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Abstract—Background traffic, such as repair, rebalance,
backup and recovery traffic, often has large volume and consumes
significant network resources in cloud storage systems. While
having each application independently schedule its own back-
ground traffic can easily generate interference among data flows,
causing violation of desired QoS requirements (e.g., latency and
deadline), heuristic scheduling algorithms like Earliest-Deadline-
First and First-In-First-Out are not able to take into account
data center constraints such network topology or data chunk
placement, thus resulting in unsatisfactory performance. In this
paper, we propose a new algorithm, Linear Programming for
Selected Tasks (LPST), which coordinate background traffic
of different jobs to meet traffic deadline and optimize system
throughput. In particular, our goal is to maximize the number
of background traffic flows that meet their target deadlines
under bandwidth constraints in data center storage systems.
Using realistic traffic trace, our simulation results show that the
proposed algorithm significantly improves task processing time
and the probability of meeting deadlines.

I. INTRODUCTION

Background traffic constitutes a significant portion of over-
all traffic in a typical data center, e.g., repair traffic, rebalance
traffic, backup and recovery traffic, ingestion of data in online
storage and Big Data applications. For example, as for data
backups, they might typically consist of a full copy of the
primary data once per week (i.e., a weekly full), plus a
daily backup of the files modified since the previous backup
(i.e., a daily incremental) [1]. In addition, a large percentage
of the space is used by files hundreds of gigabytes in size
with typically 6 week data retention [1]. As a result, back-
ground traffic often has large volume and consumes significant
network resources. A scheme that make each application
independently schedule its own background traffic can easily
generate interference among data flows, causing violation of
desired application deadlines.

The goal of this paper is to develop an online optimization
algorithm for scheduling background traffic of all applications
in data centers to maximize the number of tasks that meet
application deadlines, under data placement, network topol-
ogy and bandwidth constraints. Existing heuristics such as
EDF (Early Deadline First), FIFO (First In First Out) and
LP (Linear Programming) are not able to take into account
constraints such as data center network topology or data chunk
placement, thus resulting in unsatisfactory performance. In
particular, FIFO is easy to be applied in real system but has
relatively low performance as observed in [11], [12]. EDF

Fig. 1. A erasure-coded storage system with background traffic for 2 files, F1

and F2. The three key optimization degrees of freedoms are - task scheduling,
data chunk selection, and bandwidth allocation.

works well in networks with simple topology, but for data
center networks that often employ a tiered-structure consisting
of Top-of-Rack (ToR) and exaggerator switches [13], [14],
[15], EDF fails to maximize the completion time of all tasks
with respect to their deadlines.

We consider data center storage systems that use replication
or erasure coding for data reliability. In a replication based
storage system, copies of data are made and stored in different
servers to avoid data loss caused by broken-down servers.
Examples for replication based system include PAST [2] and
Farsite [3]. Compared to replication, erasure codes are more
complicated but have longer mean time to failure (MTTF) and
occupy less bandwidth and storage to provide similar system
durability [4]. Using a (n, k) erasure code, we split a file into
k pieces and encode them into n chunks, each stored on a
different node. The file can be retrieved by querying any k-
out-of-n storage nodes. FreeHaven system used an information
dispersal algorithm similar to erasure codes [7]. There is also
a hybrid system, OceanStore, where replicas are used for read
benefit and erasure codes are used for durability [8]. Besides
storage systems, erasure coding can also be used in routing to
reduce delays [9], [10].

