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Abstract—Gradient-based training in federated learning is
known to be vulnerable to faulty/malicious clients, which are
often modeled as Byzantine clients. To this end, previous work
either makes use of auxiliary data at parameter server to verify
the received gradients (e.g., by computing validation error rate)
or leverages statistic-based methods (e.g. median and Krum)
to identify and remove malicious gradients from Byzantine
clients. In this paper, we remark that auxiliary data may not
always be available in practice and focus on the statistic-based
approach. However, recent work on model poisoning attacks
has shown that well-crafted attacks can circumvent most of
median- and distance-based statistical defense methods, making
malicious gradients indistinguishable from honest ones. To tackle
this challenge, we show that the element-wise sign of gradient
vector can provide valuable insight in detecting model poisoning
attacks. Based on our theoretical analysis of the Little is Enough
attack, we propose a novel approach namely SignGuard, to
enable Byzantine-robust federated learning through collaborative
malicious gradient filtering. More precisely, the received gradi-
ents are first processed to generate relevant magnitude, sign,
and similarity statistics, which are then collaboratively utilized
by multiple filters to eliminate malicious gradients before final
aggregation. Finally, extensive experiments of image and text
classification tasks are conducted under recently proposed attacks
and defense strategies. The numerical results demonstrate the
effectiveness and superiority of our proposed approach.

Index Terms—Federated Learning, Attack Detection, Dis-
tributed Learning Security

I. INTRODUCTION

In the era of big data, private data are often scattered among
local clients (e.g., companies, mobile devices), leading to the
problem of isolated data islands [1]. To fully capitalize on the
value of big data while protecting data privacy and security,
federated learning (FL) has attracted significant interest in
recent years [1]–[5]. A typical setup of FL consists of a
parameter server (PS) and a number of distributed clients,
where the local training data are prohibited from sharing
among the clients. The general goal of FL is to jointly train
a global model that has high generalization ability than that
only trained on local data. While FL systems allow clients to
keep their private data local, a significant vulnerability arises
when a subset of clients aim to prevent successful training of
the global model, which are modeled as Byzantine clients [6]–
[8]. This can be seen through a simple example shown in Fig. 1
with one PS and n−m benign clients as well as m Byzantine
clients, where the Byzantine clients can send arbitrary model
update vectors to the PS, which may significantly poison
the training process if not identified and removed by PS. It
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Fig. 1. Federated learning system: one parameter server with n clients, in
which a attacker controls m Byzantine clients to attack the learning system.

has been shown that mitigating Byzantine model poisoning
attacks is crucial for robust FL and other distributed learning
[6], [9], [10]. On the other hand, distributed implementation
of gradient-based learning algorithms [11] are increasingly
popular for training large-scale models on distributed datasets,
e.g., deep neural networks for human face identification and
news sentimental analysis [12]–[14]. Therefore, many efforts
have been devoted to developing robust gradient aggregation
rules (GAR) [4] to achieve Byzantine-robust FL algorithms.

Recently, much research attention has focused on mitigating
Byzantine attacks either by leveraging statistic-based outlier
detection techniques [15], [16] or by utilizing auxiliary labeled
data collected by PS to verify the correctness of received
gradients [17], [18]. We remark that auxiliary data sufficiently
capturing the global data distribution may not be practicable to
PS. And recent works have shown that existing statistic-based
aggregation rules are vulnerable to well-crafted model poison-
ing attacks [19], [20], which are indistinguishable in Euclidean
distance such that they can circumvent most defenses.

In this paper, we focus on the gradient-based FL sys-
tems and propose a novel robust gradient aggregation frame-
work, namely SignGuard, to enable Byzantine-robust feder-
ated learning. SignGuard leverages a new technique of sign-
gradient filtering to identify malicious gradients and can be
integrated with existing gradient aggregation rules, such as
trimmed-mean [16]. In particular, we define sign-gradient as
the element-wise sign of a gradient vector. The key idea of
SignGuard is that the sign distribution of sign-gradient can
provide valuable information in detecting advanced model
poisoning attacks, which would otherwise evade state-of-the-
art statistic-based detection methods such as Krum and Bulyan



[6], [21]. SignGuard is inspired by our theoretical analysis of
Little is Enough (LIE) attack [19], and the generally good
performance of signSGD [22] in distributed learning tasks.
In [22] the authors show that even if PS only collects the
sign of gradient, the model training can still converge with
small accuracy degradation and keep the training process
fault-tolerant. This fact tells us that the sign of gradient
plays a vital role in model updating. Our novel analysis on
the LIE attack reveals that gradient manipulation can cause
significant variation of sign distribution, which turns out to
be a breakthrough against such well-crafted attacks. We also
empirically find that even the simplest sign statistics1 can
expose most of the attacks. These observations provide a new
perspective towards Byzantine attack mitigation and directly
inspire the design of our SignGuard framework. The core of
our approach is extracting robust features of received gradients
and using an unsupervised clustering method to remove the
anomalous ones. We find this simple and practical strategy
can detect suspicious gradients effectively and efficiently.

To the best of our knowledge, this is the first work to
utilize sign statistics of gradients for Byzantine-robust fed-
erated learning. SignGuard employs well-designed filtering
techniques to identify and eliminate the suspicious gradients
to favor gradient aggregation. Our theoretical analysis proves
that SignGuard can guarantee training convergence on both
IID and non-IID training data while introducing no extra
overhead for local computation or auxiliary data collection. In
particular, for a system with n clients including m Byzantine
clients satisfying n ≥ 2m + 1, we quantify the gradient
bias induced by ignoring m suspicious gradients and show
that the parameters enjoy a similar update rule as in safe
training, thus the convergence analysis could be performed
similarly. Finally, the SignGuard framework is evaluated on
various real-world image and text classification tasks through
extensive experiments by changing the attack method and the
percentage of malicious clients. Evaluation results demonstrate
the effectiveness of our SignGuard in protecting the FL system
from Byzantine poisoning attacks and meanwhile achieving
high model accuracy. To summarize, we make the following
key contributions:
• A novel gradient aggregation framework called SignGuard

is proposed for Byzantine-robust federated learning, which
leverages the sign statistics of gradients to defend against
model poisoning attacks.

• We provide a theoretical analysis of the harmfulness and
stealthiness of the state-of-the-art Little is Enough attack
and also propose a new hybrid attack strategy.

• The convergence of SignGuard is proven with a appropriate
choice of learning rate. In particular, we show that Byzan-
tine clients inevitably affect the convergence error in non-
IID settings even if all malicious gradients are removed.

• SignGuard is verified through extensive experiments
on MNIST/Fashion-MNIST, CIFAR-10, and AG-News
datasets under various Byzantine attacks. Compared with

1By default, we use the “sign statistics” to denote the proportions of
positive, negative, and zero signs.

existing approaches, our method exhibits superior perfor-
mance in both IID and non-IID settings.

