Course Notes on Database Systems

Rahul Simha

Department of Computer Science
The George Washington University
Chapter 1

Introduction

Course Notes on Database Systems
1.1

CS 321: Database Systems

- **Prerequisites.** CS 313, CS 304, programming in C (you need to know: essentials of algorithm analysis, how to code tree-type data structures). No prior knowledge of databases needed.

- **Course description.** In this course, students will learn what a database is, and why data management requirements in the real world require more than just data structures. We will cover the standard relational model in great detail: the relational model, relational algebra, normal forms, physical storage and access, transaction processing, concurrency, recovery, distributed databases. Time permitting, some advanced topics from among the following will be covered: parallel databases, string processing, compression, spatial data processing. Students will implement assignments in the Oracle database as well as write code to build parts of a database.

- **Course materials.**

 - **Textbook:** No textbook.

 - **Notes/Slides:** Copies of slides used in class to be purchased from Computer Science office.

 - Stuff on reserve in Swem:

 * Various Oracle books.

 - On-line Oracle documentation.

 - Other items on reserve that may be of interest:
1.2 What is a database?

- **Def:** A *database is a collection of interrelated data.*

 Q: for what purpose?

- **Def:** A *Database Management System (DBMS) is a collection of interrelated data and a set of programs to create, access and manipulate the data.*

- **What is an example of a database?** Consider:
 - Linked list containing 100 integers.
 - 50 lines of C
 - operations: add, delete nodes

 \[\Rightarrow \text{is this a DBMS?} \]
 - If so, what aspect of the linked list program is a DBMS? \(\Rightarrow \) object code, code-while-executing?

 NO! It is not a DBMS!

- **There is more to a DBMS:**
 - **Large data size.** Modern databases have gobs of data. e.g. IRS data
 - Approx. 100 million taxpayers, 2000 bytes per person
 \[\Rightarrow 100 \times 10^6 \times 2000 = 2 \times 10^{11} \text{ bytes} \]

 - **Persistence of data.** Data still exists after programs complete execution.
 \[\Rightarrow \text{permanent storage on disk} \]
 - **Variety of interrelated data.**
• Is a file system a DBMS?
 NOTE: a file system has
 – Large storage capability
 – Persistence of data (non-volatile storage)
 – Variety of interrelated data

• Consider a typical application:
 – University registrar keeps information about students, faculty, courses offered, classrooms etc. e.g,
 * For each student: id, name, major, grades
 * For each course: courseid, course name, credits, dept
 * For each section: courseid, course name, instructor
 * For each faculty: name, dept, courses, office, telephone
 – What does the registrar do with the data?
 * Answer queries: “What grade did Smith get in CS526?”; “Get all courses taught by Jones”
 * Insert new info: “Smith got a B+ in CS534”, “Classroom Terc 104 not available from 9-10.50”
 * Delete some info: “Remove Smith and related data”

• Can a file system suffice for the above application? e.g.
 – Store data in various text files
 – Write small C programs to scan data for queries, make insertions and deletions
 – Utilities for sorting, pretty-printing, GUI

⇒ If this is what a DBMS is, why a whole course on dbases?
⇒ Why are commercial dbases expensive? (over $1,000,000 for full-size Oracle).
⇒ Is there more to a DBMS?
1.3 Of Course There’s More to a DBMS

- Control of data redundancy and inconsistency
 - Unnecessary duplication of data can cause problems:
 ⇒ *Space wastage*: putting a student’s postal address with every occurrence of the student’s name.
 ⇒ *update cost*: if an address changes, we have to find every occurrence of old address and update it

<table>
<thead>
<tr>
<th>COURSE</th>
<th>NAME</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td>321</td>
<td>Smith, J</td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td>304</td>
<td>Smith, J</td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td>423</td>
<td>Smith, J</td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 Rappahannock St, Tappahannack, VA 29127</td>
</tr>
</tbody>
</table>

- Some duplication is necessary
 - difficult to eliminate completely
 ⇒ design becomes convoluted e.g., if we insist *course numbers* appear only once, pointers will be needed to course numbers
 ⇒ deletion is a problem (garbage collection needed)

- Data must be consistent at all times
 ⇒ Changes must occur completely or not at all
 (What happens if an update program crashes before completion?)

- Efficient data access.
– To answer a query about a particular student, should one scan the whole dbase?
– For large amounts of data, searching can be time-consuming.
– NOTE: Access efficiency is evaluated differently in DBMS
 ⇒ minimize disk accesses rather than CPU time

• Concurrent access.
 – Registrar’s office has many employees that need to access the dbase simultaneously
 ⇒ they should not have to take turns at a single terminal
 ⇒ concurrent access to data is desired
 – Need to be careful:
 – User 1: delete “Jones took CS 313”
 User 2: “List Jones’ courses”
 ⇒ need to coordinate actions of different users carefully.

• Security.
 – Not every user should be able access all the data
 (students able to add/delete grades?)
 – Control of access to data is needed without having to duplicate data.

• Integrity constraints.
 – Grades need to be in the set \(\{F, \ldots, A+\} \).
 – GPA’s cannot be negative.
 – A student cannot take a nonexistent course.
 ⇒ A DBMS should enforce broad integrity constraints.
• Backup and recovery.
 – Data must be systematically backed up.
 – Recovery in system crashes.
 – Inserts and updates cannot occur partially
 ⇒ either complete it or don’t do it at all

• Metadata.
 – Data about the data (data types, interrelationships, integrity constraints etc).
 – directory and catalog information.

• Data and program independence.
 – Data should be stored in a program-independent fashion
 ⇒ changes in program should not affect access to data
 ⇒ data re-entry should not be needed

• User and programmer interface.
 – query language
 – GUI
 – reduced application development time
 (C function library to manipulate data)
 – features that allow data to be re-organized for efficient access

• Let’s return to the question: is a file system a DBMS?
 ⇒ clearly, no.
1.4 What is a Data Model?

- **Data Model**: An agreed-upon method for abstractly describing the logical organization of data.

 NOTE: the term data model is often incorrectly used in the literature.

- An analogy: architectural blueprints

 - Blueprints are standardized: any builder can work on a plan drawn by any architect.

 (conventional symbols for windows, doors, plumbing etc)

 - Blueprint ‘standards’ may differ across countries.

- A Data Model is like a blueprint ‘standard’:

 - An agreed-upon way to describe how a dbase is to be organized

 - It permits actual implementation to be independent of this description.

 * Architectural analogy: blueprint does not specify building materials (can use cement or brick exterior)

 * Data model: a data model can be implemented in various ways
• **Example:** sets

 – Sets are described using notation like:

 $$
 A \leftarrow \{17, 234, 88\}
 $$

 $$
 B \leftarrow \{45, 88, 129, 564\}
 $$

 – Operations are defined on sets: union, intersection etc

 – However, sets can be implemented (in C) in many ways:

 1. arrays
 2. linked lists
 3. various algorithms for union, intersection etc

• In dbases, a Data Model describes the *logical* organization of data, along with operations that manipulate the data.

• In this course, we will cover: the *Relational Model.*
1.5 Various people associated with DBMS’s

- **Database Administrator**
 - usually heads a team of dbase professionals
 - involved in purchase and installation of a dbase
 - decides data organization, access privileges, integrity constraints, customization
 - oversees users, applications programmers

- **Database application programmer**
 - develops applications for end users
 - writes code in a query language (e.g. SQL) and in C/C++
 - writes code for GUI-access or web-access to dbase

- **End user**
 - uses interface for queries (e.g. a bank teller)
 - rarely is able to program in SQL

- **DBMS system programmer**
 - works for a dbase vendor (e.g. Oracle, Sybase etc)
 - Various levels: system (low-level), application (GUI’s etc), language (C++/Java), library/tool developer (specialized applications, e.g., GIS)

- **Dbase researcher**
 - works on research problems associated with dbases
 ⇒ dbase design, query processing algorithms, system issues, performance modeling
1.6 Different Ways of Using a Database

- *Using a query language interactively*, e.g. SQL in Postgres

% psql test1
psql> \d
Database = test1
+-----------------+-----------------+-----------------+
| Owner | Relation | Type |
+-----------------+-----------------+-----------------+
simha	acc_type	table
simha	accounts	table
simha	branch	table
simha	managers	table
simha	transactions	table
+-----------------+-----------------+-----------------+

psql> select * from branch;
branch city
--------- ----------
Friendship Washington
Downtown Washington
Downtown New York
Foggy Bottom Washington
Adams Morgan Washington
Chevy Chase Washington
South East Washington

psql> \q
• Writing query language code separately, e.g. SQL in Postgres
 – Create a file called samplequery:

    ```
    select * from branch;
    ```

 – Execute the query in Postgres:

    ```
    % psql < samplequery
    ```

• Writing C code using a C-interface (API), e.g. in Postgres:
 – Write a C program in a file called `sample.c`

    ```
    #include "libpq-fe.h"
    
    main () {
        conn = PQsetdb (pghost, pgport, pgoptions, pgtty, dbName);
        str = PQdb (conn);
        res = PQexec (conn, "select * from branch");
        PQprintTuples (res, stdout, 1, 0, 0);
    }
    ```

 – Compile and execute `sample.c`

• Writing internal code

 – Source code required

 – Most often written in C/C++

 – Various levels: physical layer, query layer, parser, application layer
1.7 Structure of a DBMS

<table>
<thead>
<tr>
<th>USERS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application tools</td>
<td>Application tools:</td>
</tr>
<tr>
<td>Query language interpreter</td>
<td>– GUI interfaces, specialized applications</td>
</tr>
<tr>
<td>C language interface</td>
<td>– Usually written using in C/C++ using library</td>
</tr>
<tr>
<td>Query language parser</td>
<td>Query language interpreter:</td>
</tr>
<tr>
<td>Query optimization and execution</td>
<td>– Puts out a prompt and reads in queries</td>
</tr>
<tr>
<td>Relational operators</td>
<td></td>
</tr>
<tr>
<td>File system and access methods</td>
<td></td>
</tr>
<tr>
<td>Disk and memory management</td>
<td></td>
</tr>
</tbody>
</table>
• **Query language parser:**
 – Developed using a parser generator
 – Instead of code generation, generate function calls to lower layer

• **C interface:**
 – Library of C functions to include in C programs
 – Calls functions at various layers (depending on library)

• **Query optimizer:**
 – Analyze query and develop execution plan
 – Calls relational operators, lower layer functions

• **Relational layer:**
 – Functions that manipulate data in memory
 – Implementation of high-level “relational operators”

• **File system and access methods:**
 – Opening, writing and reading files
 – Index structures: hashing, B-trees

• **Disk and memory management:**
 – Often, a DBMS uses its own memory management
 – Layout of data on disk (clustering of related data)
1.8 Databases: Then and Now

- Ancient data storage: stone tablets, scrolls, paper, log books etc.
- Early days of computing: storage on cards, paper tape.
 - 1950’s:
 - first commercial uses of computers
 - census database
 - customer database for IBM
 - 1960’s:
 - IBM and others develop first few DBMS’s
 - Based on files, hierarchical and network data models
 - nascent formalization of databases
 - 1970’s:
 - Relational database model (E.F.Codd)
 - significant research in sorting, searching, physical implementation
 - query languages: SQL, QUEL, QBE
 - several popular databases: System R (IBM), Ingres (Berkeley)
 - transaction processing
 - 1980’s:
 - DBase for PC’s
 - Many additional features (GUI’s, additional power)
 - research on distributed databases, object-oriented databases, client-server systems
– Today’s dbase giants: Oracle, Sybase, Informix
– preliminary research on non-traditional dbases: geographic and spatial systems, image dbases, scientific dbases

• 1990’s:

– Geographic Information Systems (GIS), spatial databases
 * Store maps, city plans, road maps
 * Typical queries:
 “Find the 10 cities nearest nearest to Richmond”
 “Which counties are currently covered by Hurricane Bertha?”
 “Find all residential land parcels within 2 miles of the factory”
 * Try these websites:
 http://www.mapquest.com
 http://tiger.census.gov/

– Image databases
 * Store images, video
 * Typical queries:
 “Find all images with a tree in them”
 “Find all images that look like the sample image”
 “Find all aerial images of the Williamsburg area”
 * Try these websites:
 http://wwwqbic.almaden.ibm.com
 http://www-white.media.mit.edu/vismod/demos/photobook

– multimedia documents, text and document searching
 * Documents with text, audio and video
 * Typical queries:
 “Find documents with video clips of the President”
 “Find documents with references to Nuclear Disarmament”
 * Try http://www.thomas.gov
- web interfaces
- parallel dbases
 * How to parallelize query processing?
 * How to distribute data across processors?
 * Load balancing

- Emerging growth areas:
 - Non-traditional dbases:
 * Geographic and spatial dbases, Image dbases
 * Multimedia and temporal dbases (video, audio data), digital libraries
 * Scientific dbases (Medical dbases, CAD dbases, financial data, scientific data, DNA dbases)
 * Dbase tools: GUI-based query specification
 * Object-based, object-relational dbases
1.9 What this course is about

- Course syllabus:
 Relational Databases:
 - What is a database?
 - Data Models.
 - Relational databases: relational algebra.
 - Relational databases: SQL.
 - Example: Oracle.
 - Database programming in Oracle.
 - Physical implementation: file structures.
 - Physical implementation: indexing, B-trees, B+-trees, Hashing, Sorting.
 - Query processing.
 - Database design: normalization.
 - Recovery, concurrency.

Additional topics: one or more of (time-permitting)

- OLAP and business data processing.
- Geographic Information Systems.
- Text and pattern searching, approximate searching.
- Distributed Databases.
- Parallel databases.
- Object-oriented databases.
- Multimedia and temporal databases
- Overview of text and data compression.
• Coursework (subject to change):
 – Programming Assignment 1: Implement some SQL queries in Oracle
 (Oracle is a relational database supporting SQL and several tools.)
 – Programming Assignment 2: More Oracle programming.
 – Programming Assignment 3: Indices, either B-Trees or Hashing.
 – Mid-term exam, in-class
 – Final project: a database application
 – Final exam.

• Reading/review assignment for first week
 – Review binary trees, hashing from any data structures book
Chapter 2

Relations and Relational Algebra

Course Notes on Database Systems
2.1 The Relational Data Model

- Recall what a data model is: a *convention for describing the logical organization of data.*
- Other data models: *hierarchical* and *network* models.
- Both the *hierarchical* and *network* models need a detailed understanding of the structure of the data to answer queries (even at a logical level).
 ⇒ main goal of the relational model:
 - to describe a logical structure that is simple enough to minimize structural or navigational information in answering queries (at a logical level)
- A second goal:
 - to create a mathematically precise framework for the logical representation of data.
- To make sense of these terms, consider this example:
 VALUEBANK has branches in Richmond, Williamsburg, Newport News.
 - Each city has several branches, e.g., in Williamsburg: Monticello Rd, Jamestown Rd, Route 143.
 - Customers have accounts in various branches.
 - One obvious approach is *hierarchical:*
– Requirements: one needs to add/delete amounts, add/delete customers, add/delete branches

NOTE:
– Adding and deleting requires knowledge about how the data is stored
 ⇒ navigational information required
 Reasoning about adding/deleting requires navigational information.

• Okay, but what does this really mean?
 – Suppose the hierarchical model City→Customer→Branch was used:
 – If all customers in the Jamestown Branch were deleted, we would lose the information “Jamestown Branch is in Williamsburg”

• In a non-hierarchical or “flat” model, we would store the data as:

<table>
<thead>
<tr>
<th>CUST</th>
<th>BRANCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>Jamestown</td>
</tr>
<tr>
<td>Jones</td>
<td>Monticello</td>
</tr>
<tr>
<td>Jones</td>
<td>Route 143</td>
</tr>
<tr>
<td>Smith</td>
<td>Monticello</td>
</tr>
<tr>
<td>Brown</td>
<td>Route 143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRANCH</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamestown</td>
<td>Williamsburg</td>
</tr>
<tr>
<td>Monticello Rd</td>
<td>Williamsburg</td>
</tr>
<tr>
<td>Route 143</td>
<td>Williamsburg</td>
</tr>
</tbody>
</table>

Thus, deleting all “Jamestown” customers (from the first table) will not affect knowledge about the branches.

In other words, as long as we have the second table, any changes to other parts of the database will not affect the “branch location” information.
 ⇒ not necessarily true in the hierarchical model
2.2 Relational Model: Some definitions

- First, we need to review some elementary set theory:
 - A set is a collection of objects.
 - Usually, in math classes, examples consist of sets of numbers, e.g.
 \[A = \{17, 200, 523\}, \ B = \{17, 413, 703, 804\} \]
 - We will consider more general sets, e.g.
 \[
 \text{NAME} = \{ \text{Smith, Jones} \} \\
 \text{COLOR} = \{ \text{blue, green, red} \}
 \]
 - Recall cross-product of sets: e.g.,
 \[
 \text{NAME} \times \text{COLOR} = \{ (\text{Smith,blue}), (\text{Smith,green}), (\text{Smith,red}), \\
 (\text{Jones,blue}), (\text{Jones,green}), (\text{Jones,red}) \}
 \]
 In general: \(A \times B = \{ (i, j) : i \in A, j \in B \} \)
 - Cross-products extend to more than two sets: e.g.,
 - if \(\text{CAR} = \{\text{Ford, BMW, Toyota}\} \) then \(\{ (\text{Smith,Toyota,blue}), (\text{Jones,BMW,green}) \} \)
 is a subset of \(\text{NAME} \times \text{CAR} \times \text{COLOR} \)

- NOTE: order matters in a tuple

- Some informal definitions:
 - A relation is a “sort-of” cross-product of sets, e.g.,
 \[\text{VEHICLE} = \text{NAME} \times \text{CAR} \times \text{COLOR} \]
 - A relation instance is a particular subset of a relation, e.g.
 \[
 \{ (\text{Smith,Toyota,blue}), (\text{Jones,BMW,green}) \}
 \]
 is an instance of VEHICLE.
 - What do we mean by “sort-of”? In a relation, the order of the sets is not important. Thus, whereas
 \[
 \text{NAME} \times \text{CAR} \times \text{COLOR} \text{ and } \text{NAME} \times \text{COLOR} \times \text{CAR}
 \]
 are different sets, they are the same relation.
- We write the relation VEHICLE as:
 \[
 \text{VEHICLE (NAME, CAR, COLOR)}
 \]

NOTE: While some order must be used in practice, the actual order is not relevant.

- Terminology:

 \[
 \begin{align*}
 \text{Relation name:} & \quad \text{VEHICLE} \\
 \text{Attributes:} & \quad \text{NAME, CAR, COLOR}
 \end{align*}
 \]

- More formal definitions:

 - A \textit{relation schema} \(R(A_1, \ldots, A_n) \) consists of a relation name \(R \) and a list of attributes (or fields) \(A_1, \ldots, A_n \).

 - The \textit{domain} of attribute \(A_i \) is:
 \[
 \text{dom}(A_i) = \text{set of all possible values of attribute } A_i
 \]
 e.g.,
 \[
 \text{dom(CAR)} = \{ \text{GM, Ford, Toyota, … } \}
 \]

 - Values in a domain are \textit{not} divisible: e.g.
 the letter ‘o’ in “Toyota” is \textit{not} in \text{dom(CAR)}

 NOTE: commercial systems allow partial string searches, but the relational theory does not permit domain values to be subdivided.

 - A \textit{tuple} from \(R(A_1, \ldots, A_n) \) is an element of \(\text{dom}(A_1) \times \ldots \times \text{dom}(A_n) \), e.g.,
 \[
 (\text{Smith,BMW,red}) \in \text{dom(NAME)} \times \text{dom(CAR)} \times \text{dom(COLOR)}
 \]

 - A \textit{relation instance} is a set of distinct tuples from a relation schema, e.g.,
 \[
 (\text{Smith,Toyota,blue}), \\
 (\text{Jones,GM,blue}), \\
 (\text{Brown,BMW,white}), \\
 (\text{Simpson,Ford,white})
 \]
 is a relation instance of
 \[
 \text{VEHICLE (NAME, CAR, COLOR)}.
 \]
- A special **null** value is allowed in tuples, e.g.,

(Jones, Honda, null)

to signify lack of knowledge at the current time.

- A relation instance is a *set*. However, it is common to display or think of it as a *table*:

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>NAME</th>
<th>CAR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Toyota</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>GM</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>BMW</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Simpson</td>
<td>Ford</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>Honda</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>

Here, the *row* correspond to tuples and the *columns* correspond to attributes (or fields).

- Although the term "relation" is broader than a particular instance, it is often used informally to refer to a particular instance.

- A *relational database schema* is a collection of relation schemas.

- A *relational database instance* is a particular instance of a relational database schema.

- Most installations typically have a number of disparate databases. Each database usually has a bunch of relation instances.

Thus, an airline might have a reservations database with the following relations:

- **PASSENGER** (NAME, SSN, FLT_ID, MILES)
 - **FLIGHT** (FLT_ID, FLT_NO, START_APT, END_APT)
 - **AIRPORT** (APT, NAME, CITY)
 - **CREW** (SSN, FLT_ID)

and may have a separate database for employee information:

- **EMPLOYEE** (NAME, SSN, POSITION, SALARY, DEPT)
 - **MANAGERS** (DEPT, NAME, MANAGER_SSN)
 - **BENEFITS** (NAME, SSN, AMOUNT)
- We will use the following notation with regard to relation schema $R(A_1, \ldots, A_n)$:

 - $r(R)$ denotes a relation instance of schema R.

 - $t = <v_1, \ldots, v_n>$ denotes a particular tuple (with value v_i for attribute A_i).

 - $t[A_i]$ denotes the value of the A_i attribute in tuple t.
 Thus, if $t = <v_1, \ldots, v_n>$ then $t[A_i] = v_i$.

 - If B is a subset of attributes, i.e., $B \subseteq \{A_1, \ldots, A_n\}$,
 $t[B]$ denotes the collection of values in t that correspond to the attributes in B.

 - For example, consider

 VEHICLE (NAME, CAR, COLOR).

Suppose $t = <\text{Smith,Toyota,blue}>$ and $B = \{\text{CAR,COLOR}\}$. Then:

* $t[\text{CAR}] = <\text{Toyota}>.$

* $t[B] = <\text{Toyota,blue}>.$

27
2.3 Constraints on Relations

- For practical reasons, it is useful to allow constraints to be imposed on relations.

- **Domain constraints:**
 - we would like to define attribute domains as tightly as possible
e.g., \(\text{dom(AGE)} = \{0, \ldots, 120\} \) is preferable to \(\text{dom(AGE)} = \) all integers.

- **Key constraints:**
 First, what is a key?
 - Recall: a relation instance is a collection of distinct tuples.
 - Thus, if \(t_i \) and \(t_j \) are any two tuples, then \(t_1[A_1, \ldots, A_n] \neq t_2[A_1, \ldots, A_n] \).
 - Now, it may be that there is a subset of attributes \(B \subseteq \{A_1, \ldots, A_n\} \) such that \(t_i[B] \neq t_j[B] \) for every \(t_i, t_j \).
 \(\Rightarrow \) such a subset of attributes is possibly a superkey. For example, in

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>NAME</th>
<th>CAR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Toyota</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>GM</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>BMW</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Simpson</td>
<td>Ford</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>Honda</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>

with \(B=\{\text{NAME,CAR}\} \) no two tuples have the same \(B \)-values (same NAME,CAR combination).

- **Def:** A superkey on \(R(A_1, \ldots, A_n) \) is a subset of attributes \(S \subseteq \{A_1, \ldots, A_n\} \) such that \(t_i[S] \neq t_j[S] \) for tuples \(t_i, t_j \) in any relation instance on \(R \).
Important: the superkey quality must hold for all possible relation instances. For example, suppose we have:

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>NAME</th>
<th>CAR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>Toyota</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>GM</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>BMW</td>
<td>red</td>
<td></td>
</tr>
<tr>
<td>Simpson</td>
<td>Ford</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>Honda</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>

At this time, it appears that \((\text{NAME, CAR})\) form a superkey. But at some later stage we might want to add: \(<\text{Smith,Toyota,green}>\). \(\Rightarrow (\text{NAME, CAR})\) is not a superkey.

Suppose we created the relation

\[
\text{VEHICLE2 (NAME, CAR, COLOR, STATE, LICENSE_PLATE)}.
\]

Then,

\[
(\text{NAME, CAR, STATE, LICENSE_PLATE})
\]

is a superkey.

Def: A key \(K\) on \(R(A_1, \ldots, A_n)\) is a superkey of \(R\) such that removing any attribute from \(K\) leaves a set of attributes that is not a superkey.

\(\Rightarrow\) a key is a minimal superkey.

For example, in

\[
\text{VEHICLE2 (NAME, CAR, COLOR, STATE, LICENSE_PLATE)},
\]

the attribute set \{STATE, LICENSE_PLATE\} is a key.

Note: the value of a key (or superkey) uniquely identifies a tuple (since every tuple has a unique key value).

Remember: a key or superkey is a property of attributes, not a property of a particular relation instance.

If a relation has many keys, it is convenient to designate one of them as the primary key. e.g.,

\[
\text{VEHICLE3 (NAME, CAR, COLOR, STATE, LICENSE_PLATE, ENGINE_SERIAL)}
\]
has two keys, \{\text{STATE, LICENSE_PLATE}\} and \{\text{ENGINE_SERIAL}\}.

- In books, it is common to indicate primary keys by underlining the attributes, e.g.,

\text{VEHICLE3 (NAME, CAR, COLOR, \underline{STATE, LICENSE_PLATE}, ENGINE_SERIAL)}
Finally, some constraints on keys:

1. Relations with no keys should be avoided.
 For example, in

 \texttt{VEHICLE (NAME, CAR, COLOR)}

 if a person can own two green Toyota’s, then we would not be able to store both tuples (no duplicates allowed)

 ⇒ should instead use

 \texttt{VEHICLE (NAME, CAR, COLOR, STATE, LICENSE_PLATE)}.

2. Primary keys should not contain \textbf{null} values.
 ⇒ this is a practical constraint: we need the key to distinguish between tuples

 \textbf{\emph{Referential integrity constraint:}}

 – First, we need the definition of a \textit{foreign key}:

 * \textbf{Def}: A set of attributes F of schema R_1 is a \textit{foreign key} of R_1 with respect to R_2 if F is the primary key for R_2.

 * For example, consider relations

 \texttt{PASSENGER (NAME, SSN, FLT_ID, MILES)}
 \texttt{FLIGHT (FLT_ID, FLT_NO, START_APT, END_APT)}

 Here, FLT_ID is the primary key for FLIGHT.

 ⇒ FLT_ID is a foreign key in PASSENGER.

 – The foreign key (or referential integrity) constraint is: \textit{Given a particular database instance containing relations R_1 and R_2 in which F is a foreign key in R_1 with respect to R_2, then for any tuple t in R_1, there must exist a tuple s in R_2 such that $t[F] = s[F]$}.

 – Informally, if the value 63 occurs as FLT_ID in PASSENGER, there had better be a tuple containing such a FLT_ID value in FLIGHT.
– For example:

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>221-66-1234</td>
<td>17</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>306-77-1131</td>
<td>[63]</td>
<td>45000</td>
<td></td>
</tr>
<tr>
<td>Tom</td>
<td>636-22-9999</td>
<td>12</td>
<td>55000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>FLT_ID</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>F616</td>
<td>DCA</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

Here, the value 63 occurs is not to be found in FLIGHT ⇒ the foreign key constraint on PASSENGER is violated.

– Why the constraint? Essentially, if an attribute like FLT_ID in PASSENGER is important enough to be a primary key in FLIGHT, then it likely leads to additional information, which we must be able to get for every tuple in PASSENGER.

– NOTE: the constraint applies to instances of relations.

• To summarize:

1. *Domain constraints*: proper typing of values
2. *Key constraint 1*: A relation should have a key.
3. *Key constraint 2*: Primary keys can’t have null values.
4. *Foreign key constraint*: A relation shouldn’t have a foreign key value that doesn’t exist in the foreign relation.
2.4 Relational Algebra: Operations on Relations

In examples below, we will consider the following dbase for McVALUE AIR-LINES:

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td></td>
<td>221-66-1234</td>
<td>17</td>
<td>2000</td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>306-77-1131</td>
<td>63</td>
<td>45000</td>
</tr>
<tr>
<td>Bob</td>
<td></td>
<td>111-22-3333</td>
<td>15</td>
<td>1600</td>
</tr>
<tr>
<td>Jack</td>
<td></td>
<td>733-55-1122</td>
<td>15</td>
<td>7700</td>
</tr>
<tr>
<td>Tom</td>
<td></td>
<td>636-22-9999</td>
<td>12</td>
<td>55000</td>
</tr>
<tr>
<td>Trent</td>
<td></td>
<td>414-28-5850</td>
<td>11</td>
<td>200</td>
</tr>
<tr>
<td>Dick</td>
<td></td>
<td>223-63-7771</td>
<td>17</td>
<td>64500</td>
</tr>
<tr>
<td>Newt</td>
<td></td>
<td>828-81-6977</td>
<td>12</td>
<td>1570</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>FLT_ID</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>F616</td>
<td>DCA</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>F15</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td></td>
<td>National</td>
<td>Washington</td>
</tr>
<tr>
<td>LGA</td>
<td></td>
<td>La Guardia</td>
<td>New York</td>
</tr>
<tr>
<td>JFK</td>
<td></td>
<td>Kennedy</td>
<td>New York</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREW</th>
<th>SSN</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>011-44-2233</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>313-62-7711</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>442-11-3313</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>722-55-1139</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>011-44-2223</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>011-44-2223</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>313-62-7711</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>442-11-3313</td>
<td>63</td>
</tr>
<tr>
<td>EMP</td>
<td>NAME</td>
<td>SSN</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Enskine</td>
<td>011-44-2223</td>
</tr>
<tr>
<td></td>
<td>Hillary</td>
<td>313-62-7711</td>
</tr>
<tr>
<td></td>
<td>Newt</td>
<td>442-11-3313</td>
</tr>
<tr>
<td></td>
<td>Donna</td>
<td>722-55-1139</td>
</tr>
<tr>
<td></td>
<td>Scott</td>
<td>221-44-8883</td>
</tr>
<tr>
<td></td>
<td>Liz</td>
<td>119-72-3131</td>
</tr>
<tr>
<td></td>
<td>Morris</td>
<td>334-56-9876</td>
</tr>
</tbody>
</table>

- **UPDATE operations:**
 - Operations:
 1. Insert a tuple into a relation
 2. Delete a tuple from a relation
 3. Modify a tuple in a relation
 - **Insert.** Consider the McVALUE dbase and the following examples:
 1. Insert `<Rob, 011-44-2223, Accounts>` into EMP
 ⇒ not allowed: it would violate key constraint on SSN (011-44-2223 already exists).
 2. Insert `<Jesse, 666-23-1111, 25, null>` into PASSENGER
 ⇒ not allowed: foreign key constraint violated (25 does not exist as a FLT_ID in FLIGHT).
 3. Insert `<666-23-2223, null>` into CREW
 ⇒ not allowed: null not permitted in primary key
 4. Insert `<George, 554-12-1234, Communications>` into EMP
 ⇒ acceptable
 - Similarly, **delete**’s and **modify**’s need to satisfy constraints.

- **RETRIEVAL operations:** the Relational Algebra
 - These operations act on relations and produce relations.
 - The collection of these operations (or operators) is called the *relational algebra.*

- The **select** operation.
- Applies to a single relation.
- A condition (boolean expression) is often specified.
- The result is a new relation containing the result of the operation
 \(\Rightarrow \) all those tuples satisfying the condition.
- Notation: \(\sigma_{\text{condition}} (\text{relation}) \).
- Example: \(\sigma_{\text{CITY}=\text{New York}} (\text{AIRPORT}) \). The result is the relation:

<table>
<thead>
<tr>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGA</td>
<td>La Guardia</td>
<td>New York</td>
</tr>
<tr>
<td>JFK</td>
<td>Kennedy</td>
<td>New York</td>
</tr>
</tbody>
</table>

- Example: \(\sigma_{\text{MILES}>60000} (\text{PASSENGER}) \)

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
<td>17</td>
<td>64500</td>
</tr>
</tbody>
</table>

NOTE: the result is a relation, not a tuple.

- Example: \(\sigma_{\text{MILES}>90000} (\text{PASSENGER}) \)

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>empty</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) empty relation (no tuples satisfied the condition)

- Observation: \(\sigma () \) is commutative:

\[
\sigma_{\text{cond1}} \left(\sigma_{\text{cond2}} (R) \right) = \sigma_{\text{cond2}} \left(\sigma_{\text{cond1}} (R) \right) = \sigma_{\text{cond2}} \text{ and } \sigma_{\text{cond1}} (R)
\]

- NOTE:

1. We will often informally write a query in English before working out
 the relational algebra needed to satisfy the query.
 For example: “Find all employees who are Pilots”
 \(\Rightarrow \) The solution is: \(\sigma_{\text{POSITION}=\text{Pilot}} (\text{EMP}) \).

2. Although not strictly part of standard relational algebra, we will
 allow new relations to be defined via assignment:

 \[\text{PILOTS} := \sigma_{\text{POSITION}=\text{Pilot}} (\text{EMP}) \].
3. Comparison operators like "<" apply to attributes whose domains are naturally ordered (like numbers or strings).

- The **project** operation.
 - Applies to a single relation.
 - A list of attributes must be specified.
 - The result is a *new* relation containing the result of the operation
 \[\Rightarrow \]
 all tuples, but only those attributes specified in list.
 - Notation: \[\Pi_{\text{attribute-list}} (\text{<relation>}) \]
 - Example: \[\Pi_{\text{NAME,SSN}} (\text{EMP}) \]. The result is the relation:
 \[
 \begin{array}{ll}
 \text{NAME} & \text{SSN} \\
 \hline
 \text{Erskine} & 011-44-2223 \\
 \text{Hillary} & 313-62-7711 \\
 \text{Newt} & 442-11-3313 \\
 \text{Donna} & 722-55-1139 \\
 \text{Scott} & 221-44-8883 \\
 \text{Liz} & 119-72-3131 \\
 \end{array}
 \]
 - Example: \[\Pi_{\text{NAME}} (\text{EMP}) \]. The result is the relation:
 \[
 \begin{array}{l}
 \text{NAME} \\
 \hline
 \text{Erskine} \\
 \text{Hillary} \\
 \text{Newt} \\
 \text{Donna} \\
 \text{Scott} \\
 \text{Liz} \\
 \end{array}
 \]
 - Example: “Create a list of cities served by the airline”. Here, one solution is:
 \[\Pi_{\text{CITY}} (\text{AIRPORT}) \]
 which gives:
 \[
 \begin{array}{l}
 \text{CITY} \\
 \hline
 \text{Washington} \\
 \text{New York} \\
 \end{array}
 \]
– NOTE: the result above is NOT

\[
\begin{array}{l}
\text{CITY} \\
\hline
\text{Washington} \\
\text{New York} \\
\text{New York}
\end{array}
\]

That is, duplicates are removed in the result (since duplicate tuples are not allowed).
However, many commercial dbases leave duplicates in the result.

• Combining relational operators.
 – Since relational operators return relations as results, operators can be combined.
 – For example: “List the names (and only the names) of employees that are pilots”. This query can be expressed as:

\[
\Pi_{\text{NAME}} \left(\sigma_{\text{POSITION} = \text{Pilot}} \left(\text{EMP} \right) \right)
\]

• The union operation.
 – Applies to two relations, that are union-compatible (defined below).
 – The result is a new relation containing the result of the operation.
 ⇒ the collection of tuples in both relations.
 – Notation: \(R_1 \cup R_2 \).
 – Suppose we have the relation

<table>
<thead>
<tr>
<th>CANDIDATE</th>
<th>FNAME</th>
<th>LNAME</th>
<th>OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>Clinton</td>
<td>President</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>Gore</td>
<td>Vice-President</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>Dole</td>
<td>President</td>
<td></td>
</tr>
<tr>
<td>Jack</td>
<td>Kemp</td>
<td>Vice-President</td>
<td></td>
</tr>
</tbody>
</table>

Consider the query: “List all names, first or last, in CANDIDATE”:

* Neither \(\Pi_{\text{FNAME}} \left(\text{CANDIDATE} \right) \) nor \(\Pi_{\text{LNAME}} \left(\text{CANDIDATE} \right) \) is sufficient.
* Instead:

\[
\Pi_{\text{FNAME}} \left(\text{CANDIDATE} \right) \cup \Pi_{\text{LNAME}} \left(\text{CANDIDATE} \right)
\]
- NOTE: the two relations must be union-compatible: Relations
 \(R_A(A_1, \ldots, A_n) \) and \(R_B(B_1, \ldots, B_n) \) are union-compatible iff \(\forall i : \text{dom}(A_i) = \text{dom}(B_i) \).

- For union-compatibility, the names of the attributes in \(R_A \) and \(R_B \)
don’t have to be identical.
- Example: above, we assumed
 \[\text{dom}(\text{FNAME}) = \text{dom}(\text{LNAME}) \]

- But, what about the attribute names of the result?
 \(\Rightarrow \) The result takes on the attribute names of the first relation.
- Thus, the result of
 \[\Pi_{\text{FNAME}} (\text{CANDIDATE}) \cup \Pi_{\text{LNAME}} (\text{CANDIDATE}) \]
is

<table>
<thead>
<tr>
<th>FNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Bob</td>
</tr>
<tr>
<td>Jack</td>
</tr>
<tr>
<td>Clinton</td>
</tr>
<tr>
<td>Gore</td>
</tr>
<tr>
<td>Dole</td>
</tr>
<tr>
<td>Kemp</td>
</tr>
</tbody>
</table>
• Re-naming attributes:

 – Often, it is not satisfactory to use the attribute name from one of the relations. It is common to extend the relational algebra to permit re-naming of attributes:

 \[
 \text{TEMP(ANYNAME)} := \Pi_{\text{FNAME}} \text{ (CANDIDATE)} \cup \Pi_{\text{LNAME}} \text{ (CANDIDATE)}
 \]

 which produces:

<table>
<thead>
<tr>
<th>TEMP</th>
<th>ANYNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td></td>
</tr>
<tr>
<td>Jack</td>
<td></td>
</tr>
<tr>
<td>Clinton</td>
<td></td>
</tr>
<tr>
<td>Gore</td>
<td></td>
</tr>
<tr>
<td>Dole</td>
<td></td>
</tr>
<tr>
<td>Kemp</td>
<td></td>
</tr>
</tbody>
</table>

 – Multiple attributes can be renamed, as in:

 \[
 \text{TEMP(FIRSTN, LASTN, GOAL)} := \text{CANDIDATE}
 \]

• Intersection and Difference operators:

 – Intersection and difference are defined on union-compatible relations.