The background traffic optimization problem aims to maxi-
mize the number of tasks that meet their deadlines in an online
setting. To schedule each task, we need to jointly solve: (i)
a chunk selection problem that determines the chunks used
to generate background traffic, (ii) a bandwidth allocation
problem that apportions bandwidth at ToR and exaggerator
switches among active tasks, and (iii) a scheduling problem
that schedules tasks with respect to their deadlines. This
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background traffic optimization problem can be formulated
as a mixed-integer optimization that is hard to compute. The
proposed algorithm uses a two-tier approach. First, we define
Remaining Time Flexibility (RTF) to measure the slackness
of tasks’ starting time. RTF is the maximum time remaining
before a task becomes infeasible given its deadline as well
as current network topology, data placement, bandwidth con-
straints. Thus, a task with higher RTF is less urgent and can
be postponed in the scheduling algorithm without increasing
the risk of missing deadline. Second, we use RTF to select
a subset of (relatively urgent) tasks and schedule their traffic
through linear programming to determine the optimal band-
width allocation for these tasks. The steps are then repeated
for every task arrival and departure in an online setting. Using
extensive simulations, we show that the proposed algorithm
is able to significantly improve the number of tasks meeting
deadlines for various network topology and job sizes.

II. RELATED WORK

Scheduling problems widely exist in many fileds including
manufacturing systems, computer systems and communication
networks [16]. In past years, many algorithms were proposed
and studied. Among them, there were three dominative algo-
rithms, EDF (Early Deadline First), FIFO (First In First Out)
and LP (Linear Programming).

In FIFO, the task with the earliest starting time will be
processed. In [11], authors proposed a FIFO algorithm to
manage multicast traffic, and provided hardware implemen-
tation performance. In [12], authors applied FIFO algorithm
to solve online scheduling system. Their object is to maximize
the total number of successfully transmitted packages. FIFO
algorithms are widely used in package transmission and buffer
management due to their simplicity. But it may not work well
in our scenario with complicated topology.

EDF means that the task with the earliest deadline will be
assigned to execute first. In [13], authors described a Global
EDF algorithm to solve parallel real-time tasks. They proved
that the Global EDF provided a capacity augmentation bound
of 4 - 2m and a resource augmentation bound of 2 - 1m, where
m means the number of tasks. They also overcame a EDF’s
shortage in previous publications - the unsuitability for real-
time applications that employed different numbers of threads
in different segments of computation [14], which was caused
by decomposing tasks to subsets [15]. Althought this Global
EDF seems great, it does not have constraints in its topology,
which is one of the most difficult point in our scenario.

Linear programming technology is to calculate the optimal
solution with constraints, which fits our goals well. Theoreti-
cally, linear programming can get the best solution. However,
the calculation complexity grows dramatically when elements
and constraints increase [16]. Many precursors who applied
linear programming technology to solve practical problems
simplified objective functions and constraints by making use
of special characteristics of their scenarios [17].

In our work, we modify EDF algorithm to simplify the
linear programming problem to get better solution with less

T Set of time slots
A Given set of tasks
n Number of tasks

xt,i Bandwidth of job i during time t
zi Whether task i is finished
ui,l Whether task i occupies link l
on Souce of task n
in Destination of task n
vn File volume of task n
dn Deadline of task n
sn Start time of task n
bn Assigned bandwidth for task n
fn Remaining time flexibility of task n
R Given set of racks
j Number of racks
S Given set of servers
k Number of servers in each rack
Cl Link capacity

TABLE I
NOTATIONS

time and resource.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the system model and prob-
lem formulation. The topology of servers is given. There
is one aggregator switch, j racks and k servers in each
rack. Set R = {R1, R2, . . . , Rj−1} denotes the racks. Set
S = {S00, S01, . . . , S0k, S10, . . . , Sjk} denotes the servers,
where j means rack number and k means server number in this
rack. If servers within the same rack want to communicate with
each other, the source server sends data flow to the TOR(Top
of Rack), and then the TOR sends data flow to the destination
server. If servers from different racks want to transmit data,
the source server first sends data to its TOR, then this TOR
sends data to the aggregator. The aggregator sends data to the
TOR of destionation server, and finally the destination server’s
TOR sends the data to the destination. Cl is link capacity. It
depends on the topology. θ is the usage percentage of link
capacity. Notations used in the paper is given in Table 1.