II. BACKGROUND AND RELATED WORK

A. Safety & Security in Federated Learning

The model safety and data security are essential principles
of federated learning due to the concern of privacy risks and
adversarial threats [1], [4], [7], [23], especially under tough
privacy regulations such as General Data Protection Regulation
(GDPR) [24]. Meanwhile, the learning systems are vulnerable
to various kinds of failures, including non-malicious faults
and malicious attacks. Data poisoning and model update
poisoning attacks aim to degrade or even fully break the
global model during the training phase, while backdoor attacks
(aka. targeted attacks) make the model misclassify certain
samples during the inference phase [4]. In particular, the
Byzantine threats can be viewed as worst-case attacks, in
which corrupted clients can produce arbitrary outputs and are
allowed to collude [6], [20], [25].

B. Existing Defense Strategies

Existing defenses either leverage statistic-based robust ag-
gregation rule to get reliable gradient estimation, or utilize
auxiliary data in PS to validate the received gradients. The
former is also known as majority-vote based strategy and re-
quiring the percentage of Byzantine clients less than 50%, such
as Krum [6], trimmed-mean (TrMean) and coordinate-wise
median (Median) [16] and Bulyan [21]. Specially, some works
only aggregate the sign of gradient to mitigate the Byzantine
effect [22], [26]. Recently, a method called Divider and
Conquer (DnC) is proposed to tackle strong attacks [20]. When
auxiliary data is available in PS, robustness can be guaranteed
by validating the performance of received gradients/models.
Zeno [17] use a stochastic descendant score to evaluate the
correctness of each gradient and choose those with the highest
scores. Fang [10] use error rate based and loss function based
rejection mechanism to reject gradients that have a bad impact
on model updating. In [27], the authors utilize the ReLU-
clipped cosine-similarity between each received gradient and
standard gradient as the weight to get robust aggregation.
The main concern of such approaches is the accessibility of
auxiliary data and the extra computational overhead.

Some studies show that malicious behavior could be re-
vealed from the gradient trace by designing advanced filter
techniques [28]–[30]. Besides, the client-side momentum SGD
can also be considered as a history-aided method and can help
to alleviate the impact of Byzantine attacks [31], [32]. Another
line of work utilizes data redundancy to eliminate the effect
of Byzantine failures. In [33], the authors present a scalable
framework called DRACO for robust distributed training using
ideas from coding theory. In [34], a framework called DETOX
is proposed by combing computational redundancy and hier-
archical robust aggregation to filter out Byzantine gradients.
In [35], signSGD with election coding is proposed for robust
and communication-efficient distributed learning. Moreover,
provable security guarantee is also explored in [36], [37].



III. RETHINKING OF LIE ATTACK

In this section, we present our theoretical analysis along
with empirical evidence of the Little is Enough (LIE) attack
[19] to demonstrate the limitation of existing median- and
distance-based defenses.

LIE Attack. Byzantine clients first estimate coordinate-wise
mean (µj) and standard deviation (σj), and then send mali-
cious gradient vector with elements crafted as follows:

(gm)j = µj − z · σj , j ∈ [d] (1)

where the positive attack factor z depends on the total number
of clients and Byzantine fraction, and can be determined by
using cumulative standard normal function φ(z):

zmax = maxz

(
φ(z) <

n−
⌊
n
2 + 1

⌋
n−m

)
(2)

In the following, we will show why this attack is harmful
and hard to detect. Recall that signSGD can achieve good
model accuracy by only utilizing the sign of gradient, which
illuminates a fact that the sign of gradient plays a crucial role
in model updating. Therefore, it’s important to check the sign
of gradient for this type of attack. The crafting rule of LIE
attack is already shown in Eq. (1), from which we can see
that (gm)j could have opposite sign with µj when µj > 0.
For coordinate-wise median and µj > 0, we assume this
aggregation rule results in g̃ = gm, then we have:

if z >
µj
σj
, then sign(g̃j) 6= sign(µj) (3)

For mean aggregation rule and µj > 0, if µj and σj are
estimated on benign clients, then the j-th element becomes:

g̃j =
1

n
[m · (gm)j + (n−m)µj ] = µj − z · β · σj (4)

and in this case a bigger z is needed to reverse the sign:

if z >
nµj
mσj

, then sign(g̃j) 6= sign(µj) (5)

Empirical results in [19] show that the coordinate-wise stan-
dard deviation turns out to be bigger than the corresponding
mean, thus a small value of z is enough to turn a large
amount of positive elements into negative, leading to incorrect
model updating. To verify this insight, we adopt the default
training setting in Section V to train a CNN on MNIST dataset
and a ResNet-18 on CIFAR-10 dataset under no attacks. We
calculate the averaged sign statistics across all clients as well
as the sign statistics of a virtual gradient crafted by Eq. (1)
and plot them over iterations as in Fig. 2, which convincingly
supports our intuition.

Next, we present the following Proposition 1 to explain why
LIE attack is hard to detect, where we compare the distance
to averaged true gradient g̃ = 1

n

∑n
i=1 g

(i) and similarity with
g̃ for the malicious gradient and honest gradient, respectively.

Proposition 1. For a distributed non-convex optimization
problem F (x) with (n−m) benign workers and m malicious
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(a) Honest Gradient of CNN
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(b) Malicious Gradient of CNN
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(c) Honest Gradient of ResNet18
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(d) Malicious Gradient of ResNet18

Fig. 2. Sign statistics of honest and malicious gradient.

workers conducting LIE attack, suppose the data are IID and
the gradient variance is bounded by σ2. Given small enough
z, then the distance between malicious gradient and true
averaged gradient could be smaller than that of certain honest
gradient:

∃ i, s.t. E[‖gm − g̃‖2] < E[‖g(i) − g̃‖2] (6)

and the cosine-similarity between malicious gradient and true
averaged gradient could be bigger than that of certain honest
gradient:

∃ i, s.t. cos(gm, g̃) > cos(g(i), g̃) (7)

Proof. Detailed proof is in Appendix A.

From the above analysis results, it can be concluded that
the malicious gradient can be even “safer” when evaluated
by Krum and Bulyan methods. Hence, it’s difficult to detect
the malicious gradient from the distance and cosine-similarity
perspectives. Instead, checking the sign statistics is a novel
and promising perspective to detect abnormal gradients. Our
analysis is also valid for the recent proposed Min-Max/Min-
Sum attacks in [20].

New Hybrid Attack. In this work, we propose a type of
hybrid attack called ByzMean attack, which makes the mean
of gradients be arbitrary malicious gradient. More specifically,
the malicious clients are divided into two sets, one set with
m1 clients chooses an arbitrary gradient vector gm1 = ∗, and
the other set with m2 = m−m1 clients chooses the gradient
vector gm2

such that the average of all gradients is exactly the
gm1

, which can be expressed as follows:

gm1
= ∗, gm2

=
(n−m1)gm1

−
∑n
i=m+1 g

(i)

m2
(8)

All existing attacks can be integrated into this ByzMean attack,
making this hybrid attack even stronger than all single attacks.
For example, we can set gm1

as random noise or the gradient
crafted by LIE attack.



