
AccMER: Accelerating Multi-Agent Experience
Replay with Cache Locality-aware Prioritization

Kailash Gogineni*
The George Washington University

Washington, DC, USA
kailashg26@gwu.edu

Yongsheng Mei*
The George Washington University

Washington, DC, USA
ysmei@gwu.edu

Tian Lan
The George Washington University

Washington, DC, USA
tlan@gwu.edu

Peng Wei
The George Washington University

Washington, DC, USA
pwei@gwu.edu

Guru Venkataramani
The George Washington University

Washington, DC, USA
guruv@gwu.edu

Abstract—Multi-Agent Experience Replay (MER) is a key
component of off-policy reinforcement learning (RL) algorithms.
By remembering and reusing experiences from the past, expe-
rience replay significantly improves the stability of RL algo-
rithms and their learning efficiency. In many scenarios, multiple
agents interact in a shared environment during online training
under centralized training and decentralized execution (CTDE)
paradigm. Current multi-agent reinforcement learning (MARL)
algorithms consider experience replay with uniform sampling
or based on priority weights to improve transition data sample
efficiency in the sampling phase. However, moving transition
data histories for each agent through the processor memory
hierarchy is a performance limiter. Also, as the agents’ transitions
continuously renew every iteration, the finite cache capacity
results in increased cache misses.

To this end, we propose AccMER, that repeatedly reuses the
transitions (experiences) for a window of n steps in order to
improve the cache locality and minimize the transition data
movement, instead of sampling new transitions at each step.
Specifically, our optimization uses priority weights to select
the transitions so that only high-priority transitions will be
reused frequently, thereby improving the cache performance.
Our experimental results on the Predator-Prey environment
demonstrate the effectiveness of reusing the essential transitions
based on the priority weights, where we observe an end-to-end
training time reduction of 25.4% (for 32 agents) compared to
existing prioritized MER algorithms without notable degradation
in the mean reward.

Index Terms—Multi-Agent Systems, Performance Optimiza-
tion, Experience Replay Buffer, Reinforcement Learning, Hard-
ware

I. INTRODUCTION

Reinforcement Learning (RL) has been applied to solve
many single-agent sequential decision-making problems [1].
RL frameworks optimize the control of agent behavior and its
interactions with the environment by taking actions based on
current observation/state space, assessing the quality of state-
action pairs using a reward function, and then transitioning
to a new state [1]. The function that determines the action
is known as a policy. The agent strives to find the optimal

*These authors contributed equally to this work.

policy to maximize the total cumulative (discounted) reward.
The function representing the reward estimates is known as
the value function.

Often times in practice, RL tasks involve multiple agents
sharing the same environment, e.g., autonomous driving [2],
[3], robotics and planning [4], [5], and aviation systems [6].
Multi-agent reinforcement learning (MARL) [1] helps to co-
ordinate the decision-making among multiple agents and learn
the desired joint behavior from collective experiences (transi-
tion data) and achieve their goals. In particular, joint actions
among these agents could affect the environment dynamically.
The transitions observed in the environment are usually stored
as experience tuples in a memory replay buffer and repeatedly
used to improve the sample efficiency and policy training. This
phase in the MARL training is called mini-batch sampling.
We note that the mini-batch sampling is compute-intensive in
multi-agent systems, with each agent collecting a significant
number of experience tuples of all other agents in every
iteration to share information amongst the agents for collective
decision making [7]. Consequently, the computational and
memory bandwidth demands also increase exponentially with
the number of agents, which limits the applicability of MARL
in real-world decision-making situations [8].

Prior studies on experience replay buffers in RL have
proposed various strategies to improve the transition data
sampling efficiency. The simplest and most widely used expe-
rience replay method is uniform sampling, where the transition
data stored in the replay buffer are sampled uniformly at
random [9]. However, uniform sampling might often select
unimportant transitions and slow down the learning efficiency.
For this reason, prioritized experience replay (PER) [10] and
its variants were introduced [11], [12]. However, most of these
prior efforts focus on prioritization methods for the experience
replay in single-agent settings, and they cannot be adapted
readily to MARL scenarios.

Recent work [13] on collective priority optimization in
Multi-Agent Experience Replay (MER) showed rigorous the-
oretical analysis in assigning optimal sampling weights to

achieve higher mean rewards. MAC-PO prioritization tech-
nique achieves better convergence than the existing multi-agent
learning algorithms. Our preliminary experiments (Section II)
show that this implementation would still be computationally
expensive as MAC-PO has to move the transition data his-
tories and update its transitions in every iteration, resulting
in cache and memory bandwidth bottlenecks. Thus, realizing
efficient MARL algorithms with prioritization schemes from
the systems perspective is still an open research problem.

