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During the last few years an area of active research in the field of
complex systems is that of their information storing and processing
abilities. Common opinion has it that the most interesting beaviour
of these systems is found “at the edge of chaos”, which would seem to
suggest that complex systems may have inherently non-trivial infor-
mation proccesing abilities in the vicinity of sharp phase transitions.
A comprenhensive, quantitative understanding of why this is the case
is however still lacking. Indeed, even “experimental” (i.e., often nu-
merical) evidence that this is so has been questioned for a number of
systems. In this paper we will investigate, both numerically and ana-
litically, the behavior of Random Boolean Networks (RBN’s) as they
undergo their order-disorder phase transition. We will use a simple
mean field approximation to treat the problem, and without lack of
generality we will concentrate on a particular value for the connectiv-
ity of the system. In spite of the simplicity of our arguments, we will
be able to reproduce analitically the amount of mutual information
contained in the system as measured from numerical simulations.

1. Introduction

The amount of information that a system is able to process (and/or
store) plays an essential role when one tries to quantify the level of
“complexity” of a system, and indeed often the mutual information
[1] stored in the system (or a concept derived from it, such as the
past-future mutual information) is used as a measure of its statistical
complexity [2].

Over the last decade a number of authors have carried out work to-
wards understanding under what conditions can we expect to maximize
the information procesing capabilities of different types of complex sys-
tems. For instance, Langton and others [3,4] investigated the behavior
of Cellular Automata (CA), while Crutchfield, Young and others [5]
have been concerned mainly with iterated function systems and com-
putational complexity in this area. The definitions used for complexity
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were rather problem dependent, and not surprisingly two main ap-
proaches to measuring statistical complexity have been developed over
the years, as well as a large number of other “ad hoc” methods for
describing structure. The first line of work uses information theory [6-
9], whereas the second approach defines complexity using computation
theoretic tools [5,10].

In spite of this model dependence, the common picture that seemed
to emerge from this work was that complex systems were able to show a
maximally varied and self-organizative behaviour (i.e., maximally com-
plex behaviour) in the vicinity of sharp phase transitions [11]. Since
these transitions often belonged to the class commonly known in statis-
tical mechanics as order-disorder phase transitions, this naturally led
to the notion that maximally interesting behaviour of complex systems
takes place “at the edge of chaos”, in an expression coined by Lang-
ton [3]. (Note however that the disordered phase does not neccesarily
need to be chaotic in the strict sense of the word, i.e., ergodyc.) The
underlying reason was simple and appeling enough, neither very or-
dered systems with static structures, nor disordered systems in which
information can not be persistently stored are capable of complex in-
formation processing tasks.

The actual verification of the fact that the mutual information (or
definitions of statistical complexity based on other approaches) had a
maximum in the vicinity of the relevant phase transitions were a trick-
ier business though. Early results by Langton for CA’s [3,4] and by
Crutchfield [5,10] for iterated dynamics showing sharp peaks in com-
plexity as a function of the degree of order in the system at what ap-
peared to be phase transitions were subsequently shown to be critically
dependent on the particular measure of order choosen [2]. After this,
Arnold [12] showed numerically that the 2-dimensional Ising model in-
deed had a maximum of statistical complexity (defined through past-
future mutual information) at its order-disorder transition.

Without wanting to go into the debate of what exactly constitutes a
good measure of complexity -a debate often riddled with the specifics
of the particular problem at hand-, it would seem clear though that
complexity and information must bear a close relationship. We will
thus concern ourselves in this paper with the mutual information con-
tained in Random Boolean Networks (RBN) [13] and its behavior as
the networks undergo their order-disorder phase transition (for a view
point computational see [18]). By using a mean field approximation
and assuming Markovian behaviour of the automata, we will show both
numerically and analytically that the mutual information stored in the
network indeed has a maximum at the transition point.

Complex Systems, 11 (1997) 1–1+
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2. Random Boolean Networks

Random Boolean Networks (RBN) [13] are systems composed of a num-
ber N of automata (i = 1, ..., N) with only two states available (say
0 and 1 for instance), each having associated a Boolean function fi

of K Boolean arguments that will be used to update the automaton
state at each time step. Each automaton i will then have associated K
other automata i1, i2, ..., ik (the inputs or vicinity of i), whose states
(xi1 , xi2 , ..., xik ) will be the entries of fi. That is, the automaton i will
change its state xi at each time step according to the rule

xi(t + 1) = fi(xi1(t), xi2 (t), ..., xik (t)). (1)

Both fi and the identity of its K inputs are initially assigned to
the automaton i at random. (In particular, the N f ’s are created by
randomly generating outputs of value one with a probability p, and
of value zero with a probability 1 − p, where p is called the bias of
the network). This initial assignation will be maintained throught the
evolution of the system, so we will be dealing with a quenched system.
Even keeping this assignation fixed, the number of possible networks
that we can form for given values of N and K is extraordinarily high

(a total of (22K

NK)N possible networks). Thus, if we want to study
general characteristics of RBN systems we are inevitably led to an
statistical approach.