IV. OUR SIGNGUARD FRAMEWORK

In this section, we present formal problem formulation
and introduce our SignGuard framework for Byzantine-robust
federated learning. And some theoretical analysis on training
convergence is also provided.

A. System Overview and Problem Setup

Our federated learning system consists of a parameter server
and a number of benign clients along with a small portion of
Byzantine clients. We assume there exists an attacker or say
adversary that aims at poisoning the global model and controls
the Byzantine clients to perform malicious attacks. We first
give out the following definitions of benign and Byzantine
clients, along with the attacker’s capability and defense goal.

Definition 1. (Benign Client) A benign client always sends
honest gradient to the server, which is an unbiased estimation
of local true gradient at each iteration.

Definition 2. (Byzantine Client) A Byzantine client (also
called corrupted client) may act maliciously and can send
arbitrary message to the server.

Threat Model. Similar to the threat models in previous works
[10], [19], [20], we assume that there exists an attacker that
controls some malicious clients to perform model poisoning at-
tacks. Specially, we assume the attacker has full knowledge of
all benign gradients and model parameters while the corrupted
clients can also collude to conduct strong attacks. However,
the attacker cannot corrupt the server and the proportion of
malicious clients β is less than half.

Defender’s Capability: As in previous studies [10], [27],
We consider the defense is performed on the server-side. The
parameter server does not have access to the raw training data
on the clients, and the server does not know the exact number
of malicious clients. However, the server has full access to
the global model as well as the local model updates (i.e.,
local gradients) from all clients in each iteration. Specially,
we further assume the received gradients are anonymous,
which means the behavior of each client is untraceable. In
consideration of privacy and security, we think this assumption
is reasonable in some FL scenarios.

Defense Goal: As mentioned in [27], an ideal defense method
should consider the following three aspects: Fidelity, Robust-
ness, and Efficiency. We hope the defense method achieves
Byzantine robustness against various malicious attacks without
sacrificing the model accuracy. Moreover, the defense should
be computationally cheap such that does not affect the overall
training efficiency.

Problem Formulation: We focus on federated learning on IID
settings and then extend our algorithm into non-IID settings.
We assume that training data are distributed over a number of
clients in a network, and all clients jointly train a shared model

based on disjoint local data. Mathematically, the underlying
distributed optimization problem can be formalized as follows:

min
x∈Rd

F (x) =
1

n

n∑
i=1

Eξi∼Di
[F (x; ξi)] (9)

where n is the total number of clients, Di denotes the local
dataset of i-th client and could have different distribution from
other clients, and F (x; ξi) denotes the local loss function
given shared model parameters x and training data ξi sampled
from Di. We make all clients initialize to the same point
x0, then FedAvg [3] can be employed to solve the problem.
At each iteration, the i-th benign client draws ξi from Di,
and computes local stochastic gradient with respect to global
shared parameter x, while Byzantine clients can send arbitrary
gradient message:

g
(i)
t =

{
∇F (xt; ξi), if i-th client is benign
arbitrary, if i-th client is Byzantine

(10)

The parameter server collects all the local gradients and
employs robust gradient aggregation rule to get a global model
update:

xt+1 = xt − ηt · GAR({g(i)t }ni=1) (11)

In synchronous settings with full client participation, the result
will be broadcast to all clients to update their local models
and start a new iteration. In a partial participation setting, the
model update is finished in PS and the updated model will be
sent to the selected clients for the next round. This process
will repeat until the stop condition is satisfied.

To characterize the impact of Byzantine attacks, we define
the following metric to measure the effect of Byzantine attack
by calculating the accuracy drop due to model poisoning:

Definition 3. (Attack Impact) The impact of a specific attack
is measured by the model accuracy drop compared to the
baseline without the presence of any attack or defense.

B. Our Proposed Solution

The proposed SignGuard framework is described in Algo-
rithm 1-2 and the workflow is illustrated in Fig. 3. On a
high level, we pay attention to the magnitude and direction
of the received gradients. At each iteration, the collected
gradients are sent into multiple filters, including norm-based
thresholding filer and sign-based clustering filter. Firstly, for
the norm-based filter, the median of gradient norms is utilized
as reference norm as the median always lies in the benign set.
Considering that small magnitudes of gradients do less harm
to the training while a significantly large one is malicious,
we will perform a loose lower threshold and a strict upper
threshold. Secondly, for the sign-based clustering filter, we
extract some statistics of gradients as features and use Mean-
Shift [39] algorithm as an unsupervised clustering model with
an adaptive number of cluster classes, while the cluster with
the largest size is selected as the trusted set (if all malicious
clients send the same attack vector, K-Means with two clusters
will suffice). In this work, the proportions of positive, zero,
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Fig. 3. Illustration of the workflow of proposed SignGuard. The collected gradients are anonymous and sent into multiple filters in parallel, after which the
intersection of multiple outputs are selected as trusted gradients. We use norm-based and sign-based filters in this paper.

Algorithm 1 SignGuard-based Robust Federated Learning
1: Input: learning rate η, total iterations T , number of clients
n

2: Initial: x0 ∈ Rd
3: for t = 0, 1, ..., T − 1 do
4: On each client i :
5: Sample a mini-batch of data to compute gradient g(i)t
6: Send g(i)t to the parameter server
7: Wait for global gradient g̃t from server
8: Update local model: xt+1 = xt − ηg̃t
9: On server:

10: Collect gradients from all clients
11: Obtain global gradient: g̃t = SignGuard({g(i)t }ni=1)
12: Send g̃t to all clients
13: end for

and negative signs are computed as basic features, which are
sufficient for a variety of attacks, including the LIE attack.

However, those features only consider the overall statistics
and lose sight of local properties. Take a toy example, when
the amounts of positive and negative elements are approximate
(just as ResNet-18), the naive sign statistics may be insufficient
to detect reversed gradients [34] or those well-crafted attacks
that have similar sign statistics. To overcome this problem,
we introduce randomized coordinate selection and add another
similarity metric as an additional feature in our algorithm,
such as cosine-similarity or Euclidean distance between each
received gradient and a “correct” gradient. However, without
the help of auxiliary data in PS, the “correct” gradient is
not directly available. A practical way is to compute pair-
wise similarities between all the other gradients and take
the median as the similarity with a “correct” gradient. Or
more efficiently, just utilize the aggregated gradient from
the previous iteration as the “correct” gradient. Intuitively,
it is promising to distinguish those irrelevant gradients and
helps to improve the robustness of anomaly detection. What’s

Algorithm 2 SignGuard Function

1: Input: Set of received gradients St = {g(i)t }ni=1, lower
and upper bound L,R for gradient norm

