
2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

1

Pushing Collaborative Data Deduplication to
the Network Edge: An Optimization

Framework and System Design
Shijing Li, Tian Lan, Bharath Balasubramanian, Hee Won Lee, Moo-Ryong Ra, Rajesh Panta

Abstract—Edge computing has become a new computing paradigm with explosive growth in recent years. We consider
the problem of pushing data deduplication to the network edge and propose a new framework for distributed
edge-facilitated deduplication (EF-dedup). Deduplication at the network edge allows us to exploit the high degree of
geographic- and temporal-correlation in edge data to achieve space efficiency. By leveraging distributed computing power
available on the edge in a collaborative fashion, the edge nodes can effectively suppress duplicated edge data, consuming
considerably less space and WAN bandwidth. To this end, we partition the edge nodes into disjoint collaborative clusters,
maintain a deduplication index structure across them using a distributed key-value store and perform deduplication within
those clusters. However, this partitioning problem is very challenging and requires the optimization of a novel tradeoff:
edge nodes with highly correlated data may not always be within the same edge cloud, with non-trivial network cost
among them. We formulate a joint storage and network optimization problem with different design objectives, such as
arbitrary partitioning and balanced partitioning of edge nodes. The problem is shown to be NP-Hard in general. Then, an
optimization framework with efficient algorithms is developed and is proven to achieve a closed-form competitive ratio. Our
experiments, performed on edge nodes in a corporate lab and a central cloud at AWS, demonstrate that EF-dedup
achieves 67.4∼133.7% better deduplication throughput than sole cloud-based techniques and achieves 20.0-62.6% lesser
aggregate cost in terms of the network-storage trade-off as compared to approaches that solely favor one over the other.

Index Terms—Distributed storage, Data deduplication, Edge computing.

F

1 INTRODUCTION

Due to the emergence of IoT and edge computing, large
volumes of data - exhibiting high degree of geographic- and
temporal-correlations. - would be continuously generated by
smart mobile devices, connected cars, sensors, etc [1], [2],
[3]. Recent market analysis results show that the stored in
the edge-facing IoT devices is expected to reach 5.9 ZB by
2021 [4] and crucially, 43% of such data will be processed
in edge clouds [5], while the remaining data would be
sent to the central cloud. Given such highly correlated
data generated at the network edge, it presents a unique
opportunity to push data deduplication to the network edge,
not only to improve the space efficiency of edge storage, but
also to mitigate the WAN bandwidth drain for sending the
massive amounts of data to the cloud.

Data deduplication, which is a well studied [6],
commercially applied technique [7], [8], is the process
of splitting files into smaller chunks and storing only
unique chunks. It has been shown to significantly reduce
storage space not only for traditional cloud workloads like
VM images, but also for IoT data such as traffic video

Shijing Li and Tian Lan are with the Department of Electrical and
Computer Engineering, George Washington University.
Bharath Balasubramanian, Hee Won Lee, Moo-Ryong Ra, and Rajesh
Panta were with the AT&T Labs Research.

Fig. 1. An example of collaborative, edge-centric deduplication
and the associated network-storage trade-off.

image sequences and car multimedia system images (by
up to 76-84%) [9][10][11]. In this paper, we develop an
optimization framework and system design for pushing
deduplication - typically employed as a cloud-centric
solution in modern datacenters- to the network edge. This
approach has several advantages. First, deduplicating close
to data sources eliminates duplicates at an earlier stage,
thereby significantly reducing both the wide-are-network
(WAN) bandwidth needed to transmit data to the cloud
and the burden for expensive cloud uplink provisioning.

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

Second, by leveraging the network and computing power
on “everything” at the edge we can achieve much higher
deduplication throughput1 than approaches in which we
maintain the deduplication index structure (hashes of
commonly appearing chunks) solely at the central cloud
and perform remote lookups which could incur hundreds of
milliseconds. In our experiments, cloud assisted approaches
have 56% less throughput than our approach due to WAN
latency. Third, data flows generated by IoT devices are
often geographically correlated, e.g., sensors operating in
the same environment or cameras located in close vicinity
and therefore edge deduplication provides the promise of
significant space efficiency.

Typical implementations of deduplication, however,
require operators to allocate dedicated hardware in the form
of appliances with a carefully engineered network and non-
trivial system resources (e.g., cpu, memory). Clearly, for the
resource-constrained edge nodes (e.g., a half rack deployed
in a central office of a city), this is not possible.

Main problem and challenges. The goal of this paper
is to develop a framework for minimizing the network cost
due to distributed index structure lookup, while maintaining
a competitive deduplication ratio (or equivalently minimum
storage space cost) despite resource constraints of edge
nodes, through the proposed EF-dedup solution and the
related optimization of edge node partitioning. However,
the problem is shown to be NP-hard. Despite some recent
partitioning heuristics like [12], there is no optimization
framework to support various design objectives, such as
balanced and unbalanced edge node partitioning, or to
enable a quantitative analysis of the resulting competitive
ratio.

This is a hard problem for three major reasons. First,
an intuitive approach to perform collaborative deduplication
is to partition the edge nodes into smaller clusters and
perform deduplication within those clusters. However, this
leads to a non-trivial trade-off between network cost and
deduplication ratio (we refer to it as storage efficiency).
Consider the five edge nodes of Fig. 1 that are connected by
two links with different network costs (based on latency),
with data flows comprised of sequences of data chunks that
possess different levels of similarity. Clearly, partitioning
nodes {1, 3, 5} and {2, 4} maximizes the deduplication
ratio with a total of 16 unique chunks from the two clusters.
However, it causes high network cost, in particular, between
nodes 1 and 5. On the other hand, deduplicating each edge
cloud separately achieves minimum network cost, yet it is
not storage efficient with 21 unique chunks. An optimal
partitioning (Cluster 1 and 2 in Fig. 1) of edge nodes must
account for both network cost and data similarity.

Second, to partition optimally we need to construct
efficient models to estimate and track the time-varying
similarity across different data sources. Naive approaches

1. Here, the deduplication throughput, as experienced by the clients
uploading data, is the amount of input data deduplicated within a
certain timeframe.

that exhaustively search across all the sources will be
very time consuming as well as computationally expensive,
especially for the edge environment. In this paper, we
propose an estimation model to predict the deduplication
ratio among files by using periodic samples from the data
sets to form characteristic vectors that best represent the
statistics of the input data flows. By regularly adjusting the
estimation of characteristic vectors across time with new
samples, we can restrict the estimation error to less than
4%. Note that this estimation is an offline process that takes
less than 4 minutes. Once we have an accurate characteristic
vector, we can perform efficient online edge deduplication.

Finally, we need to identify the design techniques
and data-structures that will enable distributed edge
deduplication. For example, the edge nodes within a
partition may have scarce resources and the networks
connecting them may be unreliable, especially when they go
across edge clouds, as in the first cluster (i.e., Cluster/D2-
ring 1) in Fig. 1. Therefore, existing solutions such as
a shared network file system across such nodes maybe
impractical.

EF-dedup Solution. o address the first challenge, we
formulate an optimization problem to partition the edge
nodes into collaborative D2-rings, considering: (i) the data
similarities across the nodes (i.e., deduplication ratio will
improve as more data flows belonging to the same D2-
ring are similar), and (ii) the network cost in performing
deduplication across edge nodes (i.e., the deduplication
throughput will decrease when performing deduplication
across edge nodes that are distant from each other). To
this end, we capture the data similarity across different
edge nodes through a novel, hierarchical data model. In
particular, we first construct a set of independent chunk
pools each of which can represent commonly occurring
data sources, e.g., chunk pools typical of windows, Linux,
and word dictionaries. Given these chunk pools, the data
flow generated by each edge node can be statistically
constructed by randomly drawing data from the chunk
pools, according to a pre-determined (empirical) probability
distribution function, that can be estimated by sampling the
node data. The proposed hierarchical data model is validated
using real-world datasets with an average error less than 4%
(Sec. 3.1).

Based on this model, we formulate the joint space and
network optimization for edge-centric deduplication, which
we prove is NP-hard. Then, we develop an optimization
framework with efficient algorithms - going beyond
arbitrary partitioning heuristics in [12] - for balanced
partitioning with better load-sharing among edge nodes. We
also prove that the proposed algorithms are optimal when
the number of chunks pools is equal to two, and in general,
achieves an approximate ratio of 1 +

(
S
U∗ − 1

) (
1− 1

Z

)
,

where S is the size of all chunk pools, U∗ the optimal
storage space, and Z the size of D2-rings. Our models
and analysis pave the way for a systematic framework for
collaborative edge-centric deduplication.

