\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;\;+\;\;} \newcommand{\miss}{\;\;-\;\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]} \newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]} \newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]} \newcommand{\kt}[1]{\left\vert #1 \right\rangle} \newcommand{\br}[1]{\left\langle #1 \right\vert} \newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\pss}{\large\psi} \newcommand{\re}{\mbox{Re }} \newcommand{\im}{\mbox{Im }} \)


Proofs: Complex numbers and vectors

 


Complex numbers

 

 

Proposition:
For complex numbers \(z_1, z_2\):

  1. \( (z_1 + z_2)^* = z_1^* + z_2^* \)
  2. \( (z_1 z_2)^* = z_1^* z_2^* \)
  3. \( |z_1 z_2| = |z_1| |z_2| \)

Proof:
Let \(z_1 = a_1 + ib_1\) and \(z_2 = a_2 + ib_2\).

  1. $$ (z_1 + z_2)^* \eql (a_1 + ib_1 + a_2 + ib_2)^* \eql a_1+a_2 - i(b_1 + b_2) \eql (a_1 - ib_1) + (a_2 - ib_2) \eql z_1^* + z_2^* $$
  2. $$ (z_1 z_2)^* \eql ( (a_1 + ib_1)(a_2 + ib_2) )^* \eql ( a_1 a_2 - b_1 b_2 + (a_1 b_1 + a_2 b_1) i )^* \eql a_1 a_2 - b_1 b_2 - (a_1 b_1 + a_2 b_1) i ) \eql a_1 a_2 - b_1 b_2 - (a_1 b_1 + a_2 b_1) i ) \eql (a_1 - ib_1) (a_2 - ib_2) \eql z_1^* z_2^* $$
  3. $$ |z_1 z_2|^2 \eql (z_1 z_2) (z_1 z_2)^* \eql (z_1 z_2) (z_1^* z_2^*) \eql (z_1 z_z^*) (z_2 z_2^*) \eql |z_1|^2 |z_2|^2 $$ Since magnitudes are positive real numbers, \(|z_1 z_2| = |z_1| |z_2|\).
 


Complex vectors

 




© 2022, Rahul Simha