2: Initial: S1 = S2 = ∅
3: Get l2-norm and element-wise sign of each gradient
4: Step 1: Norm-based Filtering
5: Get the median of norm M = med({‖g(i)t ‖}ni=1)

6: Add the gradient that satisfies L ≤ ‖g
(i)
t ‖
M

≤ R into S1

7: Step 2: Sign-based Clustering
8: Randomly select a subset of gradient coordinates
9: Compute sign statistics on selected coordinates for each

gradient as features
10: Train a Mean-Shift clustering model
11: Choose the cluster with most elements as S2

12: Step 3: Aggregation
13: Get trusted set: S′t = S1 ∩ S2

14: Get g̃t =
1

|S′t|
∑
i∈S′

t

g
(i)
t ·min

(
1, M/‖g(i)t ‖

)
15: Output: Global gradient: g̃t

challenging is, as shown in Section III, the Euclidean distance
or cosine-similarity metrics are not reliable for the state-of-
the-art attacks, and even affect the judgment of SignGuard as
we found in experiments. In this work, the plain “SignGuard”
only uses sign statistics in default, and the enhanced variants
that add the cosine-similarity feature or Euclidean distance
feature are called “SignGuard-Sim” and “SignGuard-Dist”,
respectively. We will provide some comparative results of
them. How to design a more reliable similarity metric is left
as an open problem for future work.

After filtering, the server eventually selects the intersection
of multiple filter outputs as a trusted gradient set and obtains a
global gradient by robust aggregation, e.g. trimmed-mean. In
this work, we use the mean aggregation with norm clipping,



where the clipping bound is selected as the median values
of gradient norms. It is worth noting that a small fraction
of honest gradients could also be filtered out, especially in
the non-IID settings, depending on the variance of honest
gradients and the distance to malicious gradients.

C. Convergence Analysis

To conduct convergence analysis, we also make the follow-
ing basic assumption, which is commonly used in the literature
[40]–[42] for convergence analysis of distributed optimization.

Assumption 1. Assume that problem (9) satisfies:
1. Smoothness: The objective function F (·) is

smooth with Lipschitz constant L > 0, which means
∀x,∀y, ‖∇F (x)−∇F (y)‖ ≤ L ‖x− y‖. It implies that:

F (x)− F (y) ≤ ∇F (x)T (y − x) +
L

2
‖x− y‖2 (12)

2. Unbiased local gradient: For each worker with local
data, the stochastic gradient is locally unbiased:

Eξi∼Di [∇F (x; ξi)] = ∇Fi(x) (13)

3. Bounded variances: The stochastic gradient of each
worker has a bounded variance uniformly, satisfying:

Eξi∼Di
[‖∇F (x; ξi)−∇Fi(x)‖2] ≤ σ2 (14)

and the deviation between local and global gradient satisfies:

‖∇Fi(x)−∇F (x)‖2 ≤ κ2 (15)

For the SignGuard framework, the trusted gradients attained
by filters may still contain a part of malicious gradients. In
this case, any gradient aggregation rule necessarily results in
an error to the averaged honest gradient [31], [43]. Here we
make another assumption on the capability of the aggregation:

Assumption 2. For problem (9) with (1− β)n benign clients
(denoted by G) and βn Byzantine clients, suppose that at
most δn Byzantine clients can circumvent SignGuard at each
iteration. We assume that the robust aggregation rule in
SignGuard outputs ĝt such that for some constant c and
constant b,

1. Bounded Bias: [E ‖ĝt − ḡt‖]2 ≤ cδ sup
i,j∈G

E[‖g(i)t − g
(j)
t ‖2]

2. Bounded Variance: var ‖ĝt‖ ≤ b2
(16)

where ḡt = 1
|G|
∑
i∈G g

(i)
t and 0 ≤ δ < β < 0.5 .

Remark 1. When δ = 0, it’s possible to exactly recover the
averaged honest gradient. For most aggregation rules such as
Krum, the output is deterministic and thus has b2 = 0. For
clustering-based rules, the output is randomized and could
have negligible variance if the clustering algorithm is robust.
The bounded bias assumption is reasonable since we perform
norm clipping before aggregation.

When βn Byzantine clients exist and act maliciously, the
desired gradient aggregation result is the average of (1− β)n
honest gradients, which still has a deviation to the global

gradient of no attack setting. We give the following lemma
to characterize the deviation:
Lemma 1. Suppose the training data are non-IID under
Assumption 1, then the deviation between averaged gradient
of (1−β)n clients ḡ and the true global gradient ∇F (x) can
be characterized as follows:

E
[
‖ḡ −∇F (x)‖2

]
≤ β2κ2

(1− β)2
+

σ2

(1− β)n
(17)

Proof. Detailed proof is in Appendix B.

Given the above assumptions and lemma, extending the
analysis techniques in [31], [40]–[42], now we can characterize
the convergence of SignGuard by the following theorem.
Theorem 1. For problem (9) under Assumption 1, suppose the
SignGuard satisfying Assumption 2 is employed with a fixed
learning rate η ≤ (2−

√
δ−2β)/(4L) and F ∗ = minx F (x),

then we have the following result:

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤ 2(F (x0)− F ∗)
ηT

+ 2Lη∆1 + ∆2

(18)
where the constant terms are ∆1 = 4cδ(σ2 + κ2) + 2b2 +
2β2κ2

(1−β)2 + 2σ2

(1−β)n and ∆2 = 4c
√
δ(σ2 + κ2) + βκ2

(1−β)2 .

Proof. Detailed proof is in Appendix C.

Remark 2. The terms ∆1 and ∆2 arise from the existence
of Byzantine clients and are influenced by the capability of
aggregation rule. When no Byzantine client exists (β = 0
and thus δ = 0), we have ∆2 = 0 and the convergence is
guaranteed with a sufficiently small learning rate. If Byzantine
clients exist (β > 0), even the defender is capable to remove
all malicious gradients (δ = 0), we still have ∆2 > 0 due to
non-IID data and may result in some model accuracy gaps to
benchmark results.

V. EXPERIMENTAL SETUP

The proposed SignGuard framework is evaluated on various
datasets for image and text classification tasks. We mainly
implement the learning tasks in the IID fashion, and investigate
the performance of different defenses in the non-IID settings as
well. The models that trained under no attack and no defense
are used as benchmarks.

A. Datasets and Models

MNIST. MNIST is a 10-class digit image classification
dataset, which consists of 60,000 training samples and 10,000
test samples, and each sample is a grayscale image of size 28
× 28. For MNIST, we construct a convolutional neural network
(CNN) with 3 convolutional layers and 2 fully-connected
layers as the global model.
Fashion-MNIST. Fashion-MNIST [44] is a clothing image
classification dataset, which has the same image size and
structure of training and testing splits as MNIST, and we use
the same CNN model as in MNIST.
CIFAR-10. CIFAR-10 [45] is a well-known color image
classification dataset with 60,000 32 × 32 RGB images in



10 classes, including 50,000 training samples and 10,000 test
samples. We use ResNet-18 [46] as the global models2.
AG-News. AG-News is a 4-class topic classification dataset.
Each class contains 30,000 training samples and 1,900 testing
samples. The total number of training samples is 120,000
and 7,600 for test. We use the TextRNN with a two-layer
bi-directional LSTM network [47] as the global model.

