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Abstract: 

The paper describes ACOM (Access Control 
Monitor), a hardware device which we developed 
to enforce run time protection in an persistent 
object-oriented system. To obtain a wide 
acceptance, the efSiciency of these systems must 
be comparable to conventional language systems. 
One of the key issues is to exploit the efJiciency 
of virtual memory management of contemporary 
processors. We will argue that a careful analysis 
of the hardware-software trade-ofl will lead to a 
simple hardware device which can efliciently 
support encapsulation and protection of small 
objects in an object-oriented systems. The main 
idea is to separate encapsulation and protection 
from address translation issues. 

1. Introduction 

The object-oriented programming paradigm maps 
real world problems into a universe of objects in 
a machine. Ideally, everything a user of an 
object-oriented system is concerned with are 
objects. The system should provide a uniform 
interface to objects and remove the classical 
distinction between program-variables, files, or 
database items. 
A number of research and commercial projects in 
the area of object-oriented operating systems tried 
to provide objects as a general abstraction at the 
user interface [ 11 ,PI, [31 ,PI ,[SI ,[GI [81 
without assuming any specially designed 
hardware platform. Of particular interest are 
those approaches which do not distinguish 
between the object model of the language and the 
system [5],[6],[7],[8],[9]. This has the 
following consequences on the support system: 

- the entire application is structured in arbitrarily 
sized objects. This means that the size of the 
objects is determined by the application and 
not by artifacts of the system architecture. 
Particularly, the system must cope with a large 
number of small objects as well as with very 
large objects. 

- individual objects should be the entities of 
protection and sharing. This implies that the 
architecture must recognize and protect those 
objects. 

- the system should directly support generic 
functions only, i.e. the least common 
denominator of all languages in question. This 
means that the system basically provides the 
containers for language objects, maps and 
protects them. 

In the following, we will concentrate on this 
basic functionality of an object support system. 
We will argue that a careful analysis of the 
hardware-software trade-off will lead to a simple 
hardware device which can efficiently support 
encapsulation and protection of small objects in 
an object-oriented operating systems. The main 
idea is to separate encapsulation and protection 
from address translation issues. The paper is 
organized as follows: 
In the next section we briefly sketch two 
examples of systems supporting persistent 
objects to show how these systems implement 
the persistent store on a pure software basis. We 
will argue that basic protection issues cannot 
efficiently be solved in these systems. The rest of 
the paper describes ACOM (Access h n t r o l  
Monitor), a hardware device which we developed 
to enforce run time protection. It easily could 
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complement object-oriented persistent systems 
shown in the examples. Since only the most 
basic functions of encapsulation and protection 
are incorporated into the design, leaving the more 
complex and language dependent issues to 
software, it can be seen as a RISC approach to 
object-oriented hardware support. 

2. Representation of persistent objects 

To exhibit the benefits of architectural support, 
we examine two example systems which provide 
basic support for persistent objects. We will 
concentrate on the Comandos system [7] and on 
an approach developed by Wilson [lo], although 
many other language and database systems use 
similar techniques [11],[12],[13]. We chose 
Comandos because i t  is a complete 
implementation of an object store addressing 
language and system aspects. Wilson's approach 
is sketched because he elegantly exploits 
available address mapping mechanisms to 
implement a persistent store. Both systems do 
not rely on special purpose hardware. The 
conceptual view of the persistent store in both 
systems is outlined in Fig.1. Both systems 
provide a shared persistent object store which 
includes all devices of a storage hierarchy. The 
system shields the programmer from the different 
addressing mechanisms found in the distinct 
storage media and allows a uniform location 
independent access to objects. The persistent 
object memory is constructed from a persistent 
passive space and a transient active space. The 
passive space is the long term object repository. 
Each persistent object has a representation in 
passive space. The active space constitutes a 
virtual address space where objects are directly 
accessible by a machine dependent address and 
where computations on objects are performed. 
However, for a programmer and even for a 
running program, the distinction is transparent 
and hence, conceptually, a single level store is 
provided. If a persistent object is referenced and 
it is not in the active space, it is automatically 
transferred from the passive to the active space 
by an appropriate manager. 

