(RS−Restart − Rmin) is a
concave function when

r > ΓS−Restart = β−1· logtmin/(D−τest)

Dβ

N ·tmin
, (62)

and −θ·C·ES−Restart(T ) is a concave function for all values
of r.

lg(RS−Restart(r) − Rmin) is an increasing and concave
function of RS−Restart(r). Also, when r>ΓS−Restart, the
second order derivative of RS−Restart is less than 0. So,
RS−Restart is a concave function of r, when r>ΓS−Restart.
Based on Lemma 2, we know that lg(RClone − Rmin) is a
concave function of r, when r>ΓS−Restart.

The second order derivative of −ES−Restart(T ) is

−
∫ tmin

D−τest

(
tmin

D

)β (
ln
tmin

ω

)2

·β2·
(
tmin

ω

)β·r
dω

−
∫ ∞
D−τest

(
ln
tmin

ω

)2

·β2·
(

tmin

ω + τest

)β (
tmin

ω

)β·r
dω,

(63)

which is less than 0. Given the summation of two concave
functions is also a concave function, thus US−Restart(r) is a
concave function when r>ΓS−Restart.

Proof. In following, we prove that lg(RS−Resume(r)−Rmin)
is concave when

r>ΓS−Resumeβ
−1· log t̄min

D−τest

Dβ

N ·tβmin

− 1, (64)

and −θ·C·ES−Resume(T ) is concave for all values of r.
First, we note that lg(RS−Resume(r) − Rmin) is an in-

creasing and concave function of RS−Resume(r). Also, when
r>ΓS−Resume, the second order derivative of RS−Resume is
less than 0. So, RS−Resume is a concave function of r, when
r>ΓClone. Based on Lemma 2, we know that lg(RS−Resume−
Rmin) is a concave function of r, when r>ΓS−Resume.

The second order derivative of −ES−Resume(T ) equals

−
∫ ∞
tmin

(
tmin

D

)β (
t̄min

t

)β·(r+1)

·
(

ln
t̄min

t

)2

·β2dt (65)

which is less than 0. Given the summation of two concave
functions is also a concave function, thus US−Resume(r) is a
concave function when r>ΓS−Resume.