B. Evaluated Attacks

We consider various popular model poisoning attacks:
Random Attack. The Byzantine clients send gradients

with randomized values that generated by a multi-dimensional
Gaussian distribution N(µ, σ2I). In our experiments, we take
µ = (0, ..., 0) ∈ Rd and σ = 0.5 to conduct random attacks.

Noise Attack. The Byzantine clients send noise perturbed
gradients that generated by adding Gaussian noise into honest
gradients: gm = gb +N(µ, σ2I). We take the same Gaussian
distribution parameters as random attack.

Sign-Flipping. The Byzantine clients send reversed gradi-
ents without scaling: gm = −gb. This is a special case of
reverse gradient attack [25], [34].

Label-Flipping. The Byzantine clients flip the local sample
labels during the training process to generate faulty gradients.
This is also a type of data poisoning attack. In particular, the
label of each training sample in Byzantine clients is flipped
from l to C − 1− l, where C is the total categories of labels
and l ∈ {0, 1, · · · , C − 1}.

Little is Enough. As in [19], the Byzantine clients send
malicious gradient vector with elements crafted as Eq. (1). We
set z = 0.3 for default training settings in our experiments.

ByzMean Attack. As proposed in Section III, we set m1 =
b0.5mc and m2 = m−m1, and set gm1 as LIE attack.

Min-Max/Min-Sum. As in [20], the malicious gradient is a
perturbed version of the benign aggregate as Eq. (19), where
∇p is a perturbation vector and γ is a scaling coefficient, and
those two attacks are formulated in Eq. (20)-(21). The first
Min-Max attack ensures that the malicious gradients lie close
to the clique of the benign gradients, while the Min-Sum attack
ensures that the sum of squared distances of the malicious
gradient from all the benign gradients is upper bounded by
the sum of squared distances of any benign gradient from the
other benign gradients. To maximize the attack impact, all
malicious gradients keep the same. By default, we choose ∇p
as −std(g{i∈[n]}), i.e., the inverse standard deviation.

gm = favg(g
{i∈[n]}) + γ∇p (19)

arg max
γ

max
i∈[n]
‖gm − g(i)‖ ≤ max

i,j∈[n]
‖g(i) − g(j)‖ (20)

arg max
γ

∑
i∈[n]

‖gm − g(i)‖2 ≤ max
i∈[n]

∑
j∈[n]

‖g(i) − g(j)‖2 (21)

C. Training Settings

By default, we consider a FL setup with n = 50 clients,
20% of which are Byzantine nodes, and the training data are

2We use open-source implementation of ResNet-18, which is available at
https://github.com/kuangliu/pytorch-cifar

IID among clients. To verify the resilience and robustness, we
will also evaluate the impact of different fractions of malicious
clients for different attacks and defenses. Furthermore, our
approach will also be evaluated in realistic non-IID settings.
In all experiments, we set the lower and upper bounds of
gradient norm as L = 0.1 and R = 3.0, and randomly
select 10% of coordinates to compute sign statistics in our
SignGuard-based algorithms. Each training algorithm is run
for 60 epochs for MNIST/Fashion-MNIST/AG-News and 160
epochs for CIFAR-10. The number of local iteration is set to
1 and momentum is employed with the parameter of 0.9, and
the weight decay is set to 0.0005.

VI. EVALUATION RESULTS

In this section, we conduct extensive experiments with
various attack-defense pairs on both IID and non-IID data set-
tings. We compare our methods with several existing defense
methods, including TrMean, Median, GeoMed, Multi-Krum,
Bulyan and DnC. The numerical results demonstrate the effi-
cacy and superiority of our proposed SignGuard framework.

A. Main Results in IID Settings

The main results of best-achieved test accuracy during the
training process under different attack and defense methods
in the IID settings are collected in Table I. The results
of naive Mean aggregation under No Attack are used as
benchmarks. Notice that we favor other defenses by assuming
the defense algorithms know the fraction of Byzantine clients,
which is somewhat unrealistic but intrinsically required by
existing defenses. However, we do not rely on the Byzantine
fraction information in our SignGuard framework, which is an
important advantage over existing methods.

Performance comparison. Test results on four datasets con-
sistently demonstrate that our SignGuard-type methods can
leverage the power of sign statistics and similarity features to
filter out most malicious gradients and achieve competitive
test accuracy as general SGD under no attack. Consistent
with original papers [19], [20], the state-of-the-art attacks,
such as LIE and Min-Max/Min-Sum, can circumvent the
median-based and distance-based defenses, preventing suc-
cessful model training. Take the results of Multi-Krum on
ResNet-18 as an example, it can be seen that when no attack
is performed, Multi-Krum has a negligible accuracy drop (less
than 0.1%). However, the best test accuracy drops to 42.58%
under LIE attack and even less than 40% under Min-Max/Min-
Sum attacks. Similar phenomena can also be found in model
training under TrMean, Median, and Bulyan methods. Besides,
even under no attack, the Median and GeoMed methods
are only effective in simple tasks, such as CNN for digit
classification on MNIST and TextRNN for text classification
on AG-News. When applied to complicated model training,
such as ResNet-18 on CIFAR-10, those two methods have high
convergence error and result in significant model degradation.
While Muti-Krum and Bulyan suffer from well-crafted attacks,
they perform well on naive attacks and even better than



TABLE I
COMPARISON OF DEFENSES UNDER VARIOUS MODEL POISONING ATTACKS

Dataset
(Model)

GAR No Attack
Simple Attacks State-of-the-art Attacks

Random Noise Label-flip ByzMean Sign-flip LIE Min-Max Min-Sum

MNIST
(CNN)

Mean 99.23 84.84 90.48 99.05 31.98 98.42 84.49 68.89 34.46
TrMean 98.23 98.63 98.53 95.31 58.87 98.44 94.50 34.48 43.89
Median 97.46 94.18 97.45 93.84 40.04 97.73 74.37 26.11 38.13
GeoMed 93.21 82.77 78.68 86.20 45.02 74.78 34.37 15.62 20.53

Multi-Krum 99.20 98.98 99.11 99.06 83.26 98.82 90.04 52.77 27.27
Bulyan 99.10 99.17 99.12 99.15 98.58 98.81 98.86 52.45 51.95
DnC 99.09 99.07 99.08 99.17 82.25 98.73 99.12 98.97 81.04

SignGuard 99.11 99.09 98.97 99.18 99.02 99.13 99.15 99.18 99.15
SignGuard-Sim 99.16 99.18 99.16 99.07 98.91 99.06 99.22 99.08 99.13
SignGuard-Dist 98.95 99.05 99.18 99.11 98.93 98.86 98.96 99.01 99.19