 – \(R \cap S \) = tuples in both \(R \) and \(S \).

 – Example: “Find names that occur both as passenger and as staff in the airline dbase”:

 \[
 \Pi_{\text{NAME}} \text{ (PASSENGER)} \cap \Pi_{\text{NAME}} \text{ (EMP)}
 \]

 – \(R - S \) = tuples in \(R \) that are not in \(S \).

 – Note that \(\cup \) and \(\cap \) are commutative and associative with respect to each other.
• Cartesian product.

 – Applies to two relations.

 – The result is a new relation.

 – Suppose $R(A_1, \ldots, A_n)$ and $S(B_1, \ldots, B_m)$ are two relations. Then $R \times S$ is a relation with attributes $A_1, \ldots, A_n, B_1, \ldots, B_m$ created as follows: for each possible pair of tuples from R and S, concatenate them and place the result in $R \times S$.

 – $|R \times S| = |R||S|$.

 – Example: Consider the following two relations:

 \begin{tabular}{|c|c|}
 \hline
 R & \text{NAME} & \text{CITY} \\
 \hline
 Lennon & NY & \\
 McCartney & DC & \\
 Harrison & NY & \\
 Starr & LA & \\
 \hline
 \end{tabular}

 \begin{tabular}{|c|c|c|}
 \hline
 S & \text{FLOWER} & \text{COLOR} \\
 \hline
 Rose & red & \\
 Tulip & yellow & \\
 \hline
 \end{tabular}

 Then, the cross-product, $R \times S$ is:

 \begin{tabular}{|c|c|c|c|}
 \hline
 $R \times S$ & \text{NAME} & \text{CITY} & \text{FLOWER} & \text{COLOR} \\
 \hline
 Lennon & NY & Rose & red & \\
 Lennon & NY & Tulip & yellow & \\
 McCartney & DC & Rose & red & \\
 McCartney & DC & Tulip & yellow & \\
 Harrison & NY & Rose & red & \\
 Harrison & NY & Tulip & yellow & \\
 Starr & LA & Rose & red & \\
 Starr & LA & Tulip & yellow & \\
 \hline
 \end{tabular}

 The results are not necessarily meaningful.
– Consider another example:

<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>DEPTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPT</th>
<th>DEPTNUM</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Classical</td>
</tr>
</tbody>
</table>

Consider what we get with the following relational expression:

\[\Pi_{NAME,DNAME} (\sigma_{DEPTNO=DEPTNUM} (EMP \times DEPT)) \]

First, \(EMP \times DEPT \) gives

<table>
<thead>
<tr>
<th>EMP×DEPT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DEPTNUM</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>1</td>
<td>Classical</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>1</td>
<td>Classical</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>1</td>
<td>Classical</td>
<td></td>
</tr>
</tbody>
</table>

Next, \(\sigma_{DEPTNO=DEPTNUM} (EMP \times DEPT) \) gives

<table>
<thead>
<tr>
<th>EMP×DEPT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DEPTNUM</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>1</td>
<td>Classical</td>
<td></td>
</tr>
</tbody>
</table>

Finally, after the projection we get:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>Jazz</td>
</tr>
<tr>
<td>Ellington</td>
<td>Jazz</td>
</tr>
<tr>
<td>Bach</td>
<td>Classical</td>
</tr>
</tbody>
</table>

We have answered the query: “List employees along with their department names”.

– The cross-product operation is rarely used. Instead, a join is commonly used.
• The *join* operation.

 – Applies to two relations.

 – The result is a relation.

 – Notation (general form): \(R \bowtie_{\text{condition}} S \)

 – Recall the previous example

<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DEPT</th>
<th>DEPTNUM</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Armstrong</td>
<td>3</td>
<td></td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td></td>
<td>Ellington</td>
<td>3</td>
<td></td>
<td>1</td>
<td>Classical</td>
</tr>
<tr>
<td></td>
<td>Bach</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and the query “List employees along with their department names”.

⇒ what we really need to do is scan the EMP relation and, for every DEPTNO that occurs, we need to look up the DNAME in the DEPT relation

– This kind of combining of information in two tables using a common attribute (DEPTNO and DEPTNUM, above) is very common in database applications.

– A special operator, called a *join*, was created just for this purpose.

– Example (above): The result of \(\text{EMP} \bowtie_{\text{DEPTNO}=\text{DEPTNUM}} \text{DEPT} \) is:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPTNO</th>
<th>DEPTNUM</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>1</td>
<td>Classical</td>
</tr>
</tbody>
</table>

Thus, a *join* is like a cross-product, except that the *join condition* is applied to filter out non-matching tuples.

– The appearance of both DEPTNO and DNUM is a waste (since both entries are identical for each tuple)
– The natural join operator (denoted *) removes duplicate attributes but assumes that the join attributes have the same name. Thus,

\[
\text{DEPT2 (DEPTNO, DNAME)} := \text{DEPT} \\
\text{RESULT} := \text{EMP} \ast \text{DEPT2}
\]

produces

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Armstrong</td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td></td>
<td>Ellington</td>
<td>3</td>
<td>Jazz</td>
</tr>
<tr>
<td></td>
<td>Bach</td>
<td>1</td>
<td>Classical</td>
</tr>
</tbody>
</table>

– If two or more attributes have same names in \(R \) and \(S \) then \(R \ast S \) ‘joins’ on all these common attributes.

\[\Rightarrow \text{that is, tuples are matched when all these attribute values are equal.} \]

– Joins can be constructed using two nested loops (one for each relation). For example, consider the natural join of

<table>
<thead>
<tr>
<th>EMP3</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Armstrong</td>
<td>3</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Ellington</td>
<td>3</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Bach</td>
<td>1</td>
<td>313</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPT3</th>
<th>DEPTNO</th>
<th>INSTRUMENT</th>
<th>DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>127</td>
<td>Jazz trumpet</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>313</td>
<td>Jazz piano</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>474</td>
<td>Classical violin</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>313</td>
<td>Classical piano</td>
<td></td>
</tr>
</tbody>
</table>

The steps in joining are:

* Step 1:
<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPTNO</th>
<th>INSTR</th>
<th>DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>127</td>
<td>Jazz trumpet</td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>313</td>
<td>Jazz piano</td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>313</td>
<td>Classical piano</td>
</tr>
</tbody>
</table>

* Step 2:

```
NAME     | DEPTNO | INSTR | DESC          |
----------|--------|-------|---------------|
Armstrong | 3      | 127   | Jazz trumpet  |
Ellington | 3      | 313   | Jazz piano    |
Bach      | 1      | 313   | Classical piano|
```

Yes, the tuples match on the join attributes

* Step 3:

```
NAME     | DEPTNO | INSTR | DESC          |
----------|--------|-------|---------------|
Armstrong | 3      | 127   | Jazz trumpet  |
Ellington | 3      | 313   | Jazz piano    |
Bach      | 1      | 313   | Classical piano|
```

No

* Step 4:

```
NAME     | DEPTNO | INSTR | DESC          |
----------|--------|-------|---------------|
Armstrong | 3      | 127   | Jazz trumpet  |
Ellington | 3      | 313   | Jazz piano    |
Bach      | 1      | 313   | Classical piano|
```
* Step 5:

![Diagram showing the join of two tables with matching and non-matching tuples.]

* Step 6:

![Diagram showing the join of two tables with matching and non-matching tuples.]

... and so on. Finally, EMP3*DEPT3 produces:

<table>
<thead>
<tr>
<th>EMP3*DEPT3</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>INSTR</th>
<th>DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>127</td>
<td>Jazz trumpet</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>313</td>
<td>Jazz piano</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>1</td>
<td>313</td>
<td>Classical piano</td>
<td></td>
</tr>
</tbody>
</table>

- NOTE:
 * A join (natural or otherwise) can produce the empty relation, if no matches occur.
 * A natural join between two relations that have no attributes in common (e.g., \(R(A, B)\) and \(S(C, D)\)) produces an empty relation.
 * The general join (\(\Join\)) is sometimes called a \textit{theta-join}.

46
• The division operator.

 – Applies to two relations.
 – The result is a relation.
 – Let $R(A), S(B)$ and $Q(C)$ be three relations with attribute sets A, B and C respectively such that

 1. $B \subseteq A$
 2. $C = A - B$

 Then, $Q = R \div S$ if Q is the largest relation such that $Q \times S \subseteq R$.

 – Example:

 | STUDENT | NAME | COURSE |
 |---------|------|--------|
 | Louis | CS 131 |
 | Louis | CS 141 |
 | Duke | CS 131 |
 | Johann | CS 131 |
 | Johann | CS 141 |

 * Note that one of the conditions for division is satisfied:
 \{COURSE\} \subset \{NAME, COURSE\}

 * Thus, the result of

 $\text{STUDENT} \div \text{ALLCOURSES}$

 should have the schema RESULT(NAME).

 * Consider

 | RESULT1 | NAME |
 |---------|------|
 | Duke | |

 The cross-product $\text{RESULT1} \times \text{ALLCOURSES}$ produces

 | RESULT1 \times ALLCOURSES | NAME | COURSE |
 |---------------------------|------|--------|
 | Duke | CS 131 |
 | Duke | CS 141 |

 in which $<\text{Duke, CS 141}>$ is not a tuple in STUDENT.
 \Rightarrow \text{RESULT1} cannot be the quotient.
* Consider

<table>
<thead>
<tr>
<th>RESULT2</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis</td>
<td></td>
</tr>
</tbody>
</table>

The cross-product $\text{RESULT2} \times \text{ALLCOURSES}$ produces

<table>
<thead>
<tr>
<th>RESULT2 \times ALLCOURSES</th>
<th>NAME</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis</td>
<td>CS 131</td>
<td></td>
</tr>
<tr>
<td>Louis</td>
<td>CS 141</td>
<td></td>
</tr>
</tbody>
</table>

which is a subset of STUDENT.
\Rightarrow is RESULT2 the largest relation that satisfies this property?

* Consider

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis</td>
<td></td>
</tr>
<tr>
<td>Johann</td>
<td></td>
</tr>
</tbody>
</table>

The cross-product $\text{RESULT} \times \text{ALLCOURSES}$ produces

<table>
<thead>
<tr>
<th>NAME</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louis</td>
<td>CS 131</td>
</tr>
<tr>
<td>Louis</td>
<td>CS 141</td>
</tr>
<tr>
<td>Johann</td>
<td>CS 131</td>
</tr>
<tr>
<td>Johann</td>
<td>CS 141</td>
</tr>
</tbody>
</table>

which is a subset of STUDENT.
\Rightarrow it is the largest such relation.
\Rightarrow $\text{RESULT} = \text{STUDENT} \div \text{COURSE}$.

* Notice that the operation solves the query: “Find the names of students who have taken all courses”.

* The appearance of “all” in a query is often an indicator that division may be appropriate.
• The **outer join** operators.

 – Similar to a join, but asymmetric.

 – Consider this example:

<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>DEPTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPT</th>
<th>DEPTNO</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Jazz</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Country</td>
</tr>
</tbody>
</table>

Here, the join **EMP×DEPT** produces:

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
</tbody>
</table>

⇒ the tuple <Bach,5> is not represented in the result.

– Sometimes it is desirable to include tuples from one or the other relations in a join, *even if no match occurs*

 ⇒ if no match occurs, use a **null**

– The **left outer join** includes all tuples from the “left” relation, using **null**’s where necessary.

The left outer join, **EMP ⊙ DEPT**, produces:

<table>
<thead>
<tr>
<th>EMP ⊙ DEPT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Bach</td>
<td>5</td>
<td>null</td>
<td></td>
</tr>
</tbody>
</table>

– The **right outer join** includes all tuples from the “right” relation, using **null**’s where necessary.

The right outer join, **EMP ⊙ DEPT**, produces:

<table>
<thead>
<tr>
<th>EMP ⊙ DEPT</th>
<th>NAME</th>
<th>DEPTNO</th>
<th>DNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armstrong</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>Ellington</td>
<td>3</td>
<td>Jazz</td>
<td></td>
</tr>
<tr>
<td>null</td>
<td>4</td>
<td>Country</td>
<td></td>
</tr>
</tbody>
</table>

– A **full outer join** is the union of the the left and right outer joins.
2.5 Examples of Queries

The following examples are based on the McVALUE AIRLINES dbase:

- **Example 1:**

 - *Query:* “Find the names and social security numbers of all passengers who have accumulated at least 50,000 miles”.

 - *Analysis:* All the information is in PASSENGER. We need to select a subset of tuples and project only some attributes.

 - *Solution:*

 \[
 \text{RESULT} := \Pi_{\text{NAME}, \text{SSN}} \left(\sigma_{\text{MILES} \geq 50000} (\text{PASSENGER}) \right)
 \]

 - *Result:* \(\sigma_{\text{MILES} \geq 50000} (\text{PASSENGER}) \) produces

NAME	SSN	FLT_ID	MILES
Tom	636-22-9999	12	55000
Dick	223-63-7771	17	64500

 Projecting out NAME and SSN gives:

RESULT	NAME	SSN
Tom	636-22-9999	
Dick	223-63-7771	
• Example 2:

 – **Query:** “List names and ssn’s of all passengers flying on Flight F338”
 – **Analysis:** The names of passengers and flight data are in different relations, PASSENGER and FLIGHT. We need to match FLT_ID in these two relations.
 ⇒ use a join.
 – **Solution:**

 \[
 \text{RESULT} := \Pi_{\text{NAME}, \text{SSN}} (\sigma_{\text{FLTNO}=\text{F338}} (\text{PASSENGER} \ast \text{FLIGHT}))
 \]

 – **Result:** PASSENGER \ast FLIGHT produces

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>221-66-1234</td>
<td>17</td>
<td>2000</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
</tr>
<tr>
<td>Al</td>
<td>306-77-1131</td>
<td>63</td>
<td>45000</td>
<td>F15</td>
<td>DCA</td>
<td>JFK</td>
</tr>
<tr>
<td>Bob</td>
<td>111-22-3333</td>
<td>15</td>
<td>1600</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
</tr>
<tr>
<td>Jack</td>
<td>733-55-1122</td>
<td>15</td>
<td>7700</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
</tr>
<tr>
<td>Tom</td>
<td>636-22-9999</td>
<td>12</td>
<td>55000</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
</tr>
<tr>
<td>Trent</td>
<td>414-28-5850</td>
<td>11</td>
<td>200</td>
<td>F616</td>
<td>DCA</td>
<td>LGA</td>
</tr>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
<td>17</td>
<td>64500</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
</tr>
<tr>
<td>Newt</td>
<td>828-81-6977</td>
<td>12</td>
<td>1570</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
</tr>
</tbody>
</table>

From this, \(\sigma_{\text{FLTNO}=\text{F338}} (\text{PASSENGER} \ast \text{FLIGHT})\) produces

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>221-66-1234</td>
<td>17</td>
<td>2000</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
</tr>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
<td>17</td>
<td>64500</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
</tr>
</tbody>
</table>

The attributes NAME and SSN are projected out to give:

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>221-66-1234</td>
<td></td>
</tr>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
<td></td>
</tr>
</tbody>
</table>

– Note alternative solution:

\[
\text{RESULT} := \Pi_{\text{NAME}, \text{SSN}} (\text{PASSENGER} \ast \sigma_{\text{FLTNO}=\text{F338}} (\text{FLIGHT}))
\]

Q: which one might be more efficient to implement?
• Example 3:

- Query: “List names and ssn’s of all passengers flying into National airport”

- Analysis: To see if a particular passenger is flying into National airport, we’ll have to use the FLT_ID to look up the ENDAPT in FLIGHT, then use the ENDAPT value to look up NAME in AIRPORT.

\[\Rightarrow \text{a join between PASSENGER and FLIGHT will be needed, as well as a join between FLIGHT and AIRPORT.} \]

- Solution: Let us break this into four steps:

1. First, we extract National airport from AIRPORT:

\[
\text{NAT} := \sigma_{\text{NAME}=\text{"National"}} \ (\text{AIRPORT})
\]

<table>
<thead>
<tr>
<th>NAT</th>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>National</td>
<td>Washington</td>
</tr>
</tbody>
</table>

2. Second, we find all the FLT_ID’s that correspond to flights that terminate at National:

\[
\text{NAT_FLTS} := \text{FLIGHT} \bowtie_{\text{ENDAPT}=\text{APT}} \text{ NAT}
\]

<table>
<thead>
<tr>
<th>NAT_FLTS CITY</th>
<th>FLT_ID</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
<th>APT</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington</td>
<td>12</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
<td>DCA</td>
<td>National</td>
</tr>
<tr>
<td>Washington</td>
<td>17</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
<td>DCA</td>
<td>National</td>
</tr>
</tbody>
</table>

3. Third, we only need the FLT_ID’s:

\[
\text{NAT_FLTID} := \Pi_{\text{FLT_ID}} \ (\text{NAT_FLTS})
\]

<table>
<thead>
<tr>
<th>NAT_FLTID FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

4. Last, we join with PASSENGER and project out NAME and SSN:

\[
\text{RESULT} := \Pi_{\text{NAME,SSN}} \ (\text{PASSENGER} \ast \text{NAT_FLTID})
\]
– Result:

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bill</td>
<td>221-66-1234</td>
</tr>
<tr>
<td></td>
<td>Tom</td>
<td>636-22-9999</td>
</tr>
<tr>
<td></td>
<td>Dick</td>
<td>223-63-7771</td>
</tr>
<tr>
<td></td>
<td>Newt</td>
<td>828-81-6977</td>
</tr>
</tbody>
</table>

• Example 4:

 – Query: “List all flights (FLTNO) that have either a passenger named Newt or a crew member named Newt”

 – Analysis: We need to find flights containing passengers called Newt and flights containing a crew member called Newt and put these together.

 ⇒ a join between PASSENGER and FLIGHT, a join between EMP, CREW and FLIGHT, and a union.

 – Solution:

 1. First, we obtain FLTNO’s of Newt-passengers:

 \[
 \text{NEWT_PASS} := \Pi_{\text{FLTNO}} (\sigma_{\text{NAME}=\text{’Newt’}} (\text{PASSENGER} \ast \text{FLIGHT}))
 \]

 Note that PASSENGER \ast FLIGHT gives us:

 | NAME | SSN | FLT_ID | MILES | FLT_NO | START_APT | END_APT |
 |------|----------|--------|-------|--------|-----------|---------|
 | Bill | 221-66-1234 | 17 | 2000 | F338 | JFK | DCA |
 | Al | 306-77-1131 | 63 | 45000 | F15 | DCA | JFK |
 | Bob | 111-22-3333 | 15 | 1600 | F335 | DCA | JFK |
 | Jack | 733-55-1122 | 15 | 7700 | F335 | DCA | JFK |
 | Tom | 636-22-9999 | 12 | 55000 | F71 | LGA | DCA |
 | Trent| 414-28-5850 | 11 | 200 | F616 | DCA | LGA |
 | Dick | 223-63-7771 | 17 | 64500 | F338 | JFK | DCA |
 | Newt | 828-81-6977 | 12 | 1570 | F71 | LGA | DCA |

 From which, \(\sigma_{\text{NAME}=\text{’Newt’}} (\text{PASSENGER} \ast \text{FLIGHT})\) produces:

 | NAME | SSN | FLT_ID | MILES | FLT_NO | START_APT | END_APT |
 |------|----------|--------|-------|--------|-----------|---------|
 | Newt | 828-81-6977 | 12 | 1570 | F71 | LGA | DCA |
Projecting out the FLT_NO gives:

<table>
<thead>
<tr>
<th>NEWT_PASS</th>
<th>FLT_NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F71</td>
</tr>
</tbody>
</table>

2. Next, FLT_NO’s for Newt-crew.
Since neither CREW nor EMP contain FLTNO, we need to get FLT_ID first:

\[\text{NEWT_CREW_FID} := \Pi_{\text{FLT_ID}} (\text{CREW} \times \sigma_{\text{NAME}=\text{‘Newt’}} (\text{EMP})) \]

Note that \(\sigma_{\text{NAME}=\text{‘Newt’}} (\text{EMP}) \) gives:

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>POSITION</th>
<th>SALARY</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newt</td>
<td>442-11-3313</td>
<td>Steward</td>
<td>26,000</td>
<td>313-62-7711</td>
</tr>
</tbody>
</table>

Then, \(\text{CREW} \times \sigma_{\text{NAME}=\text{‘Newt’}} (\text{EMP}) \) results in:

<table>
<thead>
<tr>
<th>FLT_ID</th>
<th>NAME</th>
<th>SSN</th>
<th>POSITION</th>
<th>SALARY</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Newt</td>
<td>442-11-3313</td>
<td>Steward</td>
<td>26,000</td>
<td>313-62-7711</td>
</tr>
<tr>
<td>63</td>
<td>Newt</td>
<td>442-11-3313</td>
<td>Steward</td>
<td>26,000</td>
<td>313-62-7711</td>
</tr>
</tbody>
</table>

Finally, projecting out FLT_ID gives:

<table>
<thead>
<tr>
<th>NEWT_CREW_FID</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

3. Now we can get a list of FLTNO’s by joining with FLIGHT:

\[\text{NEWT_CREW} := \Pi_{\text{FLT_NO}} (\text{NEWT_CREW_FID} \times \text{FLIGHT}) \]

<table>
<thead>
<tr>
<th>NEWT_CREW</th>
<th>FLT_NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F71</td>
</tr>
<tr>
<td></td>
<td>F15</td>
</tr>
</tbody>
</table>

4. Finally, compute the desired result as a union:

\[\text{RESULT} := \text{NEWT_PASS} \cup \text{NEWT_CREW} \]

\[\text{Result:} \]

<table>
<thead>
<tr>
<th>RESULT</th>
<th>FLTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F71</td>
</tr>
<tr>
<td></td>
<td>F15</td>
</tr>
</tbody>
</table>
• Example 5:

 – **Query:** “List names of crew members who visit all airports”.
 – **Analysis:** The word ‘all’ suggests the use of division.
 – **Solution:**

 1. To use division, we first need to create a relation that has NAME and APT. Since CREW only has FLT_ID’s and SSN’s, we start by matching FLT_ID’s with airports:

\[
\begin{align*}
F_1 &:= \Pi_{\text{FLT}_{\text{ID}}, \text{STARTAPT}} \text{ (FLIGHT)} \\
F_2 &:= \Pi_{\text{FLT}_{\text{ID}}, \text{ENDAPT}} \text{ (FLIGHT)} \\
F(\text{FLT}_{\text{ID}}, \text{APT}) &:= F_1 \cup F_2
\end{align*}
\]

 This gives:

<table>
<thead>
<tr>
<th>F</th>
<th>FLT_ID</th>
<th>APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

 2. Next, we match crew SSN’s against these FLT_ID’s:

\[
\text{CREW}_\text{APT} := \Pi_{\text{SSN}, \text{APT}} \text{ (F \ast CREW)}
\]

 First, $F \ast \text{CREW}$ gives:
<table>
<thead>
<tr>
<th>F * CREW</th>
<th>FLT_ID</th>
<th>APT</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>DCA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DCA</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>LGA</td>
<td>442-11-3313</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DCA</td>
<td>722-55-1139</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>JFK</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>JFK</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>DCA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LGA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LGA</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DCA</td>
<td>442-11-3313</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>JFK</td>
<td>722-55-1139</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DCA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DCA</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>JFK</td>
<td>442-11-3313</td>
<td></td>
</tr>
</tbody>
</table>

Second, the projection of SSN and APT gives:

<table>
<thead>
<tr>
<th>CREW APT</th>
<th>APT</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>011-44-2233</td>
<td></td>
</tr>
<tr>
<td>DCA</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>313-62-7711</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>442-11-3313</td>
<td></td>
</tr>
<tr>
<td>DCA</td>
<td>442-11-3313</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>442-11-3313</td>
<td></td>
</tr>
<tr>
<td>DCA</td>
<td>722-55-1139</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>722-55-1139</td>
<td></td>
</tr>
</tbody>
</table>

Note: some duplicates are removed.

3. For the division, we will need a list of all airports:
\[
\text{APTS} := \prod_{\text{APT}} (\text{AIRPORT})
\]

<table>
<thead>
<tr>
<th>APTS</th>
<th>APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

4. Now we can perform the division:
\[
\text{ALLAPT CREW} := \text{CREW APT} \div \text{APTS}
\]

This produces:
5. Finally, we associate names:

\[\text{RESULT} := \Pi_{\text{NAME}} (\text{ALLAPT,CREW} \times \text{EMP}) \]

- \textit{Result:}

<table>
<thead>
<tr>
<th>RESULT</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erskine</td>
</tr>
<tr>
<td></td>
<td>Hillary</td>
</tr>
<tr>
<td></td>
<td>Newt</td>
</tr>
</tbody>
</table>

- \textbf{Example 6:}

 - \textit{Query:} “List names and ssn’s of all employees not on any flight”.
 - \textit{Analysis:} it’s easy to find ‘flying’ employees from CREW. The remainder can be found by using set difference.
 - \textit{Solution:}
 1. First, the employees that fly:

\[\text{FLIERS} := \Pi_{\text{SSN}} (\text{CREW}) \]

This gives:

<table>
<thead>
<tr>
<th>FLIERS</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>011-44-2233</td>
</tr>
<tr>
<td></td>
<td>313-62-7711</td>
</tr>
<tr>
<td></td>
<td>442-11-3313</td>
</tr>
<tr>
<td></td>
<td>722-55-1139</td>
</tr>
</tbody>
</table>

2. Next, the list of SSN’s of all employees:

\[\text{ALLSSN} := \Pi_{\text{SSN}} (\text{EMP}) \]

This gives:

<table>
<thead>
<tr>
<th>ALLSSN</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>011-44-2223</td>
</tr>
<tr>
<td></td>
<td>313-62-7711</td>
</tr>
<tr>
<td></td>
<td>442-11-3313</td>
</tr>
<tr>
<td></td>
<td>722-55-1139</td>
</tr>
<tr>
<td></td>
<td>221-44-8883</td>
</tr>
<tr>
<td></td>
<td>119-72-3131</td>
</tr>
<tr>
<td></td>
<td>334-56-9876</td>
</tr>
</tbody>
</table>
3. Now we can get the ssn's of nonfliers:
 \[\text{NONFLIERS} := \text{ALLSSN} - \text{FLIERS} \]

 This produces:

 \[\begin{array}{ll}
 \text{NONFLIERS} & \text{SSN} \\
 221-44-8883 & \\
 119-72-3131 & \\
 334-56-9876 &
 \end{array} \]

4. Finally, the names (in addition to ssn's):
 \[\text{RESULT} := \Pi_{\text{NAME}, \text{SSN}} (\text{NONFLIERS} \ast \text{EMP}) \]

 \[\text{Result:} \]

 \[\begin{array}{ll}
 \text{RESULT} & \text{NAME} & \text{SSN} \\
 \text{Scott} & 221-44-8883 & \\
 \text{Liz} & 119-72-3131 & \\
 \text{Morris} & 334-56-9876 &
 \end{array} \]

Example 7:

- **Query:** “Find the names of all airports that occur only as a
 \text{START_APT} or only as an \text{END_APT}” (thereby identifying a problem)

- **Analysis:** Use intersection to find all airports that occur as both.
 Remove from union of all airports using set difference.

- **Solution:**
 1. First, project out the airport codes:
 \[\text{START} := \Pi_{\text{START_APT}} (\text{FLIGHT}) \]
 \[\text{END} := \Pi_{\text{END_APT}} (\text{FLIGHT}) \]

 This gives:

 \[\begin{array}{llll}
 \text{START} & \text{START_APT} & \text{END} & \text{END_APT} \\
 \text{DCA} & & \text{LGA} & \\
 \text{LGA} & & \text{DCA} & \\
 \text{JFK} & & \text{JFK} &
 \end{array} \]

 2. Next, obtain the relevant airports:
 \[\text{BAD_APTS} := (\text{START} \cup \text{END}) - (\text{START} \cap \text{END}) \]

 \[\text{Empty result.} \]
3. Finally, join with AIRPORT to obtain names:
\[
\text{RESULT} := \Pi_{\text{NAME}} (\text{AIRPORT} \ast \text{BAD_APTS})
\]

4. Result: The result happens to be empty:

\[
\begin{array}{l}
\text{RESULT} \quad \text{NAME} \\
\hline
\text{empty}
\end{array}
\]

- **Example 8:**

 - Query: “Identify all crew members who are listed both as a passenger and a crew member for the same flight”.

 - Analysis: this information can be obtained from PASSENGER and CREW. A natural join matches NAME and FLT_ID, giving us the result.

 - Solution:

\[
\text{RESULT} := \Pi_{\text{NAME}} (\text{PASSENGER} \ast \text{CREW})
\]

- **Example 9:**

 - Query: “Identify all crew members (SSN’s) who take a flight as a passenger but not as a crew member”.

 - Analysis: the natural join above cannot be projected or selected to get this result. It forces both NAME and FLT_ID to be matched.

 - Solution: use a theta-join (where the join condition is specified):

\[
\text{RESULT} := \Pi_{\text{SSN}} (\text{CREW} \bowtie_{\text{SSN}=	ext{SSN}, \text{FLT_ID} \neq \text{FLT_ID}} \text{PASSENGER})
\]

- For more examples, read Elmasri/Navathe, sections 6.3-6.7, or Chapter 2 of O’Neil, or Chapter 8 of Ramakrishnan.
2.6 Relational Calculus: Another Way to Specify Queries

- The **relational algebra** is a *formal language* for specifying queries on relations.
- The **relational calculus** is another formal language.
- The relational calculus comes in two flavors:
 1. **tuple relational calculus**
 2. **domain relational calculus**
- The difference between relational algebra and relational calculus:
 - In *relational algebra*: expressions are **procedural**
 ⇒ expressions provide the order of computations
 For example, in
 \[
 \Pi_{\text{NAME,SSN}} (\sigma_{\text{MILES}>50000} (\text{PASSENGER}))
 \]
 one scans PASSENGER and extracts tuples in which MILES>50000.
 Then, among these tuples the NAME,SSN attributes are reported.
 - In *relational calculus*: expressions are **non-procedural**
 ⇒ expressions only specify the desired result
 For example, in tuple relational calculus the above query would be written as:
 \[
 \{ x.\text{NAME}, x.\text{SSN} | \text{PASSENGER}(x) \text{ and } x.\text{MILES}>50000 \}
 \]
 Here \(x \) is a *tuple-variable*.
- General form of a query in tuple relational calculus:
 \[
 \{ x.A_1, \ldots, x.A_n | <\text{condition}> (x_1, \ldots, x_n, x_{n+1}, \ldots, x_m) \}
 \]
• What does it all mean? Let's look at an example.
 Consider the example:

 \[
 \{ \; x.\text{NAME}, \; x.\text{SSN} \mid \text{PASSENGER}(x) \text{ and } x.\text{MILES}>50000 \} \]

 – Think of the the variable \(x \) as a for-loop variable that scans through
tuples in PASSENGER, as in:

 \[
 \text{for } x := \text{<first-tuple>} \text{ to } \text{<last-tuple>}
 \]

 – As \(x \) scans the tuples, the condition on the right is checked
\((x.\text{MILES}>50000)\). If the condition is satisfied, then output the
\(\text{NAME}\) and \(\text{SSN}\) attributes to a RESULT relation.

 – The condition \(\text{PASSENGER}(x)\) simply binds the variable \(x \) to the
relation PASSENGER.

• Example 2:

 – Query: “List names and ssn’s of all passengers flying on Flight F338”

 – Solution:

 \[
 \{ \; x.\text{NAME}, \; x.\text{SSN} \mid
 \begin{align*}
 &\text{PASSENGER}(x) \text{ and } \\
 &\quad (\exists y \; (\text{FLIGHT}(y) \text{ and } y.\text{FLT_ID}=x.\text{FLT_ID} \\
 &\quad \quad \quad \text{and } y.\text{FLTNO=}\text{F338}) \end{align*}
 \}
 \]

 – Explanation:
 Use variable \(x \) to scan tuples in PASSENGER. For each such tuple,
use variable \(y \) to scan through FLIGHT and check for a match on
\(\text{FLT_ID}\). When such a match occurs, check \(\text{FLTNO=}\text{F338}\).
• Example 3:

 - Query: “List names and ssn’s of all passengers flying into National airport”

 - Solution:

 \[
 \{ \; x.\text{NAME}, \; x.\text{SSN} \; | \\
 \quad \text{PASSENGER}(x) \; \text{and} \\
 \quad (\exists y) \; (\text{FLIGHT}(y) \; \text{and} \; x.\text{FLT_ID}=y.\text{FLT_ID} \\
 \quad \quad \text{and} \; (\exists z) \; (\text{AIRPORT}(z) \; \text{and} \; z.\text{NAME}=\text{‘National’} \\
 \quad \quad \quad \text{and} \; z.\text{APT}=y.\text{ENDAPT}) \\
 \quad \} \\
 \]

 - Explanation:
 Scan through PASSENGER \(x \) and match FLT_ID’s with FLIGHT \(y \). For each such match, scan through AIRPORT \(z \) and match ENDAPT of \(y \) with ‘National’.
2.7 Relational Algebra: Summary

- The tuple relational calculus is simply another formal mechanism for specifying queries.
- The domain relational calculus is similar (just slightly more cumbersome).
- The relational calculus (in any flavor) and the relational algebra are equivalent in terms of expressive power
 \[\Rightarrow\] Every query that can be expressed in one language can be expressed in the other.
 (Proof: see the book Relational Database Theory by P. Atzeni et al.)
- A query language is said to be relationally complete if it can express any query that can be expressed in relational algebra.
- Most commercial query languages (like SQL) are relationally complete.
- Are there simple queries expressible in English that are not expressible in relational calculus?