2

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

Implementation and Evaluation. While our algorithms
optimize edge-node partitions with provable performance
guarantees, another major challenge lies in designing a
system to perform distributed deduplication within each
resulting partition (i.e., D2-ring), which could often contain
nodes across different edge clouds. In EF-dedup we address
this challenge through the following intuition: given the
resource constraints of individual edge node in each D2-
ring and the need for parallel data flow processing, why
not maintain the index structure in a distributed key value
store (such as Cassandra [13]) spread across the edge nodes
in each D2-ring? The distributed storage system provides
a way to harness resources (including cpu, memory and
storage space) that already exist on edge nodes, in an
effective fashion with enormous flexibility and scalability.
This empowers EF-dedup with the ability to leverage
various resource from nodes at the edge of the network.

We realize EF-dedup by modifying an existing
deduplication tool, duperemove [14] to use Cassandra for
its index structure. Our experiments on two real-world
clouds, one in a corporate lab environment and the other
in AWS, with real-world datasets shows that EF-dedup
achieves 67.4∼133.7% better deduplication throughput than
sole cloud-based techniques and achieves 20.0-62.6% lesser
aggregate cost in terms of the network-storage trade-off as
compared to approaches that solely favor one over the other.

Key Contributions. In summary, we make the
following contributions:

• We motivate the need to push deduplication to
the network edge, identify a novel tradeoff in
the problem space and formulate an optimization
problem to partition edge nodes considering both
storage efficiency and network cost (Sec. 2). The
formulation is enabled by a new hierarchical
model using chunk pools and character vectors for
correlated data flows.

• We prove that the formulated problem is NP-Hard
and provide efficient algorithms to the problem with
bounded approximate performance ratio (Sec. 3.2
and Sec. 3.3).

• We present an end-to-end system design to realize
EF-dedup wherein we maintain the index structure
of each deduplication D2-ring in a distributed
storage system deployed across multiple edge
clouds. We implemented EF-dedup by modifying
duperemove [14] to use Cassandra for its index
structure (Sec. 4).

• We validate our system model and algorithms
through extensive simulations and experiments
performed on two real clouds using real-world
datasets (Sec. 5). Significant improvement on
system throughput is achieved yet with high
deduplication ratio.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a set of N distributed edge nodes, e.g., VMs in
cloudlets/fog/edge clouds, denoted by N = {1, 2, . . . , N}.
The edge nodes generate data flows, such as VM/system
backup, smartphone images and sensing data, which need
to be stored in the central cloud. By deduplicating the data
at these nodes, the amount of data that must be transferred
to the cloud can be greatly reduced, given that the same
data chunks may occur frequently in spatially/temporally
correlated data flows.

We propose a novel approach to enable distributed
deduplication where we partition the edge nodes into
disjoint clusters (called D2-rings), that may traverse
different edge clouds, based on their network conditions
and data correlation. Each D2-ring independently performs
deduplication, where unique chunks generated by the
nodes in the D2-ring are identified and transferred to the
central cloud for data storage. Each D2-ring maintains the
deduplication index structure containing hashes of chunks
that have been sent to the central cloud. As the process
continues, hash values of the unique chunks are stored
locally and distributed across all the edge nodes associated
with the ring, so that any incoming chunks are compared
to the hash values to determine if a redundant chunk has
occurred.

It is easy to see that large D2-rings consisting of many
edge nodes can effectively eliminate all duplicate chunks
from their data flows, thus achieving high storage space
efficiency2. Since edge nodes are often geo-distributed,
however, the network cost resulting from large D2-rings
can be significant; i.e., larger network resources are spent
to access the distributed hash values stored on peer nodes
which may be located in other edge clouds. To jointly
minimize the storage space and network cost in distributed
deduplication, we consider each edge node i as a data source
that generates data chunks at a rate ofRi chunks per second.
Note that, since we send the data chunks to the central
cloud, on the D2 rings (which are at the edge), we are only
concerned with the transient storage space for a certain time
window, which serves as a proxy for the WAN bandwidth
usage to send chunks to the central cloud.

To model the spatial and temporal correlation both
within each data source and between different data sources,
we assume that each chunk generated by source i is
randomly drawn from K disjoint chunk pools, which
is denoted by C1, C2, . . . , CK , with known probabilities
pi1, pi2, . . . , piK . For example, C1 represents chunks
typical for Windows OS, C2 for Linux, and C3 for chunks
shared by the two systems due to common applications.
We further assume that each chunk of source i is
independently generated by randomly selecting a chunk
pool with probabilities {pik, ∀k} and then choosing a

2. We use storage cost and storage space interchangeably in this
paper.

3

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

chunk within the selected pool with a uniform distribution.
We denote the probability vector Pi = [pi1, pi2, . . . , pik]
as the characteristic vector of source i, which quantifies the
statistics of its data flow.

In our model, data generated by correlated sources have
the same probability of selecting chunks from the K chunk
pools, resulting in higher redundancy. These probabilities
can be obtained by data source profiling and/or estimated
through meta data (Sec. 3.1). If a set of data sources (i.e.,
edge nodes) are clustered into a single D2-ring, which
is denoted by P where P ⊆ N , their data flows are
jointly deduplicated. Let Ω(P) be the expected overall
deduplication ratio of all sources in P , i.e., the original data
size divided by the deduplicated storage size. The expected
storage space required for D2-ring P during an interval of
T seconds is given by

U(P) =
1

Ω(P)
·
∑
i∈P

RiT (1)

where Ri is the data rate of source i.

While more edge nodes in a single D2-ring increases the
chance of finding redundant chunks, it also incurs higher
network cost during deduplication, because as the D2-ring
size increases, a higher fraction of chunk hash values are
stored on non-local edge nodes, resulting in higher network
cost for hash lookup when new data chunks arrive. Let γ
be the (chunk hash) replication factor in the D2-ring, i.e.,
each unique chunk hash is stored on γ distinct edge nodes.
We consider a D2-ring P that has size |P|. When chunk
hashes are uniformly distributed on edge nodes in the D2-
ring P (e.g., using a distributed hash table), the probability
of a non-local hash lookup for any incoming data chunk is
1− γ/|P|. Let vij be the network cost of a non-local hash
lookup from node i to node j; e.g., it can be measured by
the necessary bandwidth or network delay of the non-local
hash lookup. The total network cost for deduplication in the
D2-ring P in an interval of T seconds is thus

V (P) =
∑
i:i∈P

∑
j:j 6=i,j∈P

vij
RiT (1− γ/|P|)
|P| − 1

, (2)

where each non-local hash lookup has equal probability
1/(|P| − 1) to be processed by peer edge nodes {j : j 6=
i, j ∈ P} in the D2-ring.

Our goal is to partition the edge nodes N into M
disjoint D2-rings, i.e., P1,P2, . . . ,PM satisfying ∪sPs =
N , to jointly minimize the total storage space

∑
s U(Ps)

and network cost
∑

s V (Ps). Let α be a tradeoff factor
quantifying the relative importance of network cost to
storage space, i.e., each unit network cost is equivalent to the
cost of α units of storage space increment. The joint Storage
and Network Optimization in Distributed Deduplication
(SNOD2) is as follows:

minimize
∑
s

U(Ps) + α
∑
s

V (Ps) (3)

s.t. U(Ps) =
1

Ω(P)
·
∑
i∈Ps

RiT,

V (Ps) =
∑
i∈Ps

∑
j 6=i,j∈Ps

vijRiT (1− γ/|Ps|)
|Ps| − 1

var. Ps, ∀s, (4)

where Ps, ∀s forms a disjoint partition of the edge
nodes. By partitioning the edge nodes into collaborative
D2-rings and performing deduplication within each D2-
ring, this SNOD2 optimization will allow us to minimize
the network cost due to distributed index structure lookup,
while maintaining a competitive deduplication ratio.

3 EF-DEDUP SOLUTION

In this section, we first quantify the storage space efficiency
(i.e., deduplication ratio function Ω(Ps)) for a given
partition P1,P2, . . . ,PM . Then, we present a novel
technique to estimate the characteristic vector of data
sources, which is required to formulate and solve SNOD2.
The technique has significant practical implications even
outside the realm of this paper because it provides an
analytical model to estimate chunk distribution functions
of arbitrary data sources by sampling just a few files.

