
Lightweight Hardware Support for Protection in Object-Oriented
Systems

Jorg Kaiser, Karol Czaja

German National Research Center for Computer Science
Postfach 1316, SchloB Birlinghoven

e-mail: kaiser@gmdzi.gmd.de

Abstract:

The paper describes ACOM (Access Control
Monitor), a hardware device which we developed
to enforce run time protection in an persistent
object-oriented system. To obtain a wide
acceptance, the efSiciency of these systems must
be comparable to conventional language systems.
One of the key issues is to exploit the efJiciency
of virtual memory management of contemporary
processors. We will argue that a careful analysis
of the hardware-software trade-ofl will lead to a
simple hardware device which can efliciently
support encapsulation and protection of small
objects in an object-oriented systems. The main
idea is to separate encapsulation and protection
from address translation issues.

1. Introduction

The object-oriented programming paradigm maps
real world problems into a universe of objects in
a machine. Ideally, everything a user of an
object-oriented system is concerned with are
objects. The system should provide a uniform
interface to objects and remove the classical
distinction between program-variables, files, or
database items.
A number of research and commercial projects in
the area of object-oriented operating systems tried
to provide objects as a general abstraction at the
user interface [11 ,PI, [31 ,PI ,[SI ,[GI [81
without assuming any specially designed
hardware platform. Of particular interest are
those approaches which do not distinguish
between the object model of the language and the
system [5],[6],[7],[8],[9]. This has the
following consequences on the support system:

- the entire application is structured in arbitrarily
sized objects. This means that the size of the
objects is determined by the application and
not by artifacts of the system architecture.
Particularly, the system must cope with a large
number of small objects as well as with very
large objects.

- individual objects should be the entities of
protection and sharing. This implies that the
architecture must recognize and protect those
objects.

- the system should directly support generic
functions only, i.e. the least common
denominator of all languages in question. This
means that the system basically provides the
containers for language objects, maps and
protects them.

In the following, we will concentrate on this
basic functionality of an object support system.
We will argue that a careful analysis of the
hardware-software trade-off will lead to a simple
hardware device which can efficiently support
encapsulation and protection of small objects in
an object-oriented operating systems. The main
idea is to separate encapsulation and protection
from address translation issues. The paper is
organized as follows:
In the next section we briefly sketch two
examples of systems supporting persistent
objects to show how these systems implement
the persistent store on a pure software basis. We
will argue that basic protection issues cannot
efficiently be solved in these systems. The rest of
the paper describes ACOM (Access h n t r o l
Monitor), a hardware device which we developed
to enforce run time protection. It easily could

264
0-81863015-9/92 $03.00 0 1992 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

mailto:kaiser@gmdzi.gmd.de

complement object-oriented persistent systems
shown in the examples. Since only the most
basic functions of encapsulation and protection
are incorporated into the design, leaving the more
complex and language dependent issues to
software, it can be seen as a RISC approach to
object-oriented hardware support.

2. Representation of persistent objects

To exhibit the benefits of architectural support,
we examine two example systems which provide
basic support for persistent objects. We will
concentrate on the Comandos system [7] and on
an approach developed by Wilson [lo], although
many other language and database systems use
similar techniques [11],[12],[13]. We chose
Comandos because i t is a complete
implementation of an object store addressing
language and system aspects. Wilson's approach
is sketched because he elegantly exploits
available address mapping mechanisms to
implement a persistent store. Both systems do
not rely on special purpose hardware. The
conceptual view of the persistent store in both
systems is outlined in Fig.1. Both systems
provide a shared persistent object store which
includes all devices of a storage hierarchy. The
system shields the programmer from the different
addressing mechanisms found in the distinct
storage media and allows a uniform location
independent access to objects. The persistent
object memory is constructed from a persistent
passive space and a transient active space. The
passive space is the long term object repository.
Each persistent object has a representation in
passive space. The active space constitutes a
virtual address space where objects are directly
accessible by a machine dependent address and
where computations on objects are performed.
However, for a programmer and even for a
running program, the distinction is transparent
and hence, conceptually, a single level store is
provided. If a persistent object is referenced and
it is not in the active space, it is automatically
transferred from the passive to the active space
by an appropriate manager.