We consider both replication and erasure code based sys-
tems. In a replication based system, background traffic will
be transmitted from one source to one destination. In this
scenario, we are given tasks A = {A1, A2, . . . , An} for
management. Suppose T = {T0, T1, . . . , Tm} is the set of
time slots, during which all the tasks execute. If the time
slot is small enough, then it can represent the real situation
without loss. Suppose the system allocates bandwidth xt,i to
job i in time slot t ε T . Variable zi is one when the job i
is finished before its deadline, and zero otherwise. Matrix U
represents whether jobs occupy links. Suppose its element ui,l
is one when job i uses the link l, and zero otherwise. vi is the
volume of the task i. The goal of our algorithm is to complete
as many tasks before their deadlines as possible. We formally
model this as the following task number and link usage optimal
resource-allocation problem (TLORA).

In a popular (9, 3) erasure code based system, sources are
not determined. If one server breaks down, 6 sources need
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to be selected from 9-1 original copies. Then, background
traffic will be transmitted from 6 sources to one destination.
Therefore, if sources are chosen out, erasure code based
scenario is similar to replication based scenario.

TLORA
max

∑
i zi

s.t.
∀ i, zivi ≤

∑
m xt,iTm

∀ Tm,
∑

i xt,iui,l ≤ ClθTm
xt,i ≥ 0,
zi ε 0,1

An illustrative example. We use a simple example shown in
figure 1 to illustrate that EDF and FIFO can not get the best
solution. If EDF or FIFO is used, A1 will be assigned 2Gbps
bandwidth until it finishes at 0.6 second. A2 will assigned only
0.5 Gbps until 0.6 second because of the TOR link bandwidth
limit. And then A2 cannot meet its deadline. However, if A1
is assigned 0.95 Gbps when A2 appears. And A2 is assigned
1.55 Gbps. A2 can finish at 1.04 second. A1 can finish at
0.94 second. Both of them can meet their deadlines. LP is
theoretically supposed to obtain best solution for determinate
elements, but it consumes large resource and time and hard
to be applied in real system [16], [17]. So, in this paper,
we propose an algorithm which combines EDF and LP and
therefore have advantages of both EDF and LP.

Fig. 2. Example

IV. OUR PROPOSED SOLUTION

In this section, we describe our proposed solution - LPST
(Linear Programming for Selected Tasks) in details.

As mentioned before, there are 3 key features in our design.
The first one is our seemingly greedy multi-goals. To increase
the completed task number, we modify EDF algorithm to
select relativly ”emergent” tasks. Then we apply LP to the
selected tasks. The object function of linear programming is
the utilization of bandwidth, which will result in the reduction
of resource usage and latency. The second difficulty is the
topology. We turn the constraints in topogy to the constraint
functions in LP. Therefore, the solution will suit the compli-
cated three-layer topology. The third point is the uncertainty

of source selection in erasure code based scenario. We use
greedy algorithm to select sources.

In replication based scenario, we first try to select m most
emergent tasks from all n tasks, and use linear programming
to assign bandwidth for them. For task An, a file of volume
vn needs to be transmitted with assigned bandwidth bn, from
source server to destination server in before deadline dn. fn
= deadline - present time - vn/link capacity, which means the
task is more emergent if its remaining time flexibility(RTF) is
smaller. Here, we summarize the steps as follows.

Step 1: Sort n tasks by their remaining time flexibility. The
smaller the remaining time flexibility is, the more emergent
this task is.

Step 2: Select m most emergent tasks. Suppose current
time is t0. Suppose set ST include all the selected tasks. The
selecting procedure is formulated as follows. This step is to
increase compeleted task number.

Selection Procedures
for i = 1 to n {
bi = vi/(di − t0);
if links can support Ai, ST ← ST

⋂
Ai;

return ST

Step 3: For m tasks in ST , do linear programming to assign
their bandwidth. The objective function is the bandwidth
utilization. The constraints are the bandwidth capacity limits
of the servers, TORs and aggregators. This step is to make
full use of the bandwidth.

Assign Bandwidth by using LP
max

∑m
z=1 bz

s.t.
∀ link l,∑

z bz ≤ Cl
∀AzεST ,
bz ≥ vn/(dn − t0)

Step 4: Use this bandwidth arrangement until one task is
finished. If tasks cannot complete transmission before their
deadlines, record how many bits they have transmitted and
stop their transmission processes. Go back to step 1.