In this paper, we propose AccMER, a cache-aware transition
data reuse strategy to improve the MER efficiency for MARL
algorithms. Specifically, we design transition data-reuse opti-
mization that improves the cache locality by efficiently reusing
higher-priority transitions during the MARL training phase. To
the best of our knowledge, this is the first work to focus on
improving the end-to-end training time of cooperative MARL
algorithms. We validate the effectiveness of AccMER on
the Predator-Prey environment [14] through comparison with
baseline MARL settings (QMIX, WQMIX [15], and QPLEX),
decomposed policy gradient method (i.e., VDAC [16]). In our
experiments, AccMER achieves an end-to-end training time
reduction of 25.4% (for 32 agents) compared to MAC-PO
without any significant degradation in the mean reward.

The main contributions of our paper are the following:
• We present AccMER, an experience data-reuse strategy

that can be used in conjunction with MER to address
MARL performance bottlenecks. In particular, we use
experience prioritization to reuse high-priority transitions
for future sampling.

• We adopt a hardware-software co-design approach where
a cache-aware transition data-reuse strategy significantly
reduces the last-level cache misses while ensuring the
convergence levels to be on par with the best-performing
state-of-the-art multi-agent algorithms.

• Our experimental results on the Nvidia Ampere systems
demonstrate that: 1) AccMER reduces the end-to-end
training time by about 25.4% (for 32 agents) on a
cooperative multi-agent setting (Predator-Prey task with
no punishment); and 2) Interestingly, as the number of
agents increases, our optimization efforts lead to a better
convergence while reducing the training time on the same
hardware compared to the current multi-agent prioritized
experience replay [13].

II. MOTIVATION

In this section we motivate the need to understand the per-
formance bottlenecks in MARL algorithms, where we profile
various state-of-the-art MARL frameworks implemented using
actor-critic methods with usually very large state spaces.

We characterize the training phases of various representative
MARL algorithms, including MADDPG [9], MATD3 [17],
and MASAC [17] using Predator-Prey environment [9]. These
require multi-agent settings and learn the desired joint behav-
ior from the collective experiences. These approaches employ
memory replay buffers with a uniform sampling of transition
history.

3 6 12 24 48
0%

20%

40%

60%

80%

100% 3% 3% 2% 2% 1%

35%
46%

59%

74%
86%

62%
51%

39%

24%
13%

Number of agents

P
ro
p
o
rt
io
n
o
f
tr
a
in
in
g
ti
m
e
(%

)

(a) Performance profile of key MARL modules

Action Selection Update all trainers

Other segments

3 6 12 24 48
0%

20%

40%

60%

80%

100%
11% 8% 6% 6% 6%

13%
10% 9% 7% 7%

18%
20% 22% 24% 24%

58% 62% 63% 63% 63%

Number of agents

(b) Performance breakdown of Update all trainers

Mini-batch sampling Target Q calculation

Q loss P loss

Fig. 1: Training time breakdown of various functions averaged
acorss several MARL workloads under multi-agent settings on
Ampere Architecture RTX 3090. The simulated multi-agent
particle environment is Predator-Prey [9].

Figure 1a illustrates how the proportion of training time
changes when the number of agents increases linearly on a
CPU-GPU platform. We note that the Update all trainers
phase contributes to ≈35% to ≈86% of the training time as
the number of MARL agents grow from 3 to 48. The Action
selection phase involves individual agents’ policy networks
using local observations to interact with the environment and
this phase scales linearly. During Update all trainers phase,
the actor network is updated using Q-values computed by the
critic [9]. The target networks are created to achieve training
stability. Note that the updating sequence of networks in the
Update all trainers phase begin with that of critics, followed
by the actors, and then the target networks. Other segments
is a combination of reward collection, storing the present
experiences and policy initialization and put together, they add
a negligible performance overhead.

For a deeper analysis, as shown in Figure 1b, we divide
the Update all trainers into multiple modules: Mini-batch
sampling, Target Q calculation, and Q loss & P loss and
present our results in the Predator-Prey environment. We
observe that mini-batch sampling phase dominates the Update
all trainers as it occupies 60% of training time in the update
phase. This is because, each agent has to randomly sample a
mini-batch of transition data (history) of all other agents from
the replay buffer to update both the critic and actor networks.
In real-world systems, this task may be lead to huge compute
and memory requirements as the number of agents increase.

We also perform experiments to understand how the cache
performance is affected as a consequence of batch size vs.
buffer size trade-offs on the QMIX algorithm [18] on account
of the random memory access patterns. From Table I, when the
batch size increases from 64 to 256 in the difficulty-enhanced
predator-prey environment, the LLC load misses increase to
120% in QMIX (for 8 agents). This is because of the uniform
sampling, where the collected transitions will be continually
renewed at every step, and finite cache capacity results in
increased cache misses. As a result, conventional sampling

is impractical and may lead to computing bottlenecks in real-
world systems, especially when the number of agents scale
under MARL. Furthermore, even after MER prioritization is
enabled, the global cache misses grow by 2.5× when the
number of agents scale from 16 to 32 in MAC-PO [13].
The dynamic memory requirements of observation and action
spaces also grow quadratically due to each agent coordinat-
ing with other agents toward sharing their observations and
actions [7], [19].