Once in active space, it should be possible to
operate on objects as conveniently and with the
same performance as in the runtime environment
of a language. This particularly means, that it is
mandatory to fully exploit all the hardware

facilities of the basic processor, especially,
virtual memory management and address
calculation. The overhead one has to pay for
persistence should only occur on the activation
and passivation of objects. With a sufficiently
large (machine supported) virtual memory and a
certain locality of computation, acceptable
performance can be expected [lo]. Therefore, we
assume that the active space relies on a paged
virtual memory because this is the standard
supported by common address translation
hardware and operating systems.

petsirtent object memory

1 I - l 1
persatmt
pssiw s p a

pp - persistent
panter

I I I I

va - virtual
address active r p s o

Fig. 1 Structure of persistent object memory

The following steps have to be performed to
bring in an object from passive to active space.
Firstly, the system must detect that a referenced
object is not in active space. Secondly, the object
has to be brought in, thereby converting its
passive to an active representation. This
conversion mainly affects persistent pointers
which have to be transformed to virtual
addresses, also termed transient pointers. This
mapping is dynamic because the relationship
between persistent and transient pointers is not
fixed but determined at translation time and
partial in that not all persistent pointers are
mapped to virtual addresses. The technique of
having multiple namespaces and translating
pointers is known as pointer swizzling or pointer
resolution and implementations exist in persistent
languages e.g. [l 11 databases e.g. [121 on the
OS-level and on the architectural level e.g. [13].
Thirdly, the objects, now in virtual memory have

265

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

to be protected according to their specified
protection attributes.

Since the movement of individual small objects
from passive to active space would be too
expensive, objects are grouped to larger entities
for activation. If locality of computations is
assumed within these entities, this can also be
viewed as a look-ahead technique for activation.
In Comandos, the notion of a cluster [7] is
introduced comprising objects which according
to some grouping policy belong together. When
an individual object is activated, all objects
residing in the respective cluster are mapped into
virtual memory, i.e. space is reserved in virtual
memory for the entire cluster by updating the
corresponding entries in the page translation
tables. Copying of data to the active space then
proceeds on demand in entities of pages. In
Wilson’s approach, the entire persistent space is
a huge linear paged address space. The entity
which is transferred to active space on object
activation is a page.

Starting with the detection of a reference to an
object which is still in persistent memory, we can
classify different approaches. In the Amadeus
implementation [14] of the Comandos system it
is assumed that an access to an object always
takes place via an object invocation. If an object
is brought to active space, all its persistent
pointers are resolved. The object may contain
pointers which address some other object not yet
in active space. To cope with this situation, a so
called proxy is inserted in place of the pointed-to
object. When a subsequent invocation uses the
address of the proxy, the code of the proxy is
executed which initiates the transfer of the
associated persistent object to active space. The
important points are that an executing program
never sees a persistent pointer and that a resolved
pointer when used, really addresses the right
object. It should be noticed that the detection of a
proxy relies on the proper use of the invocation
mechanism.

Another possibility, also developed in the
Comandos project, is to replace a pointer to an
object which is not in active space by an invalid
address to cause a hardware trap if this pointer is
used. The handler then has to determine which
object should be addressed and subsequently
move it to active space. This approach allows to
access objects directly using normal pointer

arithmetic additionally to the invocation
mechanism (this is bad style but possible e.g. in
C++). However, since the invalid address does
not contain location information, effort has to be
devoted to determine the respective object.