 – Consider the relation:

```
<table>
<thead>
<tr>
<th>ANCESTOR</th>
<th>NAME</th>
<th>PARENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>John, Jr.</td>
<td>Robert</td>
<td></td>
</tr>
<tr>
<td>Robert</td>
<td>Rose</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>Rose</td>
<td></td>
</tr>
<tr>
<td>Ted</td>
<td>Rose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

 – By tracing back two parents, we see that “Rose” is an ancestor of “John, Jr.”.
 – The query “Find the ultimate ancestor of John, Jr. (oldest in the chain of ancestors)” is NOT expressible in relational algebra.
Intuitively, there are a finite number of ‘variables’ in any relational calculus expression. By choosing an ancestral chain longer than this number, we will not be able to perform enough ‘matches’.

- Usefulness of relational theory:
 - Neither the relational algebra nor the relational calculus are typically found in commercial dbases.
 - Then why study relational algebra? Several reasons:
 1. Commercial query languages like SQL are based on the relational algebra and relational calculus
 2. The query optimizer of a commercial language, typically translates a user-query into an internal form similar to relational algebra.
 ⇒ useful in query optimization.
 3. It is the first step in formalizing the theory of relations.
 ⇒ it will be useful later (normalization and schema design).
 4. It is compact and mathematically precise
 ⇒ leads to an accurate characterization of its expressive power.
 ⇒ many useful properties can be formally proven.

- Recall the hierarchical model from an earlier example:
The Relational Model has become more popular because:
 - it is a flat model
 - operators on relations return relations and so can be combined easily
 - it is powerful enough to express several queries of interest
 - it is easy to work with in formal proofs

- What’s missing?
The relational algebra is only a set of operators to manipulate relations.
⇒ need to be able to insert values, print data etc.
⇒ commercial languages do that and more.
Chapter 3

SQL: A Query Language for Relational Databases

Course Notes on Database Systems
3.1 SQL: A Language for Relational Databases

- Formal query languages: Relational algebra and relational calculus.
- Real-world query languages: SQL, QUEL, QBE (among others).
- Most commonly used: SQL (pronounced either “see-kwell” or “ess-cue-ell”)
- SQL: originally called SEQUEL (Structured English QUEry Language), 1974-1976 IBM.
- ANSI SQL standard, 1986
- SQL2 standard, 1992 – also called SQL-92. (current work on SQL3).
- SQL:
 - lets you create and delete relations;
 - lets you specify queries on existing relations;
 - lets you specify domain, key and foreign constraints;
 - has support for security, transaction management and remote access;
- We first consider queries. Then we will look at creating relations, and other issues such as constraints.
3.2 The Basic SQL Query

- What is an SQL ‘program’?
 - SQL code can be typed interactively into an interpreter.
 - SQL code can reside in text files and be compiled (as most high-level languages are).
 - SQL statements can be input from within other programming languages (like C).
- SQL terminology:

<table>
<thead>
<tr>
<th>SQL</th>
<th>RELATIONAL ALGEBRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>relation</td>
</tr>
<tr>
<td>row</td>
<td>tuple</td>
</tr>
<tr>
<td>column</td>
<td>attribute</td>
</tr>
</tbody>
</table>

- The basic form of an SQL query statement:

```sql
select [distinct] <attribute list>
from <relation list>
[where <condition>] ;
```

NOTE:
- The SQL keywords above are: select, from, where and distinct.
- select and from clauses are required.
- The where clause and distinct are optional.
- Other optional clauses can be added (such as group by). We will cover these later.
• An example:

```sql
select NAME, SSN
from PASSENGER
where MILES > 50000;
```

NOTE:

– This expresses the query: “Find the names and SSN’s of all passengers who’ve accumulated more than 50000 miles”.
– In relational algebra:
 \[
 \text{RESULT} := \Pi_{\text{NAME,SSN}} (\sigma_{\text{MILES}>50000} (\text{PASSENGER}))
 \]
– The result is the relation (from the McVALUE Airlines dbase):

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>636-22-9999</td>
</tr>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
</tr>
</tbody>
</table>

– In contrast to relational algebra, SQL’s `select` denotes the ‘project’ operator (\(\Pi\)) in relational algebra
 \(\Rightarrow\) it describes which attributes are desired in the result.
– The `where` clause corresponds to relational algebra’s ‘select’ \((\sigma)\) operator.
– The `from` clause specifies the relations in the query.
– Interpretation:

```sql
select the attributes       NAME, SSN
from the relations         PASSENGER
where this condition holds: MILES > 50000;
```

– Here, we are using boldface to denote SQL keywords.
– The queries are written consistent with standard style.
 \(\Rightarrow\) In practice, SQL statements can be written in different ways, e.g.,

```sql
select name, ssn from passenger
where miles > 50000;
```
• Another example:

 – Query: “List names and ssn’s of all passengers flying on Flight F338”
 – In relational algebra:

 \[
 \text{RESULT} := \Pi_{\text{NAME}, \text{SSN}} (\sigma_{\text{FLTNO}=\text{F338}} (\text{PASSENGER} \times \text{FLIGHT}))
 \]
 – In SQL:

    ```sql
    select NAME, SSN
    from PASSENGER, FLIGHT
    where PASSENGER.FLT_ID = FLIGHT.FLT_ID
    and FLIGHT.FLTNO = ‘F338’
    ```

 ⇒ This is how a join is done in SQL.

 – How to ‘read’ the SQL statement:
 * Note that the relational algebra query can be written as
 \[
 \Pi_{\text{NAME, SSN}} (\sigma_{\text{FLTNO}=\text{F338}} (\sigma_{\text{PASSENGER.FLT_ID=FLIGHT.FLT_ID}} (\text{PASSENGER} \times \text{FLIGHT})))
 \]
 * Think of computing the cross-product of the relations in the `from` clause.
 * Then, apply the condition in the `where` clause to each tuple in the cross-product to select tuples.
 * Finally, project the attributes in the `select` clause to get the result relation.
 * Observe: the join condition is explicitly specified in the `where` clause.
 * NOTE: in an actual dbase, query optimization will try to prevent expensive cross-product computations.
• Duplicates:
 – While relational algebra forbids duplicate tuples, SQL allows them.
 – To force removal of duplicates: use `distinct`.
 – Example: “List all destination airports”

```sql
select distinct END_APT
from FLIGHT
```

– Result:

<table>
<thead>
<tr>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGA</td>
</tr>
<tr>
<td>DCA</td>
</tr>
<tr>
<td>JFK</td>
</tr>
</tbody>
</table>

– In contrast, the query

```sql
select END_APT
from FLIGHT
```

will result in duplicates:

<table>
<thead>
<tr>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGA</td>
</tr>
<tr>
<td>DCA</td>
</tr>
<tr>
<td>JFK</td>
</tr>
<tr>
<td>DCA</td>
</tr>
<tr>
<td>JFK</td>
</tr>
</tbody>
</table>
3.3 SQL by Example

In examples below, we will use the McVALUE AIRLINES dbase.

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill</td>
<td>221-66-1234</td>
<td>17</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Al</td>
<td>306-77-1131</td>
<td>63</td>
<td></td>
<td>45000</td>
</tr>
<tr>
<td>Bob</td>
<td>111-22-3333</td>
<td>15</td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Jack</td>
<td>733-55-1122</td>
<td>15</td>
<td></td>
<td>7700</td>
</tr>
<tr>
<td>Tom</td>
<td>636-22-9999</td>
<td>12</td>
<td></td>
<td>55000</td>
</tr>
<tr>
<td>Trent</td>
<td>414-28-5850</td>
<td>11</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Dick</td>
<td>223-63-7771</td>
<td>17</td>
<td></td>
<td>64500</td>
</tr>
<tr>
<td>Newt</td>
<td>828-81-6977</td>
<td>12</td>
<td></td>
<td>1570</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>FLT_ID</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>F616</td>
<td>DCA</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>F15</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>National</td>
<td>Washington</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>La Guardia</td>
<td>New York</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>Kennedy</td>
<td>New York</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREW</th>
<th>SSN</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>011-44-2233</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>313-62-7711</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>442-11-3313</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>722-55-1139</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>011-44-2233</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>011-44-2233</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>313-62-7711</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>442-11-3313</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>NAME</td>
<td>SSN</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Enskine</td>
<td>011-44-2223</td>
</tr>
<tr>
<td></td>
<td>Hillary</td>
<td>313-62-7711</td>
</tr>
<tr>
<td></td>
<td>Newt</td>
<td>442-11-3313</td>
</tr>
<tr>
<td></td>
<td>Donna</td>
<td>722-55-1139</td>
</tr>
<tr>
<td></td>
<td>Scott</td>
<td>221-44-8883</td>
</tr>
<tr>
<td></td>
<td>Liz</td>
<td>119-72-3131</td>
</tr>
<tr>
<td></td>
<td>Morris</td>
<td>334-56-9876</td>
</tr>
</tbody>
</table>
• Example 1.

 – Query: “List names and ssn’s of all passengers flying into National airport”

 – In relational algebra:

 \[
 \text{NAT} := \sigma_{\text{NAME}=\text{National}} (\text{AIRPORT}) \\
 \text{NAT_FTS} := \prod_{\text{FLT_ID}} (\text{FLIGHT \Join}_{\text{END_APT}=\text{APT}} \text{ NAT}) \\
 \text{RESULT} := \prod_{\text{NAME, SSN}} (\text{PASSENGER} \times \text{NAT_FTS})
 \]

 – In SQL:

    ```
    \text{select} \text{ PASSENGER.NAME, SSN} \\
    \text{from} \text{ PASSENGER, FLIGHT, AIRPORT} \\
    \text{where} \text{ AIRPORT.NAME=‘National’} \\
    \text{and} \text{ AIRPORT.APT = FLIGHT.END_APT} \\
    \text{and} \text{ FLIGHT.FLT_ID = PASSENGER.FLT_ID}
    ```

 – Note the qualification of NAME in the select clause:

 \text{PASSENGER.NAME}

 – The following would be ambiguous:

    ```
    \text{select} \text{ NAME, SSN} \\
    \text{from} \text{ PASSENGER, FLIGHT, AIRPORT} \\
    \text{where} \text{ AIRPORT.NAME=‘National’} \\
    \text{and} \text{ AIRPORT.APT = FLIGHT.END_APT} \\
    \text{and} \text{ FLIGHT.FLT_ID = PASSENGER.FLT_ID}
    ```

 NAME appears as an attribute in both PASSENGER and AIRPORT.
3.4 Aliases

- Aliases are permitted (and encouraged) in SQL.

- **Example 2.**
 - Consider the previous query: “List names and ssn’s of all passengers flying into National airport”
 - The SQL for this query can be written as:

    ```sql
    select P.NAME, P.SSN
    from PASSENGER P, FLIGHT, AIRPORT
    where AIRPORT.NAME='National'
    and AIRPORT.APT = FLIGHT.END_APT
    and FLIGHT.FLT_ID = P.FLT_ID
    ```

 - Here, the relation name PASSENGER is *aliased* to P.

 - It is considered good style (for clarity and brevity) to alias all relations:

    ```sql
    select P.NAME, P.SSN
    from PASSENGER P, FLIGHT F, AIRPORT A
    where A.NAME='National'
    and A.APT = F.END_APT
    and F.FLT_ID = P.FLT_ID
    ```
• Sometimes, aliasing is necessary even when using a single relation:
 – Example: consider the relation EMP:

<table>
<thead>
<tr>
<th>EMP NAME</th>
<th>SSN</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>111-11-1123</td>
<td>null</td>
</tr>
<tr>
<td>Paul</td>
<td>222-22-2234</td>
<td>222-22-2234</td>
</tr>
<tr>
<td>George</td>
<td>333-33-3345</td>
<td>111-11-1123</td>
</tr>
<tr>
<td>Ringo</td>
<td>444-44-4456</td>
<td>111-11-1123</td>
</tr>
</tbody>
</table>

 – Query: “List employee names along with their manager’s names”
 – Solution:

```sql
SELECT E1.NAME, E2.NAME
FROM EMP E1, EMP E2
WHERE E1.MGRSSN = E2.SSN
```

 – Analysis:

<table>
<thead>
<tr>
<th>EMP NAME</th>
<th>SSN</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>111-11-1123</td>
<td>null</td>
</tr>
<tr>
<td>Paul</td>
<td>222-22-2234</td>
<td>222-22-2234</td>
</tr>
<tr>
<td>George</td>
<td>333-33-3345</td>
<td>111-11-1123</td>
</tr>
<tr>
<td>Ringo</td>
<td>444-44-4456</td>
<td>111-11-1123</td>
</tr>
</tbody>
</table>

 – Result:

<table>
<thead>
<tr>
<th>E1.NAME</th>
<th>E2.NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul</td>
<td>Paul</td>
</tr>
<tr>
<td>George</td>
<td>John</td>
</tr>
<tr>
<td>Ringo</td>
<td>John</td>
</tr>
</tbody>
</table>

• Renaming attributes in results:
 – Attributes can be renamed in results.
 – Example:

Query: “List all destination airports”

```sql
SELECT distinct END_APT as DEST_AIRPORT
FROM FLIGHT
```
3.5 Union, Intersection and Set Difference

- SQL has constructs for union (union), intersection (intersect) and set difference (except).

- Example 3.
 - Query: “List all flights (FLTNO) that have either a passenger named Newt or a crew member named Newt”
 - Solution:

    ```
    ( select F.FLTNO 
    from PASSENGER P, FLIGHT F 
    where P.FLT_ID = F.FLT_ID 
    and P.NAME = 'Newt' ) 
    union 
    ( select F.FLTNO 
    from EMP E, CREW C, FLIGHT F 
    where E.NAME = 'Newt' 
    and E.SSN = C.SSN 
    and C.FLT_ID = F.FLT_ID )
    ```

 - Here, we obtained the Newt-passengers:

    ```
    ( select F.FLTNO 
    from PASSENGER P, FLIGHT F 
    where P.FLT_ID = F.FLT_ID 
    and P.NAME = 'Newt' )
    ```

 and ‘union-ed’ it with the Newt-crewmembers:

    ```
    ( select F.FLTNO 
    from EMP E, CREW C, FLIGHT F 
    where E.NAME = 'Newt' 
    and E.SSN = C.SSN 
    and C.FLT_ID = F.FLT_ID )
    ```

NOTE: a join with FLIGHT was needed to get the FLTNO for each crewmember.
• Example 4.
 – Query: “List names and ssn’s of all employees not on any flight”.
 – First, let’s obtain ssn’s of all nonflying employees:

 (select E.SSN
 from EMP E
 except
 (select C.SSN
 from CREW C
)
);

 – This can be refined to solve the original query: (to include names):

 (select E.NAME, E.SSN
 from EMP E
 except
 (select E2.NAME, C.SSN
 from CREW C, EMP E2
 where C.SSN = E2.SSN
)
);

• intersect (intersection) is similar to union and except, e.g.,

 – Query: “List all flights (FLTNO) that have both a passenger named Newt and a crew member named Newt”
 – Solution:

 (select F.FLTNO
 from PASSENGER P, FLIGHT F
 where PFLT.ID = F.FLT_ID
 and P.NAME = ‘Newt’
 intersect
 (select F.FLTNO
 from EMP E, CREW C, FLIGHT F
 where E.NAME = ‘Newt’
 and E.SSN = C.SSN
 and C.FLT_ID = F.FLT_ID
)
);
3.6 Obtaining All Tuples or All Attributes

- To simply obtain all tuples in a relation, omit the where clause.

- **Example 5.**
 - Query: “Obtain a list of employee names”
 - Solution:

    ```sql
    select E.NAME
    from EMP E;
    ```

- To obtain all attributes, use *.

- **Example 6.**
 - Query: “Obtain all information about employees”
 - Solution:

    ```sql
    select *
    from EMP;
    ```

- **Example 7.**
 - Query: “Obtain all information about airports in New York”
 - Solution:

    ```sql
    select *
    from AIRPORT A
    where A.CITY = 'New York';
    ```
3.7 Nested Queries

- SQL allows you to nest queries.
- Most common ways to nest queries involve the keywords: in, not in, exists, not exists.
- Example 8.
 - Query: "List names and ssn’s of all passengers flying on Flight F338"
 - Previous solution:
    ```sql
    select P.NAME, P.SSN
    from PASSENGER P, FLIGHT F
    where P.FLT_ID = F.FLT_ID
    and F.FLTNO = 'F338'
    ```
 - Solution using nested queries:
    ```sql
    select P.NAME, P.SSN
    from PASSENGER P
    where P.FLT_ID in ( select F.FLT_ID
                         from FLIGHT F
                         where F.FLTNO = 'F338' );
    ```
 - Explanation: think of a tuple-scanning variable for each of the select’s. For each tuple in the outer select, the entire inner relation is created and scanned.
 ⇒ for each tuple in PASSENGER, compute the ‘F338’ FLT_ID’s from FLIGHT and check containment.
 - If it seems like a waste to re-compute the inner select here, it is.
 ⇒ Previous solution is better.
• Example 9.
 – Query: “List flights mistakenly assigned to airports not served by McVALUE”.
 – Solution (for destination airports):

    ```
    select F.FLTNO
    from FLIGHT F
    where F.END_APT not in (
      select A/apt
      from AIRPORT A
    )
    ```

 – Note that
    ```
    select F.FLTNO
    from FLIGHT F, AIRPORT A
    where F.END_APT <> A.APT;
    ```
 does not work.

• Example 10.
 – Query: “List flights assigned to valid destination airports served by McVALUE”.
 – Solution (for destination airports):
    ```
    select F.FLTNO
    from FLIGHT F
    where exists ( select A.APT
      from AIRPORT A
      where A.APT = F.END_APT);
    ```

 – In using `exists`, the inner `select` is computed to see if it produces a non-empty relation.

 – Note that each outer tuple is checked against each inner tuple.
• Similarly, **not exists** returns true if the nested query result is *empty*.

• **Example 11.**

 – Query: “List names of passengers who fly into all airports”.

 – Solution:

    ```
    select P.NAME
    from PASSENGER P
    where not exists (( select A.APT
                        from AIRPORT A
                        except
                        ( select F.END_APT as APT
                            from FLIGHT F, PASSENGER P2
                            where P2.SSN = P.SSN
                                and F.FLIGHT_ID = P2.FLIGHT_ID ));
    ```

 – Explanation:

 * The first nested query simply obtains a list of all airports:

      ```
      ( select A.APT
        from AIRPORT A )
    ```

 * The outer query scans through PASSENGER.

 * The second nested query does a join between PASSENGER and FLIGHT to obtain each passenger’s airports.

 * The passenger in each tuple created in the second nested query is matched (via P2.SSN=P.SSN) with the outer passenger scan.

 * Now, if the list of airports is not complete then the set-difference will give a *non-empty* result.

 * The non-empty result is checked using **not exists**.
3.8 Aggregate Functions

- Consider the query: “Count the number of employees”.
 - Relational algebra has no mechanism for counting the number of tuples.
 - Some books define an extended relational algebra that permits counting, computing sums and maximums etc,
 ⇒ these are called aggregate functions.

- Aggregate functions in SQL.
 - SQL supports five aggregate operators:
 1. \(\text{max} (\text{<ATTR>}) \)
 ⇒ the maximum value in column \text{ATTR}
 2. \(\text{min} (\text{<ATTR>}) \)
 ⇒ the minimum value in column \text{ATTR}
 3. \(\text{sum} ([\text{distinct}] \text{ATTR}) \)
 ⇒ the sum of all (unique, if \text{distinct} is specified) values in column \text{ATTR}
 4. \(\text{avg} ([\text{distinct}] \text{ATTR}) \)
 ⇒ the average of all (unique, if \text{distinct} is specified) values in column \text{ATTR}
 5. (a) \(\text{count} ([\text{distinct}] \text{ATTR}) \)
 ⇒ the number of (unique, if \text{distinct} is specified) non-null values in column \text{ATTR}
 (b) \(\text{count} (*) \)
 ⇒ the number of tuples
• Example 12.
 – Query: “Count the number of employees”
 – Solution:

```sql
select  count(*)
from    EMP;
```

• Example 13.
 – Query: “Count the number of passengers with mileage > 50000”
 – Solution:

```sql
select  count(*)
from    PASSENGER P
where   P.MILES > 50000;
```

• Example 14.
 – Query: “Find the average salary of employees that fly.”
 – Solution:

```sql
select  avg (E.SALARY)
from    EMP E
where   E.ESN in ( select  C.SSN
                       from    CREW C );
```

• NOTE: aggregate functions cannot be used with other attributes in the same select clause.
 – For example, the following is illegal:

```sql
select  E.NAME, min (E.SALARY)
from    EMP E
```

(because it does not make sense).

 – One exception: aggregates can be used with other attributes when
the query contains the group by clause.
• Example 15.

 – Query: “Find the passenger with the most mileage.”

 – Solution:

    ```sql
    select  P.NAME
    from    PASSENGER P
    where   P.MILES = ( select  max(P2.MILES)
                        from    PASSENGER P2 );
    ```

 – Note that the following is illegal:

    ```sql
    select  P.NAME, max(P.MILES)
    from    PASSENGER P;
    ```

 – The keyword **all** is sometimes used:

    ```sql
    select  P.NAME
    from    PASSENGER P
    where   P.MILES >= all ( select  P2.MILES
                             from    PASSENGER P2 );
    ```
3.9 The group by Clause

- An aggregate function is computed on all tuples in a relation. For example:

```
select  avg(E.SALARY)
from    EMP E
```

computes the average salary of all employees.

- We can obtain the average salary of a particular department using the `where` clause:

```
select  avg(E.SALARY)
from    EMP E
where   E.DEPT='crew'
```

In this case, the average salary of crew members is reported.

- What if we want the average salary of each department?
 One option: write a separate SQL statement for each department.

- Using the `group by` clause:

```
select  avg(E.SALARY)
from    EMP E
group by E.DEPT
```

This produces a list of average salaries of the departments.
However, only the averages are reported
⇒ cannot match with department names!
• To match with department names:

\[
\begin{align*}
\text{select} & \quad \text{E.DEPT, avg(E.SALARY)} \\
\text{from} & \quad \text{EMP E} \\
\text{group by} & \quad \text{E.DEPT}
\end{align*}
\]

Here, an attribute is allowed in the \textbf{select} clause along with an aggregate operator.

Rule: attributes that appear in a \textbf{group by} clause may appear in the \textbf{select} clause.

• Sometimes we need to specify conditions on groups as a whole.

For example, consider this query: “Find the average salaries of those departments with at least 4 employees”.

The \textbf{having} clause can be used to achieve this result:

\[
\begin{align*}
\text{select} & \quad \text{E.DEPT, avg(E.SALARY)} \\
\text{from} & \quad \text{EMP E} \\
\text{group by} & \quad \text{E.DEPT} \\
\text{having} & \quad \text{count (*)} > 3
\end{align*}
\]

• Consider a more complex query: “List employees in departments with average salaries larger than 50,000”

Solution:

\[
\begin{align*}
\text{select} & \quad \text{E.NAME} \\
\text{from} & \quad \text{EMP E} \\
\text{where} & \quad \text{E.DEPT in (select E2.DEPT from EMP E2 group by E2.DEPT having avg(E2.SALARY) > 50000)}
\end{align*}
\]

• Sometimes we want to join attributes from other relations and want them to appear along with the aggregate.

Solution: include those attributes in the \textbf{group by} clause.
Example: “List departments with average salaries larger than 50,000 along with department names”.

Solution:

```sql
select E.DEPTNO, D.DNAME, avg(SALARY)
from EMP E, DEPT D
where E.DEPTNO = D.DEPTNO
group by E.DEPTNO, D.DNAME
having avg(SALARY) > 50000;
```

Note that the attributes that appear in the output also need to appear in the `group by` clause.
3.10 More on SQL

- Pattern search: to perform wildcard searches, use the percentage symbol and the `like` keyword, e.g.,

```
select * 
from EMP E 
where E.NAME like 'Sm%';
```

- A list of items can be specified using the `in` keyword, e.g.,

```
select * 
from EMP E 
where E.NAME in ('Smith','Jones');
```

- Output can be sorted by one or more attributes using the `order by` clause, e.g.,

```
select * 
from EMP E 
order by E.NAME, E.F_NAME
```

- Comments in SQL are specified by using two dashes. Everything after the two-dash symbol up to the end of the line is a comment, e.g.,

```
-- File: test1.sql
-- This file prints out names and SSN’s of employees in Sales
select E.NAME, E.SSN  -- Name, ssn attributes
from EMP E          -- EMP is aliased to E
where E.DEPT='Sales'; -- Specify department as Sales
```
3.11 Null Values in SQL

- SQL allows null's as values.
- SQL has a special comparison operator for null's: the is null operator.

- **Example 16.**
 - Query: “List all the tuples in EMP whose salary field is null”
 - Solution:

    ```
    select * 
    from EMP E 
    where E.SALARY is null;
    ```

- How are comparisons made with a null field?
 - Example:

    ```
    select E.NAME 
    from EMP E 
    where E.SALARY < 1000 
    or E.SALARY > ( 
      select E2.SALARY 
      from EMP E2 
      where E2.NAME = 'Smith' );
    ```

 - What happens if Smith’s salary is null?
 ⇒ What does E.SALARY > null evaluate to?

- Comparison rule for null values:
 - For any value x, and operator <op> ∈ {=, <, >, ≤, ≥, +, −, /, *}: the expression

    ```
    x <op> null
    ```

 evaluates to the value unknown (not an SQL keyword).
 - For example, 5.67 ≤null evaluates to unknown.
• Logic rules for unknown values:

 – Let T denote true, F denote false and U denote unknown.
 – The rule (truth-table) for NOT is:

\[
\begin{array}{c|c}
 x & \text{NOT}(x) \\
 \hline
 T & F \\
 F & T \\
 U & U
\end{array}
\]

 – The truth table for OR is:

\[
\begin{array}{c|c|c}
 x & y & x \text{ OR } y \\
 \hline
 T & T & T \\
 T & F & T \\
 F & T & T \\
 F & F & F \\
 T & U & T \\
 F & U & U \\
 U & T & T \\
 U & F & U \\
 U & U & U
\end{array}
\]

 – The truth table for AND is:

\[
\begin{array}{c|c|c}
 x & y & x \text{ AND } y \\
 \hline
 T & T & T \\
 T & F & F \\
 F & T & F \\
 F & F & F \\
 T & U & U \\
 F & U & F \\
 U & T & U \\
 U & F & F \\
 U & U & U
\end{array}
\]

 – Thus, for example, ((T AND U) OR T) evaluates to true.
• How null’s and unknown’s are treated in SQL:

 – The where clause must evaluate to true for a tuple to be included in the result.
 – Example: Consider the following relation:

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>National</td>
<td>Washington</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>La Guardia</td>
<td>New York</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>Kennedy</td>
<td>New York</td>
<td></td>
</tr>
<tr>
<td>null</td>
<td>Heathrow</td>
<td>London</td>
<td></td>
</tr>
<tr>
<td>null</td>
<td>Gatwick</td>
<td>London</td>
<td></td>
</tr>
</tbody>
</table>

The SQL statement:

```sql
select A.APT, A.NAME
from AIRPORT A
where A.CITY='London' or A.APT='LON';
```

produces the result

<table>
<thead>
<tr>
<th>APT</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>Heathrow</td>
</tr>
<tr>
<td>null</td>
<td>Gatwick</td>
</tr>
</tbody>
</table>

whereas the SQL statement

```sql
select A.APT, A.NAME
from AIRPORT A
where A.CITY='London' and A.APT='LON';
```

produces the empty relation.
• What about duplicates with `null`’s? Consider

```
select A.APT, A.CITY
from AIRPORT A
where A.CITY = 'London';
```

This produces:

<table>
<thead>
<tr>
<th>APT</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>London</td>
</tr>
<tr>
<td>null</td>
<td>London</td>
</tr>
</tbody>
</table>

whereas

```
select distinct A.APT, A.CITY
from AIRPORT A
where A.CITY = 'London';
```

produces

<table>
<thead>
<tr>
<th>APT</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>null</td>
<td>London</td>
</tr>
</tbody>
</table>

NOTE: the tuples are considered equal even though equality between `null`’s evaluates to `unknown`.

92
3.12 Creating Relations

- Relations (tables) are created in SQL using the `create table` statement.

- Example:

  ```sql
  create table PASSENGER (  
      NAME char(20),
      SSN char(20),
      FLT_ID integer,
      MILES integer);
  ```

- Example:

  ```sql
  create table FLIGHT (  
      FLT_ID integer,
      FLTNO char(8),
      START_APT char(3),
      END_APT char(3));
  ```

- Example:

  ```sql
  create table AIRPORT (  
      APT char(3),
      NAME char(10),
      CITY char(15));
  ```

- Tables can be deleted using the `drop table` statement, e.g.,

  ```sql
  drop table FLIGHT
  ```
3.13 Specifying Constraints

- Domain constraints are specified by using a check clause in the create table statement, e.g.,

```sql
create table PASSENGER
(   NAME char(20),
    SSN char(20),
    FLT_ID integer,
    MILES integer,
    check (MILES > 0) );
```

- Primary keys can be specified by the keywords primary key in the create table statement:

```sql
create table PASSENGER
(   NAME char(20),
    SSN char(20),
    FLT_ID integer,
    MILES integer,
    primary key (SSN) );

create table AIRPORT
(   APT char(3),
    NAME char(10),
    CITY char(15),
    primary key (APT, NAME) );
```

Recall: primary keys cannot have null values.
• Specific fields can be prohibited from allowing null’s.

• Specific fields can be prohibited from allowing duplicate values.

• Example:

```
create table PASSENGER  (  NAME    char(20) not null,
                          SSN        char(20),
                          FLT_ID     integer,
                          MILES     integer,
                   primary key (SSN) );
```

• Example:

```
create table FLIGHT    (  FLT_ID     integer,
                          FLTNO     char(8),
                          START_APT char(3),
                          END_APT   char(3),
             unique (FLT_ID) );
```

• A foreign key can be specified, e.g.,

```
create table PASSENGER  (  NAME    char(20),
                          SSN        char(20),
                          FLT_ID     integer,
                          MILES     integer,
                   primary key (SSN),
                   foreign key (FLT_ID)
              references FLIGHT (FLT_ID) );
```
3.14 Insertion, Deletion and Modification

- A tuple can be inserted into a relation using the `insert into` statement:

 \[
 \text{insert into} \quad \text{<relation name>}
 \]

 \[
 \text{values} \quad \text{<attribute values>}
 \]

- Example:

 \[
 \text{insert into FLIGHT}
 \]

 \[
 \text{values} \quad (23, \ 'F723', \ 'DCA', \ 'OHA');
 \]

- Example:

 \[
 \text{insert into FLIGHT}
 \]

 \[
 \text{values} \quad (45, \ 'F414', \ 'OHA', \ 'DCA');
 \]

- Insertions can be done using the output from `select`, e.g.,

- Example:

 \[
 \text{create table DC_AIRPORTS} \quad (\quad \text{APT} \quad \text{char}(3),
 \quad \text{NAME} \quad \text{char}(10) \quad);
 \]

 \[
 \text{insert into DC_AIRPORTS select A.APT, A.NAME}
 \]

 \[
 \quad \text{from AIRPORT A}
 \quad \text{where A.CITY='Washington'};
 \]
• Deletions are specified using the delete from statement:

```
delete from <relation name>
where <condition>
```

• Example:

```
delete from PASSENGER
where MILES < 5;
```

• Example:

```
delete from PASSENGER
where NAME is null;
```

• Example:

```
delete from PASSENGER
where FLT_ID not in ( select F.FLT_ID
                         from FLIGHT F );
```

• Individual or groups of tuples can be modified using the update statement:

```
update <relation name>
set <modification>
where <selection condition>
```

• Example:

```
update PASSENGER P
set P.SSN='828-81-6975'
where P.SSN='828-81-6977' and P.NAME='Newt';
```

• Example:

```
update PASSENGER P
set P.MILES = P.MILES + 100
where P.FLT_ID = 12;
```
3.15 Insertions, Modifications and Constraints

- Suppose we define a primary key on PASSENGER:

  ```
  create table PASSENGER  
  (   NAME char(20),
      SSN char(20),
      FLT JD integer,
      MILES integer,
      primary key (SSN) );
  ```

 Then, the following SQL statements result in error:

 - Example using insert:

    ```
    insert into PASSENGER 
    values ('Jim', '221-66-1234', 63, 100);
    ```

 ⇒ can’t allow duplicate primary key values.

 - Example using update:

    ```
    update PASSENGER P 
    set P.SSN=null 
    where P.NAME='Newt';
    ```

 ⇒ can’t allow null’s in primary key attributes.

These inserts and updates are rejected.
• Consider the following foreign key constraint:

```sql
create table PASSENGER ( 
  NAME char(20),
  SSN char(20),
  FLT_ID integer,
  MILES integer,
  primary key (SSN),
  foreign key (FLT_ID)
  references FLIGHT (FLT_ID )
);
```

Then, the following changes violate the constraint:

– Example with insert:

```sql
insert into PASSENGER
values ('Jim', '455-98-0101', 9, 200)
```

⇒ FLT_ID=9 does not exist in FLIGHT
⇒ reject insertion.

– Example with delete:

```sql
delete from FLIGHT F
where F.FLT_ID = 11
```

⇒ All FLT_ID=11 values in PASSENGER point to nothing
⇒ reject deletion?
• When a foreign key is deleted there are several options that can be specified in the create table statement:

1. Delete all tuples that refer to the value
 \[\Rightarrow \text{delete all PASSENGER tuples with FLT_ID}=11.\]

   ```
   create table PASSENGER (   NAME char(20),
   SSN char(20),
   FLT\_ID integer,
   MILES integer,
   primary key (SSN),
   foreign key (FLT\_ID)
   references FLIGHT (FLT\_ID) )
   on delete cascade );
   ```

2. Don’t allow the deletion of the foreign key
 \[\Rightarrow \text{reject above deletion}.\]

   ```
   create table PASSENGER (   NAME char(20),
   SSN char(20),
   FLT\_ID integer,
   MILES integer,
   primary key (SSN),
   foreign key (FLT\_ID)
   references FLIGHT (FLT\_ID ) );
   ```
3. Set reference to null
 ⇒ set FLT_ID to null in PASSENGER.

 \begin{verbatim}
 create table PASSENGER (NAME char(20),
 SSN char(20),
 FLT_ID integer,
 MILES integer,
 primary key (SSN),
 foreign key (FLT_ID)
 references FLIGHT (FLT_ID)
 on delete set null);
 \end{verbatim}

4. Set reference to a default value
 ⇒ set FLT_ID to some default value in PASSENGER.

 \begin{verbatim}
 create table PASSENGER (NAME char(20),
 SSN char(20),
 FLT_ID integer default 11,
 MILES integer,
 primary key (SSN),
 foreign key (FLT_ID)
 references FLIGHT (FLT_ID)
 on delete set default);
 \end{verbatim}
• Relations can be deleted with constraint specifications, e.g.,

 – **drop table** FLIGHT **cascade**
 – will delete the FLIGHT relation.
 – all references to tuples in FLIGHT will be modified to maintain referential integrity.
 – **drop table** FLIGHT **restrict**
 – will be dropped only if not referenced.

• Attributes can be added or removed from relations, e.g.,

 – **alter table** EMP **add** BOSS_NAME char(15);
 – adds attribute BOSS_NAME, a string of max 15 chars.
 – **alter table** FLIGHT **drop** FLT_ID **cascade**
 – attribute FLT_ID is removed from FLIGHT.
 – references are removed.

• Constraints can be named (and later, dropped), e.g.,

```
create table PASSENGER  (  
  NAME char(20),
  SSN char(20),
  FLT_ID integer default 11,
  MILES integer,
primary key (SSN),
constraint FLIGHT_ID
foreign key (FLT_ID)
references FLIGHT (FLT_ID)
on delete set default);
```

```
alter table   PASSENGER
drop constraint  FLIGHT_ID
```
3.16 Security

- The database administrator can grant access privileges to users and database programmers using the grant statement, e.g.,

 - grant insert, delete on PASSENGER to SIMHA
 - grant select on PASSENGER to SIMHA
 - grant insert on PASSENGER to SIMHA with grant option

- Privileges can be revoked using the revoke statement.
3.17 Views in SQL

- Suppose we have a relation called EMPLOYEE with attributes:

 \[
 \text{EMPLOYEE (NAME, SSN, ADDR, SALARY)}
 \]

 - The database administrator does not want programmers to have access to SALARY information.
 - One option: create two relations:

 \[
 \text{EMP (NAME, SSN, ADDR)} \\
 \text{EMP.SAL (SSN, SALARY)}
 \]

 And allow programmers access only to EMP.

 - Note: space is wasted.

- Most DBMS’s allow views or virtual relations to be created.

 - In the above example, a virtual relation (or view) such as

 \[
 \text{EMP (NAME, SSN, ADDR)}
 \]

 could be created.

 - Programmers will go ahead and program assuming that a relation called EMP (with attributes NAME, SSN and ADDR) exists.

 - System will take commands given on EMP and convert them to commands on EMPLOYEE.

- Creating a view in SQL (usually done by database administrator):\

 \[
 \text{create view EMP as select NAME, SSN, ADDR from EMPLOYEE;}
 \]
Later on, a programmer can treat EMP like any other relation:

```
select NAME, DNAME
from EMP, DEPARTMENT
where DNO=DNUMBER
```

- Although a programmer may treat a view as any other relation, updates are sometimes restricted because of potential ambiguity.

Suppose we have 3 tables:

EMPLOYEE (NAME, SSN)
WORKS_ON (SSN, PNO)
PROD_NAME (PNO, PRODUCT)

For example:

```
EMPLOYEE NAME SSN
Smith    123456789
::

WORKS_ON SSN PNO
123456789 5
::

PROD_NAME PNO PRODUCT
::
4 Coke
5 Pepsi
::
```
Next, suppose we create a view: EMP_PRODUCT (NAME, PRODUCT) (employee name and the product s/he is working on). In SQL:

```sql
CREATE VIEW EMP_PRODUCT (NAME, PRODUCT)
AS SELECT NAME, PRODUCT
FROM EMPLOYEE, WORKS_ON, PROD_NAME
WHERE EMPLOYEE.SSN = WORKS_ON.SSN
AND WORKS_ON.PNO = PROD_NAME.PNO
```

Assume that the programmer only sees the relation EMP_PRODUCT.
From the table, we see that Smith works on product Pepsi. Suppose now, Smith is asked to work on Coke. To update, the programmer does:

```sql
UPDATE EMP_PRODUCT
SET PRODUCT = 'Coke'
WHERE NAME = 'Smith'
```

To realize this modification, the system must actually update the relations that constitute the view EMP_PRODUCT.

There are two ways of achieving this change:

1. Change PNO to 4 in WORKS_ON.
2. Change PRODUCT to ‘Coke’ for PNO=5 in PROD_NAME.

- Ambiguity!

Note: here the intention is clear, we should change PNO to 4 in WORKS_ON. But in other cases, it is not so obvious.
3.18 Embedded SQL and SQL Libraries

- SQL is only a language for manipulating relations.

- Most real applications require other features, e.g., writing to files, windows, adding report-quality word-processing etc.

- Commercial DBMS’s often provide their own languages. For example, Oracle has its own language.
 - Real world applications are written in these languages.
 - These languages provide a mechanism for embedding SQL (to manipulate relations).

- Dbase vendors often provide a mechanism to embed SQL in programming languages such as C. For example,

  ```c
  struct empstruct {
    char name[20];
    int ssn;
    int dept_no;
  }
  struct empstruct *emp_ptr;
  ...
  ...
  EXEC SQL
    select NAME, SSN, DNO from EMPLOYEE where NAME='Smith'
END EXEC SQL;
/* Returns a tuple into struct pointed to by emp_ptr */
```

- In C-embedded SQL, the dbase vendor provides a C compiler that translates the embedded SQL into appropriate function calls to a relational
operator library.
⇒ some query optimization can be done at compile time.

• Often, it is desirable to make direct SQL calls from a C program, e.g.,

```c
struct emp_struct {
    char name[20];
    int  ssn;
    int  dept_no;
}
struct emp_struct *emp_ptr;
...

call_sql_interp (emp_ptr, ’select NAME, SSN, DNO from EMPLOYEE
                   where NAME=’Smith’’);
/* Returns a tuple into struct pointed to by emp_ptr */
⇒ an SQL library is provided (by the dbase vendor).
```
3.19 SQL: Summary

- SQL is a language for manipulating relations.
- SQL is based on relational algebra operators, adding ‘syntactic sugar’ where needed.
- SQL is itself usually executed from some other language (via embedding).
- SQL provides:
 - *Data definition capabilities* – commands for defining schemas, relations, integrity constraints, default specifications.
 - *Data manipulation capabilities* – commands for updating and manipulating relations (e.g. `select` command).
 - *View capabilities* – commands for creating views and the support software to allow programming based on views.
 - *Authorization* – commands for controlling access.
 - *Integrity checking* – mechanisms for automatic integrity checking.
 - *Transaction control* – (to be explained later).
Chapter 4

Physical Implementation of Databases

Course Notes on Database Systems
4.1 Introduction

- Consider the following relations and query:

 Relations FLIGHT and AIRPORT:

<table>
<thead>
<tr>
<th>FLIGHT</th>
<th>FLT_ID</th>
<th>FLT_NO</th>
<th>START_APT</th>
<th>END_APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>F616</td>
<td>DCA</td>
<td>LGA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F71</td>
<td>LGA</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F335</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F338</td>
<td>JFK</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>F15</td>
<td>DCA</td>
<td>JFK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRPORT</th>
<th>APT</th>
<th>NAME</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>National</td>
<td>Washington</td>
<td></td>
</tr>
<tr>
<td>LGA</td>
<td>La Guardia</td>
<td>New York</td>
<td></td>
</tr>
<tr>
<td>JFK</td>
<td>Kennedy</td>
<td>New York</td>
<td></td>
</tr>
</tbody>
</table>

- SQL query:

```sql
select F.FLTNO
from FLIGHT F, AIRPORT A
where F.END_APT = A.APT
and A.CITY = 'New York';
```

- Several implementation questions arise:

 - How is the query actually computed?
 - How and where are relations stored?
• A simple (but naive) answer:

 – Store each relation in a (Unix) file.
 ⇒ tuples are stored in order of insertion
 – Write C code to perform basic relational algebra operations.
 – For example, to compute $\Pi_{\text{APT}} \ (\text{AIRPORT})$:
 * read from file \texttt{airport} containing tuples of AIRPORT.
 * scan through tuples and extract APT field to create result tuples.
 * write RESULT tuples to file \texttt{result}.

• Why is this naive?

 – The above method will work but will not be efficient for large data sets.
 – Large data sets imply many disk accesses
 ⇒ disk accesses are time-consuming
 ⇒ should try to minimize disk access
 ⇒ need to understand low-level storage details
4.2 Hardware Review

Basic system architecture:

![System Architecture Diagram]

Cache memory:

- Fast access times (approx 50 nanoseconds per access)
- Expensive
- Little or no software control over cache contents
- Small (KBytes), not large enough for DBMS data
- Volatile

Main memory:

- Moderately fast (100-500 nanoseconds per access)
- Relatively inexpensive
- Plenty of software control (via OS)
- Large enough (MBytes) for code, but not all data
- Volatile
Disk:

- Slow (10-100 milliseconds per access)
- Inexpensive
- Software control available (via disk controller)
- Large data storage (GBytes)
- Nonvolatile
 \[\Rightarrow\] since data must live beyond execution time of dbase tools, data must be stored on disk.
4.3 A Typical Disk or Disk System

- Read/write head moves across magnetic surface.
- Discrete number of tracks (cylinders).
 Seek time is the time for the head to move to the desired track.
- Each track is divided into sectors.
- Platter rotates at high speed.
 Latency is the time required for the head to be positioned over the desired sector.
- A *block* is the unit of access for a disk
 ⇒ always read or write an *entire* block.
- Blocks are also called disk pages.
- Block sizes are usually programmable.
- Blocks have id’s (block addresses).
• Disk I/O driver can translate between block addresses and the appropriate <track,sector> combination.

• Why is a disk access slow compared to a main memory access?
 ⇒ seek time + latency + block transfer time

• Incorporating tape storage:

 – Sometimes, disks are too small (e.g., scientific data)
 ⇒ use mag tapes

 – Tapes are cheap and reliable, but very slow.

 – Tapes may require manual handling.

 – Tapes are used primarily for backups.
4.4 Interaction Between Disk and Memory

- Data is stored on disks in fixed-size blocks.
- The *disk manager* manages the allocation of blocks on disk.
 - Again, it is possible to use the disk I/O driver in the OS.
 - Most DBMS’s prefer to manage allocation on disk.
 - It is preferable to allocate contiguous blocks for some files.
 ⇒ more efficient access is possible
 - The disk manager keeps track of free blocks on disk.
- Methods of storing disk blocks:
 Consider a file of n blocks that is to be written to disk.
 Contiguous allocation:
 - Always store blocks of a file contiguously (in adjacent tracks).
- Advantages: Smaller seek and latency.
- Disadvantages: Difficult to expand file. May not be able store some large files.

Linked allocation:

- Store blocks anywhere, but link them (keep pointer to next block in current block).

Disadvantage: Lot of seek time incurred if blocks are all over the place.

Clustered allocation:

- A compromise: group blocks into clusters and link them.
 \[\Rightarrow \text{clustered blocks are stored contiguously, but clusters can be anywhere on disk.} \]

A cluster of blocks is sometimes called an \textit{extent}.

- For dbase programs to work on the data, data has to be brought into main memory.
 - Blocks are read into main memory from disk.
 - Blocks are written to disk from main memory.
 - One option is to use the OS memory management system (virtual memory).
- Most often, dbases do their own memory management.
 ⇒ a large buffer in main memory is acquired from the OS and used for keeping blocks in memory.

- The *buffer manager* is a program that manages memory for the dbase.
 - The buffer manager is defined by its *replacement* policy.
 ⇒ when a block is brought into a full memory, some block in memory has to be written out
 - Standard OS replacement policy: Least Recently Used (LRU) (or some variation of LRU).
 - Dbase considerations are often different:
 * A DBMS often needs to *pin* some important, frequently accessed blocks (such as directory blocks).
 * Query analysis and optimization permits some predictability in disk accesses.
 ⇒ *prefetching* can be done (overlap seeks with computation).
 * A DBMS needs to force writing a block to disk (for persistence).
 - When a particular block is requested (by a higher-level program):
 * If the block is already in main memory, return the start address of the block.
 * Otherwise, if memory is full, select a block for replacement and write it to disk.
 * Bring requested block into memory and return start address.
 - Sometimes, in client-server mode, a block must also be transferred to a client.
 - The buffer manager keeps track of whether blocks have been written into (using a *dirty bit*).
 - When concurrency is permitted, the buffer manager allows blocks to be locked and unlocked.
4.5 Storing Relations

- A DBMS typically runs its own file system.
- Most often, all tuples in a relation are stored in a file.
- Conceptually, a file is a collection of tuples.
- Physically, a file is a collection of disk blocks
 ⇒ a disk block may contain one or more tuples.
- Sometimes, a large tuple may span multiple blocks.
- At the physical-level, a tuple is sometimes called a record.
- Two types of records:
 - Fixed-size records
 - Variable-size records.
- Consider the following relation:

  ```
  create table PASSENGER (  
  NAME    char(6),
  SSN     char(11),
  FLT_ID  integer,
  MILES   integer );
  ```

 Assume integers are 32-bits (4 bytes) long
 ⇒ 25 bytes are required for each tuple.
 ⇒ 2 records/block if blocksize is 64 bytes.
• Suppose we have the following data (high-level conceptual view):

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bert</td>
<td>111-22-3333</td>
<td>34</td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Ernie</td>
<td>222-33-4444</td>
<td>56</td>
<td></td>
<td>750</td>
</tr>
<tr>
<td>Kermit</td>
<td>444-55-6666</td>
<td>78</td>
<td></td>
<td>950</td>
</tr>
</tbody>
</table>

Low-level conceptual view:

<’Bert’, ’111-22-3333’, 34, 550>
<’Ernie’, ’222-33-4444’, 56, 750>
<’Kermit’, ’444-55-6666’, 78, 950>

Physical view:
4.6 Fixed-Size Records

- Retrieving a field from within a fixed-size record:
 - Use the offset of the field within the tuple.
 - In the above example, the SSN field’s offset is 20 bytes.
- Storage of fixed-size records in blocks.
 - For example, suppose
 \[
 \begin{align*}
 \text{record size} & = 56 \text{ bytes} \\
 \text{block size} & = 512 \text{ bytes}
 \end{align*}
 \]
 \[\Rightarrow 9 \text{ records per block}.\]
 - Typically, one stores the number of records before the records, e.g.,

![Diagram of record layout with 9 records per block]

- Most often, a higher-level program will ask for a particular block of a particular file: “Get me the first block in file PASSENGER”, e.g.,

  ```c
  blk_num = 1;
  char * buf = (char *) get_block (’passenger’, blk_num);
  ```

- A file manager translates the file name and block number within the file to a disk block number.
- The buffer manager’s job is to retrieve the block and return the start address.
Thus, the 4-th tuple can then be retrieved knowing the record size, e.g.,

```
char * tuple = buf + (4 - 1) * rec_size;
// Thus, tuple[261] is the 6th byte of the 4th tuple
```

- What about deletions?
 - **Packed-block** option: replace deleted tuple with last tuple in block.

![Diagram of tuple packing](image)

* Advantages: Simple.
* Disadvantages: It’s a problem if other programs keep pointers to tuple-offsets within blocks (as some B-tree algorithms do).
 * Another disadvantage: Rearranging the tuples may destroy sort-order.

- **Delete-marker** option: use a special bit pattern (if available) to mark a tuple as deleted, e.g., use all 1’s.
* Disadvantages: requires special bit pattern.

- **Valid bit-array** option: for a block that can hold \(n \) tuples, use an \(n \)-bit array, where 0⇒deleted.

* Disadvantages: Overhead required for bit-array and overhead needed during each access.

- Since overwhelming cost is disk access cost, extra computation within memory (e.g., moving tuples around) is not terrible.
4.7 Variable-Size Records

- Variable-size records.
 - Recall: every tuple in a relation has the same number of attributes.
 - Then, how do variable-sized records arise?
 - Consider the following relation:

    ```sql
    create table BOOK (  
      TITLE char(100),
      FIRST_AUTHOR char(50),
      OTHER_AUTHORS char(500),
      RECENT_REVIEW char(20000)
    );
    ```

 Here, some books may have short values for `OTHER_AUTHORS` and `RECENT_REVIEW`.
 ⇒ waste of space to use 25000 bytes per tuple
 ⇒ can save space by using variable-size fields
 ⇒ variable-size records.

- Retrieving a field from within a variable-size record:
 Option 1: use special delimiters:
 - A special character or string between tuples:

- Advantages: Simple.
- Disadvantages: Special delimiter required.
Option 2: Keep offsets to start of each field:

- The first part of the record has offsets to the various records.

- Advantages: No delimiter required. Null's can be easily handled (use zero-offset).
- Disadvantages: Space and time overheads.

Storage of variable-size records in blocks.

Packed-block method:
- This does not work for variable-size records, since record boundaries are unknown.

Marker method:
- Use special inter-record markers.
- Advantages: Simple.
- Disadvantages: Special marker symbol required.

Bit-array method:
- Does not work since record boundaries are not known.
Directory method:

- Store a directory of (rec_offset, rec_length) pairs in each block.
- To obtain k-th record, look up k-th non-zero entry in directory, compute offset (using rec_offset) and retrieve rec_length bytes.

<table>
<thead>
<tr>
<th>2nd dir entry</th>
<th>end of directory</th>
<th>≤ 35 bytes</th>
<th>2nd tuple</th>
</tr>
</thead>
<tbody>
<tr>
<td>203,35</td>
<td>⋯</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: rec_length is needed if a new record is inserted into a larger available space.

- Advantages: Most flexible scheme. Has all the advantages of the bit-array method for fixed-size records.
- Disadvantages: Substantially more storage and some computation during access.

- General problem: what if block size is too small for a tuple?
 ⇒ a tuple may span several blocks.
 ⇒ only makes life more difficult.
4.8 File Systems

- A single block may not be large enough for all the tuples in a relation
 ⇒ use a file (a collection of blocks).

- Main issues in file design:
 - Blocks can be anywhere on disk
 ⇒ need to keep track of block id’s of blocks in each file.
 - Records can be anywhere in file
 ⇒ need a method for organizing records in a file.

- Operations on files a DBMS file system needs to support:
 - **Insert** a record.
 - **Delete** a particular record.
 - **Delete** records that satisfy a given condition.
 - **Modify** a particular record.
 - **Scan** all records. Often, a scan is initiated (**startscan**) and records are obtained one-by-one (**scannext**).
 - **Search** for records that satisfy a condition.
 - **Range search**: when the condition is a range of values.
 - **Equality search**: when the condition is an equality condition.
 - **Reorganize**. Files that leave deletions in place often need to be ‘packed’.

Think of a file system as a C library of functions that can be called for the above tasks.
• Three basic types of files:

 – *Heap files:* records are unordered

 – *Sorted files:* records are ordered by some field.

 – *Hashed files:* records are clustered by a hashing function.
4.9 Heap Files

- In a heap file, records are unordered.

- File operations using a heap file:
 - **Insert** a record:
 - Simply insert record in last block, if space available.
 - If new block required, request one from disk manager.
 - **Delete** a record:
 - Option 1: delete record, then ‘pack’ remainder of file
 - Advantages: Simple. No space overhead. No space wasted.
 - Disadvantages: Time-consuming.
 - Option 2: delete record, pack only occasionally.
 - ‘Occasionally’ can mean ‘every time total deleted space is larger than a threshold’.
 - Advantages: Simple. No space overhead. Wasted space can be controlled.
 - Disadvantages: ‘Occasionally’ time-consuming.
 - Option 3: delete record, chain deleted space.
* Blocks with deleted space can be added to either end of chain.
* Key idea: when new records are inserted, try blocks in chain.
* Advantages: Uses space more efficiently (especially with fixed-size records).
* Disadvantages: More complex. Long search may be needed for inserting variable-size records. Space overhead for pointers.

– Option 4: delete record, update directory of blocks.
* Maintain a directory of disk blocks for each file.
* One entry per block in the directory.
* Directory entry contains (block number, available space).

```
<table>
<thead>
<tr>
<th>block 5, 35 bytes</th>
</tr>
</thead>
</table>
```

* The directory itself may span several blocks (it must be stored on disk).
* On insertion, check directory for existing blocks with space.
* Since directory entries are typically smaller than tuples, hopefully the directory won’t occupy too many blocks.
* Advantages: Less search required for variable-size tuples. Most flexible scheme.
* Disadvantages: Space overhead. Occasionally time-consuming.

Scan and any type of **search**:
- For heapfiles, any search requires a complete scan.
- Exception: if it is known that only one record exists to match a condition (e.g., equality search on a key), the search can be stopped when record is found.
4.10 Sorted Files

- In a *sorted file*, records are ordered on some field.

- The field (or group of fields) is usually the *primary key* of the relation.

- Some DBMS’s (e.g., Postgres, Oracle) use an internal tuple-id (integer) for each tuple
 \(\Rightarrow\) files are typically sorted by tuple-id unless otherwise specified.

- File operations using a sorted file:

 Equality search on sort field:
 - Sorted files were devised to speed up search.
 \(\Rightarrow\) use binary search on sort field
 \(\Rightarrow\) if \(b = \#\) blocks, search time is \(O(\log b)\) instead of \(O(b)\)

 - Note: to retrieve blocks in the middle, a directory is required:

 \[
 \begin{array}{|c|c|}
 \hline
 \text{WHICH BLOCK} & \text{ACTUAL BLOCK NUM} \\
 \hline
 : & : \\
 13 & 4578 \\
 : & : \\
 \hline
 \end{array}
 \]

 - Advantages: Speed.

 - Disadvantages: Directory required. Insertion is difficult (see below).

Insert a record:

- Option 1: Make space to insert.
 * Find right place to insert a record to keep sorted order.
 * Push back remaining records to create space (and write those blocks back).
* Write new record.
* Advantages: Keeps sorted order.
* Disadvantages: Insert is very expensive.

- Option 2: Insert in temporary overflow area.
 * Insert record in overflow block(s).
 * Periodically reorganize file: sort the overflow blocks, then merge-sort with main file.
 * To search: use binary search in main file, sequential search in overflow blocks.
 * Advantages: Most inserts are fast. Overflow area can be controlled.
 * Disadvantages: Frequent changes (inserts/deletes) are time-consuming. Search may be slow if overflow area is large.

Delete a record:

- Option 1: delete record, then pack file.
 * Advantages: No space wasted.
 * Disadvantages: Time-consuming.

- Option 2: delete record, pack file occasionally.
 * Advantages: Simple. No space overhead. Wasted space can be controlled.
 * Disadvantages: ‘Occasionally’ time-consuming.

- Note: chaining deleted space is useless since records must be in sorted order.

Range search:

- If range search is on sort-key, find first tuple and then scan until out of range.
 \[\Rightarrow\] cannot be more efficient.

- Range search (or plain search) on any other fields requires a complete scan.
4.11 Hashed Files

- In a *hashed file*, records are distributed among several ‘buckets’.

- Key ideas in simple hashing:

 A hashing function is applied to each record
 ⇒ a mapping function from the bits in the record to integers
 e.g., pick the first 5 bits in the record
 ⇒ maps records to the integers 0, 1, 2, ..., 31.
– Each integer is associated with a *bucket*: the integer is the *bucket number*.

– Initially, a block is assigned to each bucket
 ⇒ as records get added to the bucket they are placed in the block.

– Later, when the first block assigned to a bucket fills up, additional blocks are used.

– The hash table itself is a (small) collection of blocks.

– Usually: try to pick hashing function so that records spread evenly across buckets.

– Some buckets could have long overflow chains
 ⇒ resembles heap file.

– Dynamic hashing methods handle non-uniformity (to be covered later).

• File operations using a hashed file:

 Insert a record:

 – Compute hash value and insert in appropriate bucket.
 – New disk block may be needed if all disk blocks in bucket are full.

 Delete a record:

 – Remove record from disk block.
 – Return disk block to disk manager if empty.
 – No need to keep track of deleted space.

 Equality search:

 – Compute hash value of equality argument.
 – Search disk blocks in corresponding bucket.
 ⇒ if there are few blocks per bucket, few disk accesses are needed.
 – Example:
Other searches and scans:

- Scan all blocks in hashed file.
4.12 File Structures: A Summary

- Key ideas in the three file structures:

 Suppose \(b = \text{number blocks in file} \).

 Heap files:
 - Minus: Any search is slow \((O(b))\).
 - Best if file scans are common or insertions are frequent.

 Sorted files:
 - Plus: Search on sort-key is fast \((O(\log b))\). Range search is fast (on sort-key)
 - Minus: Insertion is slow. Any other search is slow.
 - Best if range search is needed often.

 Hashed files:
 - Plus: Insertion or search on hash-key is fast. \((O(1)\) if properly distributed).
 - Minus: Complex. Any other search is slow. Space overhead. Un-balanced buckets degrade performance. Range search is slow.
 - Best if equality search is needed on hash-key.

- In practice:

 - Sort files are rarely used, since indices such as \(B^+\)-trees provide for fast search, insert and range search.
 - Hash files are rarely used for direct storage. However they are often used as temporary files during join computations.
 - Unless otherwise specified, heap files are most often used.
 - Most systems allow the creation of indices to speed up file access.
4.13 What is an Index?

- Consider a relation such as EMP (NAME, SSN, SALARY).

- An index is:
 1. Some data extracted (copied) from the data file placed in a useful data structure (leaving the data file intact).
 2. Programs that manipulate the index data.

- Key idea: narrow down the search to a few pieces of the original data file.
• Indices usually contain ‘pointers’ to data in the data file.

• A search-key is a value that defines a search:
 - In the query “Find the salary of Smith”, the string ‘Smith’ is the search-key.
 - In the query “Find all employees with a salary greater than 10000”, the integer 10000 is the search-key.
 - A search-key is the value used in searching.
 - Unfortunately, the word “key” is being overloaded here.
 - Sometimes, a search-key is also a key for the associated relation.
• The main idea behind an index can be found in a library card catalog:

Since each index entry (card) is smaller than the data (book) itself, searching the index (card catalog) is faster than search the data file (library) itself.
4.14 A Simple Index

- Suppose we have a data file and a search key.
 - Create a file of *index records*.
 - Each index record will have a possible search-key value and a pointer to the appropriate data record.
 - A ‘pointer’ to a data record is really the *block number* of the block in which the data resides, and the *tuple number* within the block.

- Example: consider the following relation:

```
create table BLACKMAIL (     NAME    char(20),
  DIRTY_SECRET char(480) );
```

Suppose the block size is 1024 bytes:

- 500 bytes per data record
 ⇒ 2 data records per block.
- Suppose a pointer requires 5 bytes (4 bytes for block number and 1 byte for tuple number)
 ⇒ 25 bytes per index record
 ⇒ 40 index records per block.
Consider the query: “Find Arthur’s dirty secret.”

Without index:

- Suppose “Arthur” is the 10th record in the data file
 - 5 blocks of data file must be read.

Using an index:

- Since “Arthur” is 10th entry
 - occurs in block 1 of index
 - 1 block of index file, 1 block of data file
 - 2 blocks to obtain final record

This may not seem to be much of an improvement. Consider instead the query: find information about “Ulysses”.

- Suppose “Ulysses” occurs as 30,000-th record
 - 15,000 blocks accessed in data file scan (no index).
⇒ 30,000/40 = 750 blocks accessed in index file
⇒ 751 block accesses using index.

- The impact of sorting:
 - Suppose
 \[b = \text{number of data file blocks} \]
 \[b_i = \text{number of index file blocks} \]
 - The index file is typically sorted
 ⇒ binary search can be used.
 - If data file is sorted, binary search can be used in direct method.
 ⇒ ratio of performance is \(O(\log b)/O(\log b_i) \).
 - If data file is not sorted (most common case), then ratio is
 \(O(b)/O(\log b_i) \).

- If the data file is sorted, the index can be made smaller by using anchor records (first record in a block):
Since only the correct block needs to be located, knowing that a data item lies between two successive anchor record key-values is enough to
determine the block.
In the example:

- 2 data records per block
 ⇒ 15,000 anchor records.
 ⇒ 15,000 index entries
 ⇒ 15,000 / 40 = 375 index file blocks

⇒ example of a non-dense index.
4.15 Types of Indices

- Note: “Indexes” and “Indices” are both valid.

- An index that has one entry for each data record is called a *dense index*. Otherwise, a *non-dense index*.

- The set of attributes corresponding to the search-key is called the *indexing field*.

 For example, one can create an index for the combination (NAME, SSN). Then, the bits corresponding to (NAME, SSN) in each record constitute the *indexing field*.

- A *primary index* is an index such that the indexing field includes the primary key of the data file.

 Note: in some books, a *primary index* additionally requires the data file to be sorted.

- A *secondary index* is any index that is not a primary index.

 For example, consider

 \[
 \text{STUDENT (NAME, SSN, STUDENT_ID, ADDR)}.
 \]

 Then, an index on SSN is a primary index. An index on STUDENT_ID is a secondary index.

- A *clustering index* is a secondary index on a non-key set of attributes.

 For example, consider

 \[
 \text{EMP (NAME, DEPTNO, SSN, ADDR)}
 \]

 An index can be created on DEPTNO by *clustering* together data records having the same DEPTNO:
Sometimes, if there are too many values, separate blocks of pointers (block numbers) are used:
• Insertion and deletion:

Insertion:

- Index file is sorted
 ⇒ new index record needs to be inserted in proper place.
- If data file is a heap file, insertion of data record is easy.

- For a sorted data file, data record needs to be in correct place.
 ⇒ either squeeze record in or use overflow blocks. If a non-dense index is used
 ⇒ anchor records may change in re-packing
 ⇒ large part of index may need to be re-built.
- Overflow blocks can be used for index file as well
 ⇒ periodic re-organization needed.
- In both index and data files, space can be initially reserved for future inserts.
- Insertion into a clustering index is easy: data file is a heap file. New block pointers are simply added to collection of pointers.
Deletion:

- Deletion from data file follows earlier techniques.
- If anchor record is deleted, new anchor record must be designated and written into index entry.
- Several options for deleting index record:
 * Delete and pack
 \[\Rightarrow \text{time-consuming, but no space wastage} \]
 * Delete and leave space
 \[\Rightarrow \text{could waste space and later slow down access}. \]

- Primary vs. Secondary indices:
 - Recall: a primary index is an index on a primary key.
 - A secondary index is an index on any other set of attributes.
 - If the data file is sorted by primary key, the primary index can be made \textit{non-dense}
 \[\Rightarrow \text{fewer index entries} \]
 \[\Rightarrow \text{binary search on index is faster}. \]
 - However, sometimes improvement using a secondary index can be greater, if the data file is sorted on primary key.
 * ratio of performance for primary index is \(O(\log b) / O(\log b_i) \).
 * ratio of performance for secondary index is \(O(b) / O(\log b_i) \).
 where \(b = \# \text{ data blocks and } b_i = \# \text{ index blocks} \).
 - Example:
 * Suppose block size is 1024.
 * Suppose we have a data file of 50,000 records of 100 bytes each.
 \[\Rightarrow 1024/100 = 10 \text{ records/block} \]
 \[\Rightarrow 5000 \text{ blocks} \]
 \[\Rightarrow 2500 \text{ blocks on average for linear search} \]
 * Binary search of data file: \([\log_2 5000] = 13 \text{ blocks} \).
* Suppose index record is 10 bytes
 \[\Rightarrow 1024/10 = 102 \text{ index records per block} \]
* 5000 data blocks
 \[\Rightarrow 5000 \text{ primary index records} \]
 \[\Rightarrow 5000/102 = 50 \text{ index blocks} \]
 \[\Rightarrow \text{binary search of index file: } \lceil \log_2 50 \rceil = 6 \text{ blocks} \]
 \[\Rightarrow \text{search needs } 6 + 1 \text{ (for data file) block accesses.} \]
* Thus, improvement ratio for primary index is \(13/(6 + 1) \approx 1.8\).
* Now, for a secondary index, we need 50,000 index entries
 \[\Rightarrow 50000/102 = 491 \text{ blocks} \]
 \[\Rightarrow \text{binary search of index file: } \lceil \log_2 491 \rceil = 8 \text{ blocks.} \]
* Data file requires linear search.
* Thus, improvement ratio for secondary index is \(2500/(8 + 1) \approx 277.8\).
4.16 Multilevel Indices

- Consider an index on STUDENT (ID, NAME, ADDR):

Typically: binary search is used on index file.
Key observation: index file is itself a sorted “data” file.
⇒ can create a primary index on the index:
In this case:

- The second index file (level-2) is an index on the first one (level-1).
- Level-2 contains the anchor values of level-1.
- This is called a *multilevel index*.

- Suppose level-1 has b_i blocks and an index block contains f index records:
 - One level-2 entry for each of the b_i blocks
 - b_i records in level-2
 - $\frac{b_i}{f}$ blocks in level-2
 - level-2 search cost is $\lceil \log_2 \frac{b_i}{f} \rceil$
 - total search cost is: $\lceil \log_2 \frac{b_i}{f} \rceil + 2$
 - (1 block in level-1, 1 block from data file).
 - search time is reduced.

- What about a level-3?
 - $\frac{b_i}{f}$ blocks at level-2
 - $\frac{b_i}{f}$ records at level-3
\[\Rightarrow \frac{b_i}{f} \div f \text{ blocks at level}-3 \]
\[\vdots \]
\[\Rightarrow \frac{b_i}{f^{k-1}} \text{ blocks at level}-k. \]

- When do we stop?
 \[\Rightarrow \text{when level}-k \text{ has only one block} \]
 \[\Rightarrow \frac{b_i}{f^{k-1}} = 1 \]
 \[\Rightarrow k = 1 + \log_f b_i. \]

- What is the search cost with a full multilevel index?
 \[\Rightarrow 1 \text{ block per level plus data block} \]
 \[\Rightarrow (k + 1) = 2 + \log_f b_i. \]

- Is it worth the effort?
 - Cost with one-level index: \(1 + \log_2 b_i \).
 - Cost with multi-level index: \(2 + \log_f b_i \).
- If \(f \gg 2 \)
 \[2 + \log_f b_i \ll 1 + \log_2 b_i. \]
- Example: \(b_i = 4000, f = 100 \)
 \[1 + \log_2 b_i = 12 \text{ and } 2 + \log_{100} b_i = 3 \]
 \(\Rightarrow \) four times faster.

- How much extra space?
 \(\Rightarrow O(b_i) \) additional blocks.

- What about insertions and deletions?
 Insertions and deletions are problematic.

Typical options for \textbf{insert}:

- Reorganize entire index with each insert:
 \(\Rightarrow \) expensive operation but keeps search efficient.

- Leave some space in each (index and data) block for future inserts
 \(\Rightarrow \) potential wastage of space
 \(\Rightarrow \) slower search.

- Place new data and index records in overflow area
 \(\Rightarrow \) slower search.

Delete options are similar to those seen earlier.

- Note:
 - Additional levels can be built on any index file, since level-1 is sorted
 (even for clustered and secondary indices).
 - A multilevel index is sometimes called a ISAM (Indexed Sequential
 Access Method) by IBM-types.
 - Multilevel indices were used in practice \textit{before} the arrival of B-trees.
 - Some ISAM products are still available.
4.17 B-Trees: An Introduction

- Recall multilevel indices. For example:

 - Observe that values like 1 and 145 occur in several places in the index
 ⇒ deleting ‘1’ from the index requires several record deletions.
 - If deletions are left in place (no packing), some index blocks could contain many deleted values
 ⇒ even if data file becomes small, index remains large.
 - If re-packing is done for each insertion, $O(b_i)$ blocks may be processed.
 - If overflow blocks are used, then many insertions cause the overflow blocks to be processed frequently
⇒ slower search.
• A B-tree is a type of multilevel index which:
 – is dense;
 – implements insertion and deletion by dynamic reconstruction of the index at the time of each insertion/deletion;
 – limits the cost of dynamic reconstruction to approximately $O(\log f b_i)$ block accesses;
 – incurs a search cost of approximately $O(\log f b_i)$ block accesses;
 – limits the amount of wasted space;
 – does not allow duplicate values in the index.

• A B-tree is a collection of blocks (called B-tree nodes) that contain:
 – search-key (index) values
 – data pointers (block numbers and tuple numbers of data records)
 – tree pointers (block numbers of other B-tree nodes)
 – some information local to each block (such as the number of key values in it)

• Every B-tree node of a B-tree of degree m ($m > 1$):
 – (except the root) must have at least $m - 1$ key values, sorted inside the node;
 – cannot have more than $2m - 1$ key values;
 – has as many data pointers as key values;
 – has one more tree pointer than the number of key values;
 – is either a leaf or an internal node.

• Each B-tree node fits into one disk block and the entire B-tree resides on disk
 ⇒ when a B-tree is accessed, relevant nodes are brought into main memory.
Additionally:

- Internal nodes contain tree pointers whereas leaves do not;
- All leaves are at the same depth from the root.

For example, suppose

- block size is 512
- 2 bytes are used for block-specific information
- an index value requires 20 bytes
- a data pointer requires 6 bytes
- a tree pointer requires 4 bytes

Then, we must have

\[2 + 20(2m - 1) + 6(2m - 1) + 4(2m) \leq 512. \]

Or

\[m \leq 8.93. \]

Thus, pick \(m = 8. \)
• The nodes in a B-tree are arranged in \textit{in-order}:

\begin{center}
\begin{tikzpicture}
\node[rectangle, draw] (jones) at (0,0) {Jones};
\node[rectangle, draw] (smith) at (1,0) {Smith};
\node[rectangle, draw] (ab) at (-1,-1) {Abel};
\node[rectangle, draw] (da) at (0,-1) {Davis};
\node[rectangle, draw] (ho) at (1,-1) {Hart};
\node[rectangle, draw] (mu) at (0,-2) {Muir};
\node[rectangle, draw] (ra) at (1,-2) {Rand};
\node[rectangle, draw] (sn) at (2,-1) {Snell};
\node[rectangle, draw] (su) at (3,-1) {Suda};
\node[rectangle, draw] (wo) at (4,-1) {Wong};
\node (n1) at (-2,-1) {Names < ‘Jones’};
\node (n2) at (2,-1) {Names > ‘Smith’};
\node (n3) at (-1,-2.5) {Names between ‘Jones’ and ‘Smith’ in this subtree};
\draw[dashed] (jones) -- (n1);
\draw[dashed] (smith) -- (n2);
\draw[dashed] (jones) -- (n3);
\end{tikzpicture}
\end{center}

• NOTE:

\begin{itemize}
\item The root of the B-tree can have fewer than \(m - 1 \) values.
\item Since \(2m - 1 \) is odd, the maximum number of values is either \(3, 5, 7, \ldots \) etc.
\item Since \(m > 1 \), smallest value possible for \(2m - 1 \) is 3.
\item In a full node, the \(m \)-th value is the called \textit{median} or \textit{middle} value.
\item It is possible to generalize the definition to allow for an even number of values. If \(e \) values are allowed (e.g. \(e = 8 \)), the middle value is defined to be the \((e + 1)/2\)-th value.
\end{itemize}

• Operations supported by a B-tree:

\begin{itemize}
\item \textbf{Insertion}: insert a key-value into the tree.
\item \textbf{Deletion}: delete a key-value from the tree.
\item \textbf{Search}: search for a particular key-value.
\end{itemize}

• NOTE:

\begin{itemize}
\item A B-tree is used on top of a data file (usually, a heap file).
\item Often, the combination of the tree and data file is called a B-tree file (or, confusingly, B-tree for short).
\item \Rightarrow the B-tree’s \textbf{insert} function also inserts into the data file: \texttt{btree_insert (key, tuple)}
\end{itemize}
- Search in a B-tree typically means equality search.
- Range searches are inefficient in a B-tree.

• Remember: the tree pointer in a B-tree node is not a memory location ⇒ it is a block number.

• Worst-case height of a B-Tree.

 It is possible to compute the worst possible height of a B-tree containing \(n \) nodes without additional detail.

 In the worst case, all nodes have only \(m - 1 \) values and the root has only 1 value. Thus,

 \[
 \begin{align*}
 \text{level } 0 \text{ (root) has } & 1 \text{ node} \\
 \text{level } 1 \text{ has } & 2 \text{ nodes} \\
 \text{level } 2 \text{ has } & 2m \text{ nodes} \\
 \text{level } 3 \text{ has } & 2m^2 \text{ nodes} \\
 \vdots \\
 \text{level } h \text{ has } & 2m^{h-1} \text{ nodes}
 \end{align*}
 \]

 Therefore,

 \[
 n = 1 + 2 + 2m + 2m^2 + \ldots + 2m^{h-1}
 \]

 \[
 = 1 + 2(1 + m + m^2 + \ldots + m^{h-1})
 \]

 \[
 = 1 + 2 \frac{m^h - 1}{m - 1}
 \]

 Or, \(h = O(\log_m n) \).

 In fact, \(h \leq 1 + \log_m n \).

• NOTE:

 - The \(m - 1 \) lower bound translates to “at least 50% full”.
 - Any lower bound less than \(m - 1 \) is easy to support
 ⇒ a restriction like “at least 70% full” is possible but difficult.
4.18 Search in a B-Tree

- Searching in a B-tree follows in-order traversal.
 - Start at root block.
 - For each block, search sequentially through elements in block until element is either found or the correct child block is identified.
 - If child block pointer is NULL
 \(\Rightarrow \) item not in tree.
 - If item is found
 \(\Rightarrow \) extract data pointer and retrieve tuple from heap file.
 - Otherwise, follow childpointer.

- Example: search for ‘6’ in this tree:

![Diagram of B-Tree](image)

- Example: search for ‘14’:

![Diagram of B-Tree](image)
• What is the complexity of search?
 ⇒ as many blocks as height of tree (worst case)
 ⇒ $O(\log_m n)$ for search (n blocks of data).
4.19 Insertion in a B-Tree

- We will learn insertion via an example:
 - Consider the case \(m = 2 \).
 - The key values are integers.
 - Insert the following key values in order: 1, 7, 8, 10, 9, 3, 2, 5, 4, 6, 11

NOTE:
- \(m = 2 \) ⇒ at least \(m - 1 = 1 \) value per node.
- \(m = 2 \) ⇒ at most \(2m - 1 = 3 \) values per node.
- Median value is 2nd value.
- We will not describe insertion of tuple into heap file.

- Initially: Create (empty) root node:

 ![root node](image)

- Insert ‘1’:
 - Space available in root block.

 ![root node with ‘1’](image)

- Insert ‘7’:
 - Fits into root block
- Insert to right of ‘1’ (in sort-order)

\[\text{root} \]

\[
\begin{array}{c}
1 \\
7 \\
\end{array}
\]

- Insert ‘8’:
 - Fits into root block
 - Insert to right of ‘7’

\[\text{root} \]

\[
\begin{array}{c}
1 \\
7 \\
8 \\
\end{array}
\]

- Insert ‘10’:
 - Root node is full ⇒ must split root.
 - Median element (‘7’) is bumped up one level (to new root).
 - Split nodes are children (left and right) of median element.
 - New element (‘10’) is added in appropriate split node.

Step 1: Split node:

Step 2: Add new value (‘10’):
Step 3: Insert median element (with its left and right pointers) at level above.
⇒ in this case, create new root.

This illustrates the general principle behind insertion:

- First, find the correct leaf for insertion.
 ⇒ use in-order to navigate to correct leaf.
- Note: check equality within interior nodes.
 ⇒ if found then insertion is a duplicate.
- If space is available, insert into leaf (maintaining sort order).
- Else, split leaf and 'push up' median element
 ⇒ insert median element into old leaf’s parent.
- In pushing up median element, also move up left and right pointers.
- Add new item in left or right child (according to sort order).
- If parent is full, split parent etc, recursively.

• Insert ‘9’:
 - Search for right leaf ⇒ ‘8-10’ node.
 - Space available ⇒ insert.

• Insert ‘3’:
\begin{itemize}
\item Search for correct leaf \Rightarrow the ‘1’ node.
\item Space available \Rightarrow insert.
\end{itemize}
• Insert ‘2’:

 – Search for correct leaf ⇒ the ‘1’ node.
 – Space available ⇒ insert.