TABLE I: Cache miss profiles in the QMIX algorithm for
different mini-batch and experience replay buffer sizes

Buffer size Batch size LLC load misses global cache misses

100,000 256 10,228,039,764 30,727,770,917
10,000 128 7,253,378,442 24,608,100,772
1000 64 4,695,948,584 17,722,615,186
100 16 2,247,388,137 9,428,462,486

III. BACKGROUND

In this work, we consider a multi-agent sequential decision-
making task as a decentralized partially observable Markov
decision process (Dec-POMDP) [20] consisting of a tuple G =
⟨S,U, P,R, Z,O, n, γ⟩, where s ∈ S describes the global state
of the environment. At each time-step, each agent a ∈ A ≡
{1, . . . , n} selects an action ua ∈ U , and all selected actions
combine and form a joint action u ∈ U ≡ Un. Such a process
leads to a transition in the environment based on the state
transition function P (s′|s,u) : S×U×S → [0, 1]. All agents
share the same reward function r(s,u) : S ×U → R with a
discount factor γ ∈ [0, 1).

In the partially observable environment, the agents’ indi-
vidual observations z ∈ Z are generated by the observation
function O(s, u) : S × A → Z. Each agent has an action-
observation history τa ∈ T ≡ (Z × U)∗. Conditioning on the
history, the policy becomes πa(ua|τa) : T × U → [0, 1]. The
joint policy π has a joint action-value function: Qπ(st,ut) =
Est+1:∞,ut+1:∞ [Rt|st,ut], where t is the timestep and Rt =∑∞

i=0 γ
irt+i is the discounted return. The learning algorithm

has access to all local action-observation histories τ and global
state s during training, yet every agent can only access its
individual history in execution. The learning algorithm we use
in this work is an actor-critic method, MAC-PO, a multi-agent
prioritized experience replay variant of QMIX.

In QMIX [18], the learner is designed for multi-agent co-
operative tasks with global reward. Specifically, QMIX solves
credit assignment problems using additional information dur-
ing training. The core idea of QMIX is value decomposition.
A parameterized mixer function is proposed to combine the
Q-functions of agents into a centralized Q-function that is
trained on the global reward. Further, QMIX demonstrates
that the mixer network provides monotonicity in its inputs,
which makes the argmax of the agents’ Q-functions consistent
with the argmax of the centralized Q-function. This property
is called Individual-Global-Max (IGM), and it is important for
factorizing the global Q-function to agents’ Q-functions.

IV. METHODOLOGY

AccMER trains with the cache-aware transition data-reuse
optimization on top of the MER prioritization scheme to
improve the MARL performance. AccMER aims to reduce the
number of last-level cache misses by reusing transition data,
that ultimately improves the training time. The rest of this
section delves deeper into the MER prioritization scheme and
the transition data-reuse optimization of AccMER’s design.

A. Prioritization Optimization for Experience Replay

Recent work [21] shows that the design of prioritized sam-
pling methods influences the loss function. On the contrary,
the expected gradient of a loss function with non-uniform
sampling is equivalent to that of a weighted loss function with
uniform sampling, which provides a recipe for transforming
a regular loss function L1 with a non-uniform sampling
scheme into an equivalent weighted loss function L2 with
uniform sampling. Based on this equivalence, MAC-PO [13]
further explores the optimal weighting scheme for prioritized
experience in MARL, given by a weighting factor wk(s,u)
when computing the loss function. In this paper, we adopt this
MER prioritization scheme as the baseline while investigating
the hardware-aware optimization that can improve learning
efficiency regarding the overall training time and cache usage.
Given the prioritization weight wk, we use the following loss
function during the learning, which is:

LAccMER =

b∑
i=1

wk(s,u)(Qk − yi)
2(s,u), (1)

where b is the batch size. In the loss function (1), yi =
B∗Qk−1 denotes a fixed target that can be obtained through
a target network, where B∗ is the Bellman operator satisfying
B∗Q(s,u)

def
= r(s,u)+γ argmaxu′ Es′Q(s′,u′). The follow-

ing lemma for deciding optimal weights is proposed in [13].

Lemma 1 (Optimal prioritization weight). The optimal weight
in (1) is proportional to:

wk(s,u) ∝ |Qk − B∗Qk−1| exp(−|Qk −Q∗|)f(πa
k), (2)

where Q∗ denotes the optimal action value function and the
function f(·) is defined as:

f(πa
k)

def
= 1 +

n∑
i=1

n∏
j=1
j ̸=i

πj
k − n

n∏
i=1

πi
k. (3)

The optimal weight in (2) consists of three main terms,
which are Bellman error term |Qk − B∗Qk−1|, value en-
hancement term exp(−|Qk − Q∗|), and joint action proba-
bility function f(πa

k). The Bellman error term measures the
distance between the estimation of the action value function
and the Bellman target, in which the significant difference
means higher hindsight Bellman error and will lead to higher
sampling weight assignment. The value enhancement term
indicates that any transitions with more accurate action values
compared to the optimal value estimation after the Bellman

update should be assigned with higher weights. Considering
the relationship between agents’ individual policies, the joint
action probability function shows the counter-intuitive fact
that the higher weights will be assigned to transitions with
one’s action differentiated from the others, as the maxima of
function (3) can be reached if and only if one agent’s action
probability is small in the transition while all other agents’
action probabilities are large. We adopt this optimal weighting
scheme in our work with the necessary normalization. To
thoroughly exploit transitions with higher weights, we propose
AccMER, that leverages data reuse strategy to efficiently
remember and recapture the highly-weighed transitions in the
replay buffer and utilize them for a specific number of steps
for more efficient and performance-wise better learning.

