\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;\;+\;\;} \newcommand{\miss}{\;\;-\;\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]} \newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]} \newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]} \newcommand{\kt}[1]{\left\vert #1 \right\rangle} \newcommand{\br}[1]{\left\langle #1 \right\vert} \newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inr}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inrs}[2]{\left\langle #1 \: \middle\vert\: #2 \right\rangle} \newcommand{\inrh}[2]{ \left\langle \vphantom{\huge x} #1 \: \middle\vert \: #2 \right\rangle } \newcommand{\swich}[3]{\left\langle #1 \middle\vert #2 \middle\vert #3\right\rangle} \newcommand{\swichs}[3]{\left\langle #1 \:\middle\vert \: #2 \: \middle\vert \: #3\right\rangle} \newcommand{\swichh}[3]{\left\langle \vphantom{\huge x} #1 \;\middle\vert \; #2 \; \middle\vert \; #3\right\rangle} \newcommand{\otr}[2]{\left\vert #1 \right\rangle\!\left\langle #2 \right\vert} \newcommand{\pss}{\large\psi} \newcommand{\re}{\mbox{Re }} \newcommand{\im}{\mbox{Im }} \newcommand{\mag}[1]{\left\vert #1 \right\vert} \newcommand{\magsq}[1]{{\left\vert #1 \right\vert}^2} \newcommand{\magsqh}[1]{{\left\vert \vphantom{\huge x} #1 \right\vert}^2} \newcommand{\isqt}[1]{\frac{#1}{\sqrt{2}}} \newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}} \newcommand{\ksi}{\kt{\psi}} \newcommand{\parenh}[1]{\left( \vphantom{\huge x} #1 \right)} \newcommand{\parenl}[1]{\left(\vphantom{\LARGE x} #1 \,\right)} \newcommand{\khi}{\kt{\phi}} \newcommand{\cnot}{C_{\scriptsize NOT}} \newcommand{\cnot}{C_{\scriptsize NOT}} \newcommand{\setl}[1]{\left\{\vphantom{\LARGE x} #1 \,\right\}} \)


Module 9 Solved Problems

 


Problem:
Calculate \(\swich{\psi}{P_{v_1} \otimes P_{v_2}}{\psi}\) for \(\ksi\) is the Bell vector \(\isqt{1} \parenl{ \kt{00} + \kt{11} }\).

Solution:
First observe that $$\eqb{ P_{v_1} \otimes P_{v_2} & \eql & \otr{v_1}{v_1} \otimes \otr{v_2}{v_2} \\ & \eql & \kt{v_1 \otimes v_2} \br{v_1 \otimes v_2} }$$ Next, $$\eqb{ \kt{v_1}\otimes \kt{v_2} & \eql & \parenl{ \cos\theta_1\kt{0} + \sin\theta_1\kt{1} } \otimes \parenl{ \cos\theta_2\kt{0} + \sin\theta_2\kt{1} } \\ & \eql & \cos\theta_1 \cos\theta_2 \kt{00} + \sin\theta_1 \sin\theta_2 \kt{11} + \cos\theta_1 \sin\theta_2 \kt{01} + \sin\theta_1 \cos\theta_2 \kt{10} }$$ Thus, $$\eqb{ & \; & P_{v_1} \otimes P_{v_2} \\ & \eql & \kt{v_1 \otimes v_2} \br{v_1 \otimes v_2} \\ & \eql & \parenl{ \cos\theta_1 \cos\theta_2 \kt{00} + \sin\theta_1 \sin\theta_2 \kt{11} + \cos\theta_1 \sin\theta_2 \kt{01} + \sin\theta_1 \cos\theta_2 \kt{10} } \\ & \; & \parenl{ \cos\theta_1 \cos\theta_2 \br{00} + \sin\theta_1 \sin\theta_2 \br{11} + \cos\theta_1 \sin\theta_2 \br{01} + \sin\theta_1 \cos\theta_2 \br{10} } \\ & \eql & \cos^2\theta_1 \cos^2\theta_2 \otr{00}{00} \\ & \; & + \sin\theta_1 \cos\theta_1 \sin\theta_2 \cos\theta_2 \otr{00}{11} \\ & \; & + \sin^2\theta_1 \sin^2\theta_2 \otr{11}{11} \\ & \; & + \sin\theta_1\cos\theta_1 \sin\theta_1\cos\theta_2 \otr{11}{00} \\ & \; & + \mbox{ 12 other terms } }$$ Notice that we get a collection of outer-products in all kinds of combinations. For reasons that will make sense shortly, we're only focusing on the terms that involve both \(\kt{00}\) and \(\kt{11}\) in various outer-product combinations.

Next, we want to compute $$ \swich{\psi}{P_{v_1} \otimes P_{v_2}}{\psi} $$ where $$ \ksi \eql \isqt{1} \parenl{ \kt{00} + \kt{11} } $$ That is, $$ \frac{1}{2} \swichh{ \br{00} + \br{11} }{P_{v_1} \otimes P_{v_2}}{\kt{00} + \kt{11} } $$ Now we see that the when the projector is applied rightwards, the two \(\kt{00},\kt{11}\) terms in the vector will eliminate all outer-products that do NOT have either of these on the right, such as \(\kt{00},\kt{11}\)

Similarly, when that result multiplies leftwards into \(\br{00} + \br{11}\), all outerproducts do not have either \(\br{00},\br{11}\) such as \(\otr{{\bf 10}}{01}\), will get eliminated.

The result is $$\eqb{ \swich{\psi}{P_{v_1} \otimes P_{v_2}}{\psi} & \eql & \frac{1}{2} \sin^2\theta_1 \sin^2\theta_2 + \cos^2\theta_1 \cos^2\theta_2 + 2 \sin\theta_1\cos\theta_1 \sin\theta_2\cos\theta_2 \\ & \vdots & \\ & \eql & \frac{1}{2} \cos^2 \parenl{\theta_1 - \theta_2} }$$
 




© 2022, Rahul Simha