Then, we show that SNOD2 under our system model is
NP hard and propose a greedy algorithm to solve SNOD2
where all partitions (i.e., D2-rings) have equal sizes (for
better load-balancing). The algorithm can be proven optimal
when the number of disjoint chunk pools K = 2, and has
a guaranteed competitive ratio when K > 2. Then, we also
develop an arbitrary-partitioning algorithms for SNOD2
without any constraints of partition sizes, by leveraging
matching heuristics.

3.1 Estimating Source Characteristic Vectors
To solve SNOD2, we first need to quantify the deduplication
ratio of any given partition based on the chunk pools and
characteristic vectors (Pi = [pi1, pi2, . . . , pik] for source i)
that best represent the sources.

Theorem 1. For a set of data sources in Ps, which
are generated from K disjoint chunk pools {Ck} with
characteristic vectors {Pi, ∀i}, the deduplication ratio of
D2-ring Ps is given by

Ω(Ps) =

∑
i∈Ps

RiT∑K
k=1 sk

(
1−

∏
i∈Ps

gik
) ,

where gik = (1− pik/sk)RiT . (5)

The key question to address is: For an unknown set
of sources, how do we know the chunk pools and the
characteristic vectors that best represent the sources?

4

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

Algorithm 1 Estimating Source Characteristic Vectors
Input: A set of source files R, where fi files are
sampled randomly from each source i ∀i, and an error
threshold.
foreach subset A ⊆ R

Measure ground truth, i.e., real-dedup-ratio Ω̂ (A);
end
do
foreach subset A ⊆ R

Calculate model-dedup-ratio Ω (A) (Theorem 1);
end
Distance = (

∑
A |Ω(A)− Ω̂(A)|2/2|N |);

Update K, sk, and pik by predefined stepsize;
while (Distance > error threshold);
Output: the number of chunk pools: K; the size of
chunk pools: {sk, ∀k}, and characteristic vectors: {Pi =
[pi,1, . . . , pi,K], ∀i}.

In algorithm 1, we address this problem by first
sampling a few files at random from each source and
exhaustively searching across all possible values of the
parameters that we need to obtain in our model, viz. the
number of chunk pools, the size of each chunk pool and the
chunk distribution or characteristic vector of each source.

To find the parameters that best fit our model to a
given set of data sources, we first obtain ground truth
using a small set files that are sampled from the sources.
For each possible partition of the files, we measure
the total deduplication ratio using standard tools (e.g.,
duperemove) and compare these empirical values to the
analytical deduplication ratio given in Theorem 1. Then, the
optimal modeling parameters are obtained by minimizing
the difference between analytical results and ground truth.
In practice, this search algorithm can terminates once the
mean square distance is smaller than a given error threshold,
as summarized in Algorithm 1.

Fig. 2. Model recalibration for time-varying data: (a) The MSE of
estimation error remains to be small for time-varying data, (b) The
mode can be quickly recalibrated with respect to data change.

To validate our model, we sample files across the 3
real-world datasets (described in Sec. 5), estimate their
characteristic vectors using Algorithm 1 and compute the
deduplication ratio using our analytic model described in
Theorem 1.

The 10 files from source 1 (i.e., dataset 1 files), 10 files
from source 2 (i.e., dataset 2 files), and 10 files from source
3(dataset 3 files) will form 30×29

2 = 435 combinations.

For each combination, we measure the real deduplication
ratio. Next, we set up our model for three chunk pools
(K = 3) whose sizes sk for k = 1, 2, 3, and probabilities
pi1, pi2, pi3 for source i = 1, 2, 3 of the 3 sources, are
to be determined through model fitting. To search for the
optimal parameters, we increase each si to 200,000 with
a step size of 100, and search each probability value pik
from 0 to 1 with a step size of 0.01. Larger chunk pools and
smaller step size can further improve the performance but
will also extend the search space. For all of the combination
of samples, we calculate the MSE (Mean Square Error)
between estimated deduplication ratios and the real ones.
The MSE is less than 0.32, and the average estimation error
across combinations is less than 4%. We will use the model
if the mean square error is small enough. In our experiments,
the estimation model by using 10% of sample files could
achieve estimation error small enough.

Files from the same source tend to have large
deduplication ratios due to temporal correlation, and the
similarity pattern across files are relatively stable. Thus,
we could compute our model up front and continue to
recalibrate it whenever data characteristics change . The
recalibration is low cost as it only needs to improve
an existing model with new data samples and does not
require re-optimization from scratch. In Fig.3.1(a), we
consider time-varying data sources and show the estimation
error between real deduplication ratio of files and the
estimated values over time. For the accelerometer records
and the traffic video frames datasets, timestamps are readily
available and used for model recalibration. We also feed
different Linux kernel files to our model as if they are
generated in different time slots. The estimation accuracy
of our proposed model decreases slightly due to time-
varying data characteristics, but the mean error keeps below
5%.Although the first time to estimate the characteristic
vectors require optimizing the model from scratch (still
in less than 4 minutes), to recalibrate and update the
characteristic vectors for adapting time-varying data is very
fast. This is because the search will start from previous
model states, and only small changes in the modeling
parameters are needed to update the model and maintain low
estimation error. In Fig.3.1(b), it shows that the search only
takes less than 10 seconds to update the similarity model
when the file of sources in Fig.3.1(a) change over time.

Designing better heuristics for this estimation (e.g.,
through intelligent sampling) and proving their accuracy
is an exciting avenue for future research, with wide
applicability. For example, it can help guide how the chunk
sizes should be selected for deduplication (e.g., to choose
the chunk size that minimizes estimation error) or what
should be maintained in the dedupication cache (e.g., to
maintain the chunks that appear with higher probability in
the chunk pools).

5

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

3.2 SNOD2 is NP-Hard

To show that the SNOD2 is NP-Hard, we first apply
Theorem 1 and rewrite SNOD2 as follows:

minimize
∑
s

U(Ps) + α
∑
s

V (Ps) (6)

s.t. U(Ps) =

K∑
k=1

sk

(
1−

∏
i∈Ps

gik

)
, (7)

gik = (1− pik/sk)RiT , ∀i, k (8)

V (Ps) =
∑

i:i∈Ps

∑
j:j 6=i,j∈P

vij
RiT (1− γ/|Ps|)
|Ps| − 1

(9)
var. Ps, ∀s.

Theorem 2. SNOD2 is NP hard.

Proof. We show that the minimum k-cut problem (which is
known to be NP hard when k is an input variable [15]) can
be transformed into a version of SNOD2 with zero network
cost.

Consider an undirected graph G = (V, E) with an
assignment of weights to the edges, denoted by w(v1, v2)
for any edge (v1, v2) ∈ E . The minimum k-cut problem
partitions vertices in V into k disjoint sets, P1,P2, . . . ,Pk,
while minimizing the sum of removed edge weights:∑

(v1,v2)∈E

w(v1, v2) · 1{@Ps:v1∈Ps,v2∈Ps}, (10)

where 1{@Ps:v1∈Ps,v2∈Ps} is an indicator function that is
equal to 0 if vertices v1, v2 are in the same partition, and 1
otherwise.

We construct a version of SNOD2 where each vertex
in V is considered as a data source and each edge in E
corresponds to a chunk pool. Let N = |V| be the number
of sources/vertices. Then, for each edge (v1, v2) ∈ E , we
construct a separate chunk pool for the two data sources
v1 and v2. The chunk pool is labeled by k = v1N + v2
(for v1 < v2) and is assigned a size sk = w(v1, v2)/(1 −
c)2, for some constant c ∈ (0, 1). Thus, there is a one-
to-one correspondence between the edges and the chunk
pools. Next, let d(v1) be the degree of a vertex v1 ∈ V . We
construct a characteristic vector for data source v1 by setting
pv1,k = 1/d(v1) if vertex v1 is an endpoint of edge k (i.e.,
satisfying k = v1N + v2), and pv1,k = 0 otherwise. For
each source v1, we choose a data rate Rv1

= log(c)/[T ·
log(1−pik/sk)] for some positive T and the same constant
c. Finally, all network costs are assumed to be zero.