One fact that can be observed for all RBN’s is that although the
number of available states for a network of size N grows like 2N , the
dynamics of the net separates the possible states into disjoint sets,
attractor basins. Each basin will lead the system to a different attrac-
tor. However, since the number of states available is finite and the
quenched system is fully deterministic, we can be sure that the sys-
tem will at some point retrace its steps in the form of periodic cycles.
Thus attractors will neccesarily be periodic sets of states. Since after a
transient any initial state will end up in one attractor or another, their
period (or rather their average period) will set the typical time scale
characterizing an RBN.

It has been known for some time now [13] that RBN’s show two
different phases separated, for a given value of p, by a critical value of
K, Kc:

1. an ordered phase for K < Kc in wich the networks cristalize in a
pattern after a short transient. In this phase almost all of the automata
remain in a completely frozen state and the average period < T > of
the attractors scale with N as a power law and

2. a disordered phase for K > Kc. All patterns are lost and the automata
appear to be in a completely disordered state, switching from one state
to another seemingly at random. The period of the attractors become

Complex Systems, 11 (1997) 1–1+
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Figure 1. The boundary between the chaotic and the ordered phase is shown

in a K-p phase diagram. For a constant value of K, K=3, three set examples

of a N = 50 network are shown for p = 0.60 (disordered phase), p = 0.79

(over the critical line), and p = 0.90 (ordered phase). Each run contains 50

consecutive states, time increasing upwards along the vertical axys.

unobservable in practice because < T > grows exponentially with N ,
thereby rendering the system free of any time scale [14].

This behaviour naturally induced the conjecture that at Kc the RBN’s
undergo a second order phase transition. This conjecture has been
prooven correct and some more information about the transition has
been gained [15]. For instance, as we change the value of p the critical
value Kc at which the transtion takes place also changes and a “critical
line” appears, as shown in Figure 1. As was shown by [16] this line
corresponds to

K =
1

2p(1 − p)
. (2)

In the insets of Figure 1, three sets of states of a network with N = 50
and K = 3 are also shown as we move from the disordered state to the
ordered one by changing p, showing a typical order-disorder transition.
Each set of states contains 50 consecutive states, time running upwards
along the vertical axys.

Complex Systems, 11 (1997) 1–1+
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3. Self-overlap in RBN

Since RBN’s appear undergo an order-disorder phase transition, a use-
ful way to caharacterize the state of the system will be its “self-overlap”
a. This is simply defined to be one minus the Hamming distance be-
tween an automaton at time t and itself at time t + 1, averaged over
all automata and times. Let us expand on this.
Let us suppose that we generate an RBN with bias p, and a random
initial condition. We let the system evolve until the transient dies out
and we are inside an attractor cycle, and then compute the states of
the system for a number of time steps equal to the number of automata
in the system (that is, from t = 1 to t = 10, 000 for the N = 10, 000
network that we have used. Each experimental computer point in
all figures is the average of 100 differents networks with random initial
conditions). Let us suppose that we count the number of times that an
automata is in the state 1 both at time t and t+1, and average over all
automata and time steps. This will give us the “1 state self-overlap”,
a11. Repeating this procedure with the 0 state will then obviously give
us the “zero state self-overlap”, a00. Then, a will simply be given by

a = a11 + a00. (3)

On the other hand, we can analogously define a10 and a01. Note that
by symmetry we have to have a10 = a01 even with p 6= 1/2, since
a10 and a10 are the joint probability distributions, not the conditional
probabilities of transitioning from 1 to 0 or viceversa.
It is then fairly easy to find the equation that describes the evolution
of a. If we define P to be

P = p2 + (1 − p)2, (4)

then it is not difficult to convince oneself that in a mean field approx-
imation we must have

at+1 = aK
t + P (1 − aK

t ), (5)

where K is the connectivity of the net. This equation forces a to evolve
towards fixed points, at → a∗, that will depend on K and p. The
stability analysis of (5) for a∗ = 1 gives the critical line (2) separating
the ordered phase (a∗ = 1) from the disordered phase (a∗ < 1). This
is shown in Figure 2, where the evolution of a given by (5) (solid line)
is plotted against the results of the numerical simulations (dots). The
evolution lasts for as long as it takes the transient to die out, and once
the system is in the attractor cycle a takes on its fixed point value
(from now on we drop the star and designate the fixed point value
simply by a).
Let us now obtain analitycal expressions for the aαβ from our knowl-
edge of a, the normalization conditions and the fact that a10 = a01.
By definition (3) and by normalization

a00 + a01 + a10 + a11 = 1, (6)