```
+---+---+---+        +---+---+---+
| 7 |   |   |        |  1 |  2 |  3 |
+---+---+---+        +---+---+---+
    |   |             |  8 |  9 | 10 |
```

• Insert ‘5’:

 – Search for correct leaf ⇒ the ‘1-2-3’ block.
 – Block is full ⇒ split (median element is ‘2’).
 – Add new element into correct child ⇒ the ‘3’ block:

```
+---+---+---+        +---+---+---+        +---+---+---+
|   | 2 |   |        |   |  1 |   |        |  3 |  5 |   |
+---+---+---+        +---+---+---+        +---+---+---+
    |   |             |  8 |  9 | 10 |       |   |   |     |
```

 – Insert ‘2’ into parent (the root, in this case):

```
+---+---+---+        +---+---+---+        +---+---+---+        +---+---+---+
|   | 2 | 7 |        |   |  1 |   |        |  3 |  5 |   |        |  8 |  9 | 10 |
+---+---+---+        +---+---+---+        +---+---+---+        +---+---+---+
    |   |             |  8 |  9 | 10 |       |   |   |     |  1 |  2 |  3 |       |  3 |  5 |
```

• Insert ‘4’:

 – Find correct leaf ⇒ the ‘3-5’ node.
 – Space available ⇒ insert.
• Insert ‘6’:
 – Find correct leaf ⇒ the ‘3-4-5’ node.
 – Node full ⇒ split (median element is ‘4’)
 – Add new element to correct child (the ‘5’ child, here):

```
  4
  / \   /
3   5 6
```
 – Insert ‘4’ into parent:

```
  2 4 7
  /     /
1 3   5 6
```

NOTE:
 – The element ‘7’ and everything to the right of it (including pointers) are shifted to the right.
 – The (tree) pointer between ‘2’ and ‘7’ is overwritten by ‘4’ and its two pointers.
replace this with this

... to get

1 2 3
• Insert ‘11’:
 – Search for correct leaf ⇒ ‘8-9-10’ block.
 – Block is full ⇒ split needed (median element is ‘9’).
 – Add new element in correct child ⇒ the ‘10’ block:

```
  9
```

```
  8  10  11
```

– Insert ‘9’ into parent node (the ‘2-4-7’ block)
 ⇒ ‘2-4-7’ needs to be split (with median ‘4’)
 ⇒ create new root with ‘4’.

– Final tree:

```
  4
```

```
  2  7  10  11
```

```
  1  3  5  6  8
```

171
• What is the complexity of insertion?

 – Suppose height of tree is h.
 – Need to search for correct leaf (in-order traversal)
 \Rightarrow at most h blocks accessed for search.
 – In the worst case, a split propagates to root
 $\Rightarrow h$ blocks accessed going back up.
 – Thus, $2h$ old blocks read, h old blocks written, h new blocks written.
 $\Rightarrow 4h$ disk accesses (worst case)
 $\Rightarrow O(\log_m n)$ for insert.

NOTE:

 – In practice, some blocks are likely to remain in memory.
 – Typically, m is large
 \Rightarrow height is small.
 – For example, suppose $m = 100$
 \Rightarrow if $h = 4$, $2m^{h-1} = 2,000,000$
 \Rightarrow 2 million blocks is a lot of data!
 – Access times are $O(h)$.

172
4.20 Implementing a B-Tree

- Implementation issues:
 - How to store data and pointers in blocks?
 - Designing algorithms for insertion and search.

- Recall: B-tree blocks contain
 - key values (at most $2m - 1$)
 - data pointers (at most $2m - 1$)
 - tree pointers (at most $2m$)

It is useful to store additional information:
 - A boolean indicating whether the block is a leaf.
 - The number of entries (key-values) in a block.

Note: If a block has k key values, then it has $k + 1$ tree pointers.

- If the degree m is known in advance, we can use a C-like struct for a B-tree block with fields, e.g.,

```c
struct btree_node {
    int num_entries; // M = degree
    int leaf;        // Number of entries
    char value [KEYSIZE][2*M-1]; // Leaf or interior node?
    int blocknum [2*M-1]; // Values
    int tuplenum [2*M-1]; // Together, blocknum and
    int treep [2*M];     // tuplenum constitute a datapoint
};
```
Now, typically, the system reads a block into memory and returns its address. In C, a \textit{cast} may be used to extract fields:

\begin{verbatim}
 b = (btree_node *) Disk_Readblock (blocknum);
 if (b->leaf) {
 ... etc
\end{verbatim}

Casting will not be shown in the pseudocode that follows.

The following functions will be used to handle I/O in the pseudocode:

\begin{itemize}
 \item \textbf{Disk-Readblock (bnum)}
 \begin{itemize}
 \item This function reads block bnum into memory and returns the address.
 \end{itemize}
 \item \textbf{Disk-Newblock ()}
 \begin{itemize}
 \item Creates a new block on disk and returns a block number.
 \item A separate \textbf{Disk-Readblock} is needed to read the block into memory.
 \end{itemize}
 \item \textbf{Disk-Writeblock (bnum)} – Writes block bnum to disk.
\end{itemize}

Example:
• Typical function specifications for creating, searching and inserting:

Creating a B-tree:

\[\text{btree_create} \text{ (tuplesize, keysize, keyoffset)} \]

- \text{tuplesize} is the length (in bytes) of the data tuple.
- \text{keysize} is the length of the key field.
- \text{keyoffset} is the offset (in bytes) of the key field.
- The function initializes the root block and stores (in private data structures) the tuplesize etc.
- Most often, a \textit{file identifier} is returned:

\[\text{fd = btree_create} \text{ (tuplesize, keysize, keyoffset)} \]

to be used later in searching or insertion:

\[\text{btree_search} \text{ (fd, key)} \]

Searching a B-tree:

\[\text{tuple = btree_search} \text{ (key)} \]

- \text{key} is a particular key value (e.g., the character string ‘Smith’ for a NAME field).
- The function typically returns the entire tuple (if found) or NULL.
 \[\Rightarrow \text{ the function retrieves the tuple from the data file.} \]

Inserting a tuple:

\[\text{btree_insert} \text{ (tuple)} \]

- \text{tuple} is the tuple to be inserted.
- Often, such functions return the data block (of the heapfile) in which the tuple was inserted.
• Pseudocode for *btree_create*:
(File identifier has been left out of the pseudocode)

Algorithm: \texttt{BTree-CREATE} (tupsize, keysize, keyoffset)

Input: sizes of tuple and key, offset of key within tuple.
Output: root block, written to disk.
1. Store size and offset information;
2. Create heapfile;
3. Compute max_entries (or degree) in B-tree node;
4. root_blknum := \texttt{DISK-NEWBLOCK}(); // Get a block number
5. root := \texttt{DISK-READBLOCK} (root_blknum); // Read it in
6. root_leaf := true;
7. root_num_entries := 0;
8. \texttt{DISK-WRITEBLOCK} (root_blknum);
9. \texttt{return};

• Pseudocode for *btree_search*:

Algorithm: \texttt{BTree-SEARCH} (key)

Input: key value to search for.
Output: the corresponding tuple, if found, else null.
1. \(T := \texttt{BTree-RECURSIVE-SEARCH} (\text{root_blknum}, \text{key}); \)
 // Here, \(T \) is a data pointer into the heapfile
2. \texttt{if} \(T = \text{null} \texttt{return null}; \)
3. \(b' := \texttt{DISK-READBLOCK} (T.\text{blocknum}); \)
4. \(i := T.\text{tuplenum}; \)
5. \texttt{return} \(i \)-th tuple in \(b' \);
Algorithm: BTree-Recursive-Search (bnum, key)

Input: block number bnum and a key.
Output: datapointer if found, null otherwise.

1. $b := \text{Disk-ReadBlock} (\text{bnum})$;
2. $i := 1$;
3. while $i \leq n$ and $b \rightarrow \text{value}[i] < \text{key}$
 4. $i := i + 1$;
5. if $b \rightarrow \text{value}[i] = \text{key}$
6. STACK-Push (bnum);
7. return $b \rightarrow \text{datap}[i]$;
8. endif;
 // Otherwise, not found; dig deeper
9. STACK-Push (bnum); // Save bnum for insert
10. if $b \rightarrow \text{leaf} = \text{true}$ // Can’t go down \Rightarrow not found
11. return null
12. if $i \leq b \rightarrow \text{numEntries}$ // go left
13. return BTree-Recursive-Search ($b \rightarrow \text{treep}[i]$, key);
14. else // go right
15. return BTree-Recursive-Search ($b \rightarrow \text{treep}[i + 1]$, key);
• Pseudocode for `btree_insert`:

```
Algorithm: BTREE-INSERT (x)

Input: a tuple, x.
Output: Insertion of x in data file and key(x) in B-tree.
1. x' := BTREE-SEARCH (x.key);
2. if x' ≠ null
3.   print ‘Error: key exists’;
4.   return;
5. endif
6. T := HEAPFILE-INSERT (x);
   // T is a datapointer, (block#, tuple#)
7. bnum := STACK-POP();
   // After search, stack has block number of correct leaf
8. BTREE-RECURSIVE-INSERT (bnum, x.key, T, 0, 0);
9. return;
```
Algorithm: \textsc{Btree-Recursive-Insert} (bnum, key, T, leftblock, rightblock)

Input: block bnum, a key, datapointer T, left and right treepointers

Output: Insertion of data and datapointer into block bnum.

1. $b := \text{Disk-ReadBlock} (\text{bnum})$
2. if $b \to \text{num_entries} < \text{max_entries}$
3. insert key, leftblock and rightblock into correct place in b;
4. $\text{Disk-WriteBlock} (\text{bnum})$;
5. \text{return};
6. endif
 // Otherwise, node needs to be split
7. \text{median} := (\text{max_entries} + 1) / 2;
8. \text{median_key} := $b \to \text{value}[\text{median}]$;
9. \text{median_T} := $b \to \text{datap}[\text{median}]$;
10. $\text{bnum2} := \text{Disk-NewBlock}();$ // New right block
11. $b2 := \text{Disk-ReadBlock} (\text{bnum2})$;
 // Including new item, we have max_entries + 1 items;
12. \text{keep items 1,...,(median-1) in current block, b;}
13. \text{place items (median+1),...,max_entries+1 in b2;}
14. \text{Disk-WriteBlock} (\text{bnum})$;
15. $\text{Disk-WriteBlock} (\text{bnum2})$;
 // Now insert median (and pointers bnum, bnum2) in parent
16. if $\text{bnum} \neq \text{root_blknum}$
17. \text{parent_blknum} := \text{Stack-Pop}();
18. $\text{Btree-Recursive-Insert} (\text{parent_blknum}, \text{median_key, median_T, bnum, bnum2})$;
19. else
20. $\text{Create-New-Root} (\text{median_key, median_T, bnum, bnum2})$;
21. \text{return};
Algorithm: CREATE-NEW-ROOT (key, T, leftblock, rightblock)

Input: a key, a datapointer, left and right block numbers.

Output: a new root block, written to disk.

1. root.blknum := DISK-NEWBLOCK();
2. root := DISK-READBLOCK (root.blknum);
3. root->num_entries := 1;
4. root->value[1] := key;
5. root->datap[1] := T;
8. DISK-WRITEBLOCK (root.blknum);
9. return;
4.21 Deletion in a B-Tree

- Deletion is somewhat more complicated than insertion. To see why, consider:

- Suppose we want to delete ‘6’
 \[\Rightarrow\] easy – simply delete ‘6’ from ‘5-6’ node:

- Suppose we want to delete ‘9’:
 * Cannot delete ‘9’ casually.
 * A search for ‘11’ would cause problems
 \[\Rightarrow\] problem is worse for large \(m \).
- Suppose we want to delete ‘2’
 ⇒ need to have at least \(m - 1 \) elements
 ⇒ node will underflow.

- Key ideas used in deletion:
 - Rotation: when underflow occurs, try to borrow key values from sibling via rotation.
 - Merging: if rotation cannot be done, merge siblings.
 - Replacement: when deleting a value from an interior node, replace it with another key value.

- Rotation:
 - Consider an example where \(m = 3 \)
 ⇒ must have at least \(m - 1 = 2 \) values per node.

```
  66 79 83

  64 65
  \|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
– Instead, parent value must be included in rotation.

- NOTE: both data pointers and tree pointers need to be moved in a rotation.

- Merging:
  
  – Sometimes, you can’t borrow from a sibling because the sibling doesn’t have enough:

  - Here, rotation from right sibling would cause right sibling to underflow.
  
  – Key idea: since both siblings are ‘borderline’, they both have $m - 1$ values
    
    ⇒ together they have $2m - 2$ values
    
    ⇒ together with parent value they have $2m - 1$ values
    
    ⇒ can merge all of these into a single node.
- Method: pull ‘66’ down and merge siblings:

Result:

- But what if pulling down a value from the parent causes underflow at parent’s level?
  ⇒ balance or merge at parent’s level ... and so on, recursively.

- Example: delete ‘64’ from this tree:

Here,
* Deleting ‘64’ causes underflow in ‘64-65’ node.
* Sibling is borderline
  ⇒ pull down ‘66’ from parent
  ⇒ causes underflow in parent node
  ⇒ try to re-distribute among parent and parent’s sibling.
* Parent’s sibling is borderline
  ⇒ must merge parent and parent’s sibling.

When we pull down ‘66’, we get:

When we pull down ‘105’ we get:

NOTE: if ‘105’ was the only element in the root, we would have one less level.

NOTE: In the above example (and some that follow), the entire tree is not shown for lack of space.
• Replacement:
  – Deletion of an interior node value requires replacing the value.
  – The value is replaced by the in-order predecessor.
  – Finding the in-order predecessor requires a search all the way down to the leaf level.
  – Example (with $m = 2$): Delete ‘73’ from this B-tree

  ![B-tree diagram]

  – The in-order predecessor of ‘73’ is the largest element in the left subtree of ‘73’.
    ⇒ rightmost element in left subtree.
  – Note: an interior value always has a left subtree.
  – Replace ‘73’ with ‘71’.

  ![Updated B-tree diagram]
– Note: after replacement, in-order is maintained.
– Finally, do a regular delete of ‘71’:

– Note: in some cases, the final delete could recursively work its way up to the root. But it does not use replacement and so must finally end.

• At last we see why the underflow restriction is $m - 1$ (as opposed to something higher)
  ⇒ if the restriction were higher (such as 70% full), then how would we merge two nodes that are 70% full?
  (It can be done, but it’s harder).

• We will not cover delete any further. For additional details, see the literature.
4.22  B+-Trees: Introduction

- Recall the following about a B-Tree:
  Index values occur all over the tree
  ⇒ a **range search** or sorted **scan** can be quite expensive.

- A B+-tree overcomes this problem (at the cost of allowing duplicate entries).

- Key ideas in a B+-tree:
  - Similar structure to that of a B-tree.
  - Distinguish between *internal* and *leaf* nodes.
  - Leaf nodes contain *all* search keys inserted into tree.
  - Leaf nodes are serially connected by a linked list in **sorted order**.
  - Each *leaf* node:
    * has no tree pointers
    * has only search keys and data pointers
    * has linked list pointer
– Each *internal* node:
  * has search keys
  * has tree pointers
  * has no data pointers
– Search keys in internal nodes are used only for *navigation*.
– Search keys in internal nodes are repeated in the leaves.
– Every search key does not occur as an internal value.
– Which search keys get to be in internal nodes as well?
  ⇒ depends on what’s wrought about by insertions/deletions.

For example:

![B+ Tree Diagram]

• **Constraints on node contents for a B+-tree of degree $m$:**
  – Each internal or leaf node must contain at least $m - 1$ keys.
  – Each internal or leaf node can contain at most $2m - 1$ keys.
  – Each internal node can contain at most $2m$ pointers.
  – Each internal node must contain one more pointer than the number of keys.
  – Each leaf node must contain as many data pointers as there are keys in the node.
NOTE:

- In a full node, the \( m \)-th value is the \textit{median} or \textit{middle} value.
- In practice, tree pointers can be smaller than data pointers
  \( \Rightarrow \) internal and leaf nodes can have different \textit{degree}
  \( \Rightarrow \) usually internal nodes can pack more keys
  \( \Rightarrow \) possibly fewer levels than a corresponding B-tree.
- For simplicity, this presentation will use the same degree for both.
- As with B-trees, the above definitions can be extended to trees with even numbers of keys.
4.23 Insertion in a B+-Tree

• Key ideas:
  – Similar to a B-tree.
  – Search for correct leaf using *in-order* search.
  – Must insert in appropriate leaf.
  – If leaf is full, split leaf and insert a *copy* of the median element at the next level.

• We will learn insertion via an example:
  – Consider the case \( m = 2 \).
  – The key values are integers.
  – Insert the following key values in order: 1, 7, 8, 10, 9, 3, 2, 5, 4, 6, 11

• Initially: Create (empty) leaf node:

• Insert ‘1’:
  – Space available \( \Rightarrow \) insert.

• Insert ‘7’:
  – Space available \( \Rightarrow \) insert (in sort-order).
• Insert ‘8’:
  – Space available ⇒ insert (in sort-order).

• Insert ‘10’:
  – Node is full ⇒ must split.
  – Median element is ‘7’.
  – Bump up a *copy* of median (‘7’) to next level.
  – Split nodes are children (left and right) of median element.
  – New element (‘10’) is added in appropriate split node.

Step 1: Split node:

NOTE: ‘7’ remains in left child ⇒ search must use “≤” (to reach ‘7’ in leaf).

Step 2: Add new value (‘10’)
Step 3: Insert median element (with its left and right pointers) at level above.
⇒ in this case, create new root.

As in a B-tree, the general principle behind insertion is now apparent:

- First, find the correct leaf for insertion.
  ⇒ use in-order to navigate to correct leaf.

- Check if already present in leaf
  ⇒ if so, then insertion is a duplicate ⇒ halt.

- If space is available, insert into leaf (maintaining sort order).

- Else, split leaf and ‘push up’ a *copy* of the median element
  ⇒ insert median element into old leaf’s parent.

- Add new item in left or right child (according to sort order).

- In pushing up median element from a leaf, *create* left and right pointers.

- In pushing up median element from an internal node, also move up left and right pointers.

- If parent is full, split parent,..., etc, recursively.

- Insert ‘9’:
- Search for correct leaf ⇒ the ‘8-10’ node.
- Space available ⇒ insert.
- Insert ‘3’:
  - Search for correct leaf ⇒ the ‘1-7’ node.
  - Space available ⇒ insert.

- Insert ‘2’:
  - Search for correct leaf ⇒ ‘1-3-7’ block.
  - Node is full ⇒ split required (median is ‘3’):
    - Insert ‘3’ into parent (the root, in this case):
• Insert ‘5’:
  – Search for correct leaf ⇒ the ‘7’ node.
  – Space available ⇒ insert.

• Insert ‘4’:
  – Search for correct leaf ⇒ the ‘5-7’ node.
  – Space available ⇒ insert.
• Insert ‘6’:
  – Search for correct leaf ⇒ the ‘4-5-7’ node.
  – Node is full ⇒ split (median is ‘5’).
  – Add new element to correct child (‘6-7’ block):

```
 5
 / \
 4 5 6 7
```

  – Insert ‘5’ into parent:

```
 3 5 7
 / \
 1 2 3 4 5 6 7 8 9 10
```

leaf level
• Insert ‘11’:
  - Search for correct leaf ⇒ the ‘8-9-10’ block.
  - Block full ⇒ split (median is ‘9’).
  - Add new element in correct child (the ‘10’ block):

  \[ \begin{array}{c}
  10 \\
  9 \\
  8
  \end{array} \]

  - Insert ‘9’ into parent.
  - Node full ⇒ split (Median is ‘5’).
  - Insert ‘9’ in correct child ⇒ the ‘7’ block.
  - Create new root (‘5’).
  - Final tree:
• NOTE:
  - When a leaf gets split, a copy of the median gets pushed up to the next level.
  - The median itself stays in the left child (by convention).
    ⇒ searching must use “≤”.
  - When an internal node gets split, the median itself gets pushed up.

• Searching a B+-tree is almost identical to searching a B-Tree, except:
  - Use “≤” when searching.
  - Must traverse down to leaf to obtain data pointer.

• What was the whole point about a B+-tree?
  ⇒ range search is fast!

To search for search keys in the range 4-7:
  - Locate the lower limit (‘4’) via search.
  - Traverse linked list until you reach (‘7’).
    ⇒ optimal after lower limit is found.

• Complexity of B+-tree operations:
  - Identical to B-tree: depends on tree-height.
  - Tree height is \(O(\log_m n)\).
  - Search and insertion (and deletion) are \(O(\log_m n)\).
  - Range search costs \(O(k + \log_m n)\) where \(k\) is the number of blocks containing the desired range.

• Pseudocode: analogous to the pseudocode for the B-tree, the following functions are defined:
  - \(B+\text{-CREATE}\) (tuple size, keysize, key offset).
  - \(B+\text{-SEARCH}\) (key).
  - \(B+\text{-RECURSIVE-SEARCH}\) \((b, \text{key})\).
- **B+-tree-Insert** (tuple).
- **B+-tree-Recursive-Insert** ($b$, key, $T$, leftblock, rightblock).
- **B+-tree-Create-New-Root** (key, $T$, leftblock, rightblock).

Note that leaf-nodes will have next-pointers to link them.

<table>
<thead>
<tr>
<th>Algorithm:</th>
<th>B+-tree-Create (tuplesize, keysize, keyoffset)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input:</strong></td>
<td>sizes of tuple and key, offset of key within tuple.</td>
</tr>
<tr>
<td><strong>Output:</strong></td>
<td>root block, written to disk.</td>
</tr>
<tr>
<td>1.</td>
<td>Store size and offset information;</td>
</tr>
<tr>
<td>2.</td>
<td>Create heapfile;</td>
</tr>
<tr>
<td>3.</td>
<td>Compute max entries (or degree) in leaf and interior node;</td>
</tr>
<tr>
<td>4. root_blknum := Disk-NewBlock();</td>
<td></td>
</tr>
<tr>
<td>5. root := Disk-ReadBlock (root_blknum);</td>
<td></td>
</tr>
<tr>
<td>6. root→leaf := true;</td>
<td></td>
</tr>
<tr>
<td>7. root→num_entries := 0;</td>
<td></td>
</tr>
<tr>
<td>8. Disk-WriteBlock (root_blknum);</td>
<td></td>
</tr>
<tr>
<td>9. return;</td>
<td></td>
</tr>
</tbody>
</table>
Algorithm: B+tree-Search (key)

Input: key value to search for.
Output: the corresponding tuple, if found, else null.
1. \( T := \text{B+tree-Recursive-Search} (\text{root.blknum}, \text{key}); \)
   \text{// Here, T is a data pointer into the heapfile}
2. if \( T = \text{null} \) return null;
3. \( b' := \text{Disk-ReadBlock} (T.\text{blocknum}); \)
4. \( i := T.\text{tuplenum}; \)
5. return \( i \)-th tuple in \( b' \);
Algorithm: \texttt{B+-tree-recursive-search} (bnum, key)

\textbf{Input:} block number bnum and a key.
\textbf{Output:} datapointer if found, \texttt{null} otherwise.

1. \hspace{1em} $b := \text{disk-readblock} (\text{bnum});$
2. \hspace{1em} $i := 1;$
3. \hspace{1em} \textbf{while} $i \leq n$ \textbf{and} $b \rightarrow \text{value}[i] < \text{key}$
4. \hspace{1em} \hspace{1em} $i := i + 1;$
5. \hspace{1em} \textbf{if} $b \rightarrow \text{leaf} = \text{true}$
6. \hspace{1em} \hspace{1em} \textbf{if} $b \rightarrow \text{value}[i] = \text{key}$
7. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{Stack-Push} ($b$);
8. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{return} $b \rightarrow \text{datap}[i];$
9. \hspace{1em} \hspace{1em} \textbf{else} \hspace{1em} // \text{Not found at leaf level}
10. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{return} \texttt{null};
11. \hspace{1em} \textbf{endif};
12. \hspace{1em} \textbf{else} \hspace{1em} // \text{Not a leaf} \Rightarrow \text{must search in correct subtree}
13. \hspace{1em} \hspace{1em} \textbf{Stack-Push} (bnum); \hspace{1em} // \text{Save bnum for insert}
14. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{if} $i \leq b \rightarrow \text{num-entries} \hspace{1em} // \text{go left}$
15. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \textbf{return} \texttt{B+-tree-recursive-search} ($b \rightarrow \text{treep}[i], \text{key});$
16. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{else} \hspace{1em} // \text{go right}
17. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} \textbf{return} \texttt{B+-tree-recursive-search} ($b \rightarrow \text{treep}[i + 1], \text{key});$
Algorithm: \texttt{B+\text-TREE-INSERT} (x)

Input: a tuple, \( x \).

Output: Insertion of \( x \) in data file and \( \text{key}(x) \) in \text-B-tree.

1. \( x' := \text{B+\text-TREE-SEARCH} (x.\text{key}) \);
2. if \( x' \neq \text{null} \)
3. print ‘Error: key exists’;
4. return;
5. endif
6. \( T := \text{HEAPFILE-INSERT} (x) \);
   \hspace{1em} // \( T \) is a datapointer, (block\#, tuple\#)
7. bnum := \text{STACK-Pop}();
   \hspace{1em} // After search, stack has block number of correct leaf
8. \( \text{B+\text-TREE-RECURSIVE-INSERT} (\text{bnum, x.key, T, 0, 0}) \);
9. return;
Algorithm: B+tree-Recursive-Insert (bnum, key, T, left-block, right-block)

Input: block bnum, a key, datapointer T, left and right treepointers
Output: Insertion of data and datapointer into block bnum.

1. \( b := \text{Disk-ReadBlock} (\text{bnum}); \)
2. \( \text{if } b \rightarrow \text{leaf} = \text{true} \)
3. \( \text{if } b.\text{num_entries} < \text{max\_entries} \)
4. \( \text{insert key, leftblock and rightblock into correct place in } b; \)
5. \( \text{Disk-WriteBlock} (b); \)
6. \( \text{return}; \)
7. \( \text{endif; } // \text{Else, we must split block} \)
8. \( \text{bnum2 := Disk-NewBlock(); } // \text{Get a new block number} \)
9. \( \text{b2 := Disk-ReadBlock} (\text{bnum2}) \) \( // \text{Read it into memory} \)
10. \( \text{newblk.next := } b \rightarrow \text{next}; \) \( // \text{Adjust linked list} \)
11. \( b \rightarrow \text{next := newblk;} \)
12. \( \text{median := } (\text{max\_entries}) / 2; \)
13. \( \text{median\_key := } b \rightarrow \text{value}[\text{median}]; \)
14. \( \text{Keep items 1,...,median in current block, } b; \)
15. \( \text{Put items } (\text{median}+1),...,\text{max\_entries} \text{ in new block bnum2;} \)
16. \( b2 \rightarrow \text{num\_entries := } b \rightarrow \text{num\_entries} - \text{median}; \)
17. \( b \rightarrow \text{num\_entries := median;} \)
18. \( \text{if } \text{key} \leq \text{median\_key} \) \( // \text{Key goes into left block} \)
19. \( \text{Put key in } b \text{ in appropriate place and increment num\_entries;} \)
20. \( \text{else } // \text{Key goes into the right block} \)
21. \( \text{Put key in } b2 \text{ in appropriate place and increment num\_entries;} \)
22. \( \text{Disk-WriteBlock} (\text{bnum}); \)
23. \( \text{Disk-WriteBlock} (\text{bnum2}); \) \( // \text{Next, insert the median value at the next level} \)
24. \( \text{if } \text{bnum} \neq \text{root\_blknum} \)
25. \( \text{parent\_blknum := Stack-Pop();} \)
26. \( \text{B+tree-Recursive-Insert} (\text{parent\_blknum}, \text{median\_key}, \text{null}, \) \( \text{bnum, bnum2}) \)
27. \( \text{else} \)
28. \( \text{B+tree-Create-New-Root} (\text{median\_key}, \text{bnum, bnum2}); \)
29. \( \text{return;} \)
30. \( \text{endif } // \text{of } "\text{if } b \rightarrow \text{leaf=\text{true}} \) \) continued ...
Algorithm: \textbf{B+-tree-Recursive-Insert} ... continued

// If \textit{b} is not a leaf, we're inserting into an interior node
31. \textbf{if} \textit{b} $\rightarrow$ \textit{num\_entries} $<$ \textit{max\_interior\_entries}
32. \hspace{1em} Insert key in appropriate place and increment entries;
33. \hspace{1em} \textbf{Disk-WriteBlock} (\textit{bnum});
34. \hspace{1em} \textbf{return};
35. \textbf{endif};
// Otherwise, we need to split this interior node
36. \textit{bnum2} := \textbf{Disk-NewBlock}(); // Get a new block number
37. \textit{b2} := \textbf{Disk-ReadBlock} (\textit{bnum2}); // Read it in
38. \textit{median} := (\textit{max\_entries}) / 2;
39. \textit{median\_key} := \textit{b}$ \rightarrow$value[\textit{median}];
40. Keep items 1,...,(\textit{median}-1) in current block, \textit{b};
41. Put items (\textit{median}+1),...,\textit{max\_entries} in \textit{b2};
42. Set \textit{num\_entries} for each block appropriately;
43. \textbf{if} \textit{key} $\leq$ \textit{median\_key} // Put key in \textit{b}
44. \hspace{1em} Put key in \textit{b} in appropriate place and increment \textit{num\_entries};
45. \textbf{else}
46. \hspace{1em} Put key in \textit{b2} in appropriate place and increment \textit{num\_entries};
47. \textbf{Disk-WriteBlock} (\textit{bnum});
48. \textbf{Disk-WriteBlock} (\textit{bnum2});
// Next, insert the median value at the next level
49. \textbf{if} \textit{bnum} $\neq$ \textit{root\_blknum}
50. \textbf{parent\_blknum} := \textbf{Stack-Pop}();
51. \textbf{B+-tree-Recursive-Insert} (\textit{parent\_blknum}, \textit{median\_key}, \textit{null},
\hspace{1em} \textit{bnum}, \textit{bnum2})
52. \textbf{else}
53. \hspace{1em} \textbf{B+-tree-Create-New-Root} (\textit{median\_key}, \textit{bnum}, \textit{bnum2});
54. \textbf{return};
Note: the above presentation assumes that there is enough memory to hold both the block \( b \) and the new block newblk. The code can be modified to obviate this assumption.

**Algorithm:** \( \text{B+tree-create-new-root} \) (key, leftblock, rightblock)

**Input:** a key, a datapointer, left and right block numbers.

**Output:** a new root block, written to disk.

1. \( \text{root.blknum} := \text{disk-newblock}() \);
2. \( \text{root} := \text{disk-readblock} (\text{root.blknum}) \);
3. \( \text{root->num_entries} := 1; \)
4. \( \text{root->value}[1] := \text{key}; \)
5. \( \text{root->treep}[1] := \text{leftblock}; \)
6. \( \text{root->treep}[2] := \text{rightblock}; \)
7. \( \text{disk-writeblock} (\text{root.blknum}); \)
8. \( \text{return}; \)
4.24 Deletion in a B+-Tree

• Since some values appear twice (leaf and internal nodes), is deletion in a B+-tree complex? Yes and no.

• Three types of deletion:

  Lazy deletion:
  – Delete only at leaf level.
  – Mark corresponding internal node value as deleted (if one exists).
  – Do not remove internal value
    \[\Rightarrow\] it can still be used for navigation.
  – Periodically rebuild tree and remove deleted internal values.

  Very lazy deletion:
  – Mark both internal and leaf values as deleted.
  – Periodically rebuild tree and remove both deleted internal and leaf values.

  Full deletion:
  – Remove both leaf and internal copies.

Lazy deletion methods:
  – Easy to implement.
  – Tree can become large.
  – Have to be careful about re-insertions of deleted values (otherwise duplicates might exist in internal nodes).
  – Need to keep track for periodic re-building.

Full deletion is harder to implement, but is space efficient. Each delete takes longer.
4.25 Lazy Deletion in a B+-Tree

- Consider this example (degree $m = 2$):
  Delete 10, 11, 5, 4, 2, 3, 8 from:

- Delete ‘10’:
  - Search for ‘10’.
  - ‘10’ is not found in an internal node ⇒ no marking needed.
  - Direct delete does not cause underflow ⇒ delete.
• Delete ‘11’:
  
  – Search for ‘11’.
  – ‘11’ does not occur as an internal value.
  – Deletion from leaf causes underflow ⇒ try to borrow from sibling.
  – To borrow, rotate from sibling
    ⇒ when moving ‘9’ over, copy of ‘8’ is placed into parent:

```
 5
 / \
 3 7
 / \ / \
 1 2 4 5 6 7
 \ / \ /
 8 8 8 9
```

• Delete ‘5’:
  
  – Search for ‘5’.
  – ‘5’ occurs as internal value ⇒ mark internal value.
  – Deleting ‘5’ from leaf does not cause underflow.

```
 5*
 / \
 3 7
 / \ / \
 1 2 4 5 6 7
 \ / \ /
 8 8 8 9
```

210
• Delete ‘4’:
  – Search for ‘4’.
  – ‘4’ does not occur as an internal value.
  – Deletion from leaf causes underflow ⇒ borrow from sibling.
  – Rotate from sibling:

```
 5* 2 3 6 7 8 9
```

• Delete ‘2’:
  – Search for ‘2’.
  – ‘2’ occurs as an internal value ⇒ mark ‘2’.
  – Deletion from leaf does not cause overflow.

```
 5* 2* 3 6 7 8 9
```
• Delete ‘3’:
  
  – Search for ‘3’.
  – ‘3’ does not occur as internal value.
  – Deletion from leaf causes underflow ⇒ borrow from sibling
  – Borrow from sibling not possible
    ⇒ Merge needed.
  – Pull-down from parent causes underflow at parent
    ⇒ borrow from parent’s sibling:

  ![Diagram showing deletion process](image)

  – Marked values are not needed at leaf level (they have no data pointers)
    ⇒ they should be deleted.

  ![Diagram showing updated tree](image)
• Delete ‘8’:
  – Search for ‘8’.
  – ‘8’ occurs as an internal value ⇒ mark ‘8’.
  – Deletion from leaf causes underflow ⇒ try borrowing.
  – Borrow causes sibling underflow ⇒ pull down ‘8∗’ from parent.
  – Underflow at parent’s level ⇒ try borrowing at parent’s level.
  – Borrow not possible at parent’s level ⇒ pull down ‘7’.
  – Final tree:
4.26 Full Deletion in a B+-Tree

- Consider this example (degree $m = 2$):
  Delete 10, 11, 5, 4, 2, 3, 8 from:

- Delete ‘10’:
  - Search for ‘10’.
  - ‘10’ does not occur as an internal value.
  - Deletion from leaf does not cause underflow.
• Delete ‘11’:
  – Search for ‘11’.
  – ‘11’ does not occur as an internal value.
  – Deletion from leaf causes underflow ⇒ try to borrow from sibling.
  – To borrow, rotate from sibling
    ⇒ when moving ‘9’ over, copy of ‘8’ is placed into parent:
• Delete ‘5’:
  – Search for ‘5’.
  – ‘5’ occurs as internal value ⇒ mark internal value.
  – Deleting ‘5’ from leaf does not cause underflow.

- Replace internal value with copy of predecessor (right most leaf value in left subtree).
• Delete ‘4’:
  – Search for ‘4’.
  – ‘4’ occurs as an internal value ⇒ mark it.
  – Delete ‘4’ from leaf ⇒ need to rotate from sibling:

- Replace internal value by predecessor:
• Delete ‘2’:
  
  – Search for ‘2’.
  
  – ‘2’ occurs as an internal value ⇒ mark it.
  
  – Deletion from leaf does not cause underflow.
  
  – After leaf deletion, replace internal value by predecessor (‘1’):
• Delete ‘3’:
  – Search for ‘3’.
  – ‘3’ occurs as an internal value ⇒ mark it.
  – Deletion from leaf causes underflow ⇒ try borrowing.
  – Borrowing causes underflow in sibling ⇒ pull down ‘1’.
  – Pulling down ‘1’ causes parental underflow ⇒ borrow at parent’s level.

- Internal value of ‘1’ does not belong in leaf ⇒ delete it.
- Replace internal value of ‘3’ with predecessor (‘1’):
• Delete ‘8’:
  - Search for ‘8’.
  - ‘8’ occurs as an internal node ⇒ mark it.
  - Deletion of ‘8’ causes underflow ⇒ try to borrow from sibling
  - Borrowing from sibling causes underflow ⇒ pull down parent.
  - Borrowing at parent’s level causes underflow ⇒ pull down ‘7’.

![Diagram of operations for deletion of 8]

- Remove deleted internal value from leaf:

![Diagram showing removal of internal value]

220
4.27 B-Trees and B+-Trees: A Summary

- B-trees and B+-trees:
  - are versatile indexing methods, usually used instead of plain single or multilevel indices;
  - support search in $O(\log_m n)$ time where
    \[
    m = \text{degree of node} \\
    n = \text{number of index blocks}
    \]
  - support dynamic insertion and deletion in time $O(\log_m n)$;
  - are in-order trees with multiple key values in each tree node;

- B+-trees are usually favored over B-trees in practice.
  $\Rightarrow$ range search is faster in a B+-tree.

- Disadvantages?
  - Worst-case, each node will be only 50% full
    $\Rightarrow$ twice the blocks needed for an ISAM index.
  - However, it can be shown that under uniform accesses, block occupancy is more than 65%.
  - B*-tree: a variation of a B+-tree that forces a high occupancy (67%).

- Some remaining practical issues:
  - Duplicate values:
    * Sometimes, we want to allow duplicate values.
    * In a B+-tree, this can be done by storing duplicate values in additional leaf nodes
      $\Rightarrow$ during deletion, we must be careful to remove all duplicates.
– **Key compression:**

* Sometimes, keys can be very long
  ⇒ few records in each index node
  ⇒ small \( m \)
  ⇒ not very efficient.

* In many cases, it makes sense to use only a *substring* in the key
  (e.g., a small prefix)
  ⇒ compression of key increases \( m \)
  ⇒ more efficient.

* Need to be careful with duplicate substrings from different keys.

– **Bulk loading:**

* Often, a \( \text{B}^+ \)-tree is created on top of an existing heapfile.

* Naive approach to building \( \text{B}^+ \)-tree: scan heapfile and insert
  items successively.

* Successive insertion can cause many nodes to have low occupancy.

* Better to create initial \( \text{B}^+ \)-tree using a *bulk loading* algorithm.

* Some bulk loading algorithms build the tree bottom-up.
• Example of bulk-loading \(m = 2\):
Create a B+-tree from the keys 1, 2, 3, ..., 18.