Wilson exploits the trap facility of the page
translation mechanism to detect accesses to
unmapped persistent objects in active space [8].
If a page holding one or more persistent objects
is faulted into active space, all pointers of the
page are resolved. As a consequence, all pointed-
to pages have to be mapped in active space i.e.
the corresponding space has to be reserved.
Since these pages may contain persistent pointers
they have to be access protected. This assures
that a running program cannot see persistent
pointers. If a program attempts to access a
protected page, a trap handler is invoked which
copies the page into active memory and translates
all persistent pointers into transient pointers,
again relocating the referred-to pages as needed.

These approaches show that the problem of
detecting a reference to a persistent object in
passive space and the resolution of pointers can
be solved on a standard hardware platform with
acceptable performance.

However, once in active space, there is no way
in conventional, page-based systems to
individually protect the subpage-objects from
inadvertent accesses and hence, assuring the
reliable and secure operation of the system [151.
In Comandos, protection of objects inside a
cluster is enforced by a programming convention
rather than by a mechanism provided by the
system. It is possible to generate a virtual address
without using the invocation mechanism
properly, thus, compromising system integrity.
Therefore, it is recommended that only those
objects are grouped in a cluster which mutually
trust each other. This restricts the freedom of
grouping policies and may result in additional
overhead to relocate objects. One of the great
advantages of the Comandos system is that object
sharing is supported. In the COOL-2 [6] kernel,
which provides basic support for cluster objects
and constitutes a lower level component of the
Comandos system, an object can concurrently be
mapped into many distinct virtual address spaces
for efficiently sharing one object representation.
This desirable feature however is questionable if
it is not possible to map objects into distinct

266

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

address spaces with different protection
attributes. The current solution is that in cases
where this is required, a critical object can only
reside in a single address space. To access the
object from another address space an invocation
crossing address space boundaries has to be
performed. This, of course is a workaround and
an expensive solution.

Wilson proposes a solution for cases where
sensitive objects happen to reside on the same
page as non-sensitive objects. In this case the
off-limit object should be replaced by a "bogus
proxy" which is made unusable. This, of course,
is no solution for controlled sharing where e.g.
one process is allowed to read and write an object
while others are only allowed to read it.

To summarize: while the addressing problem of
persistent object systems seems to be acceptably
solved by the above schemes, protection is still
an open problem. Although the need for
protecting individual objects may be obvious, the
lack of it or the inadequate solutions are the price
most designers are willing to pay in favour of
running their software on a standard hardware
platform. In the following sections we will
present ACOM, a simple hardware device which
addresses the protection problem. In its design,
much emphasis has been placed on easy
integration in existing hardware and software
platforms.

3. Can existing address translation
hardware be exploited ?

Typically, an object-oriented application is
constructed from a large number of small objects.
Existing hardware platforms like the Intel
386/486 [16] offer a segmentation mechanism
which allows to specify and protect segments of
arbitrary size up to 4 Gbyte. However, due to the
size of the segment index, the number of
segments which can be addressed in the
protection domain of a task is restricted to 8k
local and 8k global segments which may not be
enough in object-oriented applications.
Another approach would be to provide small
pages and place only one object on each page.
This would trade space to gain protection. There
are some MMUs (Memory Management Units)
which support page sizes down to 256 byte (e.g.
Motorola 68030 architectures [171). This, of

course, has a number of drawbacks starting with
the larger number of pages which have to be
maintained in a multi-level hierarchy of page
tables (up to 5 levels using 256 byte pages in
68030 [171). Traversing this hierarchy of page
tables slows down the address translation
mechanism. Secondly, because of the still coarse
granularity and the fixed size of a page, the
internal fragmentation may be substantial.

Because of the insufficiencies of these
approaches we propose an architecture which
provides protection without touching the address
translation mechanism. As a result, the most
efficient address translation mechanism can be
chosen, optimizing page or segment size
according to the need of the hardware devices.
Objects can be arbitrarily grouped together on
such entities for efficient memory management
but they can be protected individually.