Complex Systems, 11 (1997) 1–1+
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Figure 2. Plot of a(t) vs. t showing the numerical results from the simulations

(dots) and the values predicted by the mean field approximation (5), for

K = 3. Different values of the bias p, from p = 0.5 to p = 0.9 with pc = 0.79

are shown.

so that
a01 + a10 = 1 − a. (7)

But then, by symmetry,

a10 = a01 =
1 − a

2
. (8)

We still have two more normalization conditions, derived from the fact
that the probability of finding a mean field automaton in the state 1
is p, and 1 − p for the state 0

a11 + a10 = p, (9)

a00 + a01 = 1 − p, (10)

whence

a00 =
a

2
−

(

p −
1

2

)

,

a11 =
a

2
+

(

p −
1

2

)

,

which satisfy (3) above. Figure3 shows the analytical expressions for
the aαβ (solid lines) together with the results from the numerical sim-
ulations (dots).

Complex Systems, 11 (1997) 1–1+
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Figure 3. Analytical (continous line) and numerical (dots) results for the aαβ

as p ranges from 0.5 to 1

So far we have simply approximated the whole network by a set of
mean field automata. However, since the aαβ are equivalent to pα∩β

we can now calculate the conditional probabilities

pα|β =
aαβ

pβ
(13).

If we now assume that our mean field automata are Markovian these
conditional probabilities will completely characterize their transition
probabilities [1]. Therefore, the transition matrix for the mean field
Markovian automaton is:

T =

(

p0|0 p1|0

p0|1 p1|1

)

=

(

a+1−2p
2(1−p)

1−a
2(1−p)

1−a
2p

a−1+2p
2p

)

(14)

which satisfy
1
∑

α=0

pα|0 = 1, (15)

1
∑

α=0

pα|1 = 1, (16)

where pα|0, pα|1 are the probabilities of transitioning from the states
0, 1 to the state α.
Thus, we have now reduced the whole network to a set of mean field
automata evolving independently under Markovian conditions, all the

Complex Systems, 11 (1997) 1–1+
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effects of their interactions being encoded in a. To compute the past-
future mutual information stored in the system we only have to apply
information theory [2,17]. The one-automaton entropy is simply

H(xt+1) = −p log p − (1 − p) log (1 − p), (17)

whereas the Shannon uncertainty associated to the Markovian evolu-
tion of this automaton will be

H(xt+1 | xt) = pH(xt+1 | xt = 1) + (1 − p)H(xt+1 | xt = 0), (18)

with

H(xt+1 | xt = 1) = −
a − 1 + 2p

2p
log

(

a − 1 + 2p

2p

)

−

−
1 − a

2p
log

(

1 − a

2p

)

, (19)

and

H(xt+1 | xt = 0) = −
a + 1 − 2p

2(1 − p)
log

(

a + 1 − 2p

2(1 − p)

)

−

−
1 − a

2(1 − p)
log

(

1 − a

2(1 − p)

)

. (20)

The uncertainty is thus,

H(xt+1 | xt) = −
a − 1 + 2p

2
log

(

a − 1 + 2p

2p

)

−

−
1 − a

p
log

(

1 − a

2p

)

−
a + 1 − 2p

2
log

(

a + 1 − 2p

2(1 − p)

)

−

−
1 − a

2
log

(

1 − a

2(1 − p)

)

, (21)

whence the past-future mutual information will be:

I = H(xt+1) − H(xt+1 | xt) =

= −p log p − (1 − p) log (1 − p) +
a − 1 + 2p

2
log

(

a − 1 + 2p

2p

)

+

+
1 − a

p
log

(

1 − a

2p

)

+
a + 1 − 2p

2
log

(

a + 1 − 2p

2(1 − p)

)

+

+
1 − a

2
log

(

1 − a

2(1 − p)

)

. (22)
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Figure 4. Numerical and analytical results for both H(xt+1) (filled dots for

the numerical results) and H(xt+1 | xt) (filled triangles) are shown in the

left hand side figure. Note how H(xt+1 | xt) is always smaller and decays

faster than H(xt+1), becoming zero in the ordered phase. In the right hand

side figure I vs. p is shown, showing a peak at the critical value pc = 0.79 as

expected.