Algorithm 1 AccMER

1: Initialize step t, experience replay buffer D with size d,
mini-batch size b, reuse ratio α, and weights

2: for t = 1 : tmax do
3: Initialize the state (observation vetor)
4: while goal state is not reached do
5: for each agent a, select action ua w.r.t. the policy πa

6: Compute the reward and next state
7: Store the current trajectory (current state, next state,

rewards, action) into replay buffer D
8: end while
9: for every ⌊d/b⌋ steps, select the S− = {α ·b} transitions

from D ranked based on the optimal weights
10: Sample (1−α)·b transitions as S+ from the complement

of S− in D following the uniform distribution
11: Update the mini-batch S = S− ∪ S+

12: for each time-step k in S do
13: Compute the optimal weights wk according to the

prioritization scheme in Lemma 1
14: Update the weights for transitions
15: end for
16: Update the network parameters
17: end for

B. Cache-aware transition data-reuse optimization

From our analysis, we note that the sampling phase is one
of the compute-intensive phases, as each agent has to sample
all other agents’ transition data sequentially. Figure 2 shows
an example layout of conventional sampling and the priority-
guided transition data-reuse optimization.

Uniform sampling suffers from random memory access
patterns, often leading to low cache line utilization, meaning
the arrays’ transitions are indexed randomly. Because of this,
the number of cache misses and memory bandwidth demands
of the program increase with the number of agents.

To perform the cache-aware transition data-reuse optimiza-
tion, AccMER first partitions two different micro-batches
according to the mini-batch size b as shown in Algorithm 1.
We initialize a weight lookup table W mapping to transitions
data addresses in the replay buffer D. Both lookup table W

and replay buffer D have the size of d. The initial weights for
the weight lookup table will be the same for all transitions.
Depending on the reuse ratio α ∈ [0, 1] (if α is 0, all the
transitions are sampled uniformly, where as if α is 1, all the
transitions will be reused), the micro-batch S− ranks and
selects the transitions data according to the weight lookup
table W from the replay buffer D (line 9). For every ⌊d/b⌋
steps, we reuse the same transitions according to the priority
weights. In this way, we map the addresses of the weight
lookup table W and transitions in the replay buffer D to choose
high-priority transitions. Unlike conventional sampling, which
might select random transitions and often select unimportant
transitions, our optimization leverages priority-guided transi-
tion data-reuse to improve the data availability in upper-level
caches for better memory locality.

(a) Conventional sampling (b) Priority-guided transition data-reuse sampling

0.97 0.95 0.85 0.32 0.68 0.52 T=1

T=2

0.67 0.78 0.32 0.68

0.52 0.34 0.47 0.77

0.14 0.56 0.49 0.97

0.95 0.76 0.39 0.85

0.97 0.95 0.85 0.49 0.65 0.56

0.87 0.81 0.75 0.42 0.61 0.72 T=3

T=40.87 0.81 0.75 0.39 0.65 0.59

Replay Buffer Replay Buffer Mini-batch

Fig. 2: Illustration of (a) conventional sampling, where gray
filled boxes denote the uniformly sampled transitions from the
replay buffer, and (b) data reuse sampling, we sample 50% and
reuse the rest of the transitions (reuse ratio = 0.5, batch size
b = 6, replay buffer D is a 4 ∗ 4 matrix) and the number
of reuses (time-steps) n is computed by ⌊d/b⌋ = 2. At step
T = 1, as the data reuse ratio is 0.5, AccMER selects the
first three transitions with the highest weights, and in the next
phase, uniform sampling is performed on the remaining three
transitions. At step T = 2, the same transition data will be
reused, whereas a new set of transitions is sampled randomly.
Since n = 2, for T = 3 and T = 4, the reuse-based transition
data updates every two steps.

Note that reuse ratio, α for the transition data partition
is input by the user. We sample the remaining transitions
from the complement of S− in replay buffer D following
the uniform distribution and store it in S+ (line 10). In the
next step, we concatenate the S− and S+ and update the
batch S (line 11). By Lemma 1, we calculate the optimal
prioritization weights for the transitions, and then we update
the weight lookup table W with the optimal weight wk. In
order to avoid the bias towards reusing the same transitions,
we apply a discount factor γ to all the weights in the weight
lookup table W . To maximize the reuse of transitions with
high priority, we sort the weight lookup table W so that high-
priority transitions will be reused for multiple steps.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of AccMER
using difficulty-enhanced Predator-Prey task [13] at various
punishment levels. Section V-A introduces the implementation
details and hyper-parameters that we used in the experimental

evaluation. In Section V-B, we demonstrate the effectiveness
of AccMER by comparing the mean reward with several state-
of-the-art MARL baselines. In Section V-B, we show that
AccMER is able to improve the end-to-end training time and
reduce a significant number of last-level cache misses with
no significant loss in the mean episode reward. Finally, in
Section V-D, we conduct the additional scalability tests to
demonstrate the benefits of AccMER1.