Fashion-MNIST
(CNN)

Mean 89.51 69.88 31.83 89.37 16.31 86.68 79.78 47.73 45.12
TrMean 87.02 87.81 87.45 79.58 62.66 87.45 54.28 45.71 42.96
Median 80.77 82.96 82.59 77.41 47.46 82.52 45.14 47.43 50.83
GeoMed 76.51 79.96 78.93 78.16 40.51 70.65 10.00 73.75 66.63

Multi-Krum 87.89 89.12 88.94 89.27 69.95 87.59 72.22 40.08 47.36
Bulyan 88.80 89.31 89.32 89.21 88.72 87.52 88.64 59.65 43.63
DnC 89.21 88.89 88.14 88.85 70.15 87.58 71.82 88.43 88.94

SignGuard 89.48 89.34 89.32 89.12 89.35 88.69 89.34 89.48 88.51
SignGuard-Sim 89.43 89.24 89.21 89.33 89.28 89.08 89.36 89.04 88.18
SignGuard-Dist 89.37 88.87 89.30 89.31 89.39 89.21 89.36 89.34 88.38

CIFAR-10
(ResNet-18)

Mean 93.16 44.53 46.34 91.98 17.18 79.63 55.86 23.84 18.17
TrMean 93.15 89.61 89.47 85.15 30.13 85.54 43.76 24.81 23.36
Median 74.18 68.27 71.42 71.19 23.47 70.75 27.35 20.46 22.74
GeoMed 65.62 70.41 69.35 70.76 24.86 67.82 23.55 50.36 45.23

Multi-Krum 93.14 92.88 92.81 92.26 50.41 92.36 42.58 21.17 38.24
Bulyan 92.78 91.87 92.47 92.24 81.33 90.12 74.52 29.87 37.79
DnC 92.73 88.01 88.25 92.05 36.56 84.76 47.37 52.94 35.36

SignGuard 93.03 92.78 92.52 92.28 92.46 88.61 92.93 92.56 92.47
SignGuard-Sim 93.19 92.51 91.38 92.26 92.26 92.48 92.62 92.63 92.75
SignGuard-Dist 92.76 92.64 92.26 92.51 92.42 91.69 92.36 92.82 92.93

AG-News
(TextRNN)

Mean 89.36 28.18 28.41 86.72 25.05 84.18 79.34 27.32 25.24
TrMean 87.57 88.33 88.72 85.50 37.51 84.84 66.95 30.05 30.28
Median 84.57 84.52 84.59 82.08 28.99 81.10 32.39 30.28 29.71
GeoMed 82.38 77.63 77.18 78.42 27.36 81.64 31.57 74.82 71.48

Multi-Krum 88.86 89.18 89.22 86.89 68.53 87.42 72.98 53.51 32.46
Bulyan 88.22 88.86 88.93 85.54 85.80 86.55 85.49 47.76 51.25
DnC 89.13 86.42 86.28 86.72 31.47 86.30 76.58 88.45 89.05

SignGuard 89.29 89.22 89.23 86.78 89.24 86.53 89.26 89.23 89.27
SignGuard-Sim 89.24 89.13 89.29 87.05 89.36 86.76 89.33 89.27 89.37
SignGuard-Dist 89.23 89.16 89.23 87.25 89.31 87.30 89.17 89.22 89.35

our plain SignGuard in mitigating random noise and sign-
flipping attack. Though the DnC method has extraordinary
effectiveness under many attacks, we found it is unstable
during training and can be easily broken by our proposed
ByzMean attack. In contrast, our proposed SignGuard-type
methods are able to distinguish most of those well-crafted
malicious gradients and achieve satisfactory model accuracy
under various types of attacks. It is worth noting that our plain
SignGuard already attains high robustness and fidelity, and
the cosine-similarity/distance can further improve the defense
performance in some cases, such as under the sign-flipping
attack. Besides, considering that the local data of Byzantine
clients also contribute to the global model when no attack is
performed, it’s not surprising to see that even the best defense
against Byzantine attack will still result in a small gap to the
benchmark results.

We also report the average selected rate of both benign and
Byzantine gradients during the training process of ResNet-
18 in Table II. We notice that the SignGuard-type methods
inevitably exclude part of honest gradients, and select some

malicious gradients under the sign-flipping attack. The reason
lies in the fact that the proportions of positive and negative
elements in normal gradient are approximate for ResNet-
18. We also notice that although SignGuard-Sim is the most
critical one and only selects less than 80% honest gradients
during training, it is resilient to various kinds of attacks and
still achieves high accuracy results.

TABLE II
SELECTED RATE OF HONEST AND MALICIOUS GRADIENTS

Attack
SignGuard SignGuard-Sim SignGuard-Dist

H M H M H M

ByzMean 0.9625 0 0.7791 0 0.9272 0.0003

Sign-flip 0.6870 0.3908 0.7639 0.0981 0.7570 0.2440

LIE 0.9532 0 0.7727 0 0.9151 0

Min-Max 0.9650 0 0.7866 0.0003 0.9105 0.0009

Min-Sum 0.9640 0 0.7752 0 0.9111 0

Percentage of Byzantine clients. We also evaluate the per-
formance of signGuard-Sim with different percentages of
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Fig. 4. Accuracy drop comparison under various attacks and different percentage of Byzantine clients. SignGuard-Sim has the smallest gap to the baseline.

Byzantine clients. In this part, we conduct experiments of
CNN trained on the Fashion-MNIST dataset and ResNet-18
trained on CIFAR-10 dataset. We keep the total number of
clients be 50 and vary the fraction of Byzantine clients from
10% to 40% to study the impact of Byzantine percentage
for different defenses. We use the default training settings,
and experiments are conducted under various state-of-the-art
attacks. Particularly, we compare the results of SignGuard-
Sim with Median, TrMean, Multi-Krum, and DnC as shown
in Fig. 4. It can be seen that our approach can effectively
filter out malicious gradients and result in a slight accuracy
drop regardless of the high percentage of Byzantine clients,
while other defense algorithms suffer much more attack im-
pact with the increasing percentage of Byzantine clients. In
particular, we also find that Multi-Krum can mitigate sign-
flipping attack well in ResNet-18 training, possibly because
the exact percentage of Byzantine clients is provided to the
Multi-Krum algorithm.

Time-varying attack strategy. Further, we test different
defense algorithms under the time-varying Byzantine attack
strategy. We still use the default system setting and change
the attack method randomly at each epoch (including no
attack scenario). The test accuracy curves of CNN on Fashion-
MNIST and ResNet-18 on CIFAR-10 are presented in Fig. 5,
where the baseline is training under no attack and no defense,
and we only test the State-of-the-art defenses. It can be found
that our SignGuard could ensure successful model training and
closely follow the baseline, while other defenses resulted in
significant accuracy fluctuation and model deterioration. For
CNN, the training process even collapsed for other defenses,
which further demonstrated the superiority of SignGuard.

