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Abstract—Gradient compression (e.g., gradient quantization
and gradient sparsification) is a core technique in reducing
communication costs in distributed learning systems. The recent
trend of gradient compression is to use a varying number of bits
across iterations, however, relying on empirical observations or
engineering heuristics without a systematic treatment and anal-
ysis. To the best of our knowledge, a general dynamic gradient
compression that leverages both quantization and sparsification
techniques is still far from understanding. This paper proposes a
novel Adaptively-Compressed Stochastic Gradient Descent (AC-
SGD) strategy to adjust the number of quantization bits and
the sparsification size with respect to the norm of gradients, the
communication budget, and the remaining number of iterations.
In particular, we derive an upper bound, tight in some cases, of
the convergence error for arbitrary dynamic compression strat-
egy. Then we consider communication budget constraints and
propose an optimization formulation - denoted as the Adaptive
Compression Problem (ACP) - for minimizing the deep model’s
convergence error under such constraints. By solving the ACP,
we obtain an enhanced compression algorithm that significantly
improves model accuracy under given communication budget
constraints. Finally, through extensive experiments on computer
vision and natural language processing tasks on MNIST, CIFAR-
10, CIFAR-100 and AG-News datasets, respectively, we demon-
strate that our compression scheme significantly outperforms
the state-of-the-art gradient compression methods in terms of
mitigating communication costs.

Index Terms—Distributed Learning, Communication-efficient,
Quantization, Sparsification

I. INTRODUCTION

Stochastic gradient descent (SGD) is a widely-used opti-
mization technology to machine learning tasks, due to its
lower computational complexity and good empirical perfor-
mances. However, the traditional centralized SGD framework
cannot cope with massive data nowadays. Instead, distributed
SGD [2], [3] utilizes local user data to build distributed models
and transfers local gradients among distributed nodes and a
parameter servers until all nodes reach a global consensus on
the learning model.

However, the explosion of edge devices, such as mobile
phones and wearable devices, and an increase in model
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size make communication the bottleneck for distributed SGD
training. Three typical communication reduction schemes have
been proposed to improve the efficiency of distributed SGD.
Quantization [4] and sparsification [5] reduce communication
overhead by scaling down the uploaded model size. In particu-
lar, quantization encode the original gradient vectors to smaller
bits while sparsification drops out less informative elements.
Another idea is to reduce the number of communication rounds
between distributed nodes and server. For example, periodic
or other less-frequent model updates [6], [7]. Some work
consider a combination of the above three schemes [8], [9]. In
this work, we mainly focus on the first two techniques, namely
quantization and sparsification.

Above works still lack exploration on two aspects: 1)
Dynamic compression level adjustment. Most current work
uses a fixed compression level, i.e., the fixed quantization bits
or sparse size during the whole training process but ignore
the fact that the statistics of gradients of models change
during training. In contrast to them, [10]–[13] have shown
from empirical observations that dynamically adjusting the
compression level can achieve a better convergence compared
to the fixed scheme. Different from them, our work gives the
compression level allocation rule for each iteration from a the-
oretical perspective. 2) A systematic framework to characterize
the trade-off between the explicit communication budget and
learning performance. Most of the existing work reveals from
the experimental results that the smaller communication cost
(the larger compression level) leads to lower model accuracy.
We take into account of an explicit communication budget
constraints - which limit the total number of bits available
for transferring gradients during the entire training process,
and further characterizes the trade-off relationship between this
budget and convergence error.

This paper develops a novel Adaptively-Compressed SGD
(AC-SGD) strategy for dynamic gradient descent to achieve
communication-efficient distributed SGD. We propose an op-
timization formulation - denoted as the Adaptive Compression
Problem (ACP) - for finding a compressor and the optimal
dynamic compression level at each iteration by minimiz-
ing the convergence error under such constraints. To solve
the problem, We propose SQ Compressor (Sparsification-
Quantization Compressor), that collaboratively leverages both
quantization and sparsification techniques. At each iteration
step, we first optimizes the dynamic compression level for
each client and then determines the optimal quantization bits
and sparsification size for the SQ compressor by minimizing
the gradient variance under the current compression level.
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We use convergence error to qualify the gap between the
loss of learned and the optimal model. For strongly convex
problems, it is shown that the convergence error consists of
two parts: an error due to the stochastic gradient descent
method and an error resulted from quantization and sparsifica-
tion, which diminishes to zero as the communication budget
increases. The upper and lower bounds on the convergence
error are derived and proven to be tight for a special case
of quadratic functions with the isotropic Hessian matrix. For
non-convex learning problems, different from the ordinary
mean square of the gradient norms used in previous work
[8], [14], [15], we derive an upper bound on the weighted
mean square of gradient norms at each iteration step, termed
the non-convex convergence error. We give more significant
weight to the gradient norm in the later stage of training,
which better characterize the convergence characteristics of
non-convex problems.

This paper makes the following key contributions:
• We propose a novel framework, AC-SGD, to realize

communication budget aware distributed learning by unifying
dynamic gradient quantization and sparsification.

• We first propose the SQ Compressor (Sparsification-
Quantization Compressor), which determines the optimal
quantization bits and sparsification size by minimizing the
gradient variance under the communication bit constraint.
Based on this designed compressor, our proposed AC-SGD
algorithm leverages an optimization problem to jointly adjust
the compression level with respect to the norm of gradients,
the communication budget, and the remaining number of
iterations.

• Our theoretical results characterize the trade-off between
communication budget and convergence error. Specifically, we
derive an upper bound on the convergence error of compressed
stochastic gradient descent for both strongly convex objectives
and non-convex objectives. The upper bound is shown to be
tight in special cases.

• We validate our theoretical analysis through extensive
experiments some machine learning tasks, including image
classification tasks on MNIST, CIFAR-10 and CIFAR-100 and
text classification tasks on AG-News. The results demonstrate
significant improvement over state-of-the-art gradient com-
pression methods in terms of mitigating communication costs.

II. RELATED WORK

The use of quantization and sparsification for
communication-efficient gradient methods has decades
rich history and its recent use in training deep neural
networks has re-ignited interest [4], [5], [16]–[18].

Static Compression A number of current works focus
on static compression schemes, including quantization and
sparsification, where the quantization bits or sparsification size
used in the training process are fixed in advance.

For quantization, Sign SGD uses 1 bit to quantize each
dimension of the gradients [16]. QSGD [4] and k-level quan-
tization [19] are stochastic quantization schemes that can
quantize elements into arbitrary bits.

For sparsification, Top-k is a biased sparsifier which retains
largest k elements of the gradient vector, and sets the rest

elements to 0 [5]. Rand-k sparsifier randomly drops out some
elements and amplifies the remaining elements appropriately
to ensure the sparsified gradient unbiased [18]. TCS [20] seeks
a certain correlation between the sparse representations used
at consecutive iterations in FL, to reduce the overhead of
encoding the non-zero positional information. PowerSGD [21]
performs a low-rank linear transformation to sparsify the
model (reduce the number of parameters).

Some recent work jointly uses these two techniques [8], [9]
for more efficient communication. In particular, [8] combines
aggressive sparsification with quantization by keeping track of
the difference between the original and compressed gradients.
[9] defines the gradient magnitude to indicate the importance.
Then, the gradient whose magnitude is larger than a certain
threshold will be quantized to a fixed number of bits and
transmitted.

Adaptive Compression However, as the statistics of gradi-
ents change during training, it is unwise to consider the fixed
compression level during the whole training process. Some
recent studies have started to construct adaptive compression
schemes to dynamically decide the compression level using
empirical observations or engineering heuristics. [12] and [13]
determine the compression level according to gradient’s size.
Anders [10] demonstrates that using few quantization bits
in the early epochs and gradually increase bits in the later
epochs. MQGrad [11] formulates the quantization determi-
nation problem as an online learning problem where the
states record historical information from the past optimization
iterations. AdaComp [22] is based on localized selection of
gradient residues and automatically tunes the compression rate
depending on local activity. MIPD [23] adaptively compresses
the gradients based on model interpretability and probability
distribution of gradients. Different from above heuristic com-
pression scheme, recently, [24] and [25] proposed adaptive
compression from the theoretical perspective. [24] adaptively
adjust the quantization points to minimize the variance of
vector quantization while [25] adaptively computes the scaling
factors for integer rounding operators. However, none of them
consider the communication budget constrained setting for
adaptive compression.

Error Compensation To compensate the compression er-
rors and accelerate the learning speed, various error compensa-
tion techniques have been introduced [5], [26]. ScaleCom [27]
explores the similarity of gradient distribution across clients to
provide a scalable error compensation of Top-k compressors.
CSER [28] has developed an error compensation method
termed error reset to help compressors speed up the learning
speed.