A. Evaluation Setup

For evaluation, we implemented the key components of
AccMER: a) Optimal prioritization [13], and b) Cache-aware
transition data-reuse optimization on the baseline QMIX code
base. We use epsilon greedy for action selection with annealing
from ϵ = 0.995 decreasing to ϵ = 0.05 in 100K training steps
in a linear way [1], [13]. The performance for each algorithm
is evaluated for 32 episodes every 1000 training steps.

TABLE II: Hyper-parameters for the Predator-Prey task with
no punishment.

Hyper-parameter Value

Batch size 256
Replay buffer size 100000
Target network update interval Every 200 episodes
Learning rate 0.001
TD-lambda 0.6

Target Platform: We train and profile AccMER on the
Nvidia GeForce RTX 2080TI architecture connected with
Intel(R) Core(TM) i9-7920X CPU, which has 12 cores with 16
MiB of Last-Level Cache, 128 GiB Gigabytes of main memory
and the CPU’s clock speed of 2.90GHz. The server runs on
Ubuntu Linux 20.04.5 LTS operating system with CUDA 11.3,
cuDNN 8.2, PCIe Express® v3.0 with NCCL v2.5.7 com-
munication library. The machine supports python 3.8.16, Py-
Torch (v1.8.2), pyyaml (v5.3.1) and OpenAI GYM (v0.11).
We use Perf [22] tool to evaluate the hardware efficiency.

TABLE III: Hyper-parameters for the Predator-Prey task with
punishment= −1.5.

Hyper-parameter Value

Batch size 128
Replay buffer size 10000
Target network update interval Every 200 episodes
Learning rate 0.001
TD-lambda 0.6

Multi-agent environment: A partially observable environ-
ment on a grid-world Predator-Prey task [13] where 8 agents
have to catch 8 prey in a 10 × 10 grid. Each agent can either
move in one of the 4 compass directions, remain still, or try to
catch any adjacent prey. In this task, a successful capture with
the positive reward of 1 must include two or more predator
agents surrounding and catching the same prey simultaneously,
requiring a high level of cooperation. A failed coordination

1https://github.com/kailashg26/AccMER

between agents to capture the prey, which happens when
only one predator catches the prey, will receive a negative
punishment reward. We select the punishments of 0 and −1.5
in the experiments, with more punishment representing higher
difficulty.

B. Comparison with MARL baselines

We select multiple state-of-the-art MARL algorithms for
comparison, which include value-based factorization MARL
algorithm (i.e., QMIX [18], WQMIX [15], and QPLEX),
decomposed policy gradient method (i.e., VDAC [16]), and
decomposed actor-critic approaches (i.e., FOP [23] and
DOP [24]). All of the baselines have demonstrated their
convergence properties in handling various multi-agent tasks.

We validate the efficacy of AccMER on Predator-Prey
environment for two punishment levels: 0 and −1.5, and the
hyper-parameters are shown in Table II and Table III. The
transition data-reuse ratio α for all the experiments is 0.5, and
the batch size b for Predator-Prey: 0 and −1.5 is 256 and
128, respectively. Additionally, we set the discount factor γ as
0.8 for the Predator-Prey: −1.5 hard settings and γ as 1.0 for
Predator-Prey (no punishment).

Figure 3 shows the performance of eight algorithms with
different punishments, where all results show the effectiveness
of AccMER. We note that AccMER’s convergence levels are
on par with best-performing state-of-the-art MARL algorithms
in finding the optimal policy. In Figure 3b, AccMER sig-
nificantly outperforms other state-of-the-art algorithms like
QMIX and WQMIX and performs on par with MAC-PO in
a hard setting that requires a higher level of coordination
among agents in order to learn optimal policy. Most of the
MARL algorithms learn a sub-optimal policy where agents
learn to work together with limited coordination. Although
the algorithmic performance (reward) of AccMER and MAC-
PO are almost similar, compared to the latter, Figure 4 shows
that AccMER achieves a performance speedup by reducing the
training time by about 17% for Predator-Prey (no punishment)
task compared to MAC-PO. This demonstrates that efficiently
recapturing the prioritized transitions with higher weights and
smart cache data-reuse strategies, AccMER can learn the
optimal policy and improve the training efficiency.

C. Impact of AccMER

We perform experiments with a transition data-reuse ratio,
α = 0.5, meaning 50% of the prioritized transitions are being
reused between the iterations.