Once in active space, it should be possible to 
operate on objects as conveniently and with the 
same performance as in the runtime environment 
of a language. This particularly means, that it is 
mandatory to fully exploit all the hardware 

facilities of the basic processor, especially, 
virtual memory management and address 
calculation. The overhead one has to pay for 
persistence should only occur on the activation 
and passivation of objects. With a sufficiently 
large (machine supported) virtual memory and a 
certain locality of computation, acceptable 
performance can be expected [lo]. Therefore, we 
assume that the active space relies on a paged 
virtual memory because this is the standard 
supported by common address translation 
hardware and operating systems. 

petsirtent object memory 
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Fig. 1 Structure of persistent object memory 

The following steps have to be performed to 
bring in an object from passive to active space. 
Firstly, the system must detect that a referenced 
object is not in active space. Secondly, the object 
has to be brought in, thereby converting its 
passive to an active representation. This 
conversion mainly affects persistent pointers 
which have to be transformed to virtual 
addresses, also termed transient pointers. This 
mapping is dynamic because the relationship 
between persistent and transient pointers is not 
fixed but determined at translation time and 
partial in that not all persistent pointers are 
mapped to virtual addresses. The technique of 
having multiple namespaces and translating 
pointers is known as pointer swizzling or pointer 
resolution and implementations exist in persistent 
languages e.g. [l 11 databases e.g. [ 121 on the 
OS-level and on the architectural level e.g. [13]. 
Thirdly, the objects, now in virtual memory have 
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to be protected according to their specified 
protection attributes. 

Since the movement of individual small objects 
from passive to active space would be too 
expensive, objects are grouped to larger entities 
for activation. If locality of computations is 
assumed within these entities, this can also be 
viewed as a look-ahead technique for activation. 
In Comandos, the notion of a cluster [7] is 
introduced comprising objects which according 
to some grouping policy belong together. When 
an individual object is activated, all objects 
residing in the respective cluster are mapped into 
virtual memory, i.e. space is reserved in virtual 
memory for the entire cluster by updating the 
corresponding entries in the page translation 
tables. Copying of data to the active space then 
proceeds on demand in entities of pages. In 
Wilson’s approach, the entire persistent space is 
a huge linear paged address space. The entity 
which is transferred to active space on object 
activation is a page. 

Starting with the detection of a reference to an 
object which is still in persistent memory, we can 
classify different approaches. In the Amadeus 
implementation [14] of the Comandos system it 
is assumed that an access to an object always 
takes place via an object invocation. If an object 
is brought to active space, all its persistent 
pointers are resolved. The object may contain 
pointers which address some other object not yet 
in active space. To cope with this situation, a so 
called proxy is inserted in place of the pointed-to 
object. When a subsequent invocation uses the 
address of the proxy, the code of the proxy is 
executed which initiates the transfer of the 
associated persistent object to active space. The 
important points are that an executing program 
never sees a persistent pointer and that a resolved 
pointer when used, really addresses the right 
object. It should be noticed that the detection of a 
proxy relies on the proper use of the invocation 
mechanism. 

Another possibility, also developed in the 
Comandos project, is to replace a pointer to an 
object which is not in active space by an invalid 
address to cause a hardware trap if this pointer is 
used. The handler then has to determine which 
object should be addressed and subsequently 
move it to active space. This approach allows to 
access objects directly using normal pointer 

arithmetic additionally to the invocation 
mechanism (this is bad style but possible e.g. in 
C++). However, since the invalid address does 
not contain location information, effort has to be 
devoted to determine the respective object. 

Wilson exploits the trap facility of the page 
translation mechanism to detect accesses to 
unmapped persistent objects in active space [8]. 
If a page holding one or more persistent objects 
is faulted into active space, all pointers of the 
page are resolved. As a consequence, all pointed- 
to pages have to be mapped in active space i.e. 
the corresponding space has to be reserved. 
Since these pages may contain persistent pointers 
they have to be access protected. This assures 
that a running program cannot see persistent 
pointers. If a program attempts to access a 
protected page, a trap handler is invoked which 
copies the page into active memory and translates 
all persistent pointers into transient pointers, 
again relocating the referred-to pages as needed. 