• First, create the leaf-level nodes in order:

```
1 2 3 4 5 6 ...
```

• Next, create copies of last values in each block: leaf block: 3, ..., 18.

```
3 6 18
```

These values are to be copied into higher levels.

• Values 3, 6, 9 form first block at next level

```
3 6 9
```

• Inserting 12 causes a split:

```
6
```

```
3
```

```
9 12
```

```
1 2 3 4 5 6
```

```
7 8 9
```

```
10 11 12
```

• Other items are added similarly.
• Recall key ideas in hashing:

![Diagram of hash table and values]

- A hashing function is applied to each record
  ⇒ a mapping function from the bits in the record to integers
  e.g., pick the first 5 bits in the record
  ⇒ maps records to the integers $0, 1, 2, \ldots, 31$.

- Each integer is associated with a *bucket*: the integer is the *bucket number*. 
- Initially, a block is assigned to each bucket
  $\Rightarrow$ as records get added to the bucket they are placed in the block.

- Later, when the first block assigned to a bucket gets filled up, additional blocks are used.

- The hash table itself is a (small) collection of blocks.

- Usually: try to pick hashing function so that records spread evenly across buckets.

- Some buckets could have long overflow chains.

- Hashing can be used for indexing in two ways:

  Separate index records:
  - For each data record, create an index record.
  - Index record: key and data pointer.
  - Place data records in data file (heap file).
  - Place index records in hashed file.
  - Index records are smaller
    $\Rightarrow$ overflow chains may be short.
  - Note: hash table itself occupies blocks.

  No index records:
  - Data records are themselves placed in a hashed file.
  - Since data records are longer
    $\Rightarrow$ overflow chains may be long, if table is unbalanced.
• Two major problems with simple hashing:

**Non-uniformity:**

- Distribution of data across buckets is not uniform.
- Possible explanation: poor choice of hash function.
- Also: data could be skewed.

**Dynamic Growth:**

- Data could grow arbitrarily.
- Fixed number of buckets could overestimate or underestimate actual number of buckets needed.
- Problem with underestimation: long chains.
- Problem with overestimation: hash table unnecessarily big.
- To change number of buckets in fixed scheme
  ⇒ all data must be re-hashed (complete re-organization).

• To solve *non-uniformity* problem:

Select hashing function carefully:

- Try to involve all contributing parts of the key, e.g.,
  * Key: 40-char (240-bit) string
  * Desired hash value: 16-bits ($2^{16}$ buckets).
  * Add all 2-byte (16-bit) pairs in key.
- Use special properties of numbers, e.g.,
  * Suppose $x$ is an irrational number.
  * Let $f(x) =$ fractional part of $x$.
  * Then the collection of numbers $f(x), f(2x), f(3x), ...$ is approximately uniformly distributed.
  * Thus, pick an irrational $x$, multiply hash value $k$ by $x$ and use (portion of) fractional part.
To solve dynamic growth problem:
Use a dynamic hashing method, e.g.,

1. Extendible hashing.
2. Linear hashing.

In both methods:

- Index and data file grow as insertions are made.
- Index and data file shrink with successive deletions.
- Number of bits in hash value changes with data size
  ⇒ initially, use very few bits; later, use more bits.
- Lengths of bucket chains are controlled.
4.29 Extendible Hashing

- Key ideas in extendible hashing:
  - Initially, use a single hash bit
    \( \Rightarrow \) hash value is 0 or 1.
  - No overflow blocks are used.
  - When a block overflows, use additional bits to resolve overflow
  - Sometimes, the additional bit enlarges the hash table
    \( \Rightarrow \) the hash table is doubled.
  - Sometimes, only new blocks are created.

- Example:

  - Consider a key field consisting of an integer.
  - Use 6 bits for integer.
  - Most significant bit is first hash value.
  - Assume 3 data records fit into block.
  - No index records (data tuples are placed in hashtable blocks).

Insert the following: 16, 49, 51, 21, 23, 54, 8, 44, 27, 11, 40, 25, 4, 35, 31, 9, 39, 28.
In binary, these values are:

\[
010000 \ (16), \ 110001 \ (49), \ 110011 \ (51), \ 010101 \ (21), \ 010111 \ (23), \\
110110 \ (54), \ 001000 \ (8), \ 101100 \ (44), \ 011011 \ (27), \ 001011 \ (11), \\
101000 \ (40), \ 011001 \ (25), \ 000100 \ (4), \ 100011 \ (35), \ 011111 \ (31), \\
001001 \ (9), \ 100111 \ (39), \ 011100 \ (28)
\]
• Initially:
  – Only one hash bit.
  – One data block.
  – Both pointers point to same block.

• Insert 010000 (16)
  – First bit 0.
    ⇒ Find 0 block.
  – Space available
    ⇒ Insert into block

NOTE:
  – Data blocks contain (full) data records.
  – Index blocks contain hash table entries.

• Insert 110001 (49)
  – First bit is 1.
    ⇒ Find 1-block.
  – Space available.
    ⇒ Insert into block.

• Insert 110011 (51)
  – First bit is 1.
    ⇒ Find 1-block.
  – Space available.
    ⇒ Insert into block.
• Insert 010101 (21)
  – First bit is 0.
    ⇒ Find 0-block.
  – Block full.
    ⇒ Split block.
  – Distribute items.

• Insert 010111 (23)
  – First bit is 0.
    ⇒ Find 0-block.
  – Space available.
    ⇒ Insert item.
• Insert 110110 (54)
  – First bit is 1.
    ⇒ Find 1-block.
  – Space available.
    ⇒ Insert item.

• Insert 001000 (8)
  – First bit is 0.
    ⇒ Find 0-block.
  – Block full.
  – Block is not shared.
    ⇒ Increase hash bits.
  – Double hash table.
  – Split block.
  – Distribute items.
• NOTE:
  – Suppose we had inserted 011000 (24) instead of 8.
    ⇒ 2 bits are not enough to distinguish
    ⇒ further splitting is required:
    Insert 011000 (24)

  – To identify the hash-bit level, a depth identifier is usually associated with each block.
  – The depth-id is used to decide if hash table needs doubling.
  – If depth-id is less than current hash-length, we only need to split the block (Table does not need doubling).
  – Later examples will not include block-depth in illustrations.
• (Previous example, continued):
  Insert 101100 (44)
  – Hash bits are 10.
    ⇒ Find 10-block.
  – Block full.
  – Block depth is 1.
    ⇒ Split block.
  – Distribute items.
• Insert 011011 (27)
  - Hash bits are 01.
    ⇒ Find 01-block.
  - Block full.
  - Block depth is 2.
    ⇒ Double hash table.
    ⇒ # hash bits = 3.
  - Split block.
  - Distribute items.
• Insert 001011 (11)
  – Hash bits are 001.
    ⇒ Find 001-block.
  – Space available.
    ⇒ Insert item.
• Similarly, (it so happens) there is space for the next 5 inserts: 101000 (40), 011001 (25), 000100 (4), 100011 (35), 011111 (31).

Insert
101000 (40),
011001 (25),
000100 (4),
100011 (35),
011111 (31).
• Insert 001001 (9)
  – Hash bits are 001.
    ⇒ Retrieve 001-block.
  – Block is full.
  – Block depth is 2.
    ⇒ split block.
• Insert 100111 (39)
  – Hash bits are 100.
    ⇒ Retrieve 100-block.
  – Block is full.
  – Block depth is 2.
    ⇒ split block.
- Insert 011100 (28)
  - Hash bits are 011.
    ⇒ Retrieve 011-block.
  - Block is full.
  - Block depth is 3.
    ⇒ double hash table.
• NOTE:
  – If directory (hash table) doubling occurs too often
    ⇒ slow expansion by allowing more overflow blocks in each bucket.
  – When expansion occurs, only directory data is moved.

• Problems with extendible hashing:
  – A directory (hash table) is needed.
  – When directory is doubled
    ⇒ index data is moved between blocks
    ⇒ major overhead for large tables.

• Implementation of extendible hashing: we will use an interface identical to the B-tree interface:
  – ExHash-create (tuplesize, keysize, keyoffset)
    – Creates a hashfile and initializes the directory.
  – ExHash-insert (tuple)
    – Inserts a tuple into the hashfile.
    – Note: hashfile will contain whole tuples as opposed to only keys.
  – ExHash-search (key)
    – Returns a tuple of key is found, NULL otherwise.

In addition, functions will be needed for splitting a block and doubling the directory.

• Before presenting the pseudocode, it will help to review some ideas and also look at some finer details:
  – Recall the concept of depth:
* How many directory entries point to a data block?
  Answer: \(2^{(\text{Global depth} - \text{Local depth})}\).
* Or, \(2^{G-L}\), if we use \(G\) for global depth and \(L\) for a block’s local depth.
* Another way of understanding local depth: the number of hash bits you need to examine to distinguish entries in the block from entries in other blocks.
* When a block is split, its (local) depth increases:

– We will use *hashtable* and *directory* interchangeably.
– Two ways of implementing a directory:
(Recall: directory is itself stored on disk)

1. *Linked list of blocks:*

   ![Diagram of linked list of directory blocks]

   - Given hashvalue, compute which block contains entry, then get directory block.
   - After directory block is obtained, find appropriate entry and get data block.
   - Advantages: Simple, directory is self-contained.
   - Disadvantages: Long list traversal may be needed for single data searches.
2. 2-level directory:

* 1st-level contains pointers to data blocks.
* 2nd-level contains pointers to 1st-level blocks.

* Example: consider hashvalue = 110:
  * hashvalue 110 ⇒ 6+1 = 7th entry.
  * Since there are 3 entries per dir-block
    ⇒ 7th entry is in \(\lceil \frac{7}{3} \rceil = 3 \text{rd dir-block} \).
  * Now look up 3rd entry in 2nd-level directory
    ⇒ block # 35.
  * Fetch block # 35 into memory.
  * Compute offset (of hashvalue 110) within this block
    ⇒ 1 + 6 mod 3 = 1st entry in block
    ⇒ pointer to block 68.
  * Finally, fetch data block 68.

* Advantages: Computing offsets is faster than list-traversal.
* If number of entries is a power-of-2, offsets can be computed using bit-shifts (very fast).
* Disadvantages: Extra level needed.
* Consider disadvantage:
  
  - Example: 5 million tuples, blocksize=1K, 4 bytes/entry
  - 5 million tuples and \( \approx 10^3 \) blocksize
    \[ \Rightarrow \approx 5 \times 10^6/10^3 = 5000 \text{ data blocks} \]
  - Dir entry needs 4 bytes
    \[ \Rightarrow 10^3/4 = 250 \text{ entries per block} \]
    \[ \Rightarrow 5000/250 = 20 \text{ directory blocks} \]
    \[ \Rightarrow \text{only 20 2nd-level entries} \]
    \[ \Rightarrow 1 \text{ block is sufficient!} \]
    
    (Thus, 2nd-level blocks can be kept in main memory).

  - We will use the 2-level approach and also make a simplifying assumption: the number of entries in a dir-block is a power-of-2.
    e.g., block size = 96, entry size = 4 bytes
    \[ \Rightarrow 24 \text{ possible entries} \]
    \[ \Rightarrow \text{but use only 16 = largest power-of-2 less than 24.} \]

  - For example (2 entries per block):

```
Hashtable (directory) Data blocks

Block 217
217
217

Block 983
983
155
155

Block 155
68
68

Block 68

```

Reason for assumption: doubling the directory becomes easier to describe
\( \Rightarrow \) one additional block needed for each dir-block.

- Doubling the directory:
  
  * Consider splitting block 155 above
    \( \Rightarrow \) directory must be doubled.
  
  * Two steps in doubling:
    1. Directly double the directory blocks.
    2. Modify 2nd-level appropriately.

- Redistributing entries in a split block:
  
  * Entries are redistributed by considering one additional bit.

- Splitting and doubling are independent of each other
  \( \Rightarrow \) sometimes a split does not need doubling the directory

- Finally, we present the pseudocode.
Algorithm: ExHash-Create (tuplesize, keysize, keyoffset)

Input: sizes of tuple and key, offset of key within tuple.
Output: 1st and 2nd level dir blocks, data block written to disk.

1. Store size and offset information;
2. Compute max_data_entries; // Max in a data block
3. Compute max_dir_entries; // Max in a dir block
   // Create first data block, for hashbits 0 and 1
4. blknum := Disk-Newblock();
5. b := Disk-Readblock (blknum);
6. b.num_entries := 0;
7. b.depth := 1; // Local depth set to 1 (one bit)
8. Disk-Writeblock (blknum);
   // Now create first directory block
9. dir.blknum := Disk-Newblock();
10. d := Disk-Readblock (dir.blknum);
11. d.num_entries := 2; // Initially, pointers to 0,1 blocks
14. Disk-Writeblock (dir.blknum);
   // Now create 2nd level block
15. SecL.blknum := Disk-Newblock();
16. s := Disk-Readblock (SecL.blknum);
17. s.num_entries := 1;
18. s.entry[1] := dir.blknum;
19. Disk-Writeblock (SecL.blknum);
   // Set Global depth
20. G := 1;
21. return;
**Algorithm:** EXHASH-SEARCH (key)

**Input:** key value to search for.

**Output:** corresponding tuple if found, null otherwise.

// Compute hash value based on G bits.
1. $h := $ HASH-VALUE (key, $G$);
2. dir_blknum := Compute which block $h$ lies in (use 2nd level);
3. offset := Compute offset within the dir block;
4. $d := $ DISK-READBLOCK (dir_blknum);
5. blknum := $d \rightarrow$ blocklist[offset] // block number of datablock
6. $b := $ DISK-READBLOCK (blknum);
7. for $i := 1$ to $b \rightarrow$ num_entries
8. Compare key with $i$-th tuple in block $b$;
9. if found return tuple;
10. endfor;
11. STACK-PUSH (blknum); // To be retrieved elsewhere
12. return null; // Not found
Algorithm: ExHASH-INSERT \( (x) \)

Input: tuple \( x \) to be inserted.

Output: insertion of tuple in hashfile.

1. First check to see if key already exists in hashfile
2. Print Error: key exists!
3. return
4. // Otherwise, retrieve data block from stack (where search ended)
5. bknun := Stack-Pop();
6. if bnum := Disk-ReadBlock (bknun)
7. \( d \rightarrow \) num-entries \( \geq \) max-entries
8. \( \text{if } d \rightarrow \text{num-entries} < \text{max-entries} \)
9. \( \text{disk-entries} := d \rightarrow \text{num-entries} + 1 \)
10. Disk-WriteBlock (bknun);
11. return
12. // Otherwise a split is needed
13. if \( C \neq b \rightarrow \text{depth} \)
14. // No doubling needed now
15. Double-Directory ()
16. RECURSIVE-SPLIT-INSERT (x); // Otherwise doubling needed since all bits are being used
17. RECURSIVE-SPLIT-INSERT (x);
18. return
19. // Endif
**Algorithm: Double-Directory ()**

**Input:** none.

**Output:** a new directory, doubled in size.

1. for $i := 1$ to num_dir_blocks
2. dnum := Get block number of $i$-th dir block;
3. $d := \text{Disk-ReadBlock}(\text{dnum});$
4. dnum2 := Disk-NewBlock(); // For each doubling
5. $d2 := \text{Disk-ReadBlock}(\text{dnum2});$
6. Double bottom half of $d$ into $d2;$
7. Double upper half of $d$ into $d;$
8. Disk-WriteBlock($\text{dnum}$);
9. Disk-WriteBlock($\text{dnum2}$);
10. endfor;
11. $G := G + 1;$ // Increment global depth
12. return;

The Split-and-insert algorithm is the most complicated. Before presenting the pseudocode, we will present a useful function:
**Algorithm:**  \texttt{SET-DIRECTORY-ENTRY} (hashval, data\_blknum)

\textbf{Input:} a hashvalue and a blocknumber of a data block.

\textbf{Output:} The dir entry corresponding to the hashvalue is set to data\_blknum.

\begin{verbatim}
   // First, find out which dir block and offset
   1. dir\_blknum := Compute which block hashval lies in;
   2. offset := Compute offset within the dir block;
   3. // Now set the value
   4. d := \texttt{DISK-READBLOCK} (dir\_blknum);
   5. d \rightarrow \text{blocklist}[offset] := data\_blknum;
   6. \texttt{DISK-WRITEBLOCK} (dir\_blknum);
   7. return;
\end{verbatim}

Note that when a split occurs, a bunch of identical pointers need to be split up into two groups:

![Diagram showing first, middle, and last pointers to data block, with a split data block](diagram.png)

We need to compute the First and Last dir entries that will be affected, as well as the Middle entry (the first entry that will point to the new block).

\Rightarrow we need block numbers and offsets for these special dir entries.

Finally, the code for Recursive-Split-Insert:
Algorithm: Recursive-Split-Insert ($x$)

Input: A tuple $x$.
Output: Insertion of tuple into hashfile.
   // First, recompute hashvalue, since $G$ might have changed
1. $h :=$ Hash-Value ($x$.key, $G$);
   // Next, compute data block and hashvalues Middle, Last
2. blknum := Find data block corresponding to $h$;
3. $b :=$ Disk-Readblock (blknum);
4. First := $b \rightarrow \text{depth} \times 2^{(G - b \rightarrow \text{depth})}$;
5. Last := First + $2^{(G - b \rightarrow \text{depth})}$;
6. Middle := First + $2^{(G - b \rightarrow \text{depth})-1}$;
   // Get a new block and reset half the dir entries
7. bnum2 := Disk-Newblock ($\cdot$);
   // Make all entries from Middle to Last point to new block
8. for $h2 :=$ Middle to Last
9. Set-Directory-Entry ($h2$, bnum2);
10. $b :=$ Disk-Readblock (blknum);
11. $b2 :=$ Disk-Readblock (bnum2);
12. Distribute the tuples among the two data blocks;
13. Set num_entries appropriately in each data block;
   // Now insert the new tuple in the right block
14. if $h <$ Middle // Try to place in old block
15. if $b \rightarrow \text{num\_entries} < \max\_\text{data\_entries}$
16. Insert $x$ in $b$, increment $b \rightarrow \text{num\_entries}$;
17. else if $b \rightarrow \text{depth} \neq G$ // Regular split
18. Recursive-Split-Insert ($x$);
19. else // Directory doubling needed
20. Double-Directory ($\cdot$);
21. Recursive-Split-Insert ($x$);
22. endif;
   continued...
Algorithm: RECURSIVE-SPLIT-INSERT ... continued

23. else // Try to place in new block
24. if \( b2 \rightarrow \text{num\_entries} < \text{max\_data\_entries} \)
25. Insert \( x \) in \( b \), increment \( b \rightarrow \text{num\_entries} \);
26. else if \( b2 \rightarrow \text{depth} \neq G \) // Regular split
27. RECURSIVE-SPLIT-INSERT \( (x) \);
28. else // Directory doubling needed
29. DOUBLE-DIRECTORY ()
30. RECURSIVE-SPLIT-INSERT \( (x) \);
31. endif;
32. endif;
33. return;
4.30  Linear Hashing

• Key ideas in linear hashing:
  
  – Avoid using a directory altogether.
    ⇒ faster and avoids copying overhead during expansion.
  
  – Tradeoffs:
    * Needs contiguous allocation of blocks, e.g., block numbers 550 to 3010.
    * Long overflow chains are possible in pathological cases.
  
  – Let \( h_i \) denote the hashing function that uses bits \( 0, \ldots, i - 1 \).
    ⇒ e.g., \( h_4 \) uses 5 bits.
  
  – At any given time, two successive functions are in use, e.g., \( h_4 \) and \( h_5 \).
  
  – Start with two empty data blocks (0 and 1).
  
  – Start with \( h_0 \) and \( h_1 \) as a pair of hash functions.
  
  – Need two block pointers: Current and Last.
  
  – Initially, \( \text{Current} = 0, \text{Last} = 1 \).
  
  – When a block overflows:
    * We do not necessarily split that block.
    * Instead, we split the Current block.
    * Current is incremented.
    * This way, blocks get split in turn, even if a split is triggered by another block overflowing.
    * Use an overflow block for the block that overflows. (Does not have to be contiguous).
- When $Current = Last$ and a split occurs:
  * Shift hash functions up by one (from $h_i, h_{i+1}$ to $h_{i+1}, h_{i+2}$).
  * $Last :=$ largest $h_i$ value.
- When searching, use $h_{i+1}$ for blocks numbered before $Current$. Use $h_i$ otherwise.

• Example:
  - We will assume the contiguous blocks start at 0. (For the general case, simply add offset).
  - Consider example used in extendible hashing with one difference: first hash-bit is least significant bit.
  - 6-bit integers.
  - Assume 3 data records per block.
  - No index records.

Insert the following: 16, 49, 51, 21, 23, 54, 8, 44, 27, 11, 40, 25, 4, 35, 31, 9, 39, 28.
In binary, these values are:

```plaintext
010000 (16), 110001 (49), 110011 (51), 010101 (21), 010111 (23),
110110 (54), 001000 (8), 101100 (44), 011011 (27), 001011 (11),
101000 (40), 011001 (25), 000100 (4), 100011 (35), 011111 (31),
001001 (9), 100111 (39), 011100 (28)
```

• Initially:
  - Two empty blocks, with block numbers 0 and 1.
  - Use functions $h_0$ and $h_1$.
  - $Current := 0$.
  - $Last := 1$. 

![Diagram showing initial state of 2 blocks, one marked as Current and the other as Last.]
• Insert 010000 (16):
  
  – Apply $h_0$ to 010000.
  – $h_0(010000) = 0$ (lowest order bit).
    ⇒ Retrieve block 0.
  – Block $0 \geq \text{Current}$
    ⇒ no need to use $h_1$.
  – Space available.
    ⇒ Insert item.

  ![Diagram of 010000 insertion](image)

• Insert 110001 (49):
  
  – Apply $h_0$ to 110001
  – $h_0(110001) = 1$ (lowest order bit).
    ⇒ Retrieve block 1.
  – Block $1 \geq \text{Current}$
    ⇒ no need to use $h_1$.
  – Space available.
    ⇒ Insert item.

  ![Diagram of 110001 insertion](image)

• Insert 110011 (51):
  
  – Apply $h_0$ to 110011:
  – $h_0(110011) = 1$.
    ⇒ Retrieve block 1.
  – Block $1 \geq \text{Current}$
    ⇒ no need to use $h_1$.
  – Space available.
    ⇒ Insert item.

  ![Diagram of 110011 insertion](image)
• Insert 010101 (21):
  – Apply \( h_0 \) to 010101.
  – \( h_0(010101) = 1 \).
     ⇒ Retrieve block 1.
  – Block 1 \( \geq \) Current
     ⇒ no need to use \( h_1 \).
  – Space available.
     ⇒ Insert item.

• Insert 010111 (23):
  – Apply \( h_0 \) to 010111.
  – \( h_0(010111) = 1 \).
     ⇒ Retrieve block 1.
  – Block 1 \( \geq \) Current
     ⇒ no need to use \( h_1 \).
  – Block full
     ⇒ Create overflow block.
  – Split Current block.
  – Increment Current.
• Insert 010100 (20):
  – Apply $h_0$ to 010100.
  – $h_0(010100) = 0$.
  – Block 0 < Current
    ⇒ must use $h_1$.
  – $h_1(010100) = 00$.
    ⇒ Retrieve block 00.
  – Space available.
    ⇒ Insert item.

• Insert 110110 (54):
  – Apply $h_0$ to 110110.
  – $h_0(110110) = 0$.
  – Block 0 < Current
    ⇒ must use $h_1$.
  – $h_1(110110) = 10$.
    ⇒ Retrieve block 10.
  – Space available.
    ⇒ Insert item.
• Insert 011000 (24):
  
  - Apply $h_0$ to 011000.
  - $h_0(011000) = 0$.
  - Block 0 < Current  
    ⇒ must use $h_1$.
  - $h_1(011000) = 00$.
    ⇒ Retrieve block 00.
  - Space available.
    ⇒ Insert item.
• Insert 101100 (44):
  - Apply $h_0$ to 101100.
  - $h_0(101100) = 0$.
  - Block 0 < $Current$ ⇒ must use $h_1$.
  - $h_1(101100) = 00$.
  - Retrieve block 00.
  - Block full ⇒
    1. Create overflow block (for block 00).
    2. Split $Current$ block (block 01).
    3. Distribute items among split blocks (using $h_1$).
  - $Current = Last$ ⇒
    1. $Last :=$ largest $h_1$ value.
       ⇒ $Last := 11$.
    2. $Current := 00$ (first block).
    3. Use functions $h_1, h_2$ now.
• Insert 011011 (27):
  - Functions to use: $h_1, h_2$.
  - Apply $h_1$ to 011011.
  - $h_1(011011) = 11$.
  - Block 11 $\geq$ Current
    $\Rightarrow$ no need to use $h_2$.
    $\Rightarrow$ Retrieve block 11.
  - Space available.
    $\Rightarrow$ Insert item.
- Insert 001011 (11):
  - Apply $h_1$ to 001011.
  - $h_1(001011) = 11$.
  - Block 11 $\geq$ Current
    $\Rightarrow$ no need to use $h_2$.
    $\Rightarrow$ Retrieve block 11.
  - Block full $\Rightarrow$
    1. Create overflow block (for block 11).
    2. Split Current block (block 00).
    3. Distribute items among split blocks (using $h_2$).
  - Increment Current.
• Insert 101000 (40):
  – Apply \( h_1 \) to 101000.
  – \( h_1(101000) = 00 \).
  – Block 00 < \textit{Current} \\
    \( \Rightarrow \) must use \( h_2 \).
  – \( h_2(101000) = 000 \).
    \( \Rightarrow \) Retrieve block 000.
  – Space available.
    \( \Rightarrow \) Insert item.
• Similarly (it so happens), space is available for the next 4 items:
  Insert
  011001 (25),
  000100 (4),
  100011 (35),
  011111 (31)
• Insert 001001 (9):
  - Apply $h_1$ to 001001.
  - $h_1(001001) = 01$.
  - Block 01 $\geq$ Current
    $\Rightarrow$ don’t use $h_2$.
    $\Rightarrow$ Retrieve block 01 (block 001).
  - Block full $\Rightarrow$
    1. Create overflow block (for block 001).
    2. Split Current block (block 001).
    3. Distribute items among split blocks (using $h_2$).
  - Note: overflow and split can be done together.
  - Increment Current.
- Insert 100111 (39):
  - Apply $h_1$ to 100111.
  - $h_1(100111) = 11$.
  - Block 11 ≥ Current
    ⇒ don’t use $h_2$.
    ⇒ Retrieve block 11 (block 011).
  - Block full ⇒
    1. Create overflow block (for block 011).
    2. Split Current block (block 010).
    3. Distribute items among split blocks (using $h_2$).
  - Note: block 010 is empty after distribution.
  - Increment Current.
• Insert 011100 (28):
  – Apply \( h_1 \) to 011100.
  – \( h_1(011100) = 00 \).
  – Block 00 < \( Current \) ⇒ must use \( h_2 \).
  – \( h_2(011100) = 100 \).
    ⇒ Retrieve block 100.
  – Block full ⇒
    1. Create overflow block (for block 100).
    2. Split \( Current \) block (block 011).
    3. Distribute items among split blocks (using \( h_2 \)).
  – \( Current = Last \) ⇒
    1. \( Last := \) largest \( h_2 \) value.
      ⇒ \( Last := 111 \).
    2. \( Current := 000 \) (first block).
    3. Use functions \( h_2, h_3 \) now.

• Implementation of linear hashing: we will use an interface identical to the B-tree interface:
  – LINHASH-CREATE (tuplesize, keysize, keyoffset)
- Creates a hashfile and initializes the directory.

- **L**in**h**ash-Insert (tuple)
  - Inserts a tuple into the hashfile.
  - Note: hashfile will contain whole tuples as opposed to only keys.

- **L**in**h**ash-Search (key)
  - Returns a tuple of key is found, NULL otherwise.

In addition, functions will be needed for overflow and splitting.

We will assume that **D**isk-**A**llocat**e-Contiguous-Blocks allocates a large group contiguous blocks on disk and that successive calls to **D**isk-Get-Contiguous-Block return consecutive block numbers.

Each block $b$ will contain the following local-to-the-block fields:

- $b \rightarrow$ num_entries: the number of tuples currently in the block.
- $b \rightarrow$ next: a block number of the next block in the chain.
  ($b \rightarrow$ next = 0 if no chain exists.)
**Algorithm:**  \textsc{Linhash-Create} (tuplesize, keysize, keyoffset)

**Input:** size of tuple and key, offset of key within tuple.

**Output:** First and Last data blocks, written to disk.

1. Store size and offset information;
2. Compute max\_entries;
3. \textsc{Disk-Allocate-Contiguous-Blocks} ();
4. First := \textsc{Disk-Get-Contiguous-Block} ();
5. Last := \textsc{Disk-Get-Contiguous-Block} ();
6. Current := 0;
7. \( b := \textsc{Disk-ReadBlock} \text{ (First)}; 
8. \( b \rightarrow \text{num\_entries} := 0;
9. \( b \rightarrow \text{next} := 0;
10. \textsc{Disk-WriteBlock} \text{ (First)};
11. \( b := \textsc{Disk-ReadBlock} \text{ (Last)};
12. \( b \rightarrow \text{num\_entries} := 0;
13. \( b \rightarrow \text{next} := 0;
14. \textsc{Disk-WriteBlock} \text{ (Last)};
15. \( I := 0; \ // \text{Start with } h_I = h_0.
16. \text{return};
Algorithm: LINHASH-SEARCH (key)

Input: search key.
Output: tuple, if found.

1. hashval := \( h_I (\text{key}) \);
2. if hashval \( < \) Current \(/\) Use second hash function
3. \( \text{hashval := } h_{I+1} (\text{key}); \)
4. bnum := First + hashval;
5. \( b := \text{Disk-Readblock} (\text{bnum}); \)
6. \( \text{for } i := 1 \text{ to } b \rightarrow \text{num\_entries} \)
7. \( \text{Compare key with } i\text{-th tuple in block } b; \)
8. if found
9. \( \text{return} \text{ tuple;} \)
10. endfor;
11. if \( b \rightarrow \text{next} \neq 0 \) \(/\) search rest of chain, if any
12. \( \text{return} \text{LINHASH-RECURSIVE-SEARCH} (\text{key}, b \rightarrow \text{next}); \)
13. \( \text{return} \text{null;} \)
Algorithm: LINHASH-RECURSIVE-SEARCH (key, blocknum)

Input: search key, start block number.
Output: tuple if found.
1. \( b := \text{DISK-READBLOCK} (\text{blocknum}); \)
2. for \( i := 1 \) to \( b \rightarrow \text{num\_entries} \)
3. \hspace{1em} Compare key with \( i \)-th tuple in block \( b \);
4. \hspace{1em} if found
5. \hspace{2em} return tuple;
6. \hspace{1em} endfor;
7. if \( b \rightarrow \text{next} \neq 0 \) // search rest of chain, if any
8. \hspace{1em} return LINHASH-RECURSIVE-SEARCH (key, \( b \rightarrow \text{next} \));
9. return null;
**Algorithm:**  LINHASH-INSERT (tuple)

**Input:** tuple to be inserted.
**Output:** insertion of the tuple into the hash file.

1. hashval := $h_I$ (key);
2. if hashval < Current
   3. hashval := $h_{I+1}$ (key);
   4. bnum := First + hashval;
5. $b := \text{Disk-ReadBlock (bnum)}$;
6. if $b \rightarrow$num_entries < max_entries
7. $b \rightarrow$num_entries := $b \rightarrow$num_entries + 1;
8. Insert tuple into block $b$;
9. $\text{Disk-WriteBlock (bnum)}$;
10. else if $b \rightarrow$next = 0 // Need to create a chain
11. LINHASH-CREATE-OVERFLOW (bnum, tuple);
12. LINHASH-SPLIT-CURRENT (); // Must split
13. else // Chain exists; split only if overflow occurs.
14. LINHASH-RECURSIVE-OVERFLOW ($b \rightarrow$next, tuple);
15. endif;
16. return;
Algorithm: \texttt{LINHASH-CREATE-OVERFLOW} (blknum, tuple)

\textbf{Input}: block number to chain from, tuple to be inserted.
\textbf{Output}: insertion of the tuple into the hash file.

1. \( b := \text{DISK-READBLOCK} (\text{blknum}) ; \)
2. \( \text{newblk} := b \rightarrow \text{next} := \text{DISK-NEWBLOCK} () ; \)
3. \( \text{DISK-WRITEBLOCK} (\text{blknum}) ; \)
4. \( b := \text{DISK-READBLOCK} (\text{newblk}) ; \)
5. \( b \rightarrow \text{num\_entries} := 1 ; \)
6. \( b \rightarrow \text{next} := 0 ; \)
7. Insert tuple into \( b ; \)
8. \( \text{DISK-WRITEBLOCK} (\text{newblk}) ; \)
Algorithm: LINHASH-RECURSIVE-OVERFLOW (blknum, tuple)

Input: blknum where tuple is to be inserted.
Output: insertion of the tuple into the hash file.
1. \( b := \text{DISK-READBLOCK (blknum)}; \)
2. if \( b \rightarrow \text{num_entries} = \text{max_entries} \)
3. \( \text{if } b \rightarrow \text{next} \neq 0 \)
4. \( \text{LINHASH-RECURSIVE-OVERFLOW (b \rightarrow \text{next}, tuple)}; \)
5. \( \text{else} \)
6. \( \text{LINHASH-CREATE-OVERFLOW (blknum, tuple)}; \)
7. \( \text{LINHASH-SPLIT-CURRENT ()}; \)
8. \( \text{endif}; \)
9. \( \text{else} \)
10. \( b \rightarrow \text{num_entries} := b \rightarrow \text{num_entries} + 1; \)
11. \( \text{Insert tuple into block } b; \)
12. \( \text{DISK-WRITEBLOCK (blknum)}; \)
13. \( \text{endif}; \)
14. return;
**Algorithm:** Linhash-Split-Current()

**Input:** none.

**Output:** Split the block pointed by Current.

1. blk := First + Current;
2. b := Disk-Readblock (blk);
3. newblk := Disk-Get-Contiguous-Block();
4. b2 := Disk-Readblock (newblk);
5. Distribute entries of b (including chain) among b and b2;
6. Write all these blocks to disk;
7. Current := Current + 1;
8. if Current = Last
9. I := I + 1; // Now use h_{I+1} and h_{I+2};
10. Current := 0;
11. Last := 2^{I+1} − 1;
12. endif;
13. return;
4.31 Hash Indices: Summary

- Key ideas common to hashing methods:
  - Hashing is used for *equality* search on a key.
  - Apply hashing function to a key to obtain bucket #.
  - Store data record in bucket.
  - A bucket may be a single block (hopefully) or a chained list of blocks.
  - Dynamic methods
    * reduce occurrence of long chains;
    * allow regulated growth of hash index;
    * use varying numbers of hash-bits;
  - Poor choice of hashing function can result in skew (non-uniform distribution across buckets).

- Deletions:
  - Deletions are approximately the “reverse” of insertions.
  - Deletions result in empty blocks
    $\Rightarrow$ return empty blocks.
  - In extendible hashing: directory occasionally collapses.
  - In linear hashing: use lower pair of hash functions when appropriate.
  - In practice: hashing is often used for temporary files created during joins.
    $\Rightarrow$ deletion not used often.
• Extendible vs. linear hashing:

**Extendible hashing:**

– Advantages:
  * Always splits overflows
    ⇒ at most one block accessed during search.

– Disadvantages:
  * Uses a directory.
  * Directory space may be wasted if directory doubles too often.
    ⇒ e.g., pathological case: continual insertions into bucket 0.

**Linear hashing:**

– Advantages:
  * Does not use directory.
  * Splitting is decoupled from insert bucket.

– Disadvantages:
  * Needs contiguous allocation of blocks.
  * Long chains are still possible in pathological cases.

• NOTE:

– Neither method works well with poor choice of hash function.
– If contiguous allocation not possible
  ⇒ can implement a directory version of linear hashing.
– Although examples started with using a single bit, most often, initial
  hash values start with more bits (e.g., 8 bits).
– Hash files are slow for scans, range search.
4.32 External Sorting

- Popular sorting techniques:
  - Insertion sort.
  - Heapsort.
  - Mergesort.
  - Quicksort.

These are all *internal* sorting methods
⇒ data is in memory.

- In an *external* sorting problem:
  - Data is too large to fit into main memory.
  - Data must be sorted in pieces.
  - Data is usually a heapfile of records.
  - Desired end result: a sorted file (sorted on some key).

- Key ideas in *external sorting*:
  - Individual blocks can be easily sorted
    ⇒ read them in and use an internal sorting method.
  - Create *runs*:
    * A *run* is a group of sorted blocks in sort order (a sorted piece of a file).
    * Runs can be created by merging data from several blocks in memory.
  - Merge shorter runs into longer runs.
  - Finally, merge runs into final sorted result.
4.33 Binary Merge-Sort

- The basic idea in merging can be conceptually explained as follows: e.g., Merge the two strings ‘afgikmn’ and ‘cdehq’ in alphabetical order

  **Step 1**

  ![Diagram of Step 1]

  - pick the smaller of the two values at the head of each string

  **Step 2**

  ![Diagram of Step 2]

  **Step 3**

  ![Diagram of Step 3]
Step 4

Step 5

... and so on.

- Now suppose we have two sorted files (runs) that need to be merged: Suppose record structure is (SSN, ID#, NAME) and we are sorting by ID#: 
### Conceptually,

<table>
<thead>
<tr>
<th>ssn</th>
<th>id#</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>67</td>
<td>117</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ssn</th>
<th>id#</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>61</td>
<td>72</td>
<td>74</td>
</tr>
<tr>
<td>81</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

To merge these runs, we bring in two blocks at a time into memory:

Write output block:
After ‘13’ is in the output buffer, we must read next block from File 1:

Write next output block:
After ‘36’ is copied to output buffer, read next File 1 block:

Next:
- Copy over ‘37’.
- Write current output block.
- Read next File 2 block.
Next:

- Create next output block: ‘61-67-72’.
- Write output block.
- Copy ‘74’ over to output buffer
  ⇒ must read next File 2 block.

