Complex numbers
Proposition:
For complex numbers \(z_1, z_2\):
- \( (z_1 + z_2)^* = z_1^* + z_2^* \)
- \( (z_1 z_2)^* = z_1^* z_2^* \)
- \( |z_1 z_2| = |z_1| |z_2| \)
Proof:
Let \(z_1 = a_1 + ib_1\) and \(z_2 = a_2 + ib_2\).
-
$$
(z_1 + z_2)^*
\eql (a_1 + ib_1 + a_2 + ib_2)^*
\eql a_1+a_2 - i(b_1 + b_2)
\eql (a_1 - ib_1) + (a_2 - ib_2)
\eql z_1^* + z_2^*
$$
-
$$
(z_1 z_2)^*
\eql ( (a_1 + ib_1)(a_2 + ib_2) )^*
\eql ( a_1 a_2 - b_1 b_2 + (a_1 b_1 + a_2 b_1) i )^*
\eql a_1 a_2 - b_1 b_2 - (a_1 b_1 + a_2 b_1) i )
\eql a_1 a_2 - b_1 b_2 - (a_1 b_1 + a_2 b_1) i )
\eql (a_1 - ib_1) (a_2 - ib_2)
\eql z_1^* z_2^*
$$
-
$$
|z_1 z_2|^2
\eql (z_1 z_2) (z_1 z_2)^*
\eql (z_1 z_2) (z_1^* z_2^*)
\eql (z_1 z_z^*) (z_2 z_2^*)
\eql |z_1|^2 |z_2|^2
$$
Since magnitudes are positive real numbers,
\(|z_1 z_2| = |z_1| |z_2|\).
Complex vectors