These approaches show that the problem of 
detecting a reference to a persistent object in 
passive space and the resolution of pointers can 
be solved on a standard hardware platform with 
acceptable performance. 

However, once in active space, there is no way 
in conventional, page-based systems to 
individually protect the subpage-objects from 
inadvertent accesses and hence, assuring the 
reliable and secure operation of the system [ 151. 
In Comandos, protection of objects inside a 
cluster is enforced by a programming convention 
rather than by a mechanism provided by the 
system. It is possible to generate a virtual address 
without using the invocation mechanism 
properly, thus, compromising system integrity. 
Therefore, it is recommended that only those 
objects are grouped in a cluster which mutually 
trust each other. This restricts the freedom of 
grouping policies and may result in additional 
overhead to relocate objects. One of the great 
advantages of the Comandos system is that object 
sharing is supported. In the COOL-2 [6] kernel, 
which provides basic support for cluster objects 
and constitutes a lower level component of the 
Comandos system, an object can concurrently be 
mapped into many distinct virtual address spaces 
for efficiently sharing one object representation. 
This desirable feature however is questionable if 
it is not possible to map objects into distinct 
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address spaces with different protection 
attributes. The current solution is that in cases 
where this is required, a critical object can only 
reside in a single address space. To access the 
object from another address space an invocation 
crossing address space boundaries has to be 
performed. This, of course is a workaround and 
an expensive solution. 

Wilson proposes a solution for cases where 
sensitive objects happen to reside on the same 
page as non-sensitive objects. In this case the 
off-limit object should be replaced by a "bogus 
proxy" which is made unusable. This, of course, 
is no solution for controlled sharing where e.g. 
one process is allowed to read and write an object 
while others are only allowed to read it. 

To summarize: while the addressing problem of 
persistent object systems seems to be acceptably 
solved by the above schemes, protection is still 
an open problem. Although the need for 
protecting individual objects may be obvious, the 
lack of it or the inadequate solutions are the price 
most designers are willing to pay in favour of 
running their software on a standard hardware 
platform. In the following sections we will 
present ACOM, a simple hardware device which 
addresses the protection problem. In its design, 
much emphasis has been placed on easy 
integration in existing hardware and software 
platforms. 

3. Can existing address translation 
hardware be exploited ? 

Typically, an object-oriented application is 
constructed from a large number of small objects. 
Existing hardware platforms like the Intel 
386/486 [16] offer a segmentation mechanism 
which allows to specify and protect segments of 
arbitrary size up to 4 Gbyte. However, due to the 
size of the segment index, the number of 
segments which can be addressed in the 
protection domain of a task is restricted to 8k 
local and 8k global segments which may not be 
enough in object-oriented applications. 
Another approach would be to provide small 
pages and place only one object on each page. 
This would trade space to gain protection. There 
are some MMUs (Memory Management Units) 
which support page sizes down to 256 byte (e.g. 
Motorola 68030 architectures [ 171). This, of 

course, has a number of drawbacks starting with 
the larger number of pages which have to be 
maintained in a multi-level hierarchy of page 
tables (up to 5 levels using 256 byte pages in 
68030 [ 171). Traversing this hierarchy of page 
tables slows down the address translation 
mechanism. Secondly, because of the still coarse 
granularity and the fixed size of a page, the 
internal fragmentation may be substantial. 

Because of the insufficiencies of these 
approaches we propose an architecture which 
provides protection without touching the address 
translation mechanism. As a result, the most 
efficient address translation mechanism can be 
chosen, optimizing page or segment size 
according to the need of the hardware devices. 
Objects can be arbitrarily grouped together on 
such entities for efficient memory management 
but they can be protected individually. 