A simple example was shown in table 2 and table 3 to
illustrate the algorithm. There are 10 servers and 1 rack. The
link capacity is 2 Gbps for each server and 8 Gbps for the
TOR.

The processing procedures are shown in table 3. (Notations:
E = executing, W = waiting, F = finished). At 0.1 second
time point, there are two tasks A1 and A2. f1, the RTF of
A1, is smaller than f2. So A1 is more emergent than A2.
The least required bandwidth of A1 is 1 ÷ (0.6-0.1) = 2
Gbps. The server link capacity is 2 Gbps, so A1 occupies all
bandwidth of server 1 link. Therefore, A2 needs to wait. At
0.5 second, A3 and A4 appear. If A3 and A4 are assigned
their least required bandwidth, links can support them. So
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Tasks Starting
Time(s)

Deadline(s) Volumn(Gb) Source Destination

A1 0.1 0.6 1 1 2
A2 0.1 9 2.2 1 3
A3 0.5 1 0.75 3 4
A4 0.5 2 1.25 3 5
A5 2 15 3 3 9

TABLE II
AN EXAMPLE OF SCHEDULING PROBLEM WITH 5 TASKS

Time RTF Assigned
Bandwidth(Gbps)

Task Status

0.1 f1<f2 A1(2) A1(E),A2(W)
0.5 f1<f3<f4<f2 A1(2)A3(1.5),A4(0.5) A1(E),A2(W),A3(E),A4(E)
0.6 f3<f4<f2 A2(0.5),A3(1.5),A4(0.5) A1(F),A2(E),A3(E),A4(E)
1 f4<f2 A2(1),A4(1) A2(E),A3(F),A4(E)
2 f2<f5 A2(1),A5(1) A2(E),A4(F),A5(E)
3 f5 A5(2) A2(F),A5(E)
4 f5 All tasks finish A5(F)

TABLE III
ILLUSTRATION OF OUR ALGORITHM FOR THE 5-TASK EXAMPLE.

they are selected. A2 is still waiting for A1 occupies all of the
link bandwidth. Apply linear programming to A1, A3, A4.
We get the bandwidth assignment for the 3 tasks. Following
procedures are similar.

In erasure code based scenario, we first try to select 6
sources from 8 sources. For existed tasks, calculate their least
required bandwidth (volume/remaining time) and add them
up. Select 6 sources from 6 least filled servers and racks.
Then the input becomes 6n tasks. After that, we apply similar
algorithm as replication based scenario.

V. SIMULATION RESULTS

We compared the performance of LPST with other 5 al-
gorithms, including EDF, Disjointed EDF, FIFOFB, FIFOLB,
and LPAll. EDF is early deadline first algorithm. The task
with the earliest deadline will be assigned full bandwidth
of the links. Disjointed EDF is an improvement of EDF. If
tasks are not sharing same links, they will be assigned full
bandwidth at the same time. FIFOFB is first in first out with
full bandwidth arrangement. The task with the earliest start
time will be assigned full bandwidth of the links. FIFOLB
is first in first out with the least required bandwidth. Divide
the volume of the task by its remaining time results in the
least required bandwidth. Fill the links by earlier tasks with
the least required bandwidth. LPAll uses linear programming
to arrange all tasks. The objective function is total utilized
bandwidth. The constraints are link capacity limits.

We implemented simulations in 2 topologies, small network
and large network. Small network had one aggregator, one rack
and 10 servers. Large network had 1 aggregator, 3 racks and
10 servers in each rack. We set completed task number, total
processing time and average task completion time as three
metrics of simulation. The simulation generated tasks in 1
week with two different arrival type - constant arrival and

possion arrival. There were dense arrival (arrival rate was 1
task/10 min) and sparse arrival (arrival rate was 1 task/hour).

In replication based scenario, we simulated the performance
of different algorithms with sparse constant task arrival and
dense poisson task arrival. LPST completed more tasks with
relatively less time. FIFOFB had worst performance.