B. Main Results in Non-IID Settings

The Byzantine mitigation in non-IID FL settings has been
a well-known challenge due to the diversity of gradients.
We evaluate our SignGuard-Sim method in asynthetic non-
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Fig. 5. Defense comparison under time-varying attacks. SignGuard can ensure
safe training and achieve decent model accuracy.

IID partitions of Fashion-MNIST and CIFAR-10 datasets. As
in previous works, we simulate the non-IID data distribution
between clients by allocating s-fraction of the dataset in a IID
fashion and the remaining (1-s)-fraction in a sort-and-partition
manner. Specifically, we first randomly select s-proportion
of the whole training data and evenly distribute them to all
clients. Then, we sort the remaining data by labels and divide
them into multiple shards, while data in the same shard has the
same label, after which each client is randomly allocated with
2 different shards. The parameter s can be used to measure
the skewness of data distribution and smaller s will generate
more skewed data distribution among clients. We consider
three levels of skewness with s = 0.3, 0.5, 0.8, respectively.

Efficacy on non-IID data. We choose the SignGuard-Sim
algorithm and compare it with various start-of-the-art defenses.
As shown in Fig. 6, our method still works well under strong
attacks in non-IID settings, achieving satisfactory accuracy
results in various scenarios. In contrast, TrMean and Multi-
Krum could not defend against the LIE attack and ByzMean
attack, making them not reliable anymore. Bulyan has a
good performance on CNN trained on Fashion-MNIST, but is
ineffective under LIE attack on ResNet-18 trained on CIFAR-
10. DnC can defend against sign-flipping attack well, but
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Fig. 6. Model accuracy comparison under various attacks and different degrees of non-IID. SignGuard-Sim has the best performance compared with other
start-of-the-art defenses.

performs poorly on the other scenarios. Those results in non-
IID settings further demonstrate the general validness of sign
statistics.

TABLE III
RESULTS UNDER DIFFERENT DEFENSIVE COMPONENTS

Thresholding Clustering Norm-Clip
Attacks

Random Reverse LIE

! 47.41 44.48 56.74

! 88.43 25.29 88.18

! 55.27 54.29 45.98

! ! 93.17 92.43 93.21

! ! 93.11 93.02 93.17

! ! ! 92.76 93.16 92.40

C. Ablation Study

Although the above numerical results demonstrate the ef-
fectiveness and superiority of our proposed SignGuard frame-
work, our method consists of multiple components and their
individual efficacy need more investigation. In this part, we
provide some ablation studies under the IID training setting
on CIFAR-10 dataset to evaluate the utilities of different de-
fensive components in SignGuard-Sim, including norm-based
thresholding, clustering-based filtering, and norm-clipping.
Specially, we test the “Reverse Attack with Scaling” [34],
in which the Byzantine clients scale the sign-flipped gradient
with a positive coefficient r, which is selected as the upper
bound R of the norm-based thresholding or r = 100 when no
thresholding/norm-clipping is applied. And we also test the
random attack and LIE attack. From the results in Table III,

we could see that every single component could not effectively
mitigate all attacks, but clustering-based filtering combined
with either thresholding or norm-clipping is capable of de-
fending against a wide range of Byzantine attacks. At first
glance, the thresholding and norm-clipping may seem to be
redundant since they have similar utilities, however, we believe
that the thresholding incurs almost negligible computation cost
and could be used to quickly detect those malicious gradients
with significantly larger norms.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a novel Byzantine attack detection
framework, namely SignGuard, to mitigate malicious gradients
in federated learning systems. It can overcome the draw-
backs of the median- and distance-based approaches which
are vulnerable to well-crafted attacks and unlike validation-
based approaches that require extra data collection in PS.
It also does not depend on historical data or other external
information, only utilizing magnitude and robust sign statistics
from current local gradients, making it a practical way to
defend against a variety of model poisoning attacks. Extensive
experimental results on image and text classification tasks
verify our theoretical and empirical findings, demonstrating the
extraordinary effectiveness of our proposed SignGuard-type
algorithms. Future directions include developing strategies
to defend dynamic and hybrid model poisoning attacks as
well as backdoor attacks in more complex federated learning
scenarios. And how to design more effective and robust filters
in the SignGuard framework for real-world learning systems
is also left as an open problem.
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APPENDIX

A. Proof of Proposition 1

Notice that the standard deviation is estimated on distributed
gradients, that is:

‖std(g{i∈[n]})‖2 =
1

n

n∑
i=1

‖g(i) − 1

n

n∑
j=1

g(j)‖2

so we have:

E[‖gm − g̃‖2] = E[‖z · std(g{i∈[n]})‖2]

= E[
z2

n

n∑
i=1

‖g(i) − 1

n

n∑
j=1

g(j)‖2]

= E[
z2

n

n∑
i=1

‖g(i) −∇F (x) +∇F (x)− 1

n

n∑
j=1

g(j)‖2]

≤ E[
z2

n

n∑
i=1

‖g(i) −∇F (x)‖2 + ‖∇F (x)− 1

n

n∑
j=1

g(j)‖2]

≤
(

1 +
1

n

)
z2σ2

and it’s easy to see that:

E[‖g(i) − g̃‖2] = E[‖g(i) − 1

n

n∑
j=1

g(j)‖2]

= E[‖g(i) −∇F (x) +∇F (x)− 1

n

n∑
j=1

g(j)‖2]

≤ E[‖g(i) −∇F (x)‖2 + ‖∇F (x)− 1

n

n∑
j=1

g(j)‖2]

≤
(

1 +
1

n

)
σ2

Hence, given a small enough z, it’s possible for the malicious
gradient to have a smaller distance from the true averaged
gradient than that of an honest gradient.

Next, we can express the cosine-similarity between mali-
cious gradient and true averaged gradient as well as that of an
honest gradient as follows:

cos(gm, g̃) =
‖gm‖2 + ‖g̃‖2 − ‖gm − g̃‖2

2 ‖gm‖ ‖g̃‖

cos(g(i), g̃) =

∥∥g(i)∥∥2 + ‖g̃‖2 −
∥∥g(i) − g̃∥∥2

2
∥∥g(i)∥∥ ‖g̃‖

We can prove that it’s possible for the norm of malicious
gradient and the norm of certain honest gradient to have
following relations:

‖gm‖ = ξm ‖g̃‖ , ‖g(i)‖ = ξi ‖g̃‖ , 1 ≤ ξi < ξm

By Jensen inequality, we have:

‖g̃‖ =

∥∥∥∥∥ 1

n

n∑
i=1

g(i)

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥∥g(i)∥∥∥ ≤ max{‖g(i)‖}

which means the norm of true averaged gradient is smaller
than the averaged norm of honest gradients, so some honest
gradients could have bigger norm than g̃, i.e. ξi ≥ 1.