4. The conceptual view of ACOM 

ACOM controls memory accesses without 
interfering with the address translation path of the 
processor, i.e. it checks memory accesses 
independently and concurrently to any existing 
address translation hardware. Because of this 
independence, ACOM can easily be integrated 
into any hardware platform. Only if an invalid 
access is detected by ACOM, an exception is 
generated to signal the violation. Since the 
detection of invalid addresses by ACOM is very 
fast in most processor systems, the memory 
access can be aborted before it overwrites or 
illicitly reads a memory location. If this is not 
possible, the trap handler has the responsibility 
of initiating corrective actions. 
Fig. 2 shows a physical addressing path and 
indicates how ACOM is connected to the system. 
Today's processors exhibit a large variety of 
configurations concerning memory management 
units and caches. Most processors have these 
facilities on-chip. Therefore, to allow a universal 
application of ACOM, no assumptions about the 
physical structure of the processor should be 
made. In fact, ACOM can be integrated into a 
system regardless of the individual cacheFlMU 
configurations. This topic is discussed in more 
detail in section 6. For the moment, it should be 
noted that any address, virtual or physical, 
applied to main memory uniquely selects a 
memory location. 
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Fig. 2 Physical integration of ACOM 

The subpage segment structure is superimposed 
on linear memory by ACOM. These segments are 
the guarded containers for objects defined at a 
higher level. For each such segment ACOM 
provides the corresponding access rights. ACOM 
monitors the address bus and and executes the 
necessary checks on the basis of the current 
address and the intended access 
(read/write/execute) of the processor which is 
also available during a memory access. A 
conceptual view of ACOM is presented in Fig. 3. 

ACOM works much in the same way as a tagged 
memory [18] with the difference that ACOM 
logically defines the tagged architecture and 
substantially simplifies the management of tags. 
A tag comprising access rights is associated to 
the addressed memory location and evaluated 
with every access. This tag is stored in a separate 
memory the so called BMT (Block Map Table). 
For reasons of implementation efficiency, we 
assume small blocks of 8 or 16 words of 32 bits 
rather than provide a tag for each memory word. 
A segment then comprises a number of these 
blocks. For each block the specified access rights 
are derived from the protection state of the 
segment. It should be noted that the memory 
requirements for the BMT are very low. 
Assuming a block size of 64 byte and two bits 
per block to specify read/write/execute rights, a 
linear physical memory of up to 64 Mbyte can be 
supported by just two 1 Mbit memory chips. 
This is under 0.5% of the total memory 
hardware. 

However, there are a couple of problems which 
cannot be solved in a straightforward 
implementation of a tagged memory concept. 
Firstly, the management overhead is 
unacceptable. Each tag in the memory has to be 

initialized and maintained. If we assume a 
standard page size of 4 kbyte, 64 entries have to 
be touched, independent of whether sub-page 
structures are needed or not. Even worse, in a 
multiprogramming environment, where the 
address spaces of multiple processes have to be 
isolated from each other, this hardly can be 
achieved by modifying the tags for almost the 
entire memory on each process switch. 

Therefore, we distinguish between two kinds of 
pages in linear memory. Linear pages are not 
subdivided into smaller entities. Cluster puges 
contain multiple segments and are specifically 
supported by ACOM. As a second improvement, 
ACOM supports multiple address spaces 
efficiently. To achieve this, it comprises an 
additional lookup table, the page identity table 
(PIT). The PIT and the BMT are concurrently 
accessed during a memory cycle. The PIT allows 
the association of an address with the 
corresponding entries in the BMT. For each page 
it can be decided whether it belongs to the 
address space of a particular process or not. The 
PIT hardware is comparable to the hit/miss logic 
of a conventional direct mapped TLB [ 191. The 
PIT determines whether an address refers to a 
page for which it already contains a valid entry 
and whether this entry refers to a linear page or a 
cluster page. If an linear page is accessed, 
nothing more has to be done. In case of referring 
to a cluster page, the corresponding tag of the 
BMT containing access rights is evaluated. 

An additional advantage over tagged memory is 
the hardware entry generator of ACOM which 
creates the tags in the BMT for a segment 
automatically from the segment's base address 
and size. Thus, it eliminates the time consuming 
accesses by the main processor. The detailed 
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Fig. 3 The conceptual view of ACOM 

description of the hardware architecture is 
beyond the scope of this paper. The reader is 
referred to [20]. 