To sum up, the above works either fix the compression
level in advance or adjust the level according to engineering
heuristics, which may reach contradicted conclusions, e.g.,
MQGrad [11] and AdaQS [10] suggest using few quantization
bits in early epochs and gradually increasing the number of
bits in later epochs, while Anders [12] chooses to use more
bits in the early training stage and fewer bits in the later stage.
Error compensation is a parallel technique to accelerate the
learning speed of different compressors. Part of this work has
been presented in [1], which gives the theoretical framework
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of adaptive quantization. This work extends the previous
algorithm to jointly consider quantization and sparsification.
To our best knowledge, our proposed AC-SGD is the first to
propose a systematic communication budget aware framework
to adaptively adjust the compression level with respect to the
gradient norm, the number of remaining training iteration and
available communication budget. In Table I, we compare the
properties of AC-SGD with existing works.

TABLE I
COMPARISON OF AC-SGD AND RELATED WORKS.

Quantization Sparsification Adaptive
[16], [17],
[4], [19] ! # #

[5], [18],
[20], [21], [27] # ! #

[10]–[12] ! # !
(Heuristic)

[13] # ! !
(Heuristic)

[8], [9] ! ! #
[1] (Our

previous conf.) ! # !
(Theoretical)

AC-SGD
(Our work) ! ! !

(Theoretical)

III. SYSTEM FRAMEWORK AND PROBLEM FORMULATION

A. Distributed SGD

A distributed learning system consists of W clients and one
parameter server (PS). Each client can perform local learning
based on dataset Di.The server coordinates the optimization
of a set of global parameters x by minimizing the objective
function F : Rd → R without sharing local datasets:

min
x∈Rd

F (x) = min
x∈Rd

1

W

W∑
i=1

Li(x, Di) (1)

where Li(x;Di) is the local objective, computed by
Li(x, Di) = Eξ∼Di

[li(x; ξ)], (2)
where with li(·, ·) is a user-specific loss function. Before
introducing the proposed framework, we first explain the
Distributed SGD [6], [29], which is a benchmark distributed
optimization algorithm widely used to solve the problem 1.
At each iteration t, the clients download the aggregated model
xt−1 from the server, perform local optimization minimizing
an empirical objective Li(x, Di) with learning rate η using a
local optimizer SGD, and then send the local gradients g

(i)
t

back to the server. The server averages the solutions obtained
from the clients by: xt = xt−1− η

W

∑W
i=1 g

(i)
t . The procedure

is iterated for T iterations.

B. Communication-Efficient Distributed SGD

From the above learning process, we can see that the clients
and the server must iteratively exchange their model param-
eters over the links. This inevitably introduces significant
communication overhead, especially in scenarios with massive
edge devices like IoT. To reduce the communication cost, we
propose the communication-efficient SGD framework, shown
in Fig. 1 (Considering that in the actual scenario, the downlink

speed of the device is usually much higher than the upload
speed, this work will follow the previous work settings [5],
[17], only consider compressing the upload gradient, and do
not deal with the downlink parameters.). Each client i has
a restricted communication budget C(i), indicating the total
communication resources (in bits) that client i can use during
the whole training process. The key idea is to force each client
to adaptively compress its local stochastic gradients before
sending them to the server.

The system operates over T iterations. Each iteration t
consists of four steps. 1) The model distribution step follows
the standard distributed SGD; 2) After local optimization,
client i employs a compressor operator C

c
(i)
t
[·] to compress

gradient g(i)
t to ĝ

(i)
t of size c

(i)
t bits; 3) The compressed local

gradients are sent to the server and 4) the global model is
optimized by:

xt = xt−1 −
η

W

W∑
i=1

ĝ
(i)
t = xt−1 −

η

W

W∑
i=1

C
c
(i)
t
[g

(i)
t ] (3)

Our goal is to solve problem (1) with constraint∑T−1
t=0 c

(i)
t ≤ C(i) for i = 1, ...,W . The most challenged parts

are: 1) how to determine the compression bits c
(i)
t ? and 2)

How to construct the compress operator C
c
(i)
t
[·]? To address

these two issues, we propose an algorithm, called Adaptively
Compress SGD (AC-SGD) in the next section by solving some
optimization problems iteratively. Before that, we first make
some commonly used assumptions for stochastic gradients g(i)

t

and objective function F (x).

Assumption 1 (Unbiasness and Bounded Variance of Stochas-
tic Gradient [30], [31]). The stochastic gradient oracle gives
us an independent unbiased estimate g with a bounded vari-
ance:

Eξ∼Di
[g

(i)
t ] = ∇F (xt), (4)

Eξ∼Di
[∥g(i)

t −∇F (xt)∥2] ≤ σ2. (5)

Assumption 2 (Smoothness [32]). The objective function
F (x) is L-smooth, which means ∀x,y ∈ Rd, ∥∇F (x) −
∇F (y)∥ ≤ L∥x− y∥.

It implies that ∀x,y ∈ Rd, we have

F (y) ≤ F (x) +∇F (x)T(y − x) +
L

2
∥y − x∥2 (6)

∥∇F (x)∥2 ≤ 2L[F (x)− F (x∗)] (7)

Assumption 3 (Strong convexity [30]). The objective function

F (x) is µ-strongly convex, which means ∃µ > 0, F (x)−
µ

2
xTx

is a convex function.

From Assumption 3, we have: ∀x,y ∈ Rd,

F (y) ≥ F (x) +∇F (x)T(y − x) +
µ

2
∥y − x∥2 (8)

∥∇F (x)∥2 ≥ 2µ[F (x)− F (x∗)] (9)
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IV. ADAPTIVELY-COMPRESSED SGD

In this section, We first investigate the properties for the
designed SQ Compressor, which leverages both quantization
and sparsification operations. We then propose a dynamic
compression level adjustment algorithm for this compressor,
called AC-SGD algorithm, and exam its learning performance
towards convergence error.

A. SQ Compressor Design

Generally, we can choose unbiased and biased compressors.
However, commonly used biased compressors usually require
strong statistical assumptions and may lead to divergence, as
shown in [33]. Therefore, we focus on the unbiased com-
pressor in our design1. We propose the compression scheme
as a combination of Randk sparsification and stochastic
uniform quantization, which are unbiased with bounded vari-
ance. Specifically, we form our compression operator Cc[g] as
Qb[Sk(g)], where Qb[·] is a quantizer with b quantization bits;
Sk(·) is a sparsifier with k sparsification size.

Sparsification: Similar to the operation in [5], [18], we let
Sk(g) = d

kRandk(g). For vector g, the sparsifier randomly
selects k elements, enlarges them by d

k times, and then sets
the remaining d− k elements to 0.

Quantization: There are several types of quantization oper-
ations – categorized from different perspectives, such as grid
quantization, uniform and non-uniform quantization, biased
and unbiased quantization. Here, we adopt a family of stochas-
tic uniform quantization, similar to [4], to quantize the selected
k elements. The j-th component of the vector Sk(g) is quan-
tized as Qb[Sk(g)j ] = ∥Sk(g)∥ · sgn(Sk(g)j) · ζ(Sk(g)j , s).
Here ∥Sk(g)∥ is the l2 norm of Sk(g); sgn(Sk(g)j) =
{+1,−1} is the sign of Sk(g)j ; s = 2b−1 is the quantization
level; and ζ(Sk(g)j , s) is an unbiased stochastic function that
maps scalar |Sk(g)j |/∥Sk(g)∥ to one of the values in set
{0, 1/s, 2/s, . . . , s/s}.

The following Lemma characterize the properties of the
compressed gradient ĝ = Qb[Sk(g)].

Lemma 1 (Unbiasness and Bounded Variance of SQ-Com-
pressor). For gradient vector g ∈ Rd, if the number of
quantization bits is b and the sparsification size is k, then
the compressed vector ĝ = Qb[Sk(g)] satisfies:

E[ĝ] = g (10)

and

E
[
||ĝ||2

]
≤ ∥g∥2 +

[
d− k

k
+

d

4b

]
∥g∥2, (11)

The full proof is shown in Appendix. A. Eq. (10) means
that the compressed gradient ĝ is the unbiased estimate of g.
We focus on Eq. (11), that implies the noise added on the
uncompressed gradient, defined as:

h(k, b) ≜
d− k

k
+

d

4b
(12)

1Note that we can also extend our design to biased compression scenarios,
however, the effectiveness may need strong statistical assumptions as well.

