Complex numbers and vectors:
- Complex numbers:
- Either \(z = a + ib\) or \(z = re^{i\theta}\)
- Conjugate: \(z^* = a - ib = re^{-i\theta}\)
- Euler's: \(e^{i\theta} = \cos\theta + i \sin\theta\)
- Rules for arithmetic.
- From which, (complex-valued) functions \(f(z)\)
- Complex vectors:
- Complex numbers as vector elements
$$
\kt{u} \eql \mat{1\\ 2-i\\ 3i}
\;\;\;\;\;\;
\kt{v} = \mat{2 \\ 1\\ i}
$$
- Conjugated row-vector:
$$\eqb{
\br{u} & \eql & \kt{u}^\dagger & \eql & \mat{1 & 2+i & -3i} \\
\br{v} & \eql & \kt{v}^\dagger & \eql & \mat{2 & 1 & -i}
}$$
- Inner-product conjugates left side:
$$
\inr{u}{v} \eql \mat{1 & 2+i & -3i} \mat{2 \\ 1\\ i} \eql 7+i
\;\;\;\; \mbx{A number}
$$
- Squared-magnitude (not length) of a complex vector:
\(\magsq{u} = \inr{u}{u}\)
- Outer-product: column times row
- Scalar rules: \(\kt{\alpha v} = \alpha\kt{v}\) and
\(\br{\alpha v} = \alpha^* \br{v}\)
- Inner products with linear combinations:
$$\eqb{
\inrs{u}{\alpha v + \beta w} & \eql & \alpha\inr{u}{v} + \beta\inr{u}{w}
& \mbx{Linearity on the right}\\
\inrs{\alpha u + \beta v}{w} & \eql & \alpha^*\inr{u}{w} + \beta^*\inr{v}{w}
& \mbx{Conjugate linearity on the left}\\
}$$
Orthogonality, projectors:
- Vector orthogonality (defined as): \(\inr{u}{v} = 0\)
- Orthonormal:
- \(\inr{u}{v} = 0\)
- And \(\mag{u} = \mag{v} = 1\)
- A few important special 2D vectors:
$$\eqb{
\kt{0} & \eql & \mat{1\\ 0} & \;\;\;\;\;\; & \kt{1} & \eql & \mat{0\\ 1}\\
\kt{+} & \eql & \mat{\isqt{1}\\ \isqt{1}} & \;\;\;\;\;\; &
\kt{-} & \eql & \mat{\isqt{1}\\ -\isqt{1}}
}$$
- Projections and projectors:
- Let \(\kt{v_1},\kt{v_2},\ldots\) be an orthonormal basis.
- The projector for \(\kt{v_1}\) (a matrix) is:
$$
P_{v_1} \eql \otr{v_1}{v_1}
$$
- The projection of any \(\kt{u}\) on \(\kt{v_1}\):
$$\eqb{
P_{v_1} \kt{u}
& \eql & \otr{v_1}{v_1} \kt{u} & \mbx{Apply projector} \\
& \eql & \kt{v_1} \; \inr{v_1}{u} & \mbx{Associativity} \\
& \eql & \inr{v_1}{u} \; \kt{v_1} & \mbx{Scalar movement} \\
}$$
The number \(\inr{v_1}{u}\) is the coefficient of projection.
- A vector is the sum of its projections:
$$
\kt{u}
\eql
\parenl{ \inr{v_1}{u} } \: \kt{v_1}
+ \ldots +
\parenl{ \inr{v_n}{u} } \: \kt{v_n}
$$
- Projectors of a basis add up to the identity (completeness relation):
$$
\otr{v_1}{v_1} + \ldots + \otr{v_n}{v_n} \eql I
$$
Operators:
- 3 types of operators: Hermitian, projectors, unitary
- Hermitian: \(A = A^\dagger\)
For example
$$
A \eql \mat{1 & -i\\
i & 1}
$$
is Hermitian while
$$
B \eql \mat{i & 1\\
1 & -i}
$$
is not.