5 .  

The goal of ACOM is to provide encapsulation 
and protection for individual application level 
objects. Because of its generic functionality and 
its flexible design, ACOM can be embedded into 
an existing system in many different ways 
depending on the need of a specific application 
field. This may range from highly secure 
operation where intended malicious attacks to the 
system have to be considered to a debugging aid 
which can detect wrong pointer operations. In the 
latter case ACOM could freely be controlled by 
user level procedures. 

In a secure protection scheme, the procedures 
and data structures controlling ACOM must be 
protected. If it can be assured that the tables of 
ACOM are not modified deliberately, ACOM will 
provide the basic fine grain protection, necessary 
to enforce security. The straightforward way to 
achieve security would be the migration of 
functions controlling ACOM to the operating 
system kernel. All functions could be executed in 
system space which is assumed to be protected 

Making the functionality of ACOM 
available to the application 

from malicious accesses. This however would 
require a considerable change in the operating 
system, particularly, the notion of small objects 
must be introduced on the kernel level. An 
additional unacceptable overhead is the switch to 
the kernel level. 

A more adequate way in respect of flexibility and 
easy system integration is to control ACOM from 
user space. ACOM is maintained by trusted 
procedures which run in user space and may be 
executed during an object invocation. The 
architectural support of ACOM to guarantee that 
only a privileged procedure accesses ACOM is 
the provision of a key. A key is a number which 
is stored in an internal ACOM register. This key 
can only be modified and written into the internal 
ACOM register by the operating system kernel. 
When the trusted procedures are loaded into 
memory by the kernel, the kernel writes the key 
to a dedicated slot within the procedure code. 
Subsequently, these procedures are "execute 
only" protected by ACOM. Thus, they now hold 
the key as local data which is not accessible by 
regular read or write operations. In the operation 
which load ACOM, this key must be presented 
and ACOM raises an exception if it detects a 
wrong key. The use of the key and the ability to 
protect small segments enable ACOM to enforce 
security with minimal kernel support. 

269 

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 12:23 from IEEE Xplore.  Restrictions apply.



Referring to the systems described in section 2, 
object fault or page fault time, respectively, is the 
right place to perform the necessary updates on 
the tables inside ACOM. At this point, the 
persistent pointers in an object or inside a page 
have to be resolved. To perform the pointer 
swizzling, the internal layout of an object or a 
page must be known. Because now, this 
information is available anyway, there is no 
overhead to additionally retrieve this information 
for setting the ACOM entries. Since the pointer 
swizzling is achieved in user space, it is highly 
advantageous that ACOM can also be maintained 
without switching to system space. The overhead 
of updating the entries for a segment is then 
reduced to two dummy read accesses as 
described below plus the time to internally update 
the entries by the hardware entry generator. 
Depending on the technology used we assume an 
overhead of about 20ns/entry. If we assume a 
mean object size of 256 bytes, we need four 
cycles resulting in a total time of about 80ns 
which is in the order of a single memory access. 

6. Physical Integration of ACOM 

As mentioned earlier, we have to consider a large 
variety of processor/cache/MMU configurations 
to achieve a wide applicability of ACOM. This 
involves a detailed analysis of memory access 
cycles as well as cache algorithms of different 
processors. The optimal solution for placement 
would enable ACOM to directly observe the 
virtual addresses generated by the processor. 
However, the use of onchip MMUs and caches 
makes this solution impossible. The following 
discussion will give a flavour of the problems 
encountered. 

On-Chip MMU 

If the MMU is on-chip, ACOM can only observe 
physical addresses on the external bus. In a 
straightforward solution, the procedure which is 
in charge of loading ACOM with the appropriate 
segment attributes must know the physical 
segment address. This, however, requires 
support from the operating system kernel which 
currently is not available. In our approach to cope 
with on-chip MMUs no kernel support is 
necessary. We exploit the address translation of 
the on-chip MMU to load ACOM. We issue two 

subsequent dummy read operations indicating 
that ACOM now will be loaded. The information 
issued with these accesses comprises the key, the 
lower and upper segment bounds, and the 
corresponding protection state. The procedure 
which issues the dummy reads must only know 
the virtual addresses of the lower and upper 
bound, respectively. The MMU translates these 
addresses and ACOM can take the proper 
physical values from the bus. 