4. The conceptual view of ACOM

ACOM controls memory accesses without
interfering with the address translation path of the
processor, i.e. it checks memory accesses
independently and concurrently to any existing
address translation hardware. Because of this
independence, ACOM can easily be integrated
into any hardware platform. Only if an invalid
access is detected by ACOM, an exception is
generated to signal the violation. Since the
detection of invalid addresses by ACOM is very
fast in most processor systems, the memory
access can be aborted before it overwrites or
illicitly reads a memory location. If this is not
possible, the trap handler has the responsibility
of initiating corrective actions.
Fig. 2 shows a physical addressing path and
indicates how ACOM is connected to the system.
Today's processors exhibit a large variety of
configurations concerning memory management
units and caches. Most processors have these
facilities on-chip. Therefore, to allow a universal
application of ACOM, no assumptions about the
physical structure of the processor should be
made. In fact, ACOM can be integrated into a
system regardless of the individual cacheFlMU
configurations. This topic is discussed in more
detail in section 6. For the moment, it should be
noted that any address, virtual or physical,
applied to main memory uniquely selects a
memory location.

267

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

t 'I
..A <... > ;

I I

MMU
Cache

Fig. 2 Physical integration of ACOM

The subpage segment structure is superimposed
on linear memory by ACOM. These segments are
the guarded containers for objects defined at a
higher level. For each such segment ACOM
provides the corresponding access rights. ACOM
monitors the address bus and and executes the
necessary checks on the basis of the current
address and the intended access
(read/write/execute) of the processor which is
also available during a memory access. A
conceptual view of ACOM is presented in Fig. 3.

ACOM works much in the same way as a tagged
memory [18] with the difference that ACOM
logically defines the tagged architecture and
substantially simplifies the management of tags.
A tag comprising access rights is associated to
the addressed memory location and evaluated
with every access. This tag is stored in a separate
memory the so called BMT (Block Map Table).
For reasons of implementation efficiency, we
assume small blocks of 8 or 16 words of 32 bits
rather than provide a tag for each memory word.
A segment then comprises a number of these
blocks. For each block the specified access rights
are derived from the protection state of the
segment. It should be noted that the memory
requirements for the BMT are very low.
Assuming a block size of 64 byte and two bits
per block to specify read/write/execute rights, a
linear physical memory of up to 64 Mbyte can be
supported by just two 1 Mbit memory chips.
This is under 0.5% of the total memory
hardware.

However, there are a couple of problems which
cannot be solved in a straightforward
implementation of a tagged memory concept.
Firstly, the management overhead is
unacceptable. Each tag in the memory has to be

initialized and maintained. If we assume a
standard page size of 4 kbyte, 64 entries have to
be touched, independent of whether sub-page
structures are needed or not. Even worse, in a
multiprogramming environment, where the
address spaces of multiple processes have to be
isolated from each other, this hardly can be
achieved by modifying the tags for almost the
entire memory on each process switch.

Therefore, we distinguish between two kinds of
pages in linear memory. Linear pages are not
subdivided into smaller entities. Cluster puges
contain multiple segments and are specifically
supported by ACOM. As a second improvement,
ACOM supports multiple address spaces
efficiently. To achieve this, it comprises an
additional lookup table, the page identity table
(PIT). The PIT and the BMT are concurrently
accessed during a memory cycle. The PIT allows
the association of an address with the
corresponding entries in the BMT. For each page
it can be decided whether it belongs to the
address space of a particular process or not. The
PIT hardware is comparable to the hit/miss logic
of a conventional direct mapped TLB [191. The
PIT determines whether an address refers to a
page for which it already contains a valid entry
and whether this entry refers to a linear page or a
cluster page. If an linear page is accessed,
nothing more has to be done. In case of referring
to a cluster page, the corresponding tag of the
BMT containing access rights is evaluated.

An additional advantage over tagged memory is
the hardware entry generator of ACOM which
creates the tags in the BMT for a segment
automatically from the segment's base address
and size. Thus, it eliminates the time consuming
accesses by the main processor. The detailed

268

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

Fig. 3 The conceptual view of ACOM

description of the hardware architecture is
beyond the scope of this paper. The reader is
referred to [20].