Continue in this fashion until finally:
• What does this have to do with sorting a single file?

Key idea:

- Break up file into smaller (sorted) runs.
- Merge runs until a single file emerges.
• Example:
  Unsorted file:

  \[
  \begin{array}{cccccccccccc}
  61 & 36 & 5 & 34 & 11 & 72 & 12 & 125 & 81 & 67 & 140 & 37 & 78 & 117 \\
  \end{array}
  \]

  First sort individual blocks:

  \[
  \begin{array}{cccccccccccc}
  5 & 36 & 61 & 11 & 34 & 72 & 12 & 81 & 125 & 37 & 67 & 140 & 78 & 117 \\
  \end{array}
  \]

  Next, repeatedly apply binary merges:

  – Divide file into groups of two blocks
    \( \Rightarrow \) 3 groups.
  – Sort each group using binary merge.
    \( \Rightarrow \) 3 sorted groups (runs).
  – Divide runs into groups of two runs
    \( \Rightarrow \) 2 groups.
  – Sort group using binary merge.
    \( \Rightarrow \) final result.

  \[
  \begin{array}{cccccccccccc}
  5 & 36 & 61 & 11 & 34 & 72 & 12 & 81 & 125 & 37 & 67 & 140 & 78 & 117 \\
  \end{array}
  \]

  \[
  \begin{array}{cccccccccccc}
  5 & 11 & 34 & 36 & 61 & 72 & 12 & 37 & 67 & 81 & 125 & 140 \\
  \end{array}
  \]

  \[
  \begin{array}{cccccccccccc}
  5 & 11 & 12 & 34 & 36 & 37 & 61 & 67 & 72 & 81 & 125 & 140 \\
  \end{array}
  \]

  \[
  \begin{array}{cccccccccccc}
  5 & 11 & 12 & 34 & 36 & 37 & 61 & 67 & 72 & 78 & 81 & 117 & 125 & 140 \\
  \end{array}
  \]
• How many steps (phases) does it take to sort a file of $n$ blocks?

For example, suppose $n = 400$:

– Phase 0: sort individual blocks in file.
– Phase 1: Create groups of 2 blocks and merge within groups.
  ⇒ 200 groups (2 blocks each)
  ⇒ 200 runs after merging (2 blocks each).
– Phase 2: Group 200 runs into groups of 2 runs, then merge.
  ⇒ 100 groups (2 runs each, of size 2 blocks)
  ⇒ 100 runs (4 blocks each) after merging.
– Phase 3: Group and merge:
  ⇒ 50 groups (2 runs each, of size 4 blocks)
  ⇒ 50 runs (8 blocks each) after merging.
– Phase 4: 25 runs.
– Phase 5: 13 runs (integral number of runs).
– :
– Phase 8: 2 runs.
– Phase 9: 1 run
  ⇒ one sorted file.

How many phases?
⇒ 10 ($= 1 + 9$).
⇒ In general, $1 + \lceil \log_2 n \rceil$ phases.

NOTE: we can avoid Phase 0 (sorting block contents during Phase 1).

In each phase: all blocks are read once, written once
⇒ $2n \lceil \log_2 n \rceil$ block accesses.

• How much memory is needed?
⇒ 2 blocks for input, 1 block for output
⇒ only 3 blocks!

Q: Can we do better by using more memory?
4.34 M-way Merge Sort

- A binary merge is easily generalized to an M-way merge:
  - Merge M input streams.
  - Use M input blocks and 1 output block.

- Example
  - 2 records per block.
  - M=4 runs.
    - 4 input buffers, 1 output buffer.

Next:
  - Write ‘5-6’ block.
  - Copy ‘10’ and ‘11’ to output buffer.
  - Write ‘10-11’ block.
- Copy ‘12’ to output buffer.
- Read next block from Run 3.

Next:
- Copy ‘13’ over to output buffer.
- Write output buffer (‘12-13’ block).
- Copy ‘17’ to output buffer.
- Read next block from Run 2.
...and so on, until all runs are exhausted.

- Using an M-way merge to sort a file:

Consider a file with \( n \) blocks.

- Divide file into groups of \( M \) blocks each.
- Merge each group into a sorted run
  \[ \Rightarrow \left\lceil \frac{n}{M} \right\rceil \text{ runs.} \]
- Create groups of \( M \) runs.
- Merge each group into a single run...
- ... and so on, until a single sorted file remains.

For example, suppose \( n = 400, M = 4 \):

- Phase 1: Create groups of 4 blocks
  \[ \Rightarrow 100 \text{ groups} \]
  \[ \Rightarrow 100 \text{ runs (of 4 blocks each) after merging.} \]
- Phase 2: Create groups of 4 runs
  \[ \Rightarrow 25 \text{ groups} \]
  \[ \Rightarrow 25 \text{ runs (of 16 blocks each) after merging.} \]
- Phase 3: 7 runs.
- Phase 4: 2 runs.
- Phase 5: 1 run (sorted file).

In general: \( \lceil \log_M n \rceil \) phases.
\[ \Rightarrow 2n \lceil \log_M n \rceil \text{ block I/O's.} \]

Example: 200 Mb file, 1 Mb memory, 2K blocksize.
\[ \Rightarrow 500 \text{ blocks of memory, 50000 file blocks} \]
\[ \Rightarrow 499\text{-way merge} \]
\[ \Rightarrow 2 \text{ phases} \]
\[ \Rightarrow 2 \times 2 \times 50000 \text{ block accesses} \]
\[ \Rightarrow 200,000 \text{ block accesses.} \]
4.35  Sorting: Improvements

- In an M-way merge, how do we select the least element from the input buffers?
  - Naive approach: scan through blocks and find minimum each time.
  - What if M is large?
  - Better: use a heap
    ⇒ min-selection takes $O(\log_2 M)$.

- Partially sorted files:
  - Often, files are almost sorted (e.g., an initially sorted file after some random insertions and deletions).
  - What is the cost of sorting such a file?
  - Consider a fully sorted file (worst-case):
    ⇒ merge-sort doesn’t distinguish
    ⇒ takes as long as sorting any other file.
  - The problem: indiscriminate grouping.

- An alternative grouping method (that creates runs of variable length): the snowplow method.

  Example: $M=2$

  Initially, the (single) file is on disk:
Read first two blocks in memory, merge, and output first block:

Now read in next block and create next output block (‘8-9’):

Copy ‘12’ to output buffer and read in next block:
The ‘6’ in ‘6-15’ is smaller than the largest item already output
⇒ must end the current run and start a new one with ‘6’.

End current run with ‘12-13’ and read in next block:

Output ‘6-15’ and read in next block
⇒ ‘4’ is less than ‘15’
⇒ run must end.
Finally, create the last run:

Run #1
5  7  8  9  12  13
6  15
4  18  19  25
Run #2
Run #3
• What good is this approach?
  
  – A sorted file will pass through this method untouched (to result in
    a single run ⇒ a sorted file).
  – A mostly-sorted file will result in a few long runs.
  – Note: merging runs of uneven length is no different from merging
    runs of identical length.

But consider a file sorted in reverse order
⇒ a new run every \( M \) blocks (\( M = \# \) of input buffers)
⇒ average run length is \( M \).

• What is the average length of a run?
  ⇒ somewhere between \( n \) (all blocks) and \( M \).

Let us obtain an approximate answer with some simplification:

  – Assume key values are real numbers in [0, 1].
  – Assume uniform distribution of inputs.
  – Consider a snowplow plowing a circular road while it’s snowing:

  – The circular road is the interval [0, 1] bent around.
  – Associate a key value with each snowflake.
– Each snowflake falls at its designated place on the circle:
  ⇒ e.g., the value 0.5 falls at the top of the circle.
– The snowplow plows at a constant rate, the same rate at which snow falls.
– When the plow reaches the 0-mark:
  * A new run is started
  * In the old run, the plow picked up numbers (snowflakes) that were increasingly larger.
  * Smaller numbers fall behind the plow as it moves
    ⇒ they must be picked up in the next round.
– A run (of numbers in order) corresponds to the amount of snow removed in one round.
– Now consider a cross-section:

![Diagram of snowplow plowing](image)

– Rate of snowfall equals rate of removal
  (rate of data input to memory equals output rate).
  ⇒ a constant rate.
– How much snow is removed in one round?
  * The plow always sees the maximum height immediately in front of it
    ⇒ plow removes one rectangle.
– But snow on track is one triangle
  ⇒ snow removed = 2 × snow present
  ⇒ run length = 2 × buffer space
  ⇒ average run length = 2M.
Thus, the average run length is twice as long as the run lengths you get from the standard (grouping) method.

- Merging runs of different lengths:
  - Runs of different lengths can be merged in different ways.
  - Example: consider

    run r1 1 block
    run r2 3 blocks
    run r3 8 blocks
    run r4 40 blocks

  - Here are two ways of doing a *binary merge*:

    \[
    \begin{array}{c}
    \text{r1} \\
    1 \\
    \downarrow \\
    4 \text{ blocks} \\
    \text{= 8 I/O's} \\
    \downarrow \\
    52 \text{ blocks} \\
    \text{= 104 I/O's}
    \end{array}
    \qquad
    \begin{array}{c}
    \text{r1} \\
    1 \\
    \downarrow \\
    4 \text{ blocks} \\
    \text{= 8 I/O's} \\
    \downarrow \\
    12 \text{ blocks} \\
    \text{= 24 I/O's} \\
    \downarrow \\
    52 \text{ blocks} \\
    \text{= 104 I/O's}
    \end{array}
    \qquad
    \begin{array}{c}
    \text{r2} \\
    3 \\
    \downarrow \\
    8 \text{ blocks} \\
    \text{= 8 I/O's} \\
    \downarrow \\
    48 \text{ blocks} \\
    \text{= 96 I/O's}
    \end{array}
    \qquad
    \begin{array}{c}
    \text{r2} \\
    3 \\
    \downarrow \\
    8 \text{ blocks} \\
    \text{= 8 I/O's} \\
    \downarrow \\
    12 \text{ blocks} \\
    \text{= 24 I/O's} \\
    \downarrow \\
    40 \text{ blocks}
    \end{array}
    \]

    Total I/O's: 8+96+104 = 208.  \quad Total I/O's: 8+24+104 = 136 I/O's

  - The problem reduces to constructing optimal *weighted binary trees*

    \[ \Rightarrow \text{ use Huffman encoding algorithm for binary case.} \]
• Parallelism in I/O:
  
  – Suppose multiple disks are available
    ⇒ can read and write simultaneously.
  
  – Use 2 sets of input buffers and 2 sets of output buffers.
  – If $M + 1$ buffers are available, choose $K$ such that

    \[
    2 + 2K \leq M + 1
    \]

    \[
    K \leq \frac{M - 1}{2}
    \]

    ⇒ at best a $K$-way merge.
  
  – Example: $M = 6 \Rightarrow K = 2$.

• Example:

  Consider an example with $K = 2$. A block is read from each run.

Next, while the first output block is being written, the next input block is read:

Write the ‘34-36-37’ block while reading in the ‘61-72-74’ block:
Write the ‘61-67-72’ block while reading in the ‘81-140’ block:

Finally,
Chapter 5

Query Processing and Optimization

Course Notes on Database Systems
5.1 Query Processing: Introduction

- Consider the following relations:

  PASSENGER (NAME, SSN, FLT_ID, MILES)
  FLIGHT (FLT_ID, FLT_NO, STARTAPT, ENDAPT)
  AIRPORT (APT, NAME, CTY)

and the following query: “List passengers flying into National airport that have at least 1000 miles along with their mileage”.

In SQL:

```sql
select P.NAME, P.MILES
from PASSENGER P, FLIGHT F, AIRPORT A
where P.MILES > 1000
 and P.FLT_ID = F.FLT_ID
 and F.ENDAPT = A.APT
 and A.NAME = 'National';
```

In relational algebra:

\[
\Pi_{P.NAME, P.MILES} (\sigma_{MILES>1000} (P \times \sigma_{NAME='National'} (F \times A)))
\]

or

\[
\Pi_{P.NAME, P.MILES} (\sigma_{A.NAME='National'} (A) \times F \times \sigma_{MILES>1000} (P))
\]

(among several ways).
An SQL query is parsed by the *parser* to create a *query tree*, which is then executed by the *query processor*.

A typical query tree produced by the parser:

```
π.

σ.

cross product.

Attributes: MILES, NAME

Condition: P.MILES > 1000
and P.FLT_ID = F.FLT_ID
and F.ENDAPT = A.APT
and A.NAME = 'National'
```
NOTE:

- There are several ways of executing the same query tree.
- An execution plan specifies an order.
- A parser provides a simple tree.
- The query processor creates a better tree and an execution plan.

• For our example, assume the following sizes (with 1 Kb blocksize)

  PASSENGER  50 bytes per tuple (20 tuples per block)
              100,000 tuples (5000 blocks)
  FLIGHT     20 bytes per tuple (50 tuples per block)
              50,000 tuples (1000 blocks)

Assume: each block access takes 20 ms (milliseconds).

For example, a scan of PASSENGER requires $5000 \times 20 \text{ ms} = 100$ seconds.
5.2 Implementing Selection

- First consider a single equality search, e.g.,

\[ \sigma_{\text{NAME}=\text{‘Smith’}} \quad \text{(PASSENGER)} \]

1. Linear search on a heapfile:
   - 5000 blocks scanned (worst-case)
     \[ \Rightarrow 100 \text{ seconds.} \]
   - If NAME is a key:
     \[ \Rightarrow 2500 \text{ blocks (average)} \]
     \[ \Rightarrow 50 \text{ seconds.} \]

2. Binary search on a sorted file (sorted by NAME):
   - Binary search takes \( \lceil \log_2 n \rceil \) for a file of \( n \) blocks.
     \[ \Rightarrow \lceil \log_2 5000 \rceil \text{ blocks} \]
     \[ \Rightarrow 13 \text{ blocks} \]
     \[ \Rightarrow 13 \times 20 \text{ ms} \]
     \[ \Rightarrow 260 \text{ ms.} \]

3. B+-tree index on NAME:
   - Suppose 100 index entries fit into a block
     \[ \Rightarrow 2m - 1 = 100 \quad (m = \text{degree}) \]
     \[ \Rightarrow m = 50. \]
   - Leaf level has as many entries as tuples
     \[ \Rightarrow 100,000 \text{ entries} \]
     \[ \Rightarrow 1000 \text{ leaf blocks (best-case: all packed)} \]
     \[ \Rightarrow 2000 \text{ leaf blocks (worst-case)} \]
   - How many B+-tree levels needed (worst-case)?
     \[ \Rightarrow \text{Recall: } 2m^{k-1} \text{ at level } k \]
     \[ \Rightarrow \text{we want least value of } k \text{ such that } 2m^{k-1} \geq 2000 \]
$\Rightarrow k = 3$ (levels 0,1,2,3)
$\Rightarrow 4$ levels

- Access time?
  $\Rightarrow 5$ accesses in all (data block requires 1 access)
  $\Rightarrow 5 \times 20$ ms
  $\Rightarrow 100$ ms.

4. Hash index on NAME:
   - Assume each chain has 2 blocks (1 overflow block).
     $\Rightarrow 1$ block access for directory, 2 for data
     $\Rightarrow 3$ block accesses
     $\Rightarrow 3 \times 20$ ms
     $\Rightarrow 60$ ms.

- Single range search, e.g.,

$$\sigma_{\text{MILES}>1000}$$(PASSENGER)

Suppose 2000 customers (tuples) satisfy the condition MILES > 1000.

1. Scan
   $\Rightarrow 100$ seconds.

2. Hash index is useless in this case.

3. Sorted file (sorted on MILES):
   - $[\log_2 n]$ accesses to get first tuple
     $\Rightarrow 13$ blocks (from before)
   - Scan from first tuple onwards.
     $\Rightarrow 2000/20 = 100$ blocks (20 tuples per block).
   - Total:
     $\Rightarrow 113$ blocks
     $\Rightarrow 113 \times 20$ ms
     $\Rightarrow 2.26$ seconds.
4. B+-tree on MILES:
   
   – Since MILES is not a key, we need to distinguish between clustered and unclustered versions of the tree.
   
   – In an unclustered version, the data file is not sorted nor is there a sort-index on the data file.
   
   – The problem with no clustering:

   ![Diagram of B+-tree structure]

   * Worst-case, each index entry could point to a different data block.
   
   * In our example: 2000 data tuples satisfy MILES > 1000
     ⇒ worst-case 2000 data blocks retrieved.
   
   – Cost for unclustered version:
     
     * 4 block accesses to get to first leaf tuple
     
     * 20 index blocks scanned at leaf level (at 100 index entries per block)
     
     * 2000 blocks to retrieve tuples from data
     
     Total:
     
     ⇒ 2024 blocks
     ⇒ 2024 × 20 ms
     ⇒ 40.48 seconds.
– In a *clustered* version, the data file is sorted:

```
Leaf level of tree

Index File

1000 1013 1115 2116 2711 3103

Data File (sorted)
```

– Cost for a *clustered* version:
  ⇒ data will lie in successive blocks
  ⇒ 100 blocks accessed
  ⇒ 124 blocks overall (including tree blocks)
  ⇒ 124 × 20 ms
  ⇒ 2.48 seconds.

– Important: must be careful when using an unclustered B+-tree for range search:
  * Range search is effective in a B+-tree when the number of identical values is small.
  * Otherwise, range search can be more costly than a scan.
• Select’s with multiple conditions – CNF representation:
  
  – The select condition is a boolean expression, e.g.,
    \( (\text{MILES} > 1000) \text{ and } (\text{NAME} = \text{‘Smith’}) \)
  
  – Every boolean expression in relational algebra consists of \textit{terms} of the form:
    
    * \(<\text{attr}> \text{ op <value>}, \text{ or} \)
    * \(<\text{attr}> \text{ op <attr>}. \)
  
    \( \text{where op is a comparison operator } (=, <, >, \leq, \geq) \).
  
  – A boolean \textit{expression} is a collection of terms joined by \textit{boolean operators} (\textit{and}, \textit{or}, \textit{not}).
  
  – Any boolean expression can be re-written in \textit{Conjunctive Normal Form} (CNF).
  
  – A CNF boolean expression is a collection of \textit{conjuncts} that are \textit{and’ed}:
    
    \( (\text{conjunct1} \text{ and } (\text{conjunct2} \text{ and } (\text{conjunct3} \text{ ...} \) \)
  
    \( \text{where each conjunct only has or’s or not’s, e.g.:} \)
    
    \( \text{conjunct3} = (\text{term1 or term2}). \)
  
    Thus, for example, the non-CNF expression
    
    \( (\text{AGE}<15 \text{ and } \text{HEIGHT}>6) \text{ or } \text{WEIGHT}>400 \)
  
    is transformed into the CNF expression:
    
    \( (\text{AGE}<15 \text{ or } \text{WEIGHT}>400) \text{ and } (\text{HEIGHT}>6 \text{ or } \text{WEIGHT}>400) \)
  
• Implementing \textit{select} for CNF’s without \textit{or}’s:
  
  Consider a CNF expression with only terms as conjuncts:
    
    \( (\text{term1} \text{ and } (\text{term2} \text{ and } (\text{term3} \text{ ...} \) \)
  
    Example:
    
    \( \sigma(\text{MILES} > 1000) \text{ and } (\text{NAME} = \text{‘Smith’}) \) (\text{PASSENGER}) \)
Assume:

- 45 Smiths (3 blocks)
- only one tuple satisfies the condition.

1. Unsorted heapfile:
   ⇒ scan required
   ⇒ 5000 blocks scanned
   ⇒ 100 seconds.

2. Sorted file (on NAME):
   - Use binary search to find first Smith tuple
     ⇒ 13 blocks.
   - Scan remaining Smith-tuples and check MILES condition
     ⇒ 3 blocks.
   - Cost:
     ⇒ 16 blocks
     ⇒ 16 × 20 ms
     ⇒ 320 ms.

3. Sorted file (on MILES):
   - Use binary search to find first 1000-mile tuple
     ⇒ 13 blocks.
   - Scan remaining 1000-mile tuples for Smith’s
     ⇒ 100 blocks scanned (2000 customers satisfy condition)
   - Cost:
     ⇒ 113 blocks
     ⇒ 113 × 20 ms
     ⇒ 2.26 seconds.
4. Hash index on NAME:
   - Search hashvalue(‘Smith’) bucket for MILES condition
     \[\Rightarrow\] at least 3 blocks, probably more, say 6.
   - 1 block for directory access.
   - Cost:
     \[\Rightarrow\] 7 blocks
     \[\Rightarrow\] 7 \times 20 ms
     \[\Rightarrow\] 140 ms.

5. A hash index would not be used on MILES (useless for range search).

6. B+-tree index on NAME:
   - 4 tree blocks during search, 1 possible additional block at leaf
     (45 Smith index tuples must fit into 2 blocks).
   - Unclustered version
     \[\Rightarrow\] 45 Smith tuples
     \[\Rightarrow\] 45 data blocks (worst-case)
     \[\Rightarrow\] 50 blocks overall
     \[\Rightarrow\] 50 \times 20 ms
     \[\Rightarrow\] 1 second.
   - Clustered version
     \[\Rightarrow\] 3 data blocks
     \[\Rightarrow\] 8 blocks overall
     \[\Rightarrow\] 8 \times 20 ms
     \[\Rightarrow\] 160 ms.
7. B+-tree index on MILES:
   - 4 tree blocks accessed, 20 on leaf level.
   - Unclustered version:
     ⇒ 2000 blocks (worst-case)
     ⇒ 2024 blocks overall
     ⇒ 2024 × 20 ms
     ⇒ 40.48 seconds.
   - Clustered version:
     ⇒ 100 data blocks
     ⇒ 124 blocks overall
     ⇒ 124 × 20 ms
     ⇒ 2.48 seconds.

8. Suppose a B+-tree is available for each attribute:
   - Use the more selective value (NAME, in this case).

- expressions with or’s:
  - Disjunctions (or’s) are difficult to optimize.
  - Example:
    \[ \sigma(\text{MILES} > 1000) \text{ or } (\text{NAME} = \text{‘Smith’}) \]  (PASSENGER)

  - If no index is available on MILES
    ⇒ scan required
    ⇒ why bother with an index on NAME (since scan is required)?
    ⇒ during scan, also check NAME=‘Smith’.

  - If indices are available on both
    ⇒ use indices to retrieve on each condition
    ⇒ union the results.
5.3 Implementing Projection

- Two actions are required in implementing projection:
  1. Scan through relation and extract desired attributes.
  2. Remove duplicates.

Example: Consider EMP (NAME, SSN, CITY) and the query \( \Pi_{\text{CITY}} (\text{EMP}) \):

<table>
<thead>
<tr>
<th>NAME</th>
<th>SSN</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>New York</td>
</tr>
<tr>
<td></td>
<td></td>
<td>London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>London</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delhi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>London</td>
</tr>
</tbody>
</table>

- Observe:
  - Step 1 (projection) is straightforward.
  - Step 2 (duplicate removal) requires more work.
  - Often, parts of Step 2 are integrated into Step 1.
  - Sometimes duplicate removal is not needed (if not specified with a distinct in SQL).

- Duplicate removal via sorting:
– Suppose we want to remove duplicates from a file:
  * Sort the file.
  * Scan sorted file and remove duplicates by comparing successive tuples.

– Note: the first set of runs (for sorting) can be created during Step 1 (while writing the output of projection).

– Cost estimate:
  ⇒ \(2n \left[ \log_M n \right] \) block accesses for sorting

– Example:

\[ \Pi_{\text{NAME}} \ (\text{PASSENGER}) \]

Suppose
  * \(M = 100\) (100 blocks of input buffers).
  * The NAME field is 20 bytes long
    ⇒ 50 tuples per block
    ⇒ 2000 blocks for projected file.

– Cost:
  ⇒ \(2 \times 2000 \times \left[ \log_{100} 2000 \right]\)
  ⇒ 8000 block accesses
  ⇒ 8000 \(\times\) 20 ms
  ⇒ 2.66 minutes.

– Using the snowplow method would be faster:
  ⇒ run sizes approximately \(2M = 200\) blocks
  ⇒ 2000/100 such runs
  ⇒ only one additional pass required (100 input buffers)
  ⇒ 4000 block accesses
  ⇒ 4000 \(\times\) 20 ms
  ⇒ 1.33 minutes.
- Duplicate removal using Hashing:
  
  - Basic idea:
    1. Scan file and hash records into a hash file.
    2. Scan individual buckets are remove duplicates.
  
  - Note: hashing has to be carefully implemented (using a lot of memory)
    e.g., In above example: file has 2000 blocks (100,000 tuples)
    * Worst-case: 2 block accesses for each insertion
      ⇒ 100,000 insertions
      ⇒ 200,000 block accesses
      ⇒ 200,000 × 20 ms
      ⇒ 66.66 minutes
      ⇒ wrong way to use hashing.
  
  - If $M$ buffers are available, use a hash function with $M$ buckets and allow overflow
    ⇒ hash file blocks are written only when full
    ⇒ block accesses ≈ number of file blocks
  
  - In practice, slight non-uniformity will cause slightly higher I/O.
  
  - Example: 2000 blocks
    ⇒ 2000 (approx.) hash file blocks.
    ⇒ 2000/100 = 20 blocks per bucket (19 overflow blocks)
    ⇒ each bucket fits into memory entirely
    ⇒ duplicates can be removed in one scan
    ⇒ 2000 + 2000 block accesses
    ⇒ 4000 × 20 ms
    ⇒ 1.33 minutes.
  
  - Note: creating the hash file can be done on-the-fly as the projection is being computed.
  
  - An advantage of sort-based projection: a nice side-effect is that the result is sorted.
5.4 Implementing Joins

- Joins vs. cross-products:
  - Every join can be expressed as a cross-product, e.g.,
    \[
    \text{PASSENGER} \times \text{FLIGHT}
    \]
    is the same as
    \[
    \sigma_{\text{PASSENGER.FLT.ID} = \text{FLIGHT.FLT.ID}} (\text{PASSENGER} \times \text{FLIGHT})
    \]
  - SQL parsers typically only report cross-products.
  - Cross-products are large
    \[\Rightarrow\] system should recognize a join where possible.

- We will use the following example:
  \[
  \text{PASSENGER} \times \text{FLIGHT}
  \]
  where
  \[
  \begin{align*}
  \text{PASSENGER has} & \quad n_P = 5000 \text{ blocks, 20 tuples per block} \\
  & \quad r_P = 100,000 \text{ tuples} \\
  \text{FLIGHT has} & \quad n_F = 1000 \text{ blocks, 50 tuples per block} \\
  & \quad r_F = 50,000 \text{ tuples}
  \end{align*}
  \]

- Several ways to implement a join:
  1. Simple nested loops.
  2. Block-nested loops.
  3. Nested loops with indices.
  4. Sort-merge join.
  5. Hash-join.
• Simple nested loops.
  – Scan tuples in one file and for each one, scan the other file to find matching tuples.
  – For example, suppose we scan PASSENGER in the outer loop:

<table>
<thead>
<tr>
<th>Algorithm:</th>
<th>Simple Nested Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. <strong>for each</strong> tuple ( x \in \text{PASSENGER} )</td>
<td></td>
</tr>
<tr>
<td>2. <strong>for each</strong> tuple ( y \in \text{FLIGHT} )</td>
<td></td>
</tr>
<tr>
<td>3. ( \text{if } x.\text{FLT_ID} = y.\text{FLT_ID} )</td>
<td>put joined tuple in result</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

– What is the cost?
  \( \Rightarrow 100,000 \) tuples of PASSENGER (in 5000 blocks)
  \( \Rightarrow 100,000 \) scans of FLIGHT (1000 blocks per scan)
  \( \Rightarrow 100,000 \times 1000 = 10^8 \) blocks (of FLIGHT)
  \( \Rightarrow 10^8 + 5000 \) blocks overall
  \( \Rightarrow 555.58 \) hours!

– What if FLIGHT were the outer relation?
  \( \Rightarrow 50,000 \) tuples of FLIGHT (in 1000 blocks)
  \( \Rightarrow 50,000 \) scans of PASSENGER
  \( \Rightarrow 50,000 \times 5000 \) blocks of PASSENGER
  \( \Rightarrow 25 \times 10^8 + 1000 \) blocks overall
  \( \Rightarrow 1388.89 \) hours!
  \( \Rightarrow \) it’s worse!

– Using simple nested loops is a really stupid way of implementing a join.
• Block-nested loops:

  – Consider reading the first block of PASSENGER.
  – When we read the first block of FLIGHT, we can join all possible combinations in each block:

  
  ![Diagram](image)

  – Then, we read the next block of FLIGHT and find all possible matches in the first block of PASSENGER. Then, the next block of FLIGHT
  ... and so on until all blocks of FLIGHT are joined with the
  – Then, the next block of PASSENGER is read and joined with the first, then second, then third ... etc blocks of FLIGHT.
  – ... And so on until all of PASSENGER has been scanned.
  – In pseudocode:

  ```
 Algorithm: Block-Nested Loops

 1. for each block ∈ PASSENGER
 2. for each block ∈ FLIGHT
 3. if a pair in each block matches
 4. put joined tuple in result
  ```

  – Why does this work?
  ⇒ each pair of tuples needs to be tried against each other only once.
– Cost:
  ⇒ 5000 blocks of PASSENGER
  ⇒ 5000 scans of FLIGHT
  ⇒ 5000 × 1000 blocks
  ⇒ 5,005,000 blocks overall
  ⇒ 27.78 hours
– In general: \( n_P + n_P \times n_F \).
– How much memory has been used?
  ⇒ 2 input buffers (1 for each file).
– Can we do better with more buffers?
– Example: suppose we have \( M = 100 \) input buffers.
  ⇒ use \( K \) buffers for PASSENGER and \( M - K \) for FLIGHT.
  Suppose PASSENGER is outer relation:
  * Read first \( K \) blocks of PASSENGER.
  * Scan through all of FLIGHT and match tuples.
  * Read next \( K \) blocks of PASSENGER.
  * Scan through all of FLIGHT and match tuples.
  * ... and so on.
– Cost?
  ⇒ \( \frac{n_P}{K} \) groups of PASSENGER (exact: \( \lceil \frac{n_P}{K} \rceil \))
  ⇒ \( \lceil \frac{n_P}{K} \rceil \) scans of FLIGHT
  ⇒ \( \lceil \frac{n_P}{K} \rceil \times n_F \) blocks
  ⇒ totally \( n_P + \lceil \frac{n_P}{K} \rceil \times n_F \)
– What choice of \( K \) is optimal?
  ⇒ as large as possible: \( K = M - 1 \)
– In our example:
  ⇒ 5000 + \( \lceil \frac{5000}{99} \rceil \times 1000 \) blocks
  ⇒ 56000 blocks overall
  ⇒ 56000 × 20 ms
  ⇒ 18.6 minutes
  ⇒ a great improvement!
- Can we do better?
  \[ \Rightarrow \text{use FLIGHT as outer relation} \]
  \[ \Rightarrow 1000 + \left[ \frac{1000}{99} \right] \times 5000 \text{ blocks} \]
  \[ \Rightarrow 56000 \text{ blocks overall} \]
  \[ \Rightarrow \text{same as before.} \]

- Note: suppose FLIGHT had 90 blocks: With PASSENGER outside:
  \[ \Rightarrow 5000 + \left[ \frac{5000}{99} \right] \times 90 \text{ blocks} \]
  \[ \Rightarrow 9590 \text{ blocks. With FLIGHT outside:} \]
  \[ \Rightarrow 90 + \left[ \frac{90}{99} \right] \times 5000 \text{ blocks} \]
  \[ \Rightarrow 5090 \text{ blocks (almost half the time)} \]
  \[ \Rightarrow \text{use smaller relation in outer loop.} \]

- Nested loops with indices:
  - If there’s an index on the join attribute, we can use it.
  - Example: suppose we have an index on PASSENGER.
  - Use PASSENGER as inner relation:

```
Algorithm: Nested Loops with Indices

1. for each block in FLIGHT
2. for each tuple in the current block
3. extract key;
4. search for corresponding tuple in PASSENGER using index
5. place joined tuple if match occurs
6. endfor
```

- Cost:
  * FLIGHT is scanned once
    \[ \Rightarrow n_F = 1000 \text{ blocks.} \]
  * For each tuple of FLIGHT, we probe index
    \[ \Rightarrow r_F \times \text{number of blocks per access} \]
  * The actual cost depends on the type of index.
1. B+-tree index for PASSENGER:
   ⇒ 5 blocks per access
   ⇒ 50000 × 5 blocks of PASSENGER
   ⇒ 251,000 blocks overall
   ⇒ 1.39 hours.

2. Hash index for PASSENGER:
   ⇒ about 2 blocks per access
   ⇒ 101,000 blocks overall
   ⇒ 33.7 minutes.

In general if \( \alpha_p \) blocks are required by the index, then the total cost is

\[
 n_F + r_F \times \alpha_p \text{ blocks.}
\]
• Sort-merge Join
  
  – Key idea:
    * Sort PASSENGER.
    * Sort FLIGHT.
    * Set up sorted files as if they were going to be merged.
    * Process a merge, but only produce as output joined tuples.
  
  – How to merge?
    * Read first block of PASSENGER.
    * Read first block of FLIGHT.
    * Match all the tuples that can be matched.
    * Suppose last tuple of PASSENGER block has FLT_ID=6.
    * Suppose last tuple of FLIGHT block has FLT_ID=13.
    * Are there any other tuples in FLIGHT that need to be matched with FLT_ID=6?
      ⇒ No!
      ⇒ Don’t need to look further in FLIGHT.
  
  – Example of sort-merge join:
    Recall the relations: PASSENGER (NAME, SSN, FLT_ID, MILES)
    and FLIGHT (FLT_ID, FLT_NO, START_APT, END_APT).
Let \( p_1, p_2, \ldots \) denote the PASSENGER tuples and \( f_1, f_2, \ldots \) denote the FLIGHT tuples.

1. First, we output \( <p_1, f_1>, <p_2, f_1> \).
2. Then, read the second FLIGHT block and output \(<p3, f5>, <p3, f6>:\n
\[
\begin{array}{|c|}
\hline
p1 & 1 \\
\hline
p2 & 1 \\
\hline
p3 & 3 \\
\hline
p4 & 4 \\
\hline
p5 & 4 \\
\hline
p6 & 4 \\
\hline
p7 & 4 \\
\hline
p8 & 4 \\
\hline
p9 & 4 \\
\hline
p10 & 4 \\
\hline
p11 & 6 \\
\hline
p12 & 6 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|}
\hline
f1 & 1 \\
\hline
f2 & 2 \\
\hline
f3 & 2 \\
\hline
f4 & 2 \\
\hline
f5 & 3 \\
\hline
f6 & 3 \\
\hline
f7 & 4 \\
\hline
f8 & 4 \\
\hline
f9 & 4 \\
\hline
f10 & 5 \\
\hline
f11 & 6 \\
\hline
f12 & 6 \\
\hline
\end{array}
\]
3. Read the second PASSENGER block and
output $\langle p4, f7 \rangle$, $\langle p4, f8 \rangle$, $\langle p5, f7 \rangle$, $\langle p5, f8 \rangle$, $\langle p6, f7 \rangle$, $\langle p6, f8 \rangle$.

<table>
<thead>
<tr>
<th>File 1</th>
<th>File 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1</td>
</tr>
<tr>
<td>p2</td>
<td>1</td>
</tr>
<tr>
<td>p3</td>
<td>3</td>
</tr>
<tr>
<td>p4</td>
<td>4</td>
</tr>
<tr>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>p6</td>
<td>4</td>
</tr>
<tr>
<td>p7</td>
<td>4</td>
</tr>
<tr>
<td>p8</td>
<td>4</td>
</tr>
<tr>
<td>p9</td>
<td>4</td>
</tr>
<tr>
<td>p10</td>
<td>4</td>
</tr>
<tr>
<td>p11</td>
<td>6</td>
</tr>
<tr>
<td>p12</td>
<td>6</td>
</tr>
</tbody>
</table>
4. Read next FLIGHT block and output <p4, f9>, <p5, f9>, <p6, f9>.

<table>
<thead>
<tr>
<th>File 1</th>
<th>File 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1</td>
</tr>
<tr>
<td>p2</td>
<td>1</td>
</tr>
<tr>
<td>p3</td>
<td>3</td>
</tr>
<tr>
<td>p4</td>
<td>4</td>
</tr>
<tr>
<td>p5</td>
<td>4</td>
</tr>
<tr>
<td>p6</td>
<td>4</td>
</tr>
<tr>
<td>p7</td>
<td>4</td>
</tr>
<tr>
<td>p8</td>
<td>4</td>
</tr>
<tr>
<td>p9</td>
<td>4</td>
</tr>
<tr>
<td>p10</td>
<td>4</td>
</tr>
<tr>
<td>p11</td>
<td>6</td>
</tr>
<tr>
<td>p12</td>
<td>6</td>
</tr>
</tbody>
</table>
5. Read next PASSENGER block
   ⇒ the item ‘4’ continues
   ⇒ must go back to start of ‘4’ in FLIGHT
   ⇒ a reversal!
Output <p7,f7>, <p7,f8>, <p8,f7>, <p8,f8>, <p9,f7>, <p9,f8>.
6. Read next FLIGHT block and output \( <p7, f9>, <p8, f9>, <p9, f9> \).
7. Read next PASSENGER block
   ⇒ ‘4’ continues
   ⇒ must go back to first ‘4’ in FLIGHT
   ⇒ another reversal!
Output <p10,f7>, <p10,f8>.
8. Read next FLIGHT block and output \(<p10,f9>, <p11,f11>, <p11,f12>, <p12,f11>, <p12,f12>\).
– Cost:

* If there are enough buffers
  ⇒ reversal not needed.
* Typically, reversal does not occur often
  ⇒ only one scan through each sorted file.
* Time needed for sorting: \(2n_P \log_M n_P + 2n_F \log_M n_F\).
* Time needed for merging: \(n_P + n_F\).
  ⇒ Total: \(2n_P \log_M n_P + 2n_F \log_M n_F + n_P + n_F\).
* Suppose \(M = 100\) in our example:
  ⇒ \(2 \times 5000 \log_{100} 5000 + 2 \times 1000 \log_{100} 1000 + 5000 + 100\) blocks
  ⇒ 30,000 blocks
  ⇒ 10 minutes (best so far).