Whenever a page is swapped out, ACOM has to 
invalidate the corresponding entry in the PIT and 
the PIT is reloaded when a new page is swapped 
in. When the new cluster page is swapped into 
physical memory all tags in the BMT are set to 
their proper values. This is performed by the 
protected procedures described above providing 
the base addresses, size information and 
protection attributes for the subpage segments. 
The BMT hardware entry generator sets the 
internal tables according to these values. The low 
overhead of these operations is described above. 

On-Chip Caches 

A more serious problem is the existence of on- 
chip caches since individual accesses on memory 
locations are invisible for ACOM if the items are 
cached already. We looked at many different 
caching strategies. It is well beyond the scope of 
this paper to discuss them all in detail. Therefore, 
we will address the basic problems only. ACOM 
can only control memory accesses when loading 
or writing back the cache contents from or to 
main memory, respectively. The cache is usually 
loaded and written back in terms of so called 
lines. Lines are of fixed size of a power of 2 
(typically 16 bytes). Therefore, lines always fit 
into a sub-page block defined by ACOM and do 
not cross block boundaries. Consequently, all 
items in a line belong to the same block and have 
common protection attributes. Hence, controlling 
accesses which load the cache can easily be 
achieved by ACOM. Writing back the cache 
contents to main memory can be distinguished in 
two basic strategies. The write-through technique 
immediately transfers the modified item to main 
memory and hence, ACOM can directly control 
the access. The bufered write-through and the 
write-back strategies delay the transfer of 
modified lines. As a result, the detection of a 
incorrect access by ACOM is also delayed. 
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ACOM will indicate the access violation when 
eventually the cache contents is transferred to 
main memory. In this case, the damage may be 
more substantial and more complex recovery 
mechanisms [21] have to be applied. However, it 
should be noted that independent of detection 
latency, handling of a protection violation is 
difficult and needs assistance of higher system 
levels. 

7. Conclusion 

Persistent object systems try to hide the 
difference between language level objects and 
system objects. To obtain a wide acceptance, the 
efficiency of these systems must be comparable 
to conventional language systems. One of the key 
issues is to exploit the efficiency of virtual 
memory management of contemporary 
processors. We presented two approaches which 
follow this guideline and do not assume any 
specially designed hardware platform. Because, 
in these systems, controlled object sharing is 
highly desirable as an efficient mechanism for 
cooperation and communication, protection 
becomes a vital property. Since a fine grain 
protection scheme has to check individual 
accesses to objects, this can only be performed 
efficiently by hardware. However, the protection 
mechanisms of available high performance 
processors are tightly coupled with the address 
translation mechanism which, in these 
architectures is based on fixed size pages, 
inadequate to protect individual objects of 
arbitrary size. 

We have developed ACOM, an architecture 
which provides protection for individual objects 
independently from any address translation 
issues. Separating protection from address 
translation results in a number of benefits: 
- Exploitation of any high performance 

virtual memory implementation since 
ACOM does not interfex with the (critical) 
address translation path. Therefore, ACOM 
does not slow down memory accesses. 
ACOM can be securely controlled by user 
level trusted procedures. Hardware support 
is provided to check authority of these 
procedures. 

- 

- The overhead to maintain ACOM is very 
low. Updating ACOM is additionally 
supported by an entry generator. 

- Easy integration in a conventional 
hardware platform. ACOM can be applied 
to systems with different hardware 
configurations, i.e. on-chip MMUs and 
caches. 
ACOM is a simple device in terms of 
hardware complexity. This will reduce 
hardware costs and make an 
implementation easy. 
Applications which do not need or want 
fine grain protection do not suffer from 
ACOM in terms of performance 
degradation or maintenance overhead. 
ACOM can be completely deactivated for 
these applications. 

The paper sketches how ACOM can complement 
existing approaches to persistent object-oriented 
systems. The design of ACOM is ready to be 
frozen in silicon. 

- 

- 
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