Now we prove that SNOD2 finds a disjoint partition of
V to minimize the same objective function in (10). Using

(6) and (7), the optimization objective of SNOD2 becomes∑
s

∑
k

sk

(
1−

∏
i∈Ps

gik

)

=
∑
k

sk
∑
s

(
1−

∏
i∈Ps

gik

)

=
∑
k

sk

(
N −

∑
s

∏
i∈Ps

gik

)
(11)

Next, according to SNOD2, if the edge corresponding to
chunk pool k does not contain source/vertex i, we have
pik = 0, which means gik = 1 due to (8). Therefore,
for a given k in the last summation of (11), gik 6= 1 if
and only if i = v1 or i = v2 for edge (v1, v2) satisfying
k = v1N + v2. In this case, it is easy to see that gv1k =
(1 − pv1k/sk)Rv1

T = c by plugging Rv1
= log(c)/[T ·

log(1 − pik/sk)] into (8). Thus, for any vertex set Px, if
it contains both vertex v1 and v2, we have

∏
i∈Px

gik =
gv1kgv2k = c2. If it contains only vertex v1 or vertex v2,
we have

∏
i∈Px

gik = c; and if it does not contain v1 or v2,∏
i∈Px

gik = 1.Then, for edge k, we consider two cases:∑
s

∏
i∈Ps

gik = (
∑

i6=v1,v2

∏
i6=v1,v2

gik) + gv1k + gv2k

= N − 2 + 2c, if @Ps : v1 ∈ Ps, v2 ∈ Ps,∑
s

∏
i∈Ps

gik = (
∑

i6=v1,v2

∏
i6=v1,v2

gik) + gv1kgv2k

= N − 1 + c2, otherwise, (12)

which is consolidated using indicator function
1{∃Ps:v1∈Ps,v2∈Ps}, i.e.,∑

s

∏
i∈Ps

gik = N − 1 + c2 − (1− c)2 · 1{@Ps:v1∈Ps,v2∈Ps}

Plugging this into the last step of (11), we have∑
s

∑
k

sk

(
1−

∏
i∈Ps

gik

)
=
∑
k

sk(1− c2) +
∑
k

sk(1− c)21{∃Ps:v1∈Ps,v2∈Ps}

=
∑
k

sk(1− c2) +
∑
k

w(v1, v2)1{∃Ps:v1∈Ps,v2∈Ps}

where we used sk = w(v1, v2)/(1 − c)2 in the last
step, and v1, v2 are the two vertices belonging the edge
corresponding to chunk pool k = v1N + v2. Notice that∑

k sk(1−c2) is a constant not affected by the partitioning,
and that the summation over index k is the same as v1, v2
(due to one-to-one correspondence between chunk pools
and edges in our construction). We conclude that any
solution to SNOD2 solves the minimum k-cut problem,
which implies that SNOD2 is also NP hard.

6

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

3.3 Our Proposed Solution to SNOD2
3.3.1 A Greedy Algorithm for Balanced Partitioning
We consider a balanced version of SNOD2 where for a
given set of N = Z ·M edge nodes3, we partition them into
M disjoint D2-rings, each containing an equal number of
edge nodes |Ps| = Z ∀s. Using the same proof in Theorem
1, it is easy to show that balanced SNOD2 is also NP hard,
since balanced k-cut problem is known to be NP hard. We
develop a greedy algorithm for the problem and analyze its
competitive ratio.

Algorithm 2 Greedy Balanced Partitioning (GBP)
Algorithm
foreach cluster i
foreach Z-node partition Pj in remaining nodes

Calculate the aggregate cost U(Pj) + α · V (Pj);
Find Pmin with the smallest aggregate cost;

end
Pi = Pmin;
Remove Z nodes of partition Pi from remaining nodes;

end

In the proposed algorithm for balanced SNOD2, we
iteratively select Z edge nodes for a partition P that has
the smallest aggregate cost U(P) + α · V (P) among all
remaining nodes, and group them into a new D2-ring.
The process continues until there are no edge nodes left
and all M D2-rings are created. It is easy to see that
this algorithm requires computing the aggregate cost of
N -choose-Z possible partitions satisfying P ∈ N and
|P| = Z . In the algorithm summarized in Algorithm 2, we
sort all N -choose-Z partitions in an ascending order with
respect to their aggregate costs. In each iteration, we choose
a remaining available partition with the smallest aggregate
cost. Once a partition P is selected, the nodes in P are
removed from further consideration. The algorithm solves
balanced SNOD2 in M iterations, with a computation
complexity o([N -choose-Z]· log [N -choose-Z]) due to
sorting of the possible partitions. For data sources that
generate temporally-correlated files (like system backups)
or geographically-correlated files (like traffic cameras with
overlapping views), our algorithm could achieve large
deduplication ratio and high throughput.

Theorem 3. For equal network costs, the proposed
algorithm for balanced SNOD2 is optimal when K = 2,
and its required storage space achieves a competitive ratio
1 +

(
S
U∗ − 1

) (
1− 1

Z

)
when K > 2, where U∗ is the

optimal storage space and S =
∑

k sk is the total size of
all chunk pools.

Theorem 3 implies that for K > 2, the competitive ratio
of our greedy algorithm approaches 1 as S/U∗ decreases,
i.e., in a heavy-traffic system with more data sources and

3. If the number of edge nodes N is not an integer multiple of M ,
we can add dummy nodes with zero data rate to satisfy this condition.

chunks.

4 DESIGN AND IMPLEMENTATION

In this section, we present the novel system design for
EF-dedup, in which we maintain the deduplication index
structure across edge nodes (that may belong to different
edge clouds). We then present the implementation details
of our system wherein we modify duperemove [14], a
commonly used open source deduplication tool, to store
chunk hashes in Cassandra [13], a popular distributed key-
value store.

D2-ring
(replication	factor	=	2)

Data	ChunksABCDEYZ…

b c	d	
z…

a b	c	
e	y…

a d	e	
y	z	…

E1 E3
E2

CDPQRS…

E4
E5

Dedup	
Agent

Dedup	
Agent

Dedup	
Agent

Central
Cloud ABCDPQRSEYZ…

(a)

Files	(from	Windows	OS,	Linux,	etc.)

1)	Chunking

2)	Hashing

3)	Lookup

B C Y EB Y

b	c	b	y	e	y … (c,C)(e,E)…

...
4)	Removing	duplicates

Dedup	Agent

a b	
y

b d	
z a d	

y	z
D2-ring

C,	Ec,	e
5)	Storing

Data	Chunks

Central	Cloud

Hashes

(b)

Fig. 3. EF-dedup system architecture with D2-rings traversing
edge nodes that could belong to different edge clouds.

In Fig. 3 we depict our system architecture, with an
example of five edge nodes E1 ∼ E5 that are clustered into
two independent D2-rings. Our choice of Cassandra was
motivated by important features required to implement the
D2-ring. First, Cassandra has the notion of a ring to evenly
distribute all data in the system. System administrators can
allocate arbitrary number of edge nodes to each ring to
create an independent name-space. This concept is very
well-aligned with our definition of D2-ring. We store hash
values generated by the modified version of duperemove
in multiple Cassandra rings. Second, Cassandra supports
data replication, and consequently the chunk hashes will
be available in multiple edge nodes.

Each edge node runs our Dedup Agent, which performs
the task of deduplicating the input files by maintaining
the chunk hashes in the D2-ring’s Cassandra cluster. Each
Cassandra ring maintains multiple copies of chunk hashes
depending on their replication factor. In Fig. 3(a) data
chunk A’s hash (= a) is stored in two nodes (i.e., E2 and

7

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

E3) and data chunk B’s hash (= b) is also stored in two
nodes (i.e., E1 and E2) because their replication factor is
two. While more copies of hashes in Cassandra enables the
Dedup Agent to perform local lookups for hashes, this also
increases the storage needed for the hashes.

Fig. 3(b) shows how our Dedup Agent deduplicates files
generated from diverse sources such as Windows, Linux,
and so forth. After splitting files into smaller chunks, the
Dedup Agent computes the hash value of each chunk. The
Dedup Agent then performs a lookup to determine if this
hash value is present in the Cassandra cluster and only if it
is not present it adds this new hash to the cluster and sends
the data chunk corresponding to this hash to the central
cloud. For example, in Fig. 3(b), only unique chunks (i.e.,
C, E) across the files are sent to the central cloud.

To implement Dedup Agent, we modified duperemove,
which is a user-space application program for finding
duplicate extents (contiguous storage areas in a file system).
We use 4KB chunk size in this paper with SHA-256 hash
values as indexes, which only lead to a small overhead for
storing the index tables at edge nodes.