Smaller h(k, b) implies less information loss during compres-
sion, but that usually means more bits are needed to express
g. Thus, the optimal design of the compressor can be found
by minimizing h(k, b) with the bits constrain c:

min
b,k

h(k, b)

s.t. k(b+ log2 d) +Bpre = c
(13)

where c is the constricted bits of ĝ; log2 d is the additional
number of bits to encode the indices of the Randk elements
and Bpre is the number of bits of full-precision floating
point (e.g., Bpre = 32 or 64) to represent ∥Sk(g)∥ after
sparsification operation.

By solving the above optimization problem, determine the
parameters of our SQ compressor :

b∗ =
1

2
log2 [2 ln 2 ∗ (c−Bpre)] (14)

k∗ =
c−Bpre

1
2 log2 [2 ln 2 ∗ (c−Bpre)] + log2 d

(15)

Substituting b∗ and k∗ to (12), we have

h(k∗, b∗) ≤ 3d log2 d

2c
(16)

This is the upper bound of error introduced by SQ compressor
with optimal parameters b and k given allocated bit c.

B. Compression Level Allocation

From Eqs. (14) and (15), we find that values of b
(i)
t and

k
(i)
t depend oh the given c

(i)
t . Therefore, we next discuss how

to adaptively adjust the compression level the c
(i)
t at each

iteration t for SQ-Compressor.
We formulate the compression level decision problem as a

performance loss minimization problem under the communica-
tion constraints, called Adaptive Compression Problem (ACP)
in Eq. (17). Specifically, we use convergence error to measure
the performance loss:

(ACP): min
{c(i)t }

δ(F, T,W, {c(i)t })

s.t.

T−1∑
t=0

c
(i)
t ≤ C(i), i = 1, 2, ...,W

(17)

where δ(F, T,W ) = F (xT ) − F (x∗) is the convergence
error using SQ-compressor and x∗ is the optimal point to
minimize F . Please note that here we only considered the
convergence error of the strong convex problem, please refer
to Section VI for the discussion for non-convex problems.
The original ACP problem is not easy to solve therefore we
relax the problem to minimize the upper bound of convergence
error. According to Lemma 1, the upper bound of the errors
when performing SQ compression with allocated bit c

(i)
t

is 3d log2 d

2c
(i)
t

. After local gradient uploading, the aggregated

stochastic gradient: ĝt ≜ 1
W

∑W
i=1 Cc(i)t

[g
(i)
t ] accumulates the

errors caused by W clients. Together with Assumption 1, we
characterize the property of ĝt using the following Lemma.
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Lemma 2 (Unbiasness and Bounded Variance of Aggre-
gated Stochastic Gradient). For the local gradient g(i)

t , given
allocated bits is c

(i)
t , after SQ-compression the aggregated

gradient ĝt satisfies:

E[ĝt] = ∇F (xt) (18)

and

E
[
||ĝt||2

]
≤ ∥∇F (xt)∥2 +

σ2

W︸︷︷︸
Sampling

Noise

+
3d log2 d

2W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t︸ ︷︷ ︸

Compression Noise

,

(19)

Eq. (18) means that the aggregated gradient ĝt is the
unbiased estimate of ∇F (x). Eq. (19) implies that the gradient
noises(i.e., the difference between ||ĝt||2 and ∥∇F (xt)∥2)
consists of two parts: the first part is the sampling noise, which
results from the stochastic noise of stochastic gradient; the
second part is the compression noise, which is proportional
to ∥g(i)

t ∥2 and decays with the increase of the number bits
c
(i)
t . In the following section, we consider the worst case of

the gradient noise, that is, the gradient noise always reach the
upper bound value:

E
[
||ĝt||2

]
= ∥∇F (xt)∥2 +

σ2

W
+

3d log2 d

2W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

,

(20)

Lemma 2 gives the noised added on the aggregated gradient ĝt

with allocated bits c
(i)
t . Then considering totally T iterations

we can obtain the convergence error bound of Eq. (1) using
SQ-compressor with c

(i)
t , shown in the following Theorem.

Theorem 1 (Convergence Error Bound for Strongly Convex
Objectives). For the problem in Eq. (1) under Assumptions 1,
2, 3, with initial parameter x0, using SQ-Compressor to
compress gradients in each iteration, we can upper bound the
convergence error by

E[F (xT )− F (x∗)]

≤ αT [F (x0)− F (x∗)] +
Lη2σ2[1− αT ]

2W (1− α)︸ ︷︷ ︸
Error of Distributed SGD

+
3Lη2d log2 d

4W 2

T−1∑
t=0

αT−1−t
W∑
i=1

∥g(i)
t ∥2

c
(i)
t︸ ︷︷ ︸

Compression Error

, (21)

and lower bound it by

E[F (xT )− F (x∗)]

≥ βT [F (x0)− F (x∗)] +
µη2σ2(1− βT )

2W (1− β)︸ ︷︷ ︸
Error of Distributed SGD

+
3µη2d log2 d

4W 2

T−1∑
t=0

βT−1−t
W∑
i=1

∥g(i)
t ∥2

c
(i)
t︸ ︷︷ ︸

Compression Error

, (22)

where α := 1− 2µη + Lµη2, and β := 1− 2Lη + Lµη2.

The full proof is shown in Appendix. D.
We can see that the convergence error consists of two parts:

the first two terms are the error of the standard distributed SGD
method [34], which can be reduced by increasing the number
of iterations T and also depends on the learning rate η (from
the expression of α, we can see that when η ≤ 1/L, with
the increase of η, α decrease, and the convergence rate of the
model is accelerated); The last term is compression error,
resulted from the lossy compression of gradients, directly
increases the convergence error floor. The compression error
is the convolution of the compression noise and the weighting
function αT−1−t (or βT−1−t). Note that α (or β) is less than
1. Thus we give more weight to recent gradient noises, which
means that more recent gradient information is more relevant.

According to Theorem 1, we can rewrite the ACP problem
as follows for strongly convex objectives:

(ACP): min
{c(i)t }

T−1∑
t=0

αT−1−t ∥g
(i)
t ∥2

c
(i)
t

s.t.

T−1∑
t=0

c
(i)
t ≤ C(i), for i = 1, 2, ...,W,

(23)

By solving the above optimization problem, we can deter-
mine the {c(i)t } at every iteration step:

c
(i)
t = r

(i)
C α(T−1−t)/2∥g(i)

t ∥ (24)

and

r
(i)
C =

C(i)√
2L[F (x0)− F (x∗)] + σ2 1−αT/2

1−α1/2

(25)

Remark 1. The number of compression bits is determined
by three factors: (i) the communication budget C(i), more
communication budget permits more bits can be allocated
for compression; (ii) the iteration step t, the number of
bits is increasing as the training process goes on; (iii) the
local gradient norms ∥g(i)

t ∥, gradients with a larger norm
should be compressed using more bits. (ii) and (iii) may affect
how to adjust the number of compression bits with t: the
increased weight α(T−1−t)/2 and the decreased local gradient
norm ∥g(i)

t ∥. (α(T−1−t)/2 increases with the iterations t, and
∥g(i)

t ∥ usually gets smaller as the training process goes on.)
Therefore,
• Decreasing in Communication. If the decreasing rate of

the local gradient norm (i.e.,
∥g(i)

t+1∥
∥g(i)

t ∥
) smaller than

√
α, then

c
(i)
t+1 < c

(i)
t , which means the number of compression bits

decreases with the iteration step;
• Increasing in Communication. On the contrary, if the

decreasing rate
∥g(i)

t+1∥
∥g(i)

t ∥
is larger than

√
α, then c

(i)
t+1 > c

(i)
t ,

meaning that the number of compression bits increases with
the iteration step.

We summarize the above process as Alg. 1 and Fig. 1. The
highlights of this work lie in Line 7-9. The other steps are
the same as the standard distributed SGD, thus we do not
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Local training and gradient compression

Model aggregation

Fig. 1. Adaptively Compressed SGD Framework.

go in detail here. At each iteration t, each client i first take
budget C(i) and current gradient size (Line 7), which is the
bits hat we need to express the original gradient. Then, taking
c
(i)
t as input, we can calculate b

(i)
t and k

(i)
t using Eqs. (14)-

(15) (Line 8). Finally, the gradient can be compressed using
the SQ-compressor Q

b
(i)
t
[S

k
(i)
t
(g

(i)
t )] (Line 9).