5 .

The goal of ACOM is to provide encapsulation
and protection for individual application level
objects. Because of its generic functionality and
its flexible design, ACOM can be embedded into
an existing system in many different ways
depending on the need of a specific application
field. This may range from highly secure
operation where intended malicious attacks to the
system have to be considered to a debugging aid
which can detect wrong pointer operations. In the
latter case ACOM could freely be controlled by
user level procedures.

In a secure protection scheme, the procedures
and data structures controlling ACOM must be
protected. If it can be assured that the tables of
ACOM are not modified deliberately, ACOM will
provide the basic fine grain protection, necessary
to enforce security. The straightforward way to
achieve security would be the migration of
functions controlling ACOM to the operating
system kernel. All functions could be executed in
system space which is assumed to be protected

Making the functionality of ACOM
available to the application

from malicious accesses. This however would
require a considerable change in the operating
system, particularly, the notion of small objects
must be introduced on the kernel level. An
additional unacceptable overhead is the switch to
the kernel level.

A more adequate way in respect of flexibility and
easy system integration is to control ACOM from
user space. ACOM is maintained by trusted
procedures which run in user space and may be
executed during an object invocation. The
architectural support of ACOM to guarantee that
only a privileged procedure accesses ACOM is
the provision of a key. A key is a number which
is stored in an internal ACOM register. This key
can only be modified and written into the internal
ACOM register by the operating system kernel.
When the trusted procedures are loaded into
memory by the kernel, the kernel writes the key
to a dedicated slot within the procedure code.
Subsequently, these procedures are "execute
only" protected by ACOM. Thus, they now hold
the key as local data which is not accessible by
regular read or write operations. In the operation
which load ACOM, this key must be presented
and ACOM raises an exception if it detects a
wrong key. The use of the key and the ability to
protect small segments enable ACOM to enforce
security with minimal kernel support.

269

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

Referring to the systems described in section 2,
object fault or page fault time, respectively, is the
right place to perform the necessary updates on
the tables inside ACOM. At this point, the
persistent pointers in an object or inside a page
have to be resolved. To perform the pointer
swizzling, the internal layout of an object or a
page must be known. Because now, this
information is available anyway, there is no
overhead to additionally retrieve this information
for setting the ACOM entries. Since the pointer
swizzling is achieved in user space, it is highly
advantageous that ACOM can also be maintained
without switching to system space. The overhead
of updating the entries for a segment is then
reduced to two dummy read accesses as
described below plus the time to internally update
the entries by the hardware entry generator.
Depending on the technology used we assume an
overhead of about 20ns/entry. If we assume a
mean object size of 256 bytes, we need four
cycles resulting in a total time of about 80ns
which is in the order of a single memory access.

6. Physical Integration of ACOM

As mentioned earlier, we have to consider a large
variety of processor/cache/MMU configurations
to achieve a wide applicability of ACOM. This
involves a detailed analysis of memory access
cycles as well as cache algorithms of different
processors. The optimal solution for placement
would enable ACOM to directly observe the
virtual addresses generated by the processor.
However, the use of onchip MMUs and caches
makes this solution impossible. The following
discussion will give a flavour of the problems
encountered.

On-Chip MMU

If the MMU is on-chip, ACOM can only observe
physical addresses on the external bus. In a
straightforward solution, the procedure which is
in charge of loading ACOM with the appropriate
segment attributes must know the physical
segment address. This, however, requires
support from the operating system kernel which
currently is not available. In our approach to cope
with on-chip MMUs no kernel support is
necessary. We exploit the address translation of
the on-chip MMU to load ACOM. We issue two

subsequent dummy read operations indicating
that ACOM now will be loaded. The information
issued with these accesses comprises the key, the
lower and upper segment bounds, and the
corresponding protection state. The procedure
which issues the dummy reads must only know
the virtual addresses of the lower and upper
bound, respectively. The MMU translates these
addresses and ACOM can take the proper
physical values from the bus.