And a appropriate value of z can make ξm > ξi. It’s easy
to see that:

‖gm‖2 > ξ2i ‖g̃‖
2

⇐⇒
d∑
j=1

(µj − zσj)2 > ξ2i

d∑
j=1

(µj)
2

⇐⇒
d∑
j=1

(µ2
j − 2zµjσj + z2σ2

j ) > ξ2i

d∑
j=1

(µj)
2

⇐⇒ z2
d∑
j=1

(σ2
j )− z

d∑
j=1

(2µjσj)− (ξ2i − 1)

d∑
j=1

(µj)
2 > 0

which obviously holds when given appropriate value of z, as
the left-hand side is a quadratic function of z.

Therefore, with appropriate selection of z, there exists some
i such that 1 ≤ ξi < ξm. By using these relations of gradient
norms, we can get:

cos(gm, g̃)− cos(g(i), g̃)

=
(ξ2m + 1) ‖g̃‖2 − ‖gm − g̃‖2

2ξm ‖g̃‖2
−

(ξ2i + 1) ‖g̃‖2 −
∥∥g(i) − g̃∥∥2

2ξi ‖g̃‖2

>

(
(ξ2m + 1)

2ξm
− (ξ2i + 1)

2ξi

)
+
‖gm − g̃‖2

2 ‖g̃‖2

(
1

ξi
− 1

ξm

)
=

(ξm − ξi)(ξmξi − 1)

2ξmξi
+

(ξm − ξi) ‖gm − g̃‖2

2ξmξi ‖g̃‖2

> 0

Hence, it’s possible for the malicious gradient to have a bigger
cosine-similarity with true averaged gradient than that of an
honest gradient.



B. Proof of Lemma 1

Given a arbitrary subset of clients G with |G| = (1 −
β)n and β < 0.5. Let A =

∑
i/∈G

(
g
(i)
t −∇F (xt)

)
, B =∑

j∈G

(
g
(j)
t −∇F (xt)

)
, then A and B are independent. We

have E[A+B] = 0. Recall that σ2 is the bounded local vari-
ance for local gradient and κ2 is bounded deviation between
local and global gradient. Applying the Jensen inequality, we
have

‖E [A]‖2 ≤ βn
∑
i/∈G

‖∇Fi(xt)−∇F (xt)‖2 ≤ β2n2κ2

‖E [B]‖2 ≤ (1− β)n
∑
i∈G
‖∇Fi(xt)−∇F (xt)‖2 ≤ (1− β)2n2κ2

Notice that E[A] = −E[B], thus

‖E [A]‖2 = ‖E [B]‖2 ≤ min{β2n2κ2, (1−β)2n2κ2} = β2n2κ2

Using the basic relation between expectation and variance, we
have

E ‖A‖2 = ‖E[A]‖2 + var[A] ≤ ‖E[A]‖2 + βnσ2

E ‖B‖2 = ‖E[B]‖2 + var[B] ≤ ‖E[B]‖2 + (1− β)nσ2

which leads to

E ‖B‖2 ≤ β2n2κ2 + (1− β)nσ2

Then, we directly have

E

∥∥∥∥∥ 1

|G|
∑
i∈G

(
g
(i)
t

)
−∇F (xt)

∥∥∥∥∥
2
 =

1

(1− β)2n2
E ‖B‖2

≤ β2κ2

(1− β)2
+

σ2

(1− β)n

It completes the proof of Lemma 1.

C. Proof of Theorem 1

Taking the total expectations of averaged gradient on local
sampling and randomness in aggregation rule, we have

Et[F (xt+1)]− F (xt)

≤ −η 〈∇F (xt),Et [ĝt]〉+
Lη2

2
Et
[
‖ĝt‖2

]
= −η 〈∇F (xt),Et [ĝt − g̃t + g̃t −∇F (xt) +∇F (xt)]〉

+
Lη2

2
Et
[
‖ĝt −∇F (xt) +∇F (xt)‖2

]
≤ −η 〈∇F (xt),Et [ĝt − g̃t]〉 − η 〈∇F (xt),Et [g̃t −∇F (xt)]〉

− η ‖∇F (xt)‖2 + Lη2 ‖∇F (xt)‖2 + Lη2Et
[
‖ĝt −∇F (xt)‖2

]
From Assumption 1 & 2, we have

[E ‖ĝt − ḡt‖]2 ≤ cδ sup
i,j∈G

E[‖g(i)t − g
(j)
t ‖2] ≤ 2cδ(σ2 + κ2)

then by Young’s Inequality with ρ = 2, we can get

− η 〈∇F (xt),Et [ĝt − g̃t]〉
≤ η ‖∇F (xt)‖ · Et ‖ĝt − g̃t‖

≤
√
δη

2ρ
‖∇F (xt)‖2 +

ρ

2
· 2
√
δηc(σ2 + κ2)

≤
√
δη

4
‖∇F (xt)‖2 + 2

√
δηc(σ2 + κ2)

Combining with Lemma 2, we get

− η 〈∇F (xt),Et [g̃t −∇F (xt)]〉
≤ η ‖∇F (xt)‖ · Et ‖g̃t −∇F (xt)‖

≤ βη

2
‖∇F (xt)‖2 +

βηκ2

2(1− β)2

and

Et
[
‖ĝt −∇F (xt)‖2

]
= Et

[
‖ĝt − ḡt + ḡt −∇F (xt)‖2

]
≤ 2Et

[
‖ĝt − ḡt‖2

]
+ 2Et

[
‖ḡt −∇F (xt)‖2

]
= 2 [E ‖ĝt − ḡt‖]2 + 2var ‖ĝt‖+ 2Et

[
‖ḡt −∇F (xt)‖2

]
≤

4cδ(σ2 + κ2) + 2b2 +
2β2κ2

(1− β)2
+

2σ2

(1− β)n︸ ︷︷ ︸
= ∆1

In the above derivations, the basic inequality 2a ·b ≤ a2 +b2

is applied. Taking total expectation and rearranging the terms,
we get

η

(
4−
√
δ − 2β

4
− Lη

)
E[‖∇F (xt)‖2] ≤ E[F (xt)− F (xt+1)]

+ 2
√
δηc(σ2 + κ2) +

βηκ2

2(1− β)2
+ Lη2∆1

Assume that η ≤ (2 −
√
δ − 2β)/(4L), thus(

4−
√
δ−2β
4 − Lη

)
≥ 1

2
. Taking summation and dividing by

η
(

4−
√
δ−2β
4 − Lη

)
T , then we finally get

1

T

T−1∑
t=0

E[‖∇F (xt)‖2] ≤ 2(F (x0)− F ∗)
ηT

+ 2Lη∆1

+
4
√
δc(σ2 + κ2) +

βκ2

(1− β)2︸ ︷︷ ︸
= ∆2

which completes the proof.