Algorithm 1 AC-SGD in Distributed Learning

1: Input: Iterations number T , communication budget C(i),
learning rate η, initial point x0 ∈ Rd;

2: Output: xT

3: for each iteration t = 1, ..., T − 1: do
4: On each i = 1, ...,W :
5: Receive xt from server;
6: Compute the local gradient g(i)

t using SGD;
7: Adaptively adjust the compression level

c
(i)
t = CompressLevel(C(i),g

(i)
t )

8: Determine the parameters for SQ Compressor

b
(i)
t , k

(i)
t = SQ(c

(i)
t )

9: Use SQ Compressor to generate

ĝ
(i)
t = Q

b
(i)
t
[S

k
(i)
t
(g

(i)
t )]

10: Send ĝ
(i)
t to server;

11: On server:
12: Aggregates all W gradients ĝ

(i)
t from s and updates

the model parameter: xt+1 = xt − η
W

∑W
i=1 ĝ

(i)
t ;

13: Send xt+1 to all clients;
14: end for

C. Algorithm Implementation Details

Although Eq. (24) provide valuable insights about how to
adjust c(i)t over time, it is still challenging to use it in practice
due to the convergence rate α being known. Inspired by [35],
we propose a straightforward rule where we approximate

F (x∗) to 0 and the learning rate η is small enough. We
estimate α as follows according to Theorem 1:

αest =

[
F (xt)

F (x0)

]1/t

(26)

Then,
√

2L[F (x0)− F (x∗)] + σ2 actually is the upper bound
of ∥g(i)

0 ∥, and we obtain a heuristic estimate of it by a simply
repeat the calculation of ∥g(i)

0 ∥. So, we obtain the number of
compression bits update rule:

c
(i)
t =

C(i)

∥g(i)
0 ∥re 1−α

T/2
est

1−α
1/2
est

α
(T−1−t)/2
est ∥g(i)

t ∥ (27)

where ∥g(i)
0 ∥re is the average value of several tries. F (x0),

F (xt) and ∥g(i)
t ∥ can be easily obtained in the training.

V. PERFORMANCE ANALYSIS

In last section, we propose Alg.1 to dynamicly determine
the allocated bits and parameters for the compressor. In this
section, we give some theoretical performance analysis on this
compression scheme. The following Theorems can be achieved
by substituting specifics c

(i)
t to Theorem 1.

As all compression operations will incur additional noise
on the convergence error bound compared to non-compressed
scheme due to the information loss, we first define the con-
vergence error for the standard SGD without any compression
as:

δDSGD = αT [F (x0)− F (x∗)] +
Lη2σ2[1− αT ]

2W (1− α)
(28)

We compare the additional error on δDSGD brought by
the following two compression schemes: 1) the Adaptive SQ-
Compressor proposed in this work by using the dynamic SQ-
Compressor in Eq. (24) to compress the gradients; 2) fixed-bit
SQ-Compressor with c

(i)
t = C(i)

T for all t. For simplicity, we
let all clients own the same budget, i.e., C(i) = C.
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Corollary 1. For the problem in Eq. (1) under Assumptions 1,
2, 3, with initial parameter x0, the upper bound of the
convergence error incurred by Adaptive SQ-Compressor is:

E[F (xT )− F (x∗)] ≤ δDSGD +R(C)QMαt/2 , (29)

Corollary 2. For the problem in Eq. (1) under Assumptions 1,
2, 3, with initial parameter x0, the upper bound of the
convergence error incurred by the fixed SQ-Compressor is:

E[F (xT )− F (x∗)] ≤ δDSGD +R(C)AMαt/2 , (30)

where

R(C) =
3LT 2η2d log2 d{2L[F (x0)− F (x∗)] + σ2}

4WC
(31)

is the same for two kinds of compressors. R(C) ∝ 1
C ,

which means that given more communication budget, a smaller
convergence error could be obtained.

The only difference lies in that the additional error term
of Adaptive SQ-Compressor depends on the Arithmetic Mean
AMαt/2 = 1

T

∑T−1
t=0 αt/2, while the fixed SQ-Compressor

ends up with the Quadratic Mean QMαt/2 =
√

1
T

∑T−1
t=0 αt.

Note that 0 < α < 1, so AM(α) > QM(α), which means
our proposed AC-SGD can achieve lower convergence error
compared with the fixed-bit algorithms.

VI. DISCUSSIONS

A. AC-SGD for Non-Convex Objectives

In the previous sections, we assumed that the objected
functions are strongly convex. However, deep learning models
(e.g., deep neural networks, recurrent neural networks and
convolutional neural networks) are usually non-convex. So in
this subsection, we will extend our algorithm to non-convex
objectives. Notice that the design of b, k for SQ compressor
is solved by minimizing the noise h(k, b) (Eq. 13) given the
allocate bits c. The objective function strongly convex or non-
convex does not affect the results. In contrast to this, the
bit allocation is determined by solving the ACP problem by
minimizing the upper bound of convergence error δ(F, T,W ).
For the non-convex objectives,

δ(F, T,W ) =

∑T−1
t=0 γt∥∇F (xt)∥2∑T−1

t=0 γt
(32)

where γt is the weight and satisfy 0 < γ0 ≤ ... ≤ γt−1 ≤
γt... ≤ γT−1 ≤ 1. Analyzing the compressed SGD for non-
convex objectives is more challenging than in the strongly-
convex case since such functions may possess multiple local
minimums. Previous works usually use an ordinary mean
1
T

∑T−1
t=0 ∥∇F (xt)∥2 to character the non-convex convergence

error [8], [14], [15], and when 1
T

∑T−1
t=0 ∥∇F (xt)∥2 → 0, this

condition can guarantee the algorithm converges to a stationary
point. In this work, we improve it to a weighted mean∑T−1

t=0 γt∥∇F (xt)∥2∑T−1
t=0 γt

. Note that γt is gradually increased with

the training process, that is to say, we pay more attention to
the gradient value at the later stage of training process.

Similar as Theorem 1, we first give the convergence error
bound of non-convex objectives.

Theorem 2 (Convergence Error Bound of Non-Convex Objec-
tives). For the problem in Eq. (1) under Assumptions 1, 2, with
initial parameter x0, using compressed gradients in Eq. (3) for
each iteration, we can upper bound the convergence error by

1∑T−1
t=0 γt

T−1∑
t=0

γtE[∥∇F (xt)∥2]

≤
2

(2η − Lη2)
∑T−1

t=0 γt
[F (x0)− F (x∗)] +

Lησ2

(2− Lη)W︸ ︷︷ ︸
Error of Distributed SGD

+
3dLη log2 d

(4W 2 − 2W 2Lη)
∑T−1

t=0 γt

T−1∑
t=0

γt

W∑
i=1

∥g(i)
t ∥2

c
(i)
t︸ ︷︷ ︸

Compression Error

(33)

Hence, we then rewrite the ACP problem as follows:

(ACP): min
{c(i)t }

W∑
i=1

T−1∑
t=0

γt
∥g(i)

t ∥2

c
(i)
t

s.t.

T−1∑
t=0

c
(i)
t ≤ C(i), for i = 1, 2, ...,W,

(34)

By solving the above optimization problem, we can deter-
mine the {c(i)t } at every iteration step:

c
(i)
t = r(i)

√
γt∥g(i)

t ∥ (35)

If we take γt as exponential growth weight, i.e. γt =
αT−1−t, then

r(i) =
C(i)√

2L[F (x0)− F (x∗)] + σ2 1−αT/2

1−α1/2

(36)

Eq. (35) will degrade to Eq. (24).

B. Convergence Error for Quadratic Objectives.

In previous sections, we upper bound and lower bound the
convergence error of general strongly-convex objects. In this
subsection, we focus on a special strongly-convex objects –
quadratic functions, and give its exact convergence error.

For general quadratic functions, we can employ gradient
flow 2 to calculate an exact convergence error. We have the
relationship between the aggregated stochastic gradients and
full gradients: ĝt = ∇F (xt) + ϵt. Based on the central
limit theorem, it is assumed that ϵt follows the Gaussian
distribution, that is ϵt ∼ N (0,Σ(xt)). Then using analysis
within the gradient flow framework, we can get the following
theorem.

2when the learning rate is infinitesimal, the stochastic gradient descent
process can be regarded as a stochastic dynamic system.
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Theorem 3 (Exact Convergence Error for Quadratic Objec-
tives). For a quadratic optimization objective function F (x) =
1/2xTHx+ATx+B, consider the perturbed gradient descent
dynamics

xt+1 = xt − η∇F (xt)− ηϵt, ϵt ∼ N (0,Σ(xt)) (37)

We can achieve

E[F (xT )− F (x∗)]

=
1

2
(x0 − x∗)

′
(ρ(η)T )

′
Hρ(η)T (x0 − x∗)

+
η2

2

T−1∑
t=0

Tr
[
ρ(η)T−1−tΣ(xt)H

(
ρ(η)T−1−t

)T
]

(38)

where ρ(η) := I− ηH, and H is the Hessian matrix.