Whenever a page is swapped out, ACOM has to
invalidate the corresponding entry in the PIT and
the PIT is reloaded when a new page is swapped
in. When the new cluster page is swapped into
physical memory all tags in the BMT are set to
their proper values. This is performed by the
protected procedures described above providing
the base addresses, size information and
protection attributes for the subpage segments.
The BMT hardware entry generator sets the
internal tables according to these values. The low
overhead of these operations is described above.

On-Chip Caches

A more serious problem is the existence of on-
chip caches since individual accesses on memory
locations are invisible for ACOM if the items are
cached already. We looked at many different
caching strategies. It is well beyond the scope of
this paper to discuss them all in detail. Therefore,
we will address the basic problems only. ACOM
can only control memory accesses when loading
or writing back the cache contents from or to
main memory, respectively. The cache is usually
loaded and written back in terms of so called
lines. Lines are of fixed size of a power of 2
(typically 16 bytes). Therefore, lines always fit
into a sub-page block defined by ACOM and do
not cross block boundaries. Consequently, all
items in a line belong to the same block and have
common protection attributes. Hence, controlling
accesses which load the cache can easily be
achieved by ACOM. Writing back the cache
contents to main memory can be distinguished in
two basic strategies. The write-through technique
immediately transfers the modified item to main
memory and hence, ACOM can directly control
the access. The bufered write-through and the
write-back strategies delay the transfer of
modified lines. As a result, the detection of a
incorrect access by ACOM is also delayed.

270

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

ACOM will indicate the access violation when
eventually the cache contents is transferred to
main memory. In this case, the damage may be
more substantial and more complex recovery
mechanisms [21] have to be applied. However, it
should be noted that independent of detection
latency, handling of a protection violation is
difficult and needs assistance of higher system
levels.

7. Conclusion

Persistent object systems try to hide the
difference between language level objects and
system objects. To obtain a wide acceptance, the
efficiency of these systems must be comparable
to conventional language systems. One of the key
issues is to exploit the efficiency of virtual
memory management of contemporary
processors. We presented two approaches which
follow this guideline and do not assume any
specially designed hardware platform. Because,
in these systems, controlled object sharing is
highly desirable as an efficient mechanism for
cooperation and communication, protection
becomes a vital property. Since a fine grain
protection scheme has to check individual
accesses to objects, this can only be performed
efficiently by hardware. However, the protection
mechanisms of available high performance
processors are tightly coupled with the address
translation mechanism which, in these
architectures is based on fixed size pages,
inadequate to protect individual objects of
arbitrary size.

We have developed ACOM, an architecture
which provides protection for individual objects
independently from any address translation
issues. Separating protection from address
translation results in a number of benefits:
- Exploitation of any high performance

virtual memory implementation since
ACOM does not interfex with the (critical)
address translation path. Therefore, ACOM
does not slow down memory accesses.
ACOM can be securely controlled by user
level trusted procedures. Hardware support
is provided to check authority of these
procedures.

-

- The overhead to maintain ACOM is very
low. Updating ACOM is additionally
supported by an entry generator.

- Easy integration in a conventional
hardware platform. ACOM can be applied
to systems with different hardware
configurations, i.e. on-chip MMUs and
caches.
ACOM is a simple device in terms of
hardware complexity. This will reduce
hardware costs and make an
implementation easy.
Applications which do not need or want
fine grain protection do not suffer from
ACOM in terms of performance
degradation or maintenance overhead.
ACOM can be completely deactivated for
these applications.

The paper sketches how ACOM can complement
existing approaches to persistent object-oriented
systems. The design of ACOM is ready to be
frozen in silicon.