Figure 4 shows the training time savings with respect to
the wall-clock training time and the profiles of certain key
hardware performance counters. Specifically, in a Predator-
Prey environment with no punishment, compared to MAC-PO,
AccMER reduces the end-to-end training time by about 17%,
which is almost 1.2× faster than MAC-PO (Figure 4a) and
there is no noticeable degradation in the mean episode reward.
In fact, by reusing prioritized transition data, we reduced
the LLC-load misses by about 23.7% and the global cache
misses by about 17.2%. As the batch size is 128 for the

0 20 40 60 80 100
T (10k)

0

10

20

30

40
M

ea
n

R
ew

ar
d DOP

FOP
VDAC
WQMIX
QPLEX
QMIX
MAC-PO
AccMER

(a) No punishment

0 20 40 60 80 100
T (10k)

100

75

50

25

0

25

M
ea

n
R

ew
ar

d

DOP
FOP
VDAC
WQMIX
QPLEX
QMIX
MAC-PO
AccMER

(b) Punishment = −1.5

Fig. 3: Average reward per episode on the Predator-Prey tasks for AccMER and other MARL algorithms under different
punishment levels. AccMER shows almost the same convergence speed as MAC-PO while reducing the total training time.

LLC-
loads

LLC-
load-
misses

LLC-
stores

dTLB-
loads

dTLB-
load-
misses

Cache-
references

Cache-
misses

Training
time

0%

20%

40%

60%

80%

100%

18.1
23.7 18.4

6.5
15.2 20.3 17.2 17.1

Hardware performance counters

Im
p
ro
ve
m
en
t
(%

)

Predator-Prey with no punishment

(a) No punishment

LLC-
loads

LLC-
load-
misses

LLC-
stores

dTLB-
loads

dTLB-
load-
misses

Cache-
references

Cache-
misses

Training
time

0%

20%

40%

60%

80%

100%

16.5
27.5

18.4

4.5
16.3 21.2 22.9

15.2

Hardware performance counters
Im

p
ro
ve
m
en
t
(%

)

Predator-Prey with -1.5 punishment

(b) Punishment = −1.5

Fig. 4: Hardware performance analysis of AccMER for Predator-Prey environment with punishment= 0 and punishment= −1.5.

hard setting (Predator-Prey with punishment=−1.5), AccMER
shows 15.2% improvement in training time, compared to the
17.1% when the batch size is 256. This indicates that larger
batch sizes and replay buffers can boost further performance
gains (Figure 4b). Interestingly, when a high level of coordi-
nation is required among the agents, data-reuse optimization
demonstrates higher effectiveness by reducing 27.5% LLC
load misses, and 16.3% dTLB load misses compared to
MAC-PO. These experimental results confirm that priority-
guided transition data-reuse is highly effective in multi-agent
scenarios. We further note that excluding the environment in-
teractions phase from the MARL training time will give further
speedups, as the environment interactions grow dramatically
when more agents are involved in the MARL training phase.

D. Scalability Tests

We conduct the scalability tests and profile AccMER on the
Nvidia GeForce RTX 3090 Ampere Architecture connected
with AMD Ryzen Threadripper PRO 3975WX CPU, which
has 32 cores with 128 MiB of Last-Level Cache, 512 Giga-
bytes of main memory and the CPU’s clock speed of 3.5GHz.
The server runs on Ubuntu Linux 20.04.5 LTS OS with PCIe
Express® v4.0 and NCCL v2.8.4 communication library.

We use the following hyper-parameters for the scalability
tests: The transition data-reuse ratio α is 0.5, and the batch
size b for Predator-Prey: 0 is set to 128, with 10, 000 as the
buffer size. Additionally, we set the discount factor γ as 0.8
for the Predator-Prey: 0 task.

0 20 40 60 80 100
T (10k)

0

25

50

75

100

125

150

M
ea

n
R

ew
ar

d

MAC-PO: 32 agents
AccMER: 32 agents
MAC-PO: 16 agents
AccMER: 16 agents

Fig. 5: Average reward per episode on the Predator-Prey task
for AccMER and MAC-PO algorithms with no punishment.

Figure 5 shows the mean episode reward curves of AccMER
and MAC-PO [13]. While we can see that when the number
of agents increases linearly (from 16 to 32), AccMER shows
a slightly faster convergence than MAC-PO. Moreover, since
AccMER reuses the prioritized transition data for multiple
future steps, it reduces the end-to-end training time by about
19.8% and 25.4% for 16 and 32 agents, respectively (Fig-
ure 6). By scaling the number of agents, we observe that the
global cache misses gradually improve (18.4% improvement
in cache misses for 32 agents over the baseline), which
indicates that AccMER can achieve higher speedups and
improve the hardware efficiency for large-scale cooperative
MARL settings.