To do the deduplication, we modified duperemove
(approximately 1200 lines of additional code) to deal with
files. We take 3 files for example. File 1 has 1100 bytes,
file 2 has 1200 bytes, file 3 has 800 bytes, and we set 500
bytes as the largest chunk size. First, we use duperemove to
check file 1 and 2, and find they share 900 identical contents
in the middle. Then file 1 will be divided into 4 chunks-
chunk 1 (100 bytes), chunk 2 (500 bytes, duplicate), chunk
3 (400 bytes, duplicate) and chunk 4 (100 bytes). File 2
will be divided into 4 chunks- chunk 5 (100 bytes), chunk 2
(500 bytes, duplicate), chunk 3 (400 bytes, duplicate), and
chunk 6 (200 bytes). For file 3, we compare it with former
6 chunks, and find file 3 also has identical chunk 2 in the
middle. Then file 3 will be divided into chunk 7(200 bytes),
chunk 2(500 bytes) and chunk 8(100 bytes). Since we only
store chunk 2 and chunk 3 once, we will save 1400 bytes
for these 3 files. In this way, we could avoid boundary shift
problem for duplication.

To store these 3 files, we maintaines 4 tables. One
chunk table maintains unique chunks, timestamps, hashes
of chunks, and the index of chunks. Three file tables to
restore files. Each file has its table to store the sequence
of chunks(table index), and the index of chunks. Then, to
restore a file, we just need to find the corresponding file
table, read the sequence of chunks, and pick up the chunks
from the chunk table. In our experiment, to restore a 100MB
file, the system uses 3 seconds as average.

Compared to the size of chunks, the size of headers
(including table index, timestamps, and so on) is too small
to be considered. The size of headers is less than 5% of
chunks’ size.

Additionally, we replaced its Sqlite [16] database with
Cassandra, for reasons mentioned above. For connecting
duperemove to Cassandra, we use the DataStax C/C++
driver [17].

(a) As the latency between the edge nodes and the central
cloud increases, EF-dedup continues to outperform both
Cloud-only and Cloud-assisted strategies; for all, there are
4 edge nodes per D2-ring and 5 D2-rings.

Fig. 4. EF-dedup vs other Cloud-based Approaches

5 EVALUATION

In this section, we demonstrate the efficacy of EF-dedup
through real experiments and detailed simulations. First, we
illustrate the need for edge-based distributed deduplication
by comparing the throughput of EF-dedup with other
cloud-based approaches. EF-dedup achieves up to 67.4%
improvement in throughput over a pure central cloud-based
deduplication approach, while it achieves up to 133.7%
improvement over a cloud-assisted approach in which the
deduplication is done at the edge, but the hash lookup
is done at the central cloud. Then, we show how EF-
dedup achieves the appropriate trade-off between network
and storage cost, wherein it achieves 20.0-62.6% lesser
aggregate cost than approaches that favor one over the other.
Finally, we perform extensive simulations to evaluate the
performance of different flavors of EF-dedup. Section 5.1
describes the experiment setup, including testbed, datasets,
and evaluation metrics. Section 5.2 presents the baseline
algorithms for comparison. Section 5.3 shows the main
evaluation results on network and storage tradeoff enabled
by EF-Dedup. Finally, Section 5.4 conducts additional
simulations for large scale experiments.

5.1 Experimental Setup

Testbed: Our edge environment consists of 20 VMs (edge
nodes) created on a local OpenStack [18] cluster, where
each VM has 4 VCPUs, 8 GB RAM and 20 GB virtual
disk drive. We install the EF-dedup deduplication agent
(or Dedup Agent in Fig. 3) on each VM along with
different Cassandra clusters traversing the VMs based on
our experiments. To compare EF-dedup with cloud-based
approaches, we also set up a 4 VM cluster on Amazon EC2
(central cloud), where each VM has 8 VCPUs, 15GB RAM,
20 GB storage. We run our deduplication agents based on
duperemove on each of them with one large Cassandra
cluster traversing all the VMs. The average data transfer
rate (or bandwidth) among the edge nodes measures 1.726
Gbps with average latency as 0.85ms, while the average data
transfer rate between the edge nodes and the central cloud
measures 0.377 Gbps with average latency as 12.2 ms. To

8

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

make our experiments more representative of average wide-
area and inter edge node latencies, we add 37.8ms to the
edge to central cloud latency (total = 50 ms) and 4.15ms to
inter edge-cloud latency (total = 5 ms) to serve as default.
We use NetEm [19] to control latency in traffic among
clusters. All results presented in this paper are averaged
over 20 runs with the deduplication performed in parallel at
all the VMs in the system.

Data-Sets: We use 3 real world datasets: (1) consisting
of 200 hours of accelerometer information recorded over
25 days from 5 participants [20], with each data point
in the size range of 80-187MB. The dominant motion
frequency of all collected traces ran in the range of
1.92-2.8 Hz, which corresponds to human walking; (2) a
series of continuous frames extracted from a traffic video
sequence recorded by stationary cameras [9][21]; Linux
Kernel archive subversions, each of which has size in the
range of 700-800 MB, which we refer to simply as "kernel
dataset”. For these datasets, consequent files or versions
have high deduplication ratio. The mapping of datasets to
nodes is random.

Evaluation Metrics: We compare different solutions
primarily on two metrics: dedup ratio is defined as an
original data size divided by the deduplicated size, while
dedup throughput is measured by the amount of data
processed per second by each edge node.

5.2 Baselines for comparison
We compare our proposed GBP algorithm with two cloud-
based approaches: (1) Cloud-only approach, where raw
data is sent from edge nodes to the central cloud for
deduplication. (2) Cloud-assisted approach where the index
structure for deduplication is maintained in the central cloud
and the edge nodes after splitting the files into chunks, look
up the hash of the chunks remotely and only send those
chunks that are not already present in the cloud. In all these
experiments, since we know the similarity patterns of the
input dataset, we implement a simple version of EF-dedup
in which we manually ensure that within each D2-ring the
edge nodes have relatively similar data.

In Fig. 4(a), we fix the number of D2-rings to 5
(each ring containing 4 edge nodes) and vary the latency
between the edge and the central cloud. While all three
strategies are negatively impacted by additional latency, EF-
dedup still achieves significant throughput improvement,
and its lead over the other strategies is maintained even
under high latency. On average, EF-dedup has 67.8% and
136.23% more dedup throughput than Cloud-assist and
Cloud-only. In particular, it performs even better when
cloud latency is lower than 50ms since EF-dedup can
efficiently utilize resources available at peer edge nodes,
while the percentage-wise improvement becomes smaller.
In EF-dedup, hash look-ups for distributed deduplication
only generate network traffic between edge nodes, making
it more resilient to adverse network conditions between the
edge and the central cloud.

(a) For a fixed number of edge nodes, as the number of
D2-rings increase, there are fewer edge nodes per ring,
leading to decreased deduplication and increased storage
cost. However, the network cost decreases since there are
fewer rings traversing edge nodes across edge-clouds

(b) The same experiment as the adjacent graph illustrates that
while dedup ratio behaves in the expected inverse manner
w.r.t storage cost, the dedup throughput behaves in the
expected inverse manner w.r.t network cost only for inter
edge-cloud latencies ≤ 15 ms.