-

-

References

P. Dasgupta. R.J. LeBlanc Jr., W.F. Appelk
The Clouds Distributed Operating System
Functional Description, Implementation Details,
and Related Work, Tech. Report: GIT-ICS-87/42,
GI", Georgia, 1987

G.T. Almes, A.P. Black, E.D. Lazowska, J.D.
Noe: The Eden System: A Technical Review
University of Washington Department of
Computer Science, Tech. Report 83-10-05.
October 1983

A.S. Tanenbaum, S J. Mullender, R. van Renesse:
Using Sparse Capabilities in a Distributed
Operating System, Proc. 6th int. Conf. on Disk
Computer Systems, IEEE, 1986

M. Rozeir, V. Abrassimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois. P. Leonard, W. Neuhauser: CHORUS
Distributed Operating Systems, Tech. Rep.
CS/"R-88-7.8, Feb. 1989

Y. Yokote, A. Mitsuzawa, N. Fujinami, M.
Tokoro: Reflective Object Management in the
Muse Operating System, in Proc. of the 1991
International Workshop on Object Orientation in

27 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

Operating Systems, October 1991, Pala Alto,
California, IEEE Computer Society Press, Los
Alamitos, California

R. Lea, P. Amaral, Ch. Jacquernot: COOL-2: an
object oriented support platform built above the
Chorus Micro-kernel, Proc. of the 1991
International Workshop on Object Orientation in
Operating Systems, October 1991, Pala Alto,
California, IEEE Computer Society Press, Los
Alamitos, California

Cornandos Consortium: A Guide to the Cornandos
Platform; Description of Comandos-2 Architecture
Esprit Project 2071 - Deliverable Dl-T2.2, March
1991

PR. Wilson: Operating System Support for Small
Objects, In Proc. of the 1991 International
Workshop on Object Orientation in Operating
Systems, October 1991, Palo Alto, California,
EEE Computer Society Press, Los Alamitos,
California

A. Black, N. Hutchinson, E. Jul, H. Levy:
Object Structure in the Emerald System, F’m.
1986 ACM Conf. on Obj.-Oriented h g r .
Systems, Languages and Applications, ACM,
1986

P.R. Wilson: Pointer swizzling at page fault time:
Efficiently supporting huge address spaces on
standard hardware, Computer Architecture News,
June 1991

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P.
Cockshott, R. Momson: An Approach to
Persistent Programming, The Computer Journal,
Vo1.26, No.4, November 1983, pp. 360-365.

T. Andrews, C. Harris, K. Sinkel: The Ontos
Object Database, Tech. Report, Ontologic Inc.,
Burlington, Ma, 1989

W.P. Cockshott, M.P. Atkinson, KJ. Chisholm,
PJ. Bailey, R. Momson: POMPS: A Persistent
Object Management System, Software Practice
and Experience, Vo1.14, No.1, January 1984, pp.
49-7 1.

Trinity College Dublin: Overview of the Amadeus
Project, Tech. Report, Distributed Systems Group,
May 199 1, Trinity College Dublin

J. Kaiser: An Object-Oriented Approach to
Support System Reliability and Security, Proc.
“European Symposium on Research in
Computer Security”, Toulouse, France, October
1990

Intel: 80386 Hardware Reference Manual
Intel Corp., Santa Clara, California, 1986

Motoroh MC68030 Enhanced 32-Bit
Microprocessor User’s Manual Motorola Inc.,
1987

G J. Myers: Advances in Computer Architecture
2nd Ed., John Wiley&Sons, 1982

J. Kaiser: MUTABOR, A Coprocessor Supporting
Memory Managent in an Object-Oriented
Architecture, IEEE Micro, Vo1.8 No.5,
October 1988

K. Czaja, J. Kaiser, U. Kleinhans: Ein Hardware-
Monitor zur Durchsetzung von Zugnffsschutz in
objektorientierten Systemen, In: A Jammel,
Architektur von Rechensystemen, 12. GI/ITG-
Fachtagung, E e l 1992, Springer 1992

J. Kaiser, E. Nett, R. Kroger: MUTABOR: A
Copmessor supporting Object-Oriented Memory
Management and Error Recovery, Proc. HICSS-
21, Vol. 1, 1988

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore. Restrictions apply.