VI. RELATED WORK

Prior works have demonstrated how experience replay and
its variants can achieve better convergence for RL workloads.
However, to our knowledge, no prior research presents in-
sights into end-to-end performance improvement that involves
multiple agents from the systems perspective. We provide an
overview of related efforts in hardware-software acceleration
and experience replay in RL.

dTLB-load-misses Cache-misses Training time
0%

20%

40%

60%

80%

100%

16.8 17.3 19.8
27.6

18.4
25.4

Hardware performance counters

Im
p
ro
ve
m
en
t
(%

)

16 agents

32 agents

Fig. 6: Performance analysis of AccMER for Predator-Prey
task with no punishment in multi-agent settings.

A. Quantization

Low-precision training for neural networks reduces the
neural network weights, enables faster compute operations,
and minimizes the memory transfer computation time. Quan-
tization aware training [25], post-quantization training [26],
and mixed precision [27] demonstrated that neural networks
may be quantized to a lower precision without significant
degradation in rewards. Furthermore, to speedup the training,
prior works have proposed algorithmic modifications (e.g.,
compound loss scaling, storing the hypotenuse in Adam, etc.)
that leaves the underlying agent and its hyper-parameters
unchanged but improves the numerical stability and reduces
the memory and compute requirements [28]. QuaRL [29]
demonstrates how to accelerate single-agent RL, where quanti-
zation is applied to speedup the RL training and inference. All
the prior works differ from our work as they apply quantization
to single-agent RL algorithms or neural networks. In contrast,
we seek to improve the performance of MARL by reusing the
prioritized transitions for a certain number of time-steps.

B. Software-Hardware Acceleration for RL

Distributed training has been widely adopted to reduce
the training time of single-agent RL algorithms [30]–[35].
Another strategy for MARL acceleration is to show the
training efficiency via theoretical analysis by restricting the
agent interactions to one-hop neighborhoods and adopting a
distributed training strategy to simulate the state transitions of
only a small subset of agents on each compute node [36]. How-
ever, training on VM-based approaches still requires extensive
management of the cluster and deploying the training jobs.
FA3C [31] studies how to accelerate multiple parallel worker
scenarios, where each agent is controlled independently within
their own environments using single-agent RL algorithms.
iSwitch [32] reduces the end-to-end network latency for syn-
chronous training, but also improves the convergence with

faster weight updates for asynchronous training. In contrast,
our work focuses on multi-agent learning frameworks, where
the agents operate in a single shared environment.

C. Experience Replay Buffer

Many RL algorithms adopt prioritization to increase the
learning efficiency, initially originating from prioritized sweep-
ing for value iteration [37], [38]. Prioritized experience re-
play (PER) [39] is one of the key advancements in the
DQN algorithm [40], [41] and has been included in many
RL algorithms combining multiple improvements [42], [43].
Variants of PER have been proposed for considering sequences
of transitions [11], [44] or optimizing the prioritization func-
tion [45]. Discor re-weights updates to reduce variance [46].
ReMERN uses the regret minimization method to design
the prioritized experience replay scheme in the single-agent
environment [12]. So far, most prior works about experience
replay are designed for single-agent RL algorithms.

A recently proposed multi-agent experience replay frame-
work, MAC-PO [13], can find the optimal prioritized sampling
scheme by computing the optimal sampling weights for expe-
rience replay when the environment involves multiple agents.
We adopt MAC-PO as one of the baselines in our studies.
However, different from MAC-PO, this paper seeks to improve
the actual run-time (system) performance of the multi-agent
experience replay prioritization, such as training efficiency
and cache utilization. Specifically, AccMER adopts the MER
prioritization scheme in MAC-PO and repeatedly reuses the
selected transitions with high prioritization weights, achieving
performance speedup while retaining the MAC-PO’s learning
performance advantages. Apart from methods that focus on
improving the training time of cooperative problems, other
mechanisms use a neighbor sampling strategy to improve the
locality and training efficiency of competitive tasks [47].

VII. CONCLUSION

We presented AccMER, a cache-aware transition data reuse
strategy for multi-agent experience replay. Our experimental
results demonstrate that AccMER reduces the overall training
time by about 25.4% (for 32 agents) over prior multi-agent
prioritized replay schemes. Additionally, we show that the
proposed data reuse optimization alleviates the performance
issues posed by random memory access patterns by optimizing
the transition data sampling phase for better hardware cache
locality, thereby improving the overall MARL performance.

ACKNOWLEDGMENT

This research is based on work supported by the National
Science Foundation under grant CCF-2114415.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Transactions
on Industrial informatics, vol. 9, no. 1, pp. 427–438, 2012.

[3] Y. Hu, A. Nakhaei, M. Tomizuka, and K. Fujimura, “Interaction-aware
decision making with adaptive strategies under merging scenarios,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 151–158.

[4] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib, “Coordinated multi-
robot exploration under communication constraints using decentralized
markov decision processes,” in Twenty-sixth AAAI conference on artifi-
cial intelligence, 2012.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[6] P. Razzaghi, A. Tabrizian, W. Guo, S. Chen, A. Taye, E. Thompson,
A. Bregeon, A. Baheri, and P. Wei, “A survey on reinforcement learning
in aviation applications,” arXiv preprint arXiv:2211.02147, 2022.