Fig. 5. Inversely Proportional Network and Storage Cost in EF-
dedup

5.3 Evaluating Network and Storage Tradeoff

In this section, we highlight the inverse relationship
between network cost and storage cost in our edge-based
collaborative deduplication solution. In Fig. 5(a) we show
how the number of edge nodes in each D2-ring and the
latencies among the edge node clusters affect the network
and storage cost defined in the SNOD2 problem (with
α = 0.1). To capture the notion of edge-clouds, we group
the twenty edge nodes into 10 equal-size groups, each group
representing an edge-cloud, wherein the latency among edge
nodes across the edge-clouds is increased using NetEm(by
default 5ms), while the latency among edge nodes within an
edge-cloud is left unchanged 0.85 ms. We vary the number
of D2-rings used by EF-dedup on top of these edge-clouds
to vary the number of nodes in each D2-ring from 20 to 2.
For example, a data point with (# D2-rings = 2) corresponds
to two D2 rings each containing ten edge nodes, while (#
D2-rings = 6) corresponds to 4 D2-rings each containing 3
edge nodes, and 2 D2-rings each containing 4 edge nodes.
Clearly, the D2-rings may go across nodes belonging to
different edge clouds and thus suffer from inter edge-cloud
latency. We use the vdbench data to perform the experiments
and the same version of EF-dedup used for the experiments

9

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

in Fig. 4.
As seen in Fig. 5(a), the storage cost increases with

increasing number of rings (fewer edge nodes per ring) due
to decreased opportunities to find redundant chunks. But
the network cost increases with larger rings, since there will
be more chances that edge nodes belonging to the same
D2-ring will traverse edge-clouds, leading to higher latency
for hash look-ups. In Fig. 5(b), we illustrate the subtle
effect of the same experiment on the dedup throughput
(dedup ratio behaves in the expected inverse manner to
storage cost). When inter edge-cloud latency is less than
or equal to 15ms, with larger ring size, the higher chance
for redundant chunks cancel out the negative influence of
larger network cost and hence results in good throughput.
But above 15ms, the network cost outweighs the gains in
redundancy and the throughput decreases with increasing
ring size. By quantifying this tradeoff in our EF-dedup
framework, a system administrate can choose the optimal
operating point based on the specific design objectives.
For instance, for 25ms delay, if one wants to maximize
deduplication ratio with a minimum throughput requirement
of 100MB/s, then Fig.5 shows that the optimal operating
point is to have 5 D2-rings (and an average of 4 nodes per
D2-ring) with a deduplication ratio of 6.5.

5.4 Simulations for Large Scale Experiments
In this section, we perform simulations to compare different
variants of the EF-dedup algorithms to evaluate their
performance at larger scale (100 edge nodes) and using
data source models obtained from 3 datasets. To simulate
the network cost, we draw the latency among the edge
nodes from a uniform distribution between 0 to 100 ms. To
simulate the storage cost, we use the characteristic vectors
and chunk pools obtained from datasets described in section
3.1. We implement GBP algorithm and compare it with the
arbitrary and greedily partitioned Dedup-only and Network-
only algorithms. Here, Dedup-only algorithm only considers
the storage space cost to partition D2-rings, and Network-
only algorithm only considers the network cost to partition
D2-rings.

Here, we present simulation results for 0 to 500 edge
nodes with inter node latency drawn from a uniform
distribution between 0 to 100 ms for the second dataset.
The results for the first dataset are similar. Fig. 6(a) shows
the aggregate, network and storage cost (as defined in
SNOD2) of the algorithms with increasing number of edge
nodes. GBP uses 100 unbalanced D2 rings. It outperforms
other solutions in the trade off performance as captured
by the aggregate cost especially for larger number of
edge nodes since there are more options to find optimal
partitions. For 500 nodes GBP has 43.15% & 45.3%
less aggregate costs than Network-Only and Dedup-Only
algorithms respectively. For GBP, we divide the 500 edge
nodes into 100 D2-rings each containing 5 edge nodes.
It has similar results as GBP - 40.01% & 43.01% less
aggregate costs than other algorithms.

(a) GBP has the smallest aggregate cost, which is more
pronounced as the number of edge nodes increase, since there
are more opportunities to find optimal solutions.

(b) GBP has the smallest aggregate cost, no matter whether
the latency among nodes are high or low.

(c) GBP has the smallest aggregate cost, no matter whether
the data among nodes are similar or not.

Fig. 6. Comparing different variants of EF-dedup.

Then, we test the performance of GBP for different
network status, from uniform 0-20ms latency among
nodes to 0-100ms seconds among nodes. Fig. 6(b) shows
GBP always has the smallest aggregate costs, beating
Network-only and Dedup-only algorithm by much lower
storage cost and network cost respectively. GBP has
43.15−59.38%&39.47−45.29% less aggregate costs than
Network-Only and Dedup-Only algorithms respectively.
When latencies are low, GBP pays more attention on storage
optimization, and could has storage cost nearly as low
as Dedup-only algorithm. When latencies are high, GBP
prioritizes network cost, and its storage cost increases in
order to turn down network cost.

We also present simulation results for different data
similarities among nodes. The data deduplication ratio

10

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

among nodes are from 0-2 to 0-10. Fig. 6(b) shows
GBP always has the smallest aggregate costs by perfectly
balancing network and storage cost. When data similarities
are high, GBP could has network cost approaching
Network-only algorithm. When data similarities are low, the
network cost of GBP will be higher to exchange much less
storage cost. GBP has similar results as GBP.

6 RELATED WORK

Vast amount of related work exists in the area of data
deduplication and inspired our work. Unlike existing body
of work which often focused on reducing local memory
usage or local disk accesses, EF-dedup proposes a way
to collaboratively perform efficient hash lookup in an
emerging edge network environment (Sec. 1). EF-dedup
trades off increased inter-edge network traffic for reduced
storage cost, and thereby saving significant amount WAN
usage towards the central cloud. Moreover, our system
model for overall deduplication process is unique, which
is significantly different from the existing similarity-based
deduplication systems. In this section, we discuss a body
of work directly related to EF-dedup technique. More
comprehensive overview can be found in [6].

Clustered Deduplication: To the best of our
knowledge, the closest body of work is the notion of
clustered deduplication, which involves multiple machines
for detecting duplicated data. Many systems first perform
coarse-grained deduplication with bigger processing units,
distribute them to multiple machines using DHT or other
load balancing algorithms, and the servers involved in the
process will perform more fine-grained deduplication to
further optimize the deduplication ratio. As an example,
HYDRAstor [22] first deduplicates incoming data using
larger chunk size, e.g., 64KB, and then sends intermediate
results to multiple servers so that they can perform
more fine-grained deduplication.

∑
-dedup [23] exploits

similarity for distributing super-chunks and utilizes locality
to achieve faster index structure lookups. Other works in
this area [24], [25] take a similar high-level approach.
These works mainly focused on enabling data deduplication
for secondary storage typically in a powerful data center
environment, while EF-dedup’s main focus is more on how
to best utilize edge network resources. Broadly speaking,
these techniques are complementary to our work since we
can apply more advanced, and computationally expensive,
deduplication the data arrive at the central cloud.

Source Deduplication for Cloud Storage: The idea
of deduplicating large volumes of data from the client-
or source-side to save either or both network and storage
cost has been extensively studied before. For instance,
similar to our EF-dedup, AA-Dedupe [26] and SAFE [27]
proposed source deduplication systems for optimizing cloud
backup services, motivated by scarce WAN bandwidth. AA-
Dedupe clusters incoming data per application type which
allows them to achieve good deduplication ratio. SAFE

utilizes both global file level redundancy and local chunk-
level redundancy to achieve better deduplication ratio. More
references and discussions can be found in [6]. Unlike EF-
dedup, most work in this category does not makes multiple
sources collaborate with one another, which is a main
differentiating factor with the proposed EF-deduptechnique.

Similarity-aware Deduplication: Another body of
work considers data similarity to aid deduplication
process [28], [29], [23], [30], which share some common
grounds with our EF-dedup technique. SAP [28] explored
trade-offs between access-efficiency (or throughput) and
space efficiency and provides an algorithm to partition
data across nodes based on computing the full pair-wise
similarities across files. Aronovich [30], on the other hand,
focused on efficient techniques to finding similar chunks
using smaller signatures representative of the chunk. EF-
dedup uses an entirely novel technique to model the
similarity across data sources, based on estimating the
probability distribution of the sources, by sampling a few
of their chunks. Further it explores a unique trade-off in the
edge between network cost and storage. The systems such
as SiLo [29] and

∑
-dedup leverage both data similarity

and locality. Both techniques use data similarity to decide
more coarse-grained unit of processing and then apply a data
mining technique to identify data locality, e.g., similar to the
observation made in [7]. However, unlike EF-dedup, SiLo’s
focus lies in optimizing local memory utilization and

∑
-

dedup optimizes dedicated backup infrastructure in a single
datacenter.

Optimizing Local System Resources: Other works on
improving chunk hashing and indexing process improve
memory utilization of a single physical host, consequently
reducing the needs for accessing slow disk drives. The goal
has been achieved in various contexts, for instance, based on
locality [7], [31], data similarity [28], [32] and/or relying on
faster media such as SSDs [33], [34]. These techniques can
co-exist with EF-dedup technique so as to boost individual
edge node’s deduplication performance (dedup-ratio).