Figure 1 shows how many tasks were completed in each
algorithm when tasks came in sparse and constant rate.
As we can see, EDF, Disjointed EDF, FIFOLB and LPST
completed all of the tasks. The fact that FIFOFB and LPAll
performed worse in the aspect of task completion might be
due to they did not consider task deadline in task assignment.
Figure 2 displays the total processing time. The less, the
better. Although LPAll did not complete all of the tasks, it
performed well in total processing time, which was because
it made the optimal solution for bandwidth assignment
regardless deadlines. In contrary, FIFOLB worked well
in task completion but terrible in processing time, which
was because it did not pay enough attention to bandwidth
assignment. Average task completion time is shown in figure
3. The total processing time of completed tasks divided by
the task completion number resulted in this metric. In this
aspect, EDF and FIFOFB performed worse than others. Our
solution, LPST, completed the largest number of tasks with
the least total processing time and average task completion
time. It was the best in this scenario.

Fig. 3. Completed Task Number with Sparse Constant Task Arrival

Fig. 4. Total Processing Time with Sparse Constant Task Arrival

Figure 4 displays the completed task number for dense
Poisson arrival tasks. Similarly, FIFOFB and LPAll performed
much worse than others. EDF is the third worst. Figure 5
describes the total processing time. LPAll performed well in
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Fig. 5. Average Task Completion Time with Sparse Constant Task Arrival

this metric but it should not be considered because it did not
complete nearly half of the tasks. FIFOLB and LPST were
the best. In small network, FIFOLB worked even a little
better. In figure 6, average task completion time is shown.
FIFOLB was the best, but LPST performed well too. All
in all, LPST won in replication scenario but FIFOLB also
worked well.

Fig. 6. Completed Task Number with Dense Poisson Task Arrival

Fig. 7. Total Processing Time with Dense Poisson Task Arrival

In erasure code based scenario, we simulated the perfor-
mance of different algorithms with sparse Poisson task arrival
and dense constant task arrival. LPST completed much more
tasks with less time. FIFOFB also had the worst performance.
Figure 7 to figure 12 show their performance.

As shown in Figure 7, LPST was the best in the aspect
of task completion. Although FIFOLB and Disjointed EDF
also worked well, they were not as good as LPST. In Figure
8, LPST also defeated others as for total processing time.
Similarly, LPAll had small total processing time because of

Fig. 8. Average Task Completion Time with Dense Poisson Task Arrival

a low task completion ratio. Figure 9 shows the average
task completion time. FIFOLB performed a little better than
LPST, which might be caused by each task did not wait
for others to share the link. But LPST was still better than
FIFOLB, because LPST completed much more tasks and
consumed less time in total. In this scenario, LPST beat other
algorithms more obviously.

Fig. 9. Completed Task Number with Sparse Constant Task Arrival

Fig. 10. Total Processing Time with Sparse Constant Task Arrival

For dense Poisson arrival tasks simulation results, shown
in figure 10 to figure 12, LPST obviously defeated other
algorithms. In summary, LPST was the best in erasure code
based storage system, and FIFOLB was the second one.
However, LPST performed much better than FIFOLB.

Therefore, our proposed algorithm, LPST, had the best
performance in both replication based and erasure code based
storage systems.
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Fig. 11. Average Task Completion Time with Sparse Constant Task Arrival

Fig. 12. Completed Task Number with Dense Poisson Task Arrival

Fig. 13. Total Processing Time with Dense Poisson Task Arrival

Fig. 14. Average Task Completion Time with Dense Poisson Task Arrival

VI. CONCLUSIONS

In this paper, we consider the problem of optimizing back-
ground traffic in both replication-based and erasure-coded data
center storage systems. Our goals is to maximize the number
of jobs meeting deadlines under data placement, network
topology and bandwidth constraints. The proposed solution
makes use of Remaining Time Flexibility to select active
tasks for each scheduling interval and linear programming to
apportion bandwidth among the them. Our simulation results
showed our proposed algorithm outperforms five existing
heuristics. In the future we wish to implement our algorithm
in a real data center storage and evaluate its performance.
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