[7] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Scalability
Bottlenecks in Multi-Agent Reinforcement Learning Systems,” arXiv
preprint arXiv:2302.05007, 2023.

[8] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning. PMLR,
2019, pp. 2961–2970.

[9] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[10] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[11] M. Brittain, J. Bertram, X. Yang, and P. Wei, “Prioritized sequence
experience replay,” arXiv preprint arXiv:1905.12726, 2019.

[12] X.-H. Liu, Z. Xue, J. Pang, S. Jiang, F. Xu, and Y. Yu, “Regret minimiza-
tion experience replay in off-policy reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 34, pp. 17 604–17 615,
2021.

[13] Y. Mei, H. Zhou, T. Lan, G. Venkataramani, and P. Wei, “MAC-PO:
Multi-agent experience replay via collective priority optimization,” arXiv
preprint arXiv:2302.10418, 2023.

[14] W. Böhmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,”
in International Conference on Machine Learning. PMLR, 2020, pp.
980–991.

[15] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted qmix:
Expanding monotonic value function factorisation for deep multi-agent
reinforcement learning,” 2020.

[16] J. Su, S. Adams, and P. Beling, “Value-decomposition multi-agent actor-
critics,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 13, 2021, pp. 11 352–11 360.

[17] J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overes-
timation bias in multi-agent domains using double centralized critics,”
NeurIPS Deep Reinforcement Learning Workshop, 2019.

[18] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2018, pp. 4295–4304.

[19] H. U. Sheikh and L. Bölöni, “Multi-agent reinforcement learning for
problems with combined individual and team reward,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp.
1–8.

[20] F. A. Oliehoek and C. Amato, A concise introduction to decentralized
POMDPs. Springer, 2016.

[21] S. Fujimoto, D. Meger, and D. Precup, “An equivalence between loss
functions and non-uniform sampling in experience replay,” Advances
in neural information processing systems, vol. 33, pp. 14 219–14 230,
2020.

[22] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, vol. 18, 2010, pp. 1–42.

[23] T. Zhang, Y. Li, C. Wang, G. Xie, and Z. Lu, “Fop: Factorizing optimal
joint policy of maximum-entropy multi-agent reinforcement learning,”
in International Conference on Machine Learning. PMLR, 2021, pp.
12 491–12 500.

[24] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang, “Dop: Off-policy
multi-agent decomposed policy gradients,” in International Conference
on Learning Representations, 2020.

[25] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[26] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks,
and G.-Y. Wei, “Algorithm-hardware co-design of adaptive floating-point
encodings for resilient deep learning inference,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[27] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[28] J. Björck, X. Chen, C. De Sa, C. P. Gomes, and K. Weinberger,
“Low-precision reinforcement learning: running soft actor-critic in half
precision,” in International Conference on Machine Learning. PMLR,
2021, pp. 980–991.

[29] S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-Maron, A. Faust,
and V. J. Reddi, “Quarl: Quantization for fast and environmentally
sustainable reinforcement learning,” 2022.

[30] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“GA3C: GPU-based A3C for deep reinforcement learning,” CoRR
abs/1611.06256, 2016.

[31] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated
deep reinforcement learning,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 499–513.

[32] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 279–291.

[33] M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, N. Mom-
chev, D. Sinopalnikov, P. Stańczyk, S. Ramos, A. Raichuk, D. Vincent
et al., “Acme: A research framework for distributed reinforcement
learning,” arXiv preprint arXiv:2006.00979, 2020.

[34] A. Stooke and P. Abbeel, “Accelerated methods for deep reinforcement
learning,” arXiv preprint arXiv:1803.02811, 2018.

[35] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient
parallel methods for deep reinforcement learning,” arXiv preprint
arXiv:1705.04862, 2017.

[36] B. Wang, J. Xie, and N. Atanasov, “Darl1n: Distributed multi-agent
reinforcement learning with one-hop neighbors,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 9003–9010.

[37] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,” Machine learning, vol. 13, no. 1,
pp. 103–130, 1993.

[38] H. Van Seijen and R. Sutton, “Planning by prioritized sweeping with
small backups,” in International Conference on Machine Learning.
PMLR, 2013, pp. 361–369.

[39] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in ICLR, 2016.

[40] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[41] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[42] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, “Distributed prioritized experience replay,” in
International Conference on Learning Representations, 2018.

[43] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
T. Dhruva, A. Muldal, N. Heess, and T. Lillicrap, “Distributed distri-
butional deterministic policy gradients,” in International Conference on
Learning Representations, 2018.

[44] B. Daley and C. Amato, “Reconciling λ-returns with experience replay,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[45] D. Zha, K.-H. Lai, K. Zhou, and X. Hu, “Experience replay optimiza-
tion,” in IJCAI, 2019.

[46] A. Kumar, A. Gupta, and S. Levine, “Discor: Corrective feedback in
reinforcement learning via distribution correction,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18 560–18 572, 2020.

[47] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Towards efficient
multi-agent learning systems,” arXiv preprint arXiv:2305.13411, 2023.