Detailed proof is in Appendix H. We can see that the con-
vergence error consists of two parts: the error of the gradient
descent method, which is linearly convergent; the error due to
gradient estimation error (sampling noise, compression noise).

Consider the case where the Hessian matrix is isotropic H =
λI, and let ν := 1− 2ηλ+ η2λ2, then Eq.(38) can be rewrite
as

E[F (xT )− F (x∗)] = νT [F (x0)− F (x∗)]

+
λη2

2

T−1∑
t=0

β(η)T−1−tTr[Σ(xt)] (39)

According to Eq. (20), we can get

Tr[Σ(xt)] = E
[
∥ĝt −∇F (xt)∥2

]
=

σ2

W
+

3d log2 d

2W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

(40)

Plugging Eq. (40) into Eq. (39), then we can get the same
results as Theorem 1.

C. Heterogeneous Communication Resources

In Corollary 1, we assume that all clients own the same
budget, i.e., C(i) = C. In general, if each client is given
a communication constraint C(i), we can apply Alg. 1 to
solve the adaptive compression problem. In addition, if a total
communication constraint Ctotal is given, each client may have
a different communication budget C(i). Then, the convergence
error of the AC-SGD is:

E[F (xT )− F (x∗)] ≤ δDSGD + E

W∑
i=0

1

C(i)
, (41)

where

E =

3LT 2η2d log2 d{2L[F (x0)− F (x∗)] + σ2}

√
T−1∑
t=0

αt/T

4W 2
.

Given the total communication budget Ctotal, i.e.,∑W
i=0 C

(i) = Ctotal, we try to learn the optimal
communication budget allocation strategy for each client by

minimizing the convergence error in Eq. (41). This problem
can be formulated as:

min
{C(i)}

W∑
i=0

1

C(i)

s.t.

W∑
i=0

C(i) = Ctotal, i = 1, 2, ...,W

(42)

By solving the above optimal equation, we can obtain C(i) =
Ctotal

W , indicating that the optimal communication budget
allocation strategy is a uniform allocation.

D. Further Improvement of Communication in AC-SGD

In our current design, each client transmits the positional
information of sparsifier to notify the server. To further reduce
this communication burden, a pseudo random generator can
be used in the parameter server to know the positions of the
non-zero values, however, with some extra computation cost in
both the server and each client. Then the the optimal design of
the compressor (Eq. (13)) can be found by minimizing h(k, b)
with the new bits constrain c:

min
b,k

d− k

k
+

d

4b
,

s.t. kb+Bpre = c.

(43)

By solving the above optimization problem, we can re-
determine the quantization/sparsification level for the new SQ
compressor:

b∗ =
1

2
log2 [2 ln 2 ∗ (c−Bpre)], (44)

k∗ =
c−Bpre

1
2 log2 [2 ln 2 ∗ (c−Bpre)]

. (45)

Compared with Eqs. (14) and (15), the new SQ compressor
uses the same quantization bits b∗ and a larger sparsity size
k∗ (whereas the denominator no longer contains log2 d ) to
compress the gradient.

VII. EXPERIMENTS

In this section, we conduct experiments on CV and NLP
tasks on three datasets: MNIST, CIFAR-10 [36], CIFAR-
100 and AG-News [37], to validate the effectiveness of our
proposed AC-SGD methods. We compare our proposed AC-
SGD with the following baselines: 1) Static compression:
QSGD [4] is a fixed-bit quantizer using Element-Wise Uni-
form quantization. Rand-k [5], [18] and Top-k sparsifier [5] are
fixed-level sparsifiers. The former randomly drops out some
elements and amplifies the remaining elements appropriately,
while the latter retains largest k elements of the gradient
and sets the rest elements to 0. 2) Adaptive compression:
DQSGD [1] adaptively adjusts the quantization bits by taking
into account the remaining number of iterations and the norm
of gradients. ACCORDION [13] determines the compression
level according to gradient’s norm. 3) Hybrid compression:
Qsparse SGD [8] uses a combination of quantization and
sparsification at each round. 4) No compression: we use
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the full-precision floating-point Bpre = 32 for the standard
SGD. Note that our proposed adaptive compression method
is based on sparsification and quantization and is in parallel
with other accelerating methods, such as momentum and error
compensation.

Experimental Setting. We use logistic regression and
canonical neural networks to evaluate the performance of
different algorithms: logistic regression for the binary classifi-
cation on MNIST 3, ResNet18 [38] for the image classification
task on CIFAR-10, and fastText [39] for the text classification
task on AG-News. We let all clients own the same budget, i.e.,
C(i) = C, and the communication cost is the total budget of W
clients (i.e., Ctotal = WC). We utilize the error compensation
mechanism follow [26], and set β = 0.98 and α = 0.01.
We select the momentum SGD as an optimizer, where the
momentum is set to 0.9, and weight decay is set to 0.0005.
Other experimental settings are given in Table II.

Training performance Figures 2 and 3 show the learning
loss of different algorithms on MNIST and CIFAR-10. For
MNIST, the SGD can achieve a test accuracy of 0.9870
and incur the communication cost of 153KB. Then given
the communication budget 9.6 KB, the QSGD with b = 2
fixed quantization bit, the Rand-k with k = 0.048d fixed
sparsification size, and our proposed AC-SGD schemes can
achieve the test accuracy of 0.9742, 0.9746, and 0.9868,
respectively. Our proposed AC-SGD algorithm outperforms
the fixed quantization and fixed sparsification by 0.0126 and
0.0122 and only decreased by 0.0002 compared with SGD in
test accuracy. Similarly, for CIFAR10, the SGD can achieve
a test accuracy of 0.9031 and incur the communication cost
of 1998GB. Then given the communication budget 188 GB,
the QSGD with b = 3 fixed quantization bit, the Rand-k with
k = 0.065d fixed sparsification size, and our proposed AC-
SGD schemes can achieve the test accuracy of 0.8048, 0.8742,
and 0.8917, respectively. Our proposed AC-SGD algorithm
outperforms the fixed quantization and fixed sparsification by
0.0822 and 0.0127 and only decreased by 0.0160 compared
with SGD in test accuracy.
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Fig. 2. Model Performance on MNIST Dataset. (QSGD with quantization bit
= 2, Rand-k with k = 0.048d)

Adaptively determine the compression level. Figures 4(a)
and 4(b) show the compression level of each iteration of
AC-SGD. We can see that AC-SGD significantly reduces the
bits assigned at the early stage of training and improves the
gradient accuracy as the training goes on. The main reason
is that the gradient noise in the later stage of training has a

3The task is to classify a given image is as number ‘0’ or not ‘0’.
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Fig. 3. Model Performance on CIFAR-10 Dataset.( QSGD with quantization
bit = 3, Rand-k with k = 0.065d)

10 20 30 40 50
Iterations

0.04

0.06

0.08

0.1

0.12

0.14

Sp
ar

si
fic

at
io

n 
Le

ve
l

3

3.5

4

4.5

5

5.5

6

Q
ua

nt
iz

at
io

n 
Bi

ts

Sparsification Level
Quantization Bits

(a) Compression level on MNIST
Dataset
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Fig. 4. Compression level with iterations. (The sparsification level is kt
d

.)

greater impact on the convergence error. We need to reduce
the variance of gradient noise to ensure better convergence
of the algorithm (see Remark 1 for details). This result is
similar to some heuristic work [10], [11]. Specifically, the
number of quantization bits increased from 4 to 5, and the
sparsification level increased from 0.06 to 0.12 on MNIST.
For CIFAR-10, the quantization bits increased from 11 to
13, and the sparsification level increased from 0.1 to 0.5
(The reason for the growth fluctuation of compression level is
that the stochastic gradient norm fluctuates with the iteration
step.). We can see that the compression level (quantization
bits and sparsification level) of CIFAR-10 are larger than that
of MNIST. This is because the data and model of CIFAR-10
are more complicated than that of MNIST. Higher accurate
gradients are needed to guarantee the algorithm’s convergence.