- Unitary: when \(A A^\dagger = A^\dagger A = I\)
For example
$$
H \eql \mat{\isqt{1} & \isqt{1}\\
\isqt{1} & -\isqt{1}}
$$
is unitary because
\(H^\dagger H = H H^\dagger = I\)
But
$$
A \eql \mat{1 & -i\\
i & 1}
$$
is not.
- Projector: given a basis \(\kt{v_1},\kt{v_2}\ldots\kt{v_n}\),
a projector for \(\kt{v_i}\) is the outer-product
$$
P_{v_1} \eql \otr{v_i}{v_i}
$$
- Generalizing from real counterparts:
- Hermitian generalizes real-symmetric
- Projector works the same in complex/real
- Unitary generalizes real-orthonormal
- "Dagger" properties:
- \(\br{Ax} = \br{x} A^\dagger = \kt{A x}^\dagger\)
- \(\br{A^\dagger x} = \br{x} A\)
- \( \inr{w}{Ax} = \inr{A^\dagger w}{x}\)
- \( \inr{Aw}{x} = \inr{w}{A^\dagger x}\)
- \( (A^\dagger)^\dagger = A\)
- \( (\alpha A)^\dagger = \alpha^* A^\dagger\)
- \( (A + B)^\dagger = A^\dagger + B^\dagger\)
- \( (AB)^\dagger = B^\dagger A^\dagger\)
- Hermitian properties: if \(A,B\) are Hermitian
- \(A + B\) is Hermitian.
- \(\alpha A\) is Hermitian for real numbers \(\alpha\).
- \(A\)'s diagonal elements are real numbers.
- \(A\)'s eigenvalues are real numbers.
- (Spectral theorem): one can find orthonormal eigenvectors
that are a basis.
- \(A\) can be written in terms of projectors made from
the eigenvectors: \(A = \sum_{i=1}^n \lambda_i \otr{v_i}{v_i}\).
- Properties of unitary operators: if \(A, B\) are unitary
- \(\inr{Au}{Av} = \inr{u}{v}\) (preserves inner products).
- \(|Au| = |u|\) (preserves lengths).
- \(A^\dagger\) and \(A^{-1}\) are also unitary.
- The columns of \(A\) are orthonormal, as are the rows.
- \(AB\) and \(BA\) are unitary.
- Operator sandwich:
- \(\swich{u}{A}{v} = \inrs{u}{Av} = \inrs{A^\dagger u}{v}\)
- Applied to a projector: \(\swich{u}{P_v}{u} =
\magsq{\inr{v}{u}} = \magsq{P_v\kt{u}} \)
- Basis of the moment:
- Vectors exist as mathematical objects without the numbers in them.
- To put numbers to (i.e., "numerify") a vector, a basis must
be selected.
- It's much easier to select an orthonormal basis (any
orthonormal basis).
- We generally use the standard basis.
- But some books will use the eigenbasis, which makes some
calculations easier.
- Review of important and special 2D vectors:
$$\eqb{
\kt{0} & \eql & \mat{1\\ 0} & & \\
\kt{1} & \eql & \mat{0\\ 1} & & \\
\kt{+} & \eql & \vectwo{ \isqt{1} }{ \isqt{1} }
& \eql & \isqt{1} \mat{1\\ 0} \: + \: \isqt{1} \mat{0\\ 1} \\
\kt{-} & \eql & \vectwo{ \isqt{1} }{ -\isqt{1} }
& \eql & \isqt{1} \mat{1\\ 0} \: - \: \isqt{1} \mat{0\\ 1} \\
}$$
Useful-to-know relationships between these:
$$\eqb{
\kt{+} & \eql & \isqt{1} \kt{0} \: + \: \isqt{1} \kt{1} \\
\kt{-} & \eql & \isqt{1} \kt{0} \: - \: \isqt{1} \kt{1} \\
\kt{0} & \eql & \isqt{1} \kt{+} \: + \: \isqt{1} \kt{-} \\
\kt{1} & \eql & \isqt{1} \kt{+} \: - \: \isqt{1} \kt{-} \\
}$$