Figure 4 shows the analytical expressions (solid lines) as well the ex-
perimental results from the simulations for both the one-automaton
entropy (dots) and the Shannon uncertainty (triangles). Note how
the uncertainty is always smaller and decays faster than the one-
automaton entropy. In particular, for p ≥ pc (where pc = 0.79 for
our net with K = 3), we have a = 1 and H(xt+1 | xt) = 0. Thus
in the ordered phase the mutual information becomes simply the one-
automaton entropy. Given this discussion, it is obvious that the mu-
tual information that can be stored in the system has to have a max-
imum precisely at pc. This is shown in Figure 4, where the mutual
information I is plotted against p (again, both the analytical expres-
sion above as well as the experimental results).
Finally, in Figure 5 the mutual information is plotted against the one-
automaton entropy H. From H = 0 corresponding to p = 1 to H ≈
0.75 which corresponds to the critical value p = pc, we see that I is just
a straight line of slope 1. This is as it should be, since as we just saw
H(xt+1 | xt) is zero for p beyond pc, and I = H(xt+1) in this region.
Precisely at H(pc), I reaches a maximum, and beyond this point it
starts to decay non-lineary as the Shanon uncertainty switches on.

Complex Systems, 11 (1997) 1–1+
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Figure 5. The past-future mutal information I vs. the one-automaton en-

tropy H(xt+1). From H = 0 (corresponding to p = 1) to H(pc) we have

I = H(xt+1) since H(xt+1 | xt) = 0. Therefore, in this region the mutual

information simply increases linearly with the one block entropy. Beyond

this point however we enter the disordered phase and H(xt+1 | xt) switches

on, growing faster (in absolute value) than the one block entropy. Therefore,

I shows a peak exactly at the transition point.

4. Conclusions

By using a mean field approximation and a Markovian ansatz for the
evolution of an RBN, we have been able to show with a few, back of the
envelope type of calculations, that the past-future mutual information
contained in a RBN reaches a maximum at the point at which this
system undergoes its order-disorder phase transition. Also, in Figure
5 we can see how the mutual information as a function of the amount
of disorder present in the system (the one-automaton entropy) reaches
a maximum at the point that corresponds to the phase transition.
Similar results obtained in [3,4] (for CA’s) and in [5] (for symbolic
dynamics of the logistic map) were criticized by Li [2] on the ground
that the peak was a artifact created by the particular quantity chosen
to measure the disorder of the system. Thus for instance Li criticizes
Langton arguing that since in the ordered phase we have I = H(xt), it
is only natural for him to find a straight line as the boundary of his plot
of complexity against disorder (as we do). Li surmises that if instead of
using H(xt) as a measure of the disorder of the system one chooses to
use the Shanon uncertainty of the source H(xt+1 | xt) (Ht+1|t for short

Complex Systems, 11 (1997) 1–1+
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from now on) the left side of the plot would no longer be a straight
line, and the maximum of I would not be reached for intermediate
values of the disorder. Rather, in the I.vs.Ht+1|t plot the maximum
of I falls over the y axis since I reaches a maximum at zero Ht+1|t,
and I monotonically decreases as Ht+1|t increases. Thus, the intuitive
picture of the relationship between complexity and disorder proposed
by Langton and others (i.e., unimodal relationship between complexity
and disorder with complexity reaching a maximum at intermediate
values of the latter) would no longer seem to be correct. This Li takes
as support to his conclusion that the dependence of I on the amount
of disorder in the system can take many varied forms.
We think that the argument just presented, although trivially correct,
fails to capture the essence behind the idea of unimodal dependence
between I and the amount of disorder in the system. We should first
note that I(Ht+1|t = 0) is not a single valued function. Rather, since
Ht+1|t = 0 for pc ≤ p ≤ 1, at Ht+1|t = 0 I grows from zero (correspond-
ing to p = 1) to its maximum value (corresponding to p = pc). That is,
we have not got rid of the straight line in the I.vs.Ht graph, we have
merely made it into a vertical line placed at Ht+1|t = 0. Note however
that the maximum of I would still be reached at the transition point
between the two phases of the system. This is in fact the central point
of the issue at hand. The postulated unimodal dependence between
I (or complexity) and disorder rests under the assumption that, as
we vary the order parameter, the system goes from an ordered phase
into a disordered one with I attainning its maximum value neither
at one phase nor the other, but precisely at the transition point be-
tween them. If the quantity chosen as the order parameter varies over
both phases then I will reach this maximum for intermediate values
of the parameter. If, on the other hand, a whole phase of the system
is mapped into a single value of the order parameter, then quite ob-
viously the maximum will be at one of the edges of the graph. Thus
one could say that the essence of ‘unimodality’ lyes not on I reaching
its maximum for intermediate values of the order parameter, but on
such maximum being at the transition point between the ordered and
the disordered phases.
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