Testing Performance. In Table III and Table IV, we com-
pare the test accuracy of our proposed AC-SGD with some
selected algorithms on CIFAR-10 and CIFAR-100 with and
without error compensation. The standard SGD without com-
munication constraints provides a benchmark of the testing
performance. For CIFAR-10, we set the same communication
budget 188GB for all communication constrained algorithms,
9.5% of the communication cost incurred by the SGD. Specif-
ically, we set fixed quantization bit b = 3 for QSGD, fixed
sparsification size k = 0.065d for Top-k and Rand-k, fixed
b = 4 and k = 0.67d for the hybrid compression case
Qsparse. Note that DQSGD and ACCORDION do not take
communication budget into account when adaptively calculat-
ing the compressed level. We try different sets of parameters,
and shown the results when their communication costs are
closest to the given budget. We can see that our proposed AC-
SGD achieve the highest testing accuracy whether using error
compensation or not. Compared to standard SGD, we reduced
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TABLE II
EXPERIMENT SETTING

Dataset MINIST CIFAR-10 AG-News CIFAR-100
Networks Logistic Regression ResNet18 fastText ResNet34

Model size d = 785 d = 1× 107 d = 4× 107 d = 3× 107

Learning rate 1 0.01 0.001 0.01
Batch size / 32 32 32
Workers 1 8 8 16
Iterations 50 6000 500 6000
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Fig. 5. Communication-learning tradeoffs on different datasets.

TABLE III
TESTING ACCURACY ON CIFAR-10 DATASET (QSGD WITH b = 3,

RAND-k AND TOP-k WITH k = 0.065d, QSPARSE SGD WITH b = 4 AND
k = 0.67d.)

Algorithm w/o error
compensation

with error
compensation

SGD 0.9031 0.9031
QSGD [4] 0.8048 0.8544

Rand-k [5], [18] 0.8742 0.8921
Top-k [5] 0.8595 0.8843

DQSGD [1] 0.8192 0.8695
ACCORDION [13] 0.8639 0.8911
Qsparse SGD [8] 0.8504 0.8799
AC-SGD (ours) 0.8917 0.9008

TABLE IV
TOP-5 TESTING ACCURACY ON CIFAR-100 DATASET (QSGD WITH

b = 3, RAND-k AND TOP-k WITH k = 0.065d, QSPARSE SGD WITH b = 4
AND k = 0.67d.)

Algorithm w/o error
compensation

with error
compensation

SGD 0.8807 0.8807
QSGD [3] 0.8214 0.8501
Rand-k [4] 0.8518 0.8701
Top-k [4] 0.8378 0.8633

DQSGD [24] 0.8315 0.8577
ACCORDION [12] 0.8491 0.8693
Qsparse SGD [7] 0.8639 0.8711
AC-SGD (ours) 0.8701 0.8798

the cost of communication by 90%, but only incur a perfor-
mance impairment of 0.0023 with error compensation. The
performance improvement brought by error compensation to
other algorithms ranges from 2% to 6%. But for AC-SGD,This
shows that the performance of AC-SGD is very close to the
standard SGD it brought less than 1% improvement from
0.8917 to 0.9008. This shows that the performance of AC-SGD

is very close to the standard SGD. Furthermore, we conduct
the experiment of using a pseudo random generator for further
communication reduction (in Section VI-D) and it achieves
an accuracy of 0.8970 without error compensation, given the
same communication budget. For CIFAR-100, we also set
the 9.5% of the communication cost incurred by the SGD
as communication budget for all communication constrained
algorithms, then we can get the similar conclusion as CIFAR-
10.

Moreover, we give the experimental results of running time
in Table V. Except for the standard SGD, i.e., the full-
communication case, we give the same communication budget
for all other compression methods. We define the running time
as: Total Time = (Compute Gradient + Compress Gradient) ∗
Num of Users + Other processing time. The time required
for gradient computing is the same for all methods. Note
that the rand-k sparsifier takes much less amount of time for
compression since it only needs the drop-out operation. Except
for rand-k sparsifier, there is no significant difference among
other methods. However, our method has the highest accuracy.

Communication-Learning Tradeoff. Figure 5 shows the
tradeoff between communication budget (cost) and the learn-
ing performance in terms of the test accuracy on different
datasets. We compare this tradeoff between our proposed
algorithm and two other baselines - fixed bit sparsification
and fixed bit quantization. We also list the accuracy achieved
by the SGD without communication budget constraints as a
benchmark.

In Figure 5, all three algorithms show a communication-
learning tradeoff, that is, the more communication budget can
be used, the higher test accuracy can be achieved. However,
our proposed AC-SGD can achieve a higher test accuracy
than the other two under the same communication cost. The
marginal utility (how much test accuracy is improved from
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TABLE V
RUNNING TIME OF DIFFERENT ALGORITHMS.

Compute Gradient (s) Compress Gradient (s) Other (s) Total Time (s)
SGD 113 0 1201 2105

QSGD 113 490 1201 6025
Randk sparsifier 113 2 1201 2121
Topk sparsifier 113 512 1201 6201

DQSGD 113 491 1201 6033
ACCORDION 113 542 1201 6441
Qsparse SGD 113 492 1201 6041

AC-SGD (Ours) 113 493 1201 6049

the increased communication budget) is diminishing. That
means when the communication budget is small, increasing
the communication budget can bring significant improve-
ment. When the communication budget is large (for example,
C > 200 GB in CIFAR-10), the improvement of the test
accuracy by increasing the communication budget is limited.
This phenomenon also verifies the results of Corollary 1.

Heterogeneous Communication Budget. In addition, we
investigate the case of heterogeneous communication budgets
across workers. We set Ctotal =

∑W
i=1 C

(i) as 188GB,
and consider 4 cases of communication budget distribution
for a 8-worker setting in Table VI. Case 1 is the uniform
allocation while Case 4 is extremely imbalance, where the
budget of C(7), C(8) is 10 times more than that of C(1), C(2).
We can see that the test accuracy of the above 4 cases
are 0.8917, 0.8884, 0.8794, and 0.8670 respectively. From
case 1 to case 4, the accuracy decreases as the degree of
imbalance of the communication budget allocation (which can
be evaluated, e.g., using the entropy of the budget distribution)
increases. This is because when some workers have scarce
communication resources, a significant gradient compression
brings a significant information loss of the local gradient,
leading to a poor aggregated gradient and hence resulting in
a slower convergence speed.

TABLE VI
COMMUNICATION BUDGET ALLOCATION SCHEMES.

Communication Budget (GB) Test Acc
case1 All workers: 23.5 0.8917

case2 {C(1), C(2), C(3), C(4)} : 15.67

{C(5), C(6), C(7), C(8)} : 31.33
0.8884

case3 {C(1), C(2)}: 7.83 {C(3), C(4)}:15.67
{C(5), C(6)}:31.33 {C(7), C(8)}:39.17

0.8794

case4 {C(1), C(2)}: 3.92 GB {C(3), C(4)}:15.67 GB
{C(5), C(6)}:31.33 GB {C(7), C(8)}:43.08 GB

0.8670

Periodical AC-SGD. To further improve the communication
efficiency of our algorithm, we propose the variant of AC-
SGD, the periodical AC-SGD. Specifically, each client com-
municate with the server after performing τ times local SGD,
therefore, the total number of communication is reduced to
T/τ .

x
(i)
t =

{
x
(i)
t−τ + 1

W

∑W
j=1 Cc(i)t

[x
(j)
t − x

(j)
t−τ ], for τ |t

x
(i)
t−1 − ηg

(i)
t−1, otherwise

(46)

Since more local iterations require fewer communication
cost, we reduce the communications budget Cτ by a factor of
τ . The experimental results of periodical-averaging AC-SGD
on CIFAR-10 dataset with 8 workers are shown in Table VII.
Compared to the original AC-SGD accuracy of 0.8917, the
test accuracy decreases with increasing local iterations from
τ = 10 to 40. This fits the trade-off relationship between
communication cost and learning performance.

TABLE VII
TEST ACCURACY OF PERIODICAL AC-SGD ON CIFAR-10 DATASET.

τ 10 20 30 40
Test Accuracy 0.8914 0.8909 0.8881 0.8778

The Number of Clients. We vary the number of workers
from 4 to 32 and show the test accuracy of CIFAR-10 dataset
in Table VIII. From Table VIII, we can see that using more
workers can improve the model’s performance. Specifically,
when we set the number of workers as 16 and 32, the
test accuracy of AC-SGD can achieve 0.9046 and 0.9094,
which even out-performance the non-compressed SGD with
8 workers (0.9031). This also verifies the results of Theorem
1, which shows that increasing the number of workers can
reduce the SGD convergence error and the compression error
simultaneously.

TABLE VIII
TEST ACCURACY OF AC-SGD ON CIFAR-10 WITH DIFFERENT CLIENTS.