7 CONCLUSION

Data deduplication is a prime candidate for edge processing,
since we can exploit the geographical correlation of data
closer to the sources to suppress duplicated data that will
otherwise be sent to the central cloud, thereby saving
significant amount of WAN bandwidth. We present an edge-
facilitated deduplication technique, EF-dedup, in which we
partition edge nodes into independent deduplication clusters
(also referred as rings in the paper), carefully balancing the
deduplication ratio and the deduplication throughput. We
formulate a joint storage and network optimization problem
with a novel data model to capture data similarities across
sources. Further, we implement EF-dedup based on an
efficient heuristic to this NP-Hard problem and confirm its
efficacy with experiments on real-world datasets across an
OpenStack-based local cloud and AWS-based central cloud.

11

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

For future work, we will consider online optimizations
in a dynamic environment and a joint optimization with
file retrievals. We also wish to investigate deduplication
with variable chunk sizes and to improve the performance
of our source estimation algorithm through techniques
like locality sensitive hashing [35] and provide a library
of common chunk pools by profiling publicly available
datasets. Furthermore, we want to explore efficient data
sampling techniques, tradeoffs with computation cycles and
power, and the problem of storing the actual data chunks at
the edge and data access in reading phase, which will bring
forth new trade-offs based on the popularity of the data and
the size of storage.

REFERENCES

[1] “ATT is Reinventing the Cloud Through Edge Computing,”
http://about.att.com/story/reinventing_the_cloud_through_edge_
computing.html.

[2] “Verizon’s cloud-in-a-box pushes the edge with
OpenStack,” https://siliconangle.com/blog/2017/07/17/
verizons-cloud-box-pushes-edges-openstack-openstacksummit.

[3] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “Mobiqor: Pushing
the envelope of mobile edge computing via quality-of-result
optimization,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 1261–
1270.

[4] “Cisco Global Cloud Index: Forecast and Methodology,
2016-2021 White Paper,” https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/global-cloud-index-gci/
white-paper-c11-738085.html, 2018.

[5] “IDC Directions 2017: IoT Forecast, 5G & Related
Sessions,” http://techblog.comsoc.org/2017/03/04/
idc-directions-2017-iot-forecast-related-sessions/, 2017.

[6] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past,
present, and future of data deduplication,” Proceedings of the
IEEE, vol. 104, no. 9, pp. 1681–1710, 2016.

[7] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system.” in Fast, vol. 8,
2008, pp. 1–14.

[8] “Avamar: Deduplication Backup Software and System,” https://
www.emc.com/data-protection/avamar.htm.

[9] H. Yan, X. Li, Y. Wang, and C. Jia, “Centralized duplicate
removal video storage system with privacy preservation in iot,”
Sensors, vol. 18, no. 6, p. 1814, 2018.

[10] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution of
data deduplication,” in Proceedings of the 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE Computer
Society, 2012, pp. 114–121.

[11] T. Süß, T. Kaya, M. Mäsker, and A. Brinkmann, “Deduplication
analyses of multimedia system images,” in {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 18), 2018.

[12] S. L. Li, T. Lan, B. Balasubramanian, M.-R. Ra, H. W.
Lee, and R. K. Panta, “Ef-dedup - enabling collaborative
data deduplication at the network edge,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019.

[13] A. Lakshman and P. Malik, “Cassandra: structured storage
system on a p2p network,” in Proceedings of the 28th ACM
symposium on Principles of distributed computing, ser. PODC
’09. New York, NY, USA: ACM, 2009, pp. 5–5. [Online].
Available: http://doi.acm.org/10.1145/1582716.1582722

[14] “Duperemove,” https://github.com/markfasheh/duperemove.

[15] P. Manurangsi, “Inapproximability of maximum edge biclique,
maximum balanced biclique and minimum k-cut from the
small set expansion hypothesis,” in LIPIcs-Leibniz International
Proceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[16] “Sqlite,” https://www.sqlite.org.
[17] “Datastax c/c++ driver for apache cassandra,” https://github.com/

datastax/cpp-driver.
[18] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an

open-source solution for cloud computing,” International Journal
of Computer Applications, vol. 55, no. 3, 2012.

[19] S. Hemminger et al., “Network emulation with netem,” in Linux
conf au, 2005, pp. 18–23.

[20] M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, and
G. Zussman, “CRAWDAD dataset columbia/kinetic (v. 2014-
05-13),” Downloaded from https://crawdad.org/columbia/kinetic/
20140513/kinetic-energy, May 2014, traceset: kinetic-energy.

[21] M. Wang, W. Li, and X. Wang, “Transferring a generic pedestrian
detector towards specific scenes,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3274–3281.

[22] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage.” in FAST, vol. 9, 2009,
pp. 197–210.

[23] Y. Fu, H. Jiang, and N. Xiao, “A scalable inline cluster
deduplication framework for big data protection,” in Proceedings
of the 13th international middleware conference. Springer-
Verlag New York, Inc., 2012, pp. 354–373.

[24] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “Debar:
A scalable high-performance de-duplication storage system for
backup and archiving,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE, 2010,
pp. 1–12.

[25] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and
P. Shilane, “Tradeoffs in scalable data routing for deduplication
clusters.” in FAST, vol. 11, 2011, pp. 15–29.

[26] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “Aa-dedupe:
An application-aware source deduplication approach for cloud
backup services in the personal computing environment,”
in Cluster Computing (CLUSTER), 2011 IEEE International
Conference on. IEEE, 2011, pp. 112–120.

[27] Y. Tan, H. Jiang, E. H.-M. Sha, Z. Yan, and D. Feng, “Safe:
A source deduplication framework for efficient cloud backup
services,” Journal of Signal Processing Systems, vol. 72, no. 3,
pp. 209–228, 2013.

[28] B. Balasubramanian, T. Lan, and M. Chiang, “Sap: Similarity-
aware partitioning for efficient cloud storage,” in INFOCOM,
2014 Proceedings IEEE. IEEE, 2014, pp. 592–600.

[29] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-locality
based near-exact deduplication scheme with low ram overhead
and high throughput.” in USENIX annual technical conference,
2011, pp. 26–30.

[30] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and
S. T. Klein, “The design of a similarity based deduplication
system,” in Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference. ACM, 2009, p. 6.

[31] D. Meister, J. Kaiser, and A. Brinkmann, “Block locality caching
for data deduplication,” in Proceedings of the 6th International
Systems and Storage Conference. ACM, 2013, p. 15.

[32] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge, “Extreme
binning: Scalable, parallel deduplication for chunk-based file
backup,” in Modeling, Analysis & Simulation of Computer
and Telecommunication Systems, 2009. MASCOTS’09. IEEE
International Symposium on. IEEE, 2009, pp. 1–9.

[33] D. Meister and A. Brinkmann, “dedupv1: Improving
deduplication throughput using solid state drives (ssd),” in
Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on. IEEE, 2010, pp. 1–6.

12

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

[34] B. K. Debnath, S. Sengupta, and J. Li, “Chunkstash: Speeding
up inline storage deduplication using flash memory.” in USENIX
annual technical conference, 2010, pp. 1–16.

[35] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” in Proceedings of the 25th
International Conference on Very Large Data Bases, ser.
VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 518–529. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645925.671516

APPENDIX

A.1 Proof of Theorem 1
Proof. It is easy to see that the original data flow size is∑

i∈Ps
RiT for an interval of T seconds. Without loss

of generality, we consider a data chunk in pool Ck. Based
on our data flow construction model in Sec. 2, this chunk
is selected when source i generates a new chunk, with
probability pik/sk where sk is the size of chunk pool k.
The probability that the chunk is never selected by source i
during an interval T is given by gik = (1 − pik/sk)RiT ,
since a total of RiT chunks are generated. Then,

∏
i∈Ps

gik
is the probability that a chunk in Ck is never selected
by any source during T . Since all chunks in pool Ck are
selected with the same probability, the expected number
of distinct chunks drawn from Ck by all sources is thus
sk
(
1−

∏
i∈Ps

gik
)
, whose summation over all chunk

pools C1, C2, . . . , CK yield the total required storage space
after deduplication.