Number of Workers 4 8 16 32
Test Accuracy 0.8775 0.8971 0.9046 0.9094

VIII. CONCLUSION

This paper develops a unifying framework for dynamic
gradient descent that collaboratively leverages both quanti-
zation and sparsification techniques. We then consider com-
munication budget constraints and propose an optimization
formulation - denoted as the Adaptive Compression Problem
(ACP)- to minimize the deep model’s convergence error under
such constraints. By solving the ACP, we propose a novel
Adaptively-Compressed SGD (AC-SGD) strategy to jointly
adjust the number of quantization bits and the sparsification
size concerning the norm of gradients, the communication bud-
get, and the remaining number of iterations. The experimental
results of image classification and text classification show that
AC-SGD is superior to state-of-the-art gradient compression
methods in improving the model’s performance.
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Adaptive floatless compression of stochastic gradients,” in International
Conference on Learning Representations, 2021.

[26] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
SGD and its applications to large-scale distributed optimization,” arXiv
preprint arXiv:1806.08054, 2018.

[27] C.-Y. Chen, J. Ni, S. Lu, X. Cui, P.-Y. Chen, X. Sun, N. Wang,
S. Venkataramani, V. V. Srinivasan, W. Zhang et al., “Scalecom: Scalable
sparsified gradient compression for communication-efficient distributed
training,” Advances in Neural Information Processing Systems, vol. 33,
pp. 13 551–13 563, 2020.

[28] C. Xie, S. Zheng, S. Koyejo, I. Gupta, M. Li, and H. Lin, “Cser:
Communication-efficient sgd with error reset,” Advances in Neural
Information Processing Systems, vol. 33, pp. 12 593–12 603, 2020.
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APPENDIX

A. Proof of Lemma 1

In this EWU scheme, The j-th component of the stochastic
gradient vector g (for any worker i) is quantized as

Qb[gj ] = ∥g∥ · sgn(gj) · ζ(gj , s), (47)

where ∥g∥ is the l2 norm of g; sgn(gj) = {+1,−1} is the sign
of gj ; s is the quantization level. Note that, the quantization
level is roughly exponential to the number of quantized bits. If
we use b bits to quantize gj , we will use one bit to represent
its sign and the other b − 1 bits to represent ζ(gj , s), thus
resulting in a quantization level s = 2b−1 − 1. And ζ(gj , s) is
an unbiased stochastic function that maps scalar |gj |/∥g∥ to
one of the values in set {0, 1/s, 2/s, . . . , s/s}: if |gj |/∥g∥ ∈
[l/s, (l + 1)/s], we have

ζ(gj , s) =

{
l/s, with probability 1− pr,
(l + 1)/s, with probability pr = s

|gj |
∥g∥ − l.

(48)
So we have

E[ζ(gi, s)] =
l

s
[1− s

|gi|
∥g∥

+ l] +
l + 1

s
[s
|gi|
∥g∥

− l]

=
|gi|
∥g∥

Then

E[ζ(gi, s)2] = E[ζ(gi, s)]2 + V[ζ(gi, s)]

=
|gi|2

∥g∥2
+

1

s2
p(1− p)

≤ |gi|2

∥g∥2
+

1

4s2

Considering that Qs(gi) = ∥g∥ · sgn(gi) · ζ(gi, s), we have

E[∥Qb[g]∥2] =
d∑

i=0

E[∥g∥2ζ(gi, s)2]

≤
d∑

i=0

∥g∥2( |gi|
2

∥g∥2
+

1

4s2
)

= ∥g∥2 + d

4s2
∥g∥2

So we can get
E[Qb[g]] = g

E[∥Qb[g]∥2] ≤
[
1 +

d

4b

]
∥g∥2

For the stochastic gradient vector g, if the sparsification
parameter is k, then we can get

E[Sk(g)] = g

E[∥Sk(g)∥2] ≤ E[∥Sk(g)∥2] =
d

k
∥g∥2

Therefore,

E[Qb[Sk(g)]] = E[Sk(g)] = g

E[∥Qb[Sk(g)]∥2] ≤
[
1 +

k

4b

]
∥Sk(g)∥2

=

[
1 +

k

4b

]
∗ d

k
∥g∥2

=

[
d

k
+

d

4b

]
∥g∥2

B. Proof of Eq. (14)-(16)

Firstly, we have the follow optimization problem:

min
b,k

d

4b
+

d− k

k

k(b+ log2 d) +Bpre = c

From k(b+ log2 d) +Bpre = c, we can get

k =
c−Bpre

b+ log2 d

So we need to minimize h(b) = d
4b

+ db+d log2 d
c−Bpre

− 1. From
∂h(b)
∂b = 0, we can get

b∗ =
1

2
log2 [2 ln 2 ∗ (c−Bpre)]

Hence,

k∗ =
c−Bpre

1
2 log2 [2 ln 2 ∗ (c−Bpre)] + log2 d

Then we have

h(b∗, k∗) =
d− k∗

k∗
+

d

4b∗

=
d( 12 log2 [2 ln 2 ∗ (c−Bpre)] + log2 d)

c−Bpre

+
d

2 ln 2 ∗ (c−Bpre)
− 1

(a)
≈

d( 12 log2 [2 ln 2 ∗ c] + log2 d)

c
+

d

2 ln 2 ∗ c
− 1

=
d

c

[
3

2
log2 d+

1

2
log2

2cln2

d
+

1

2 ln 2
− c

d

]
(b)

≤ 3d log2 d

2c

where (a) consider c >> Bpre, and where (b) consider that
f(x) = 1

2 log2 (2xln2) +
1

2 ln 2 − x ≤ 0 for x > 0.

C. Proof of Eq. (24)-(25)

The optimization problem Eq.(23) can be solved separately
for each client

min
{c(i)t }

T−1∑
t=0

αT−1−t ∥g
(i)
t ∥2

c
(i)
t

s.t.

T−1∑
t=0

c
(i)
t ≤ C(i)
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For the objective function, we have

∂2[
∑T−1

t=0 αT−1−t ∥g
(i)
t ∥2

c
(i)
t

]

∂(c
(i)
t )2

=

T−1∑
t=0

2αT−1−t∥g(i)
t ∥2

(c
(i)
t )3

> 0

Hence, this optimization problem is a convex optimization
problem, then we have the Lagrange function

L(c(i)t , λ) =

T−1∑
t=0

αT−1−t ∥g
(i)
t ∥2

c
(i)
t

+ λ[

T−1∑
t=0

c
(i)
t − C(i)]

where λ is Lagrange multiplier. Then we can get

∂L(c(i)t , λ)

∂c
(i)
t

= −αT−1−t ∥g
(i)
t ∥2

(c
(i)
t )2

+ λ = 0

By solve this equation, we can get

c
(i)
t = r

(i)
C α(T−1−t)/2∥g(i)

t ∥

Hence, the communication cost is

C(i) =

T−1∑
t=0

r
(i)
C α(T−1−t)/2∥g(i)

t ∥

≤ r
(i)
C

√
2L[F (x0)− F (x∗)] + σ2

T−1∑
t=0

α(T−1−t)/2

= r
(i)
C

√
2L[F (x0)− F (x∗)] + σ2

1− αT/2

1− α1/2

So,

r
(i)
C ≥ C(i)√

2L[F (x0)− F (x∗)] + σ2 1−αT/2

1−α1/2

D. Proof of Theorem 1

Firstly, we consider function F is L-smooth, and use
Eq. (6), we have:

F (xt+1) ≤ F (xt) +∇F (xt)
T(xt+1 − xt) +

L

2
∥xt+1 − xt∥2

For the Compressed SGD, xt+1 = xt − η
W

∑W
i=1 Cct [g

(i)
t ],

so:

F (xt+1) ≤ F (xt) +∇F (xt)
T(− η

W

W∑
i=1

Cct [g
(i)
t ])

+
L

2
∥ − η

W

W∑
i=1

Cct [g
(i)
t ]∥2

Taking total expectations, and using Eq. (20), this yields:

E[F (xt+1)] ≤ F (xt) + (−η +
Lη2

2
)∥∇F (xt)∥2

+
Lη2σ2

2W
+

3dLη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Then we consider that function F is µ-strongly convex, and

use Eq. (9), we can get :

E[F (xt+1)] ≤ F (xt)− (2µη − Lµη2)[F (xt)− F (x∗)]

+
Lη2σ2

2W
+

3dLη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Subtracting F (x∗) from both sides, and let α(η) := 1 −
2µη + Lµη2, so:

E[F (xt+1)− F (x∗)] ≤ α[F (xt)− F (x∗)] +
Lη2σ2

2W

+
3dLη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Applying this recursively:

E[F (xT )− F (x∗)] ≤ αT [F (x0)− F (x∗)] +
Lη2σ2[1− αT ]

2W (1− α)

+
3dLη2 log2 d

4W 2

T−1∑
t=0

αT−1−t
W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Similarly, we firstly consider function F is
µ-strongly convex, and use Eq. (8), we have:

F (xt+1) ≥ F (xt) +∇F (xt)
T(xt+1 − xt) +

µ

2
∥xt+1 − xt∥2

For the Compressed SGD, xt+1 = xt − η
W

∑W
i=1 Cct [g

(i)
t ],

so:

F (xt+1) ≥ F (xt) +∇F (xt)
T(− η

W

W∑
i=1

Cct [g
(i)
t ])

+
µ

2
∥ − η

W

W∑
i=1

Cct [g
(i)
t ]∥2

Taking total expectations, and using Eq. (20) (the worst
case of gradient noise), this yields:

E[F (xt+1)] ≥ F (xt) + (−η +
µη2

2
)∥∇F (xt)∥2

+
µη2σ2

2W
+

3dµη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Then we consider that function F is L-smooth, and use
Eq. (7), we can get :

E[F (xt+1)] ≥ F (xt)− (2Lη − Lµη2)[F (xt)− F (x∗)]

+
µη2σ2

2W
+

3dµη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Subtracting F (x∗) from both sides, and let β(η) := 1 −
2Lη + Lµη2, so:

E[F (xt+1)− F (x∗)] ≥ β[F (xt)− F (x∗)] +
µη2σ2

2W

+
3dµη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Applying this recursively:
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E[F (xT )− F (x∗)]

≥ βT [F (x0)− F (x∗)] +
µη2σ2[1− βT ]

2W (1− β)

+
3dµη2 log2 d

4W 2

T−1∑
t=0

βT−1−t
W∑
i=1

∥g(i)
t ∥2

c
(i)
t

E. Proof of Corollary 1

If the compression bits for client i at iteration t is

c
(i)
t = r

(i)
C α(T−1−t)/2∥g(i)

t ∥

where r
(i)
C = C(i)

√
2L[F (x0)−F (x∗)]+σ2 1−αT/2

1−α1/2

. So the conver-

gence error due to compression is
T−1∑
t=0

αT−1−t ∥g
(i)
t ∥2

c
(i)
t

=

T−1∑
t=0

αT−1−t ∥g(i)
t ∥2

r
(i)
C α(T−1−t)/2∥g(i)

t ∥

≤ {2L[F (x0)− F (x∗)] + σ2}
C(i)

[
1− αT/2

1− α1/2

]2
=

T 2{2L[F (x0)− F (x∗)] + σ2}
C(i)

AM2
αt/2

where Arithmetic Mean AMαt/2 = 1
T

∑T−1
t=0 αt/2.

F. Proof of Corollary 2

If we fixed the compression bits, that is c
(i)
t = C(i)

T , so the
convergence error due to compression is

T−1∑
t=0

αT−1−t ∥g
(i)
t ∥2

c
(i)
t

=

T−1∑
t=0

αT−1−tT∥g
(i)
t ∥2

C(i)

≤ T{2L[F (x0)− F (x∗)] + σ2}
C(i)

T−1∑
t=0

αT−1−t

≤ T 2{2L[F (x0)− F (x∗)] + σ2}
C(i)

QM2
αt/2

where Quadratic Mean QMαt/2 =
√

1
T

∑T−1
t=0 αt.

G. Proof of Theorem 2

According to D, if F is L-smooth, we have:

E[F (xt+1)] ≤ F (xt) + (−η +
Lη2

2
)∥∇F (xt)∥2

+
Lη2σ2

2W
+

3dLη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Subtracting F (xt) from both sides, then

E[F (xt+1)− F (xt)]

≤ (−η +
Lη2

2
)∥∇F (xt)∥2 +

Lη2σ2

2W
+

3dLη2 log2 d

4W 2

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

(a)

≤ (−η +
Lη2

2
)γt∥∇F (xt)∥2 +

Lη2σ2γt
2W

+
3dLη2 log2 d

4W 2
γt

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

where 0 < γt < 1 and (a) considers (−η+ Lη2

2 )∥∇F (xt)∥2+
Lη2σ2

2W + 3dLη2 log2 d
4W 2

∑W
i=1

∥g(i)
t ∥2

c
(i)
t

≤ 0. Applying it recursively,
this yields:

E[F (xT )− F (x0)]

≤ (−η +
Lη2

2
)

T−1∑
t=0

γtE[∥∇F (xt)∥22] +
Lη2σ2

∑T−1
t=0 γt

2W

+
3dLη2 log2 d

4W 2

T−1∑
t=0

γt

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

Considering that F (xT ) ≥ F (x∗), so:

1∑T−1
t=0 γt

T−1∑
t=0

γtE[∥∇F (xt)∥22]

≤ 2

(2η − Lη2)
∑T−1

t=0 γt
[F (x0)− F (x∗)] +

Lησ2

(2− Lη)W

+
3dLη log2 d

(4W 2 − 2W 2Lη)
∑T−1

t=0 γt

T−1∑
t=0

γt

W∑
i=1

∥g(i)
t ∥2

c
(i)
t

H. Proof of Theorem 3

For a quadratic optimization problem F (x) = 1/2xTHx+
ATx+B, we consider a Gaussian noise case

xt+1 = xt − η∇F (xt)− ηϵt, ϵt ∼ N (0,Σ(xt))

Then we have

xt+1 = xt − η∇F (xt)− ηϵt

= xt − η[Hxt +A]− ηϵt

= (I− ηH)xt − ηA− ηϵt

Considering ∇F (x∗) = ηA + ηHx∗ = 0, subtracting x∗

from both sides, and rearranging, this yields:

xt+1 − x∗ = (I− ηH)xt − ηA− x∗ − ηϵt

= (I− ηH)(xt − x∗)− ηA− ηHx∗ − ηϵt

= (I− ηH)(xt − x∗)− ηϵt

Applying this recursively, let ρ = I− ηH, we have:

xT − x∗ = ρT (x0 − x∗)−
T−1∑
t=0

[ηρT−1−tϵt]



16

Considering that ϵt ∼ N (0,Σ(xt)), then:
T−1∑
t=0

[ηρT−1−tϵt]

=

T−1∑
t=0

[ηρT−1−tΣ(xt)
1
2N (0, I)]

=

T−1∑
t=0

[ηρT−1−tΣ(xt)
1
2 [W(t+ 1)−W(t)]}

≡ I(T )

where, W is a standard d-dimensional Wiener process, and
I(T ) is an Ito integral. Hence xT = x∗+ρT (x0−x∗)−I(T ),
then:

F (xT ) =
1

2
xT

THxT +ATxT +B

=
1

2
(x(0) − x∗)T(ρT )THρT (x0 − x∗)

+
1

2
I(T )THI(T ) + F (x∗)

− [ρT (x0 − x∗) + x∗ +A]THI(T )

Subtracting F (x∗) from both sides, taking total expecta-
tions, and rearranging, this yields:

E[F (xT )− F (x∗)]

=
1

2
(x0 − x∗)T(ρT )THρT (x0 − x∗) +

1

2
E[I(T )THI(T )]

− [ρT (x0 − x∗) + x∗ +A]THE[I(T )]

The property of Ito integral I(T ) is:

E[I(T )] = 0

E[I(T )THI(T )] =

T−1∑
t=0

η2Tr[ρT−1−tΣ(xt)H(ρT−1−t)T]

Using this property, we have:

E[F (xT )− F (x∗)] =
1

2
(x0 − x∗)T(ρT )THρT (x0 − x∗)

+
η2

2

T−1∑
t=0

Tr[ρT−1−tΣ(xt)H(ρT−1−t)T]

If we consider a simple example: the Hessian matrix is
isotropic H = λI, let α(η) := 1− 2ηλ+ η2λ2, so

first =
1

2
(x0 − x∗)T(ρT )THρT (x0 − x∗)

= α(η)T
1

2
(x0 − x∗)TH(x0 − x∗)

= α(η)T [
1

2
xT
0Hx0 +

1

2
x∗THx∗ − xT

0Hx∗]

= α(η)T [
1

2
xT
0Hx0 +

1

2
x∗THx∗ − xT

0Hx∗

+ xT
0(Hx∗ +A)− x∗T(Hx∗ +A)]

= α(η)T [
1

2
xT
0Hx0 −

1

2
x∗THx∗ + xT

0A− x∗TA]

= α(η)T [F (x0)− F (x∗)]

second =
λη2

2

T−1∑
t=0

α(η)T−1−tTr[Σ(xt)]

Thus,

E[F (xT )− F (x∗)] = α(η)T [F (x0)− F (x∗)]

+
λη2

2

T−1∑
t=0

α(η)T−1−tTr[Σ(xt)]
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