A.2 Proof of Theorem 3
Proof. When network costs are equal, SNOD2 reduces to a
minimization of required storage space∑

s

∑
k sk

(
1−

∏
i∈Ps

gik
)

over balanced partitions
P1, . . . ,PM . Since

∑
s

∑
k sk is constant, the problem

boils down to maximizing∑
s

∑
k

sk
∏
i∈Ps

gik =
∑
k

sk

(∑
s

∏
i∈Ps

gik

)
. (A1)

Proof of optimality when K = 2. Consider the problem of
partitioning N = MZ positive numbers g1k, g2k, . . . , gNk

into M equal-size subsets P1,P2, . . . ,PM , to maximize
the sum of products,

∑
s

∏
i∈Ps

gik, which is the last term
in (A1). It can be shown that the optimal solution to this
problem is to sort the numbers in descending (or ascending)
order (denoted by g↓1k, g

↓
2k, . . . , g

↓
Nk) and then group every

M adjacent numbers into each partition, i.e.,
Ps = {g↓sN−N+1,k, g

↓
sN−N+2,k, . . . , g

↓
sN,k}, for s =

1, . . . ,M .
We prove this by contradiction. Assume that∑

s

∏
i∈Ps

gik is maximized by some optimal partition,
in which there exist x1, y1 ∈ P1 and x2, y2 ∈ P2,
but gx1k > gy1k and gx2k < gy2k (i.e., these numbers
are not sorted). Without loss of generality, we assume∏

i∈P1/{x1,y1} gik ≥
∏

i∈P2/{x2,y2} gik, which are the
products excluding gx1k, gy1k, gx2k, gy2k. It is easy to see
that if we swap y1 ∈ P1 and y2 ∈ P2, it yields a strictly

higher objective value, since gx1kgy2k

∏
i∈P1/{x1,y1} gik+

gx2kgy1k

∏
i∈P2/{x2,y2} gik >

gx1kgy1k

∏
i∈P1/{x1,y1} gik

+ gx2kgy2k

∏
i∈P1/{x2,y2} gik. This contradicts with the

optimality of partitions P1,P2 in our assumption.

Notice that when K = 2, we have gi1 + gi2 = 1 ∀i.
Therefore, our proposed greedy algorithm that partitions
the edge nodes by sorting g11, g21, . . . , gN1 (for k = 1)
in a descending order automatically sorts g12 = 1 −
g11, . . . , gN2 = 1−gN1 in an ascending order. The solution
simultaneously optimizes

∑
s

∏
i∈Ps

gik for both k = 1
and k = 2, which is an optimal solution maximizing (A1)
and thus balanced SNOD2.
Proof of competitive ratio when K > 2. Let φ(Ps) =∑

k sk
∏

i∈Ps
gik ∀s. We consider the maximization of

(A1), which is
∑

s φ(Ps). We use P1, . . . ,PM to denote
the feasible partition obtained by our proposed greedy
algorithm, and P∗1 , . . . ,P∗M for the optimal partition. We
first show that∑

s

φ(Ps) ≥ 1

Z

∑
s

φ(P∗s), (A2)

where Z is the size of each partition. We denote the optimal
objective value above by Γ(N) =

∑
s φ(P∗s) for N =

∪sP∗s .
We prove the result by induction. Consider M ≤ Z.

Our greedy algorithm first finds a group of Z sources, P1,
which has the largest sum of product, i.e., φ(P1) ≥ φ(P)
for any φ(P) ⊂ N . It is easy to see that

∑
s

φ(Ps) ≥ φ(P1) ≥
M∑
s=1

φ(P∗s)/M ≥
M∑
s=1

φ(P∗s)/Z, (A3)

where we use the facts that P1 has the largest sum of
product and that M ≤ Z. Now suppose that the result
holds for all M ≤ M0. We consider M = M0 + 1. The
Z nodes belonging to P1 would be distributed in x ≤ Z
distinct partitions in the optimal solution, i.e., P∗1 , . . . ,P∗x
without loss of generality. It is easy to see that P∗1 , . . . ,P∗x
offers an optimal partitioning for a subset of nodes ∪xs=1P∗s .
Similarly, P∗x+1, . . . ,P∗M is optimal for a subset of nodes
∪Ms=x+1P∗s . Then, we have

M∑
s=1

φ(Ps) = φ(P1) +

M∑
s=2

φ(Ps)

≥ 1

x

x∑
s=1

φ(P∗s) +
1

Z
Γ(∪M

s=2Ps)

≥ 1

x

x∑
s=1

φ(P∗s) +
1

Z
Γ(∪M

s=x+1P∗s)

=
1

x

x∑
s=1

φ(P∗s) +
1

Z

M∑
s=x+1

φ(P∗s)

≥ 1

Z

M∑
s=1

φ(P∗s). (A4)

The second step follows from the fact that φ(P1) ≥ φ(P∗s)
for any s due to our greedy algorithm, and from the

13

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3155357, IEEE
Transactions on Network Science and Engineering

induction assumption that
∑M

s=2 φ(Ps) ≥ Γ(∪Ms=2Ps)/Z
for any set of (M − 1)Z = M0Z nodes, i.e., ∪Ms=2Ps.
Γ(N) denotes the maximum objective value by optimally
partitioning nodes in N . The third step holds because
∪Ms=x+1P∗s ⊂ ∪Ms=2Ps, and thus a higher maximum
objective Γ value is always achieved when more nodes are
added to the system. The fourth step uses the fact that the
partition P∗x+1, . . . ,P∗M is optimal for a subset of nodes
∪Ms=x+1P∗s . Finally, the last step uses x ≤ Z . Therefore,
the induction assumption holds for M = M0 + 1.

Using S =
∑

s sk and the optimal storage space U∗,
we obtain the competitive ratio:

S − (S − U∗)/Z
U∗

= 1 +

(
S

U∗
− 1

)(
1− 1

Z

)
. (A5)

This completes the proof of our theorem.

Shijing Li received the BE degree
from the Beijing University of Posts
and Telecommunications, in 2014. She
is working toward the PhD degree
at the George Washington University.
Her research focus includes distributed
storage systems, traffic scheduling, and
edge computing.

Tian Lan received the B.A.Sc. degree
from the Tsinghua University, China in
2003, the M.A.Sc. degree from the
University of Toronto, Canada, in 2005,
and the Ph.D. degree from the Princeton
University in 2010. Dr. Lan is currently a
full Professor of Electrical and Computer
Engineering at the George Washington
University. His research interests include
network optimization, algorithms, and
machine learning. Dr. Lan received the

SecureComm Best Paper Award in 2019, the SEAS Faculty
Recognition Award at GWU in 2018, the Hegarty Faculty
Innovation Award at GWU in 2017, AT&T VURI Award in 2014,
the INFOCOM Best Paper Award in 2012, the IEEE GLOBECOM
Best Paper Award in 2009, and the IEEE Signal Processing
Society Best Paper Award in 2008.

Bharath Balasubramanian received the
BE degree in electronics from Mumbai
University in 2004, and the MS and PhD
degrees in computer engineering from
the University of Texas at Austin in 2007
and 2012, respectively. Currently, he is
a Senior Software Engineer at Google.
His areas of interest include: concurrent
and distributed algorithms, fault tolerant
distributed systems, distributed storage,
and distributed debugging.

Hee Won Lee received a Ph.D. degree
in Computer Science from North Carolina
State University in May 2015. He received
a B.E. in Electrical Engineering from
Korea University in 2002, and a Master
of Software Engineering from Carnegie
Mellon University in 2005. During 2002-
2009, he worked for KT Corporation as a
Technical Member of Staff. He is currently
employed as a Principal Member of
Technical Staff at AT&T Labs Research.

His primary research interest is in networking and storage
systems.

Moo-Ryong Ra received the PhD degree
from Computer Science Department,
University of Southern California. He is
a principal inventive scientist with the
AT&T Labs Research. He is interested
in systems and networking. In AT&T,
more focus is given to the following
areas: software defined storage for cloud
platform/infrastructure in the context
of AT&T integrated cloud and edge
cloud, video storage and delivery, RDMA

networking for next generation storage/memory architecture.
Before joining AT&T, he had built several interesting cloud-
enabled mobile sensing systems to better understand the
interaction between smart mobile devices and the cloud
infrastructure.

Panta Krishna Rejesh received the
PhD degree in electrical and computer
engineering from Purdue University.
He is a principal inventive scientist with
the AT&T Labs-Research. His research
interests include cloud computing, Big
Data, storage systems, distributed
systems, wireless networks, mobile
systems, and sensor networks.

14

Authorized licensed use limited to: The George Washington University. Downloaded on April 14,2022 at 20:19:29 UTC from IEEE Xplore. Restrictions apply.