– Note:

* Some runs of a particular FLT_ID could span several blocks
  ⇒ hopefully all fit into memory simultaneously.
* If ‘runs’ of a particular value occur
  ⇒ try to reserve memory for these runs.
* It is possible to speed up the process:
  1. Sort both files simultaneously.
  2. During each merge of the sort process, perform joins.
* The sort-merge join is very general
  ⇒ it can be applied to any join condition.
* A join on multiple attributes can be handled by sorting on the combination.
• Hash joins:
  
  – Key ideas:
    * Use a single hash function on the join attributes.
    * Hash the first file into a hash file using the function.
    * Hash the second file into the same file using the same hash function.
    * Records that are candidates for joining must lie in the same bucket.
    * Process the hash file bucket by bucket.
    * Read in a bucket and search for matches.
  
  – Some details:
    * If we use too many buckets, we will be doing a lot of I/O.
      ⇒ worst-case: 2 I/O’s per tuple inserted
      ⇒ inserting 100,000 tuples means 100,000 block accesses!
        (at least one block access per tuple inserted).
      ⇒ Optimal number of buckets is $M$ (memory size).
    * Assuming uniform distribution across buckets
      ⇒ each bucket has $\frac{n_P + n_F}{M}$ blocks.
    * To process a bucket, the bucket has to fit into memory.
      ⇒ better to have $\frac{n_P + n_F}{M} \leq M$
      ⇒ $M \geq \sqrt{n_P + n_F}$ ideally.
    * It is not always possible to guarantee this condition
      ⇒ need a way to process a large bucket
      ⇒ use hashing again!
  
  – An example: consider a join of EMP and DEPT on the attribute DEPT.ID.
    Initially, the hashtable is empty:
First, the file EMP is hashed (on DEPT_ID):

Then, the file DEPT is hashed into the same hash file:
Now, the buckets are processed one by one, e.g., bucket for ‘41’:

Process bucket for ‘17’:

And so on until all buckets have been processed.
– To process a large bucket:

* Read in tuples from bucket and hash them to a temporary file.
* Use a *different* hashing function than before.
* Why? The same hashing function as before will only duplicate the bucket.
* Again, process the new ‘sub-buckets’ one by one.
* Hopefully the second hashing operation will create smaller buckets that fit into memory.
* Worst-case, the procedure may have to be repeated.

• Memory Management in a DBMS:

– The above discussion shows us why it’s better for a DBMS to manage memory by itself.

– In a block-nested join, once a block for the outer relation has been processed, it is not needed again
  ⇒ better to throw it out immediately and use the memory for the inner relation.

– In other methods, we have explicitly assumed fixed buffer sizes \( M \)
  ⇒ DBMS memory management.
5.5  Query Optimization: Overview

- Key functions in query optimization:
  - Enumerate several query plans.
  - Evaluate the cost of each plan.
  - Select the best such plan.

- Enumerating plans:
  - A query plan includes:
    * A query tree.
    * Methods assigned to implement operators (e.g., Sort-merge for a given join).
    * An order of execution whenever different orders are possible.
  - Plans are enumerated by considering alternative ways of handling a query.
  - In general, enumeration is combinatorially explosive
    \( \Rightarrow \) heuristics must be considered.
  - It helps to use heuristic rules for specific operators, e.g., *push select’s past joins*.

- Evaluating the cost of a particular plan:
  - Use a metric such as the *number of block accesses* to evaluate I/O cost.
  - Use techniques for cost estimation of relational operators (described earlier).
  - Put together the total cost for a plan.
Consider the following example:

\[
\begin{align*}
\text{select} & \quad \text{NAME, FLT\_NO} \\
\text{from} & \quad \text{PASSENGER P, FLIGHT F} \\
\text{where} & \quad \text{P.\text{FLT\_ID}=F.\text{FLT\_ID}} \\
& \quad \text{and MILES}>1000 \\
& \quad \text{and NAME=‘Smith’}
\end{align*}
\]

The query tree produced by the parser typically looks like:

\[
\begin{align*}
\pi & \quad \text{name, FLT\_NO} \\
\sigma & \quad \text{MILES}>1000, \text{NAME=’Smith’} \\
\land & \quad \text{P.FLT\_ID=F.FLT\_ID}
\end{align*}
\]
Several options are possible with the above query:

1. Operator methods:
   - Use block-nested join with FLIGHT (F) as outer relation.
   - Compute both $\sigma$ and $\Pi$ on the fly (as results are produced by the join)

\[
\begin{array}{c}
\pi \\
\sigma \\
\chi \\
P & F
\end{array}
\]

(on the fly)
(on the fly)
blok−nested join

Cost estimation:

- Recall cost of block-nested join:
  \[
  n_F + \left\lceil \frac{n_F}{M-1} \right\rceil n_P \text{ blocks}
  \Rightarrow 1000 + \left\lceil \frac{5000}{99} \right\rceil 1000 \text{ blocks}
  \Rightarrow 51506 \text{ blocks}.
  \]
- No cost for computing $\sigma$ or $\Pi$.
- Total: 51506 blocks
  \[
  \Rightarrow 51506 \times 20 \text{ ms}
  \Rightarrow 17.1 \text{ minutes}.
  \]
2. Methods:

- Push the “MILES>1000” condition past the join to PASSENGER.
- Use B+-tree (unclustered, say) for select.
- Use block-nested join with FLIGHT as outer relation.
- Compute remaining operators on the fly.

\[
\begin{array}{c}
\pi \\
\sigma \text{ (on the fly)} \\
\sigma \text{ (on the fly)} \\
X \\
\text{block-nested join} \\
\end{array}
\]

Cost:

- 2000 tuples (of PASSENGER) satisfy MILES>1000
  \implies (worst-case) 2000 data blocks, 4+20 tree blocks (tree and leaf-level)
  \implies 2024 blocks accessed.
- 2000 tuples (of PASSENGER) satisfy MILES>1000
  \implies 100 blocks produced as a result
  \implies these 100 blocks will be joined with FLIGHT’s 1000 blocks.
- Block nested join with FLIGHT:
  \implies 1000 + \lceil \frac{100}{99} \rceil 1000 blocks
  \implies 3000 blocks.
- No cost for remaining select’s and project.
- Total: 5024 blocks
  ⇒ 5024 × 20 ms
  ⇒ 1.67 minutes.

- Note: we could use FLIGHT as inner relation
  ⇒ 100 + \( \left\lfloor \frac{100}{99} \right\rfloor \) 1000 blocks
  ⇒ 2100 blocks
  ⇒ 4124 blocks overall
  ⇒ 1.37 minutes.

- NOTE: an important point:

  * In the above analysis, we used the fact that 2000 tuples satisfy “MILES>1000”.
  * How did we know this?
  * In practice, an *estimate* of the number of tuples is required.
  * Example: suppose the MILES field has 50 unique values
    ⇒ 100,000 tuples / 50 = 2000 tuples have one value (uniform distribution).
    ⇒ forms a very crude estimate.

Better: use min(MILES) and max(MILES).

E.g., suppose min(MILES)=0, max(MILES)=1020
  ⇒ (1020-1000)/1020 fraction of tuples will have MILES>1000
  ⇒ ≈ 0.0196 × 100,000 tuples have MILES>1000
  ⇒ ≈ 1960 tuples.
3. Methods:

- Push the other select down (NAME=‘Smith’).
- Assume hash index exists on NAME.
- Block nested join with FLIGHT as inner relation.

\[
\begin{align*}
\pi & \quad \text{(on the fly)} \\
\sigma & \quad \text{(on the fly)} \\
\text{MILES>1000} \\
\text{block-nested join} \\
\text{NAME=‘Smith’} \\
\text{Hash index} \\
\sigma & \quad F \\
\text{P} & \\
\end{align*}
\]

Cost:

- 45 tuples satisfy NAME=‘Smith’
  \Rightarrow 3 \text{ blocks}
  \Rightarrow 4 \text{ blocks overall (including directory block)}.
- Block-nested join with FLIGHT as inner relation:
  \Rightarrow 4 + \left\lceil \frac{4}{99} \right\rceil 1000 \text{ blocks}
  \Rightarrow 1004 \text{ blocks}.
- Total: 1008 blocks
  \Rightarrow 20.2 \text{ seconds.}
4. Methods:

- Push both select’s down.
- Assume hash index exists on NAME.
- Check MILES>1000 on the fly.
- Block nested join with FLIGHT as inner relation.

Cost:

- 45 tuples satisfy NAME='Smith'
  \[\Rightarrow 3\] blocks
  \[\Rightarrow 4\] blocks overall (including directory block).
- Assume only 1 tuple satisfies both conditions
  \[\Rightarrow 1\] block in result.
- Block-nested join with FLIGHT as inner relation:
  \[\Rightarrow 1 + \left\lceil \frac{1}{100} \right\rceil 1000\] blocks
  \[\Rightarrow 1001\] blocks.
- Total: 1005 blocks
  \[\Rightarrow 20.1\] seconds.
5. Methods:
   - Push project past joins.
   - However, FLT_ID is needed
     ⇒ cannot project it out.
   - Use sorting to remove duplicates.
   - Use Hash index for “NAME=‘Smith’” condition.
   - Check “MILES>1000” on the fly.

\[
\text{NAME, FLT_ID on-the-fly} \quad \text{FLT_ID} \quad \Pi \quad \text{FLT_ID, FLT_NO on-the-fly} \\
\text{MILES>1000 on-the-fly} \quad \text{NAME=‘Smith’ on-the-fly} \quad \text{Hash index} \quad \text{P}
\]

Cost:
   - Consider the cost to sort FLIGHT:
     ⇒ \(2n_F[\log_M n_F]\) blocks
     ⇒ \(2 \times 1000[\log_{100} 1000]\) blocks
     ⇒ 4000 blocks
     ⇒ already more expensive than some previous methods!
   - Lesson: does not always help to push projects.
• Sometimes, it does help to push project:

```sql
select NAME, FLT_NO
from PASSENGER P, FLIGHT F
where P.FLT_ID=F.FLT_ID
```

In this case, consider the following two plans:

1. Methods:
   - Use a block-nested join with FLIGHT as outer relation.
   - Compute projection on the fly.

   ![Diagram showing block-nested join and projection on the fly]

   Cost:
   - Total: 51506 blocks (see prior analysis)
     \[ \Rightarrow 17.1 \text{ minutes} \]

2. Methods:
   - Push projects down
     \[ \Rightarrow \text{must retain join attributes (FLT_ID).} \]
   - Project NAME, FLT_ID from PASSENGER.
   - Project FLT_NO, FLT_ID from FLIGHT.
   - Use sorting to remove duplicates.
   - Use sort-merge join (since results of project are sorted).
Cost:

- To project attributes of PASSENGER
  ⇒ scan PASSENGER
  ⇒ 5000 blocks.
- To project attributes of FLIGHT
  ⇒ scan FLIGHT
  ⇒ 1000 blocks.
- Assume (NAME,FLT_ID) take up 25 bytes.
  ⇒ 40 tuples per block
  ⇒ 2500 blocks.
- Assume (FLT_ID,FLT_NO) take up 10 bytes.
  ⇒ 100 tuples per block
  ⇒ 500 blocks.
- To remove duplicates in PASSENGER result:
  ⇒ sort result (and remove duplicates on the fly)
  ⇒ $2 \times 2500 \log_{100} 2500$ blocks
  ⇒ 10000 blocks.
- Total for projection of PASSENGER:
  ⇒ $10000 + 5000 = 15000$ blocks.
- To remove duplicates in FLIGHT result:
  ⇒ sort result (and remove duplicates on the fly)
  ⇒ $2 \times 500 \log_{100} 500$ blocks
  ⇒ 2000 blocks.
– Total for projection of FLIGHT:
  ⇒ 2500 + 500 = 3000 blocks.

– Sort-merge join
  ⇒ 2500 + 500 blocks
  ⇒ 3000 blocks.

– Total: 15000 + 3000 + 3000
  ⇒ 21,000 blocks
  ⇒ 7 minutes.
5.6 Relation Statistics

- A DBMS usually keeps some statistical meta-data on each relation, for example:
  - Cardinality of each relation.
  - Number of blocks.
  - Number of distinct key values in each index (e.g., total number of entries in a B-tree).
  - Heights of tree indices.
  - Max and Min values of numeric attributes.

- The statistics are used to estimate quantities used in query optimization.

- Example:
  - Suppose $\text{max}(\text{MILES})=50,000$ and $\text{min}(\text{MILES})=0$.
  - Suppose total number of tuples is 100,000.
  - How many tuples satisfy $\text{MILES}>10,000$?
  - Use uniform distribution:
    $$\frac{50,000 - 10,000}{30,000 - 0} \times 100,000 = 80,000 \text{ tuples}.$$ 

- Other estimates are harder:
  - For example: how many tuples are there in the join $\text{PASSENGER} \times \text{FLIGHT}$?
  - In this case, we know that $\text{FLT}\_\text{ID}$ is a key for $\text{FLIGHT}$
    $\Rightarrow$ each tuple of $\text{PASSENGER}$ joins with at most one tuple of $\text{FLIGHT}$
    $\Rightarrow$ number of tuples in join $=$ number of $\text{PASSENGER}$ tuples.
  - Often, arbitrary “fudge factors” are used.
5.7 Manual Intervention

- A DB Administrator (DBA) can take steps to improve the performance of some “tough” queries:
  - Decide to create or remove indices.
  - Decide types of indices.
  - Use tools or system options to re-organize data on disk.

- A DBA needs to understand the system workload:
  - Frequently-used queries and how frequently they are used.
  - Updates and update frequencies.
  - User requirements (complaints).

  \[ \Rightarrow \] identify the important queries (users?) and focus on them.

- It may be tempting to define an index on every attribute used in the important queries

  \[ \Rightarrow \] indices make (read) access faster.

However, indices also:

  - take up space (often as large as the relation itself)
    \[ \Rightarrow \] drains virtual memory (code/data), clutters up disk (data)
  - are bad for insertions
    \[ \Rightarrow \] compare insertion using a B-tree versus insertion into a heapfile.

Fast updates are desirable in some applications, e.g., banking.

- General rules of thumb in index creation:
  - Create indices for attributes that occur in multiple queries.
  - Avoid creating indices for small relations.
- If some updates are important, be careful about creating indices for attributes involved in the update.
  Note: hash indices allow for fast insertion
- If a B+-tree index is defined on non-key attributes, consider using a clustered index.
- For equality selections, use a hash index provided range searches are not required.
Chapter 6

Database Schema Design

Course Notes on Database Systems
6.1 Database Schema Design: Introduction

• A Database Administrator (DBA) is responsible for designing the schema of a relational database
  ⇒ need to decide which attributes go into which relations.

• Other DBA responsibilities:
  – Analysis of user needs.
  – Performance.
  – Security and access (for users as well as dbase programmers).

• We will focus on schema design.

• Schema design usually proceeds in two phases:
  1. Use informal guidelines to create an initial design.
  2. Use formal guidelines to improve initial design.

• Consider an airline employee dbase:
  – Schema $S_1$:
    
    EMP (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

  – Schema $S_2$:
    
    EMP (NAME, SSN, DEPTNO)
    CREW (SSN, FLT_ID)
    FLIGHT (FLT_ID, START_APT, END_APT)
    DEPT (DEPTNO, DNAME, MGRSSN)

Which schema is better?

• Review of terminology:
- **superkey** – any group of attributes that can uniquely identify a tuple *in any instance*.
  e.g., for a particular instance (FNAME, LNAME) may appear to be a key – but it can’t be guaranteed.
  ⇒ (FNAME, LNAME) is a poor choice for a key.

- **key** – a minimal superkey, e.g.,
  (NAME, SSN) is a superkey (but not a key)
  (SSN) is a key (and also a superkey)

- **primary key** – one key designated for general use.

- **foreign key** – a set of attributes in relation *R* that is the primary key for relation *S*.

- **Domain constraint** – proper typing of values.

- **Key constraint 1** – no two tuples can have identical keys
  If a tuple is found that violates the condition, then either
  * the tuple should be rejected or,
  * the key is not truly a key (i.e., a bad choice)

- **Key constraint 2** – no primary key value can be null.

- **Referential integrity constraint** – can’t have a tuple whose foreign key values don’t exist in the foreign relation *instance*.

For example, consider

```sql
EMP1 (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO)
DEPT (DEPTNO, DNAME, MGRSSN)
```

e.g. <John, B, Smith, ... , 9> and DEPTNO=9 does not exist at present.
6.2 Informal Guidelines

1. **Try to make user interpretation easy.**
   For example, compare
   
   - **Schema S1:**
     
     \[
     \text{EMP (NAME, SSN, FLT\textunderscore ID, START\textunderscore APT, END\textunderscore APT, DEPTNO, DNAME, MGRSSN)}
     \]
   
   - **Schema S2:**
     
     \[
     \text{EMP (NAME, SSN, DEPTNO)}
     \text{CREW (SSN, FLT\textunderscore ID)}
     \text{FLIGHT (FLT\textunderscore ID, START\textunderscore APT, END\textunderscore APT)}
     \text{DEPT (DEPTNO, DNAME, MGRSSN)}
     \]
   
   Perhaps S1 has too much information (to absorb) per tuple.

2. **Try to reduce redundancy.**
   Suppose there are only a few departments
   \( \Rightarrow \) MGRSSN and DNAME are unnecessarily repeated too often in EMP.

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPTNO</th>
<th>DNAME</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abel</td>
<td>...</td>
<td>5</td>
<td>Crew</td>
</tr>
<tr>
<td>Aitken</td>
<td>...</td>
<td>3</td>
<td>Ticketing</td>
</tr>
<tr>
<td>Al Khwarizmi</td>
<td>...</td>
<td>5</td>
<td>Crew</td>
</tr>
<tr>
<td>Archimedes</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Zeno</td>
<td>...</td>
<td>3</td>
<td>Ticketing</td>
</tr>
<tr>
<td>Zuse</td>
<td>...</td>
<td>5</td>
<td>Crew</td>
</tr>
</tbody>
</table>

On the other hand, S2 repeats DEPTNO in DEPT
\( \Rightarrow \) DEPTNO (integer) is smaller than DNAME (string) and MGRSSN (string)
3. **Try to avoid update anomalies**

Consider the schemas:

- **Schema S1**:

  \[
  \text{EMP (NAME, SSN, FLT\_ID, START\_APT, END\_APT, DEPTNO, DNAME, MGRSSN)}
  \]

- **Schema S2**:

  \[
  \text{EMP (NAME, SSN, DEPTNO)}
  \]
  \[
  \text{CREW (SSN, FLT\_ID)}
  \]
  \[
  \text{FLIGHT (FLT\_ID, START\_APT, END\_APT)}
  \]
  \[
  \text{DEPT (DEPTNO, DNAME, MGRSSN)}
  \]

Both have same attributes. Unfortunately, \( S1 \) can create problems called *update anomalies*.

- **Insertion anomalies**

  (a) Consider inserting "John Smith works in Dept. 5", i.e.,

  \[
  \langle \text{John, Smith, 123456789, \ldots, 5, <dname>, <mgrssn> } \rangle.
  \]

  Every time a tuple of this sort is entered, we have to check that
  DNAME is correct
  \( \Rightarrow \) we have to scan the whole relation (worst-case)

  (b) Consider creating a new department: DEPTNO=9, DNAME='Security'
    (with no employees yet)

    Only one way to insert this info
    \( \Rightarrow \) create NULL values for employee info
    \( \Rightarrow \) but that means a NULL primary key value (SSN)!

- **Deletion anomalies**

  If we delete the last employee in the ‘Crew’ department, e.g.

  \[
  \langle \text{John, Smith, 123456789, \ldots, 5, ‘Crew’, \ldots } \rangle
  \]

  then we will lose the information

  “Department 5 is the Crew department”.

355
• **Modification anomalies**
  Suppose we change the manager of department 5
  ⇒ we have to change MGRSSN for all department 5 employees
  ⇒ full scan of database

Thus, schema $S_1$ has many problems. On the other hand:

• $S_1$ – has 1 relation.
• $S_2$ – has 4 relations.
• For many queries, we will need more joins using $S_2$.
• SQL code with $S_2$ will be more complicated because of the extra joins
  (One solution: use $S_2$ but create views based on needed joins)

4. **Try to avoid too many NULL values.**

• This may occur in ‘fat’ relations (with too many attributes).
• Space is wasted.
• Problems occur when using aggregate functions like `count` or `sum`.
• NULLs can have different intentions:
  (a) The attribute does not apply.
  (b) Value is unknown, and will remain unknown.
  (c) Value is unknown at present.

5. **Beware of the Spurious Tuple Problem.**

Consider the following two schemas:

• Schema $S_1$:
  
  EMP (NAME, HOME_APT, SSN, FLT_ID)

• Schema $S_2$:
  
  EMPNEW (NAME, SSN, FLT_ID)
  HOMEBASE (NAME, HOME_APT)

First, let us see how a relation in $S_1$ can be converted to relations in $S_2$, e.g., consider this data:
<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>HOME/apt</th>
<th>SSN</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>National</td>
<td>111-22-3333</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>JFK</td>
<td>222-33-4444</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>La Guardia</td>
<td>333-44-5555</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>

To create EMPNEW:

\[
\text{EMPNEW} := \Pi_{\text{NAME, SSN, FLT_ID}} (\text{EMP})
\]

Thus,

<table>
<thead>
<tr>
<th>EMPNEW</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111-22-3333</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>222-33-4444</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>333-44-5555</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>

Similarly, to create HOME_BASE:

\[
\text{HOMEBASE} := \Pi_{\text{NAME, HOME/apt}} (\text{EMP})
\]

In this case,

<table>
<thead>
<tr>
<th>HOMEBASE</th>
<th>NAME</th>
<th>HOME/apt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>National</td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>JFK</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>La Guardia</td>
<td></td>
</tr>
</tbody>
</table>

Now, suppose we are using S2 and we want to recreate S1 (say, as a view):

\[
\text{EMP} := \text{EMPNEW} \ast \text{HOME_BASE}.
\]

We get the following join:

<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>HOME/apt</th>
<th>SSN</th>
<th>FLT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>National</td>
<td>111-22-3333</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>JFK</td>
<td>111-22-3333</td>
<td>18</td>
<td>*</td>
</tr>
<tr>
<td>Smith</td>
<td>JFK</td>
<td>222-33-4444</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td>National</td>
<td>222-33-4444</td>
<td>48</td>
<td>*</td>
</tr>
<tr>
<td>Jones</td>
<td>La Guardia</td>
<td>333-44-5555</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>
Here, the *-tuples are spurious!
What happened? Since NAME is not a key, a careless join produced wrong results.

**Summary of problems:**

- Insertion, deletion and modification anomalies.
- Too many NULLs.
- Spurious tuples.

⇒ We need a theory of schema design
⇒ *functional dependencies* and *normalization*
6.3 Functional Dependencies

- First, some convenient notions (and notation):
  - Suppose our relational database has attributes $A_1, \ldots, A_n$.
  - Let $R$ denote the schema $R = (A_1, \ldots, A_n)$.
  - Typically, of course, we will have several relations, 
    e.g., EMP($A_1, A_3, A_9$), DEPT($A_9, A_7, A_8$) ... etc.
  - However, we will pretend there is a relation with all the attributes, 
    i.e., with schema $R = (A_1, A_2, \ldots, A_n)$.

- **Definition.** A functional dependency (FD) between two sets of 
  attributes $X$ and $Y$, denoted by $X \rightarrow Y$, specifies a certain relationship 
  or connection between $X$ and $Y$. Specifically, it says: 
  if $t_1$ and $t_2$ are any two tuples in any instance of $R$ such that 
  $$t_1[X] = t_2[X]$$
  then 
  $$t_1[Y] = t_2[Y]$$
  Intuitively, $X \rightarrow Y$ means: if you know the $X$-values of a tuple, then 
  that uniquely determines the $Y$-values.

  Note: $X$ and $Y$ can be single attributes or groups of attributes.

- Example:
  Consider the relational database schema:
  $$\text{EMP (NAME, SSN, FLT.ID, START.APT, END.APT)}$$
  Suppose
  $$X = \{\text{SSN}\}$$
  $$Y = \{\text{NAME}\}$$
Then $X \rightarrow Y$, i.e., SSN uniquely determines NAME

From the definition, if we are given two tuples $t_1$ and $t_2$, e.g.,

$$t_1 = <111-22-3333, \ldots , \text{Smith}, \ldots >$$
$$t_2 = <111-22-3333, \ldots , \text{Smith}, \ldots >$$

where

$$t_1[X] = t_2[X] \quad (\text{i.e., } t_1[\text{SSN}] = t_2[\text{SSN}])$$

then it must be true that

$$t_1[Y] = t_2[Y] \quad (\text{i.e., } t_1[\text{NAME}] = t_2[\text{NAME}]).$$

Thus, we can’t have two tuples with the same SSN and different NAME’s.

Similarly, the functional dependency

$$\{\text{FLT}_\text{ID}\} \rightarrow \{\text{START}_\text{APT}, \text{END}_\text{APT}\}$$

is a reasonable assumption or a reasonable constraint to declare.

- Functional dependencies are specified to capture dependencies for all instances.

It may just happen that employee names (NAME) are all different for a particular instance.

$$\Rightarrow$$ we may be led to believe that $\{\text{NAME}\} \rightarrow \{\text{FLT}_\text{ID}\}$.

But, later on, another ‘Smith’ might join the airline

$$\Rightarrow$$ this would be a poor choice of a FD.

A FD is a property of the meaning of attributes

$$\Rightarrow$$ it should hold for all possible instances.
• FD’s for specific relations.
  Although we have defined FD’s on the universe of attributes, we will
  often discuss FD’s within particular relations.
  For example, the database schema might be:

  (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN).

  We might have the relation

  Flight (FLT_ID, START_APT, END_APT)

  Here, we can identify the FD

  \{FLT_ID\} \rightarrow \{START_APT, END_APT\}

  in Flight.

• Sometimes a diagram is used to show FD’s, e.g.,

  NAME, SSN, FLT_ID, START_APT, END_APT

  Here the FD’s shown are:

  \{SSN\} \rightarrow \{NAME, FLT_ID\}
  \{FLT_ID\} \rightarrow \{START_APT, END_APT\}

• Summary:
  
  – A FD is defined between sets of attributes.
  
  – The FD \(X \rightarrow Y\) says “The \(X\)-attributes completely determine the
    \(Y\)-attributes”.

  361
6.4 Sets of Functional Dependencies

- Consider the following example:

\[
\text{EMP (NAME, SSN, FLT ID, START APT, END APT)}
\]

\[
\begin{align*}
\text{NAME, SSN, FLT ID, START APT, END APT} \\
\end{align*}
\]

The obvious FD’s are:

\[
\begin{align*}
\{ \text{SSN} \} & \rightarrow \{ \text{FLT ID} \} \\
\{ \text{FLT ID} \} & \rightarrow \{ \text{START APT, END APT} \}
\end{align*}
\]

Let \( F \) denote the above collection of FD’s.

From \( F \), we can infer

\[
\{ \text{SSN} \} \rightarrow \{ \text{START APT, END APT} \}.
\]

Why? Because, SSN uniquely determines FLT ID and FLT ID uniquely determines \{START APT, END APT\}.

Also, the following FD’s are examples of trivial FD’s inferred from \( F \).

\[
\begin{align*}
\{ \text{SSN} \} & \rightarrow \{ \text{SSN} \} \\
\{ \text{SSN, NAME} \} & \rightarrow \{ \text{NAME} \}
\end{align*}
\]

- **Definition.** Suppose \( F \) is a set of FD’s. Then, \( F^+ \), the closure of \( F \) is the set of FD’s that includes \( F \) and all the FD’s that can be inferred from \( F \).
6.5 Inference Rules for FD Sets

• NOTE the following:

1. When we say $X \rightarrow Y$, $X$ and $Y$ are *subsets* of the universe of attributes.

2. For convenience, we will sometimes drop the set notation and commas within sets.

Suppose $F$ is the set of FD’s:

$$
X \rightarrow Y \\
X \rightarrow Z.
$$

Then, from $F$ we can infer:

$$
X \rightarrow YZ.
$$

Here, $YZ$ denotes the *union* of $Y$ and $Z$.

For example, $F$ is

$$
X = \{\text{SSN}\} \rightarrow \{\text{NAME}\} = Y \\
X = \{\text{SSN}\} \rightarrow \{\text{FLT}_{\text{JD}}\} = Z.
$$

From which we conclude

$$
X = \{\text{SSN}\} \rightarrow \{\text{NAME, FLT}_{\text{JD}}\} = Y \cup Z = YZ
$$

• From above, we can devise a rule: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.

Such a rule is called an *inference rule*. 

• Standard inference rules for FD’s:

1. **Reflexive rule.** If $Y \subseteq X$ then $X \rightarrow Y$.
   
e.g. $\{\text{SSN, NAME}\} \rightarrow \{\text{NAME}\}$

2. **Augmentation rule.** If $X \rightarrow Y$ then $XZ \rightarrow YZ$ for any group of attributes $Z$.
   
e.g.

   
   \[
   \begin{align*}
   X &= \{\text{SSN}\} \\
   Y &= \{\text{NAME}\} \\
   Z &= \{\text{START\_APT}\}
   \end{align*}
   \]

   Then, $\{\text{SSN}\} \rightarrow \{\text{NAME}\}$ implies

   $\{\text{SSN, START\_APT}\} \rightarrow \{\text{NAME, START\_APT}\}$

3. **Transitive rule.** If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$.
   
e.g., the FD’s

   
   \[
   \begin{align*}
   \{\text{SSN}\} & \rightarrow \{\text{FLT\_ID}\} \\
   \{\text{FLT\_ID}\} & \rightarrow \{\text{END\_APT}\}
   \end{align*}
   \]

   together imply

   $\{\text{SSN}\} \rightarrow \{\text{END\_APT}\}$.

4. **Decomposition rule.** If $X \rightarrow YZ$ then $X \rightarrow Y$.
   
e.g. the FD

   $\{\text{SSN}\} \rightarrow \{\text{NAME, FLT\_ID}\}$

   implies

   $\{\text{SSN}\} \rightarrow \{\text{NAME}\}$. 
5. **Union rule.** If \( X \rightarrow Y \) and \( X \rightarrow Z \) then \( X \rightarrow YZ \).

   e.g. the FD’s

   \[
   \{\text{SSN}\} \rightarrow \{\text{NAME}\} \\
   \{\text{SSN}\} \rightarrow \{\text{FLT\_ID}\}
   \]

   imply

   \[
   \{\text{SSN}\} \rightarrow \{\text{NAME, FLT\_ID}\}.
   \]

6. **Pseudotransitive rule.** If \( X \rightarrow Y \) and \( WY \rightarrow Z \) then \( WX \rightarrow Z \).

   e.g. consider the relation

   OVERTIME (NAME, SSN, RANK, FLT\_ID, START\_APT, END\_APT, BONUS)

   The FD’s

   \[
   \{\text{FLT\_ID}\} \rightarrow \{\text{START\_APT, END\_APT}\} \\
   \{\text{RANK, START\_APT, END\_APT}\} \rightarrow \{\text{BONUS}\}
   \]

   imply

   \[
   \{\text{RANK, FLT\_ID}\} \rightarrow \{\text{BONUS}\}.
   \]

- One can use Rules 1-6 to determine \( F^+ \).
- It turns out that Rules 1-3 are sufficient to completely determine \( F^+ \).

Rules 1-3 are called **Armstrong’s Rules** in honor of the person who proved this result.

- **Equivalent FD sets.**
  - For most FD-sets \( F \), the closure \( F^+ \) is probably quite large.
  - While we are interested in the *theoretical* implications of \( F^+ \) for any \( F \), we are rarely going to *compute* \( F^+ \).

    \( \Rightarrow \) Working with \( F \) turns out to be good enough.
  - **Definition.** FD-sets \( E \) and \( F \) are **equivalent** if \( E^+ = F^+ \), i.e., if their closures are equal.
  - If \( E \) is a set of FD’s smaller than \( F \) and yet \( E^+ = F^+ \), then it is easier to work with \( E \).
  - If \( E^+ = F^+ \) we also say that \( E \) **covers** \( F \) or is a **cover for** \( F \).
6.6 Attribute Set Closures

- If $X$ is an attribute set, we are often interested in \emph{all} attributes (functionally) determined by $X$.
i.e., what is the largest $Y$ for which $X \rightarrow Y$?
For example, consider

\begin{align*}
\text{EMP} & (\text{NAME, SSN, FLT\_ID, START\_APT, END\_APT}) \\
\text{NAME, SSN, FLT\_ID, START\_APT, END\_APT} & \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
\end{align*}

Here, SSN determines all the other attributes.
\Rightarrow \{\text{SSN}\}^+ = \{\text{name, SSN, FLT\_ID, START\_APT, END\_APT}\}

- \textbf{Definition.} If $F$ is a set of FD’s and $X$ is a set of attributes, then
$X^+$ is the \textbf{closure of $X$ under $F$} if $X^+$ is the largest set of attributes
functionally determined by $X$ using inference rules on FD’s in $F$.

- Algorithm for determining $X^+$. 

Algorithm: \texttt{Attribute-Set-Closure (X, F)}

Input: Attribute set \(X\), FD set \(F\).

Output: Closure of \(X\), \(X^+\).

1. \(X^+ := X\);
2. repeat
3. \(\text{old}_X^+ := X^+;\)
4. for each FD \(Y \rightarrow Z\) in \(F\) do
5. \(\text{if } Y \subseteq X^+ \text{ then}\)
6. \(X^+ := X^+ \cup Z;\)
7. until \(\text{old}_X^+ = X^+;\)
8. return \(X^+;\)

For example, suppose \(F\) is:

- \([\{\text{SSN}\} \rightarrow \{\text{NAME}\}]\)
- \([\{\text{FLT_ID}\} \rightarrow \{\text{START_APT}, \text{END_APT}\}]\)
- \([\{\text{SSN}\} \rightarrow \{\text{FLT_ID}\}]\)

and suppose we want the closure of \(X=\{\text{SSN, NAME}\}\) under \(F\).

- Initially, \(X^+ := \{\text{SSN, NAME}\}\).
- In the first iteration of the outerloop, in line 3 \(\text{old}_X^+ = \{\text{SSN, NAME}\}\).
- Then, the FD \(\{\text{FLT_ID}\} \rightarrow \{\text{START_ID, END_APT}\}\) is processed in the \texttt{for}-loop.
  \(\Rightarrow\) since \(\{\text{FLT_ID}\}\) is not in \(X^+\), it is ignored.
- Then, the FD \(\{\text{SSN}\} \rightarrow \{\text{FLT_ID}\}\) is processed
  \(\Rightarrow\) it results in \(X^+ = \{\text{SSN, NAME, FLT_ID}\}\).
- After the first iteration of the \texttt{repeat}-loop, \(X^+ = \{\text{SSN, NAME, FLT_ID}\}\) and \(\text{old}_X^+ = \{\text{SSN, NAME}\}\)
  \(\Rightarrow\) must continue.
- In the second iteration, the FD \{FLT_ID \rightarrow \{START_ID, END_APT\}\} is processed in the for-loop.
  ⇒ it results in \(X^+ = \{SSN, NAME, FLT_ID, START_APT, END_APT\}\).

- After the second iteration of the repeat-loop, \(X^+ = \{SSN, NAME, FLT_ID, START_APT, END_APT\}\) and \(old\_X^+ = \{SSN, NAME, FLT_ID\}\)
  ⇒ must continue.

- No changes in third iteration
  ⇒ stop.

Finally, \(X^+ = \{SSN, NAME, FLT_ID, START_APT, END_APT\}\).
6.7 Normal Forms

- Normal forms are properties of *relations*.
- There are many normal forms: First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF), Boyce-Codd Normal Form (BCNF), etc.
- We say a relation is in *xNF* if its attributes satisfy certain properties (via their FD’s).
- Generally, these properties are desirable.
- For example, if we desire the 3NF for a relational database:
  - We will test the relations in the database to see which are in 3NF.
  - Those that are not in 3NF will be decomposed into smaller relations (smaller in numbers of attributes) until we have each relation satisfying the 3NF properties.
- In the real world, most people try to achieve at least 3NF.
  It is slightly better to achieve BCNF (Boyce-Codd Normal Form), but 3NF is considered ‘not bad’.
- The end result is: if a database is in BCNF (or 3NF), many anomalies are avoided.
- FD’s were designed to test for Normal Forms.
- It is easier to understand normal forms by first considering a simpler version – *normal forms for primary keys*.
- Recall some definitions and notation:
– A **prime attribute** – an attribute belonging to *some candidate key* (not necessarily the primary key).

– A **nonprime attribute** – not belonging to any candidate key.
6.8 1NF: First Normal Form

- **Definition.** A relation is in 1NF if:
  1. the value of any attribute in any tuple is a single value, and
  2. domains of attributes contain only atomic values.

- **Example of relations not satisfying 1NF:**

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111–22–3333</td>
<td>17</td>
<td></td>
<td>40000</td>
</tr>
<tr>
<td>Jones</td>
<td>222–33–4444</td>
<td>{12, 53, 119}</td>
<td></td>
<td>64000</td>
</tr>
<tr>
<td>Brown</td>
<td>333–44–5555</td>
<td>27</td>
<td></td>
<td>575</td>
</tr>
</tbody>
</table>

  ⇒ Does not satisfy first part of definition.

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>START–APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111–22–3333</td>
<td>17</td>
<td>National</td>
<td>JFK</td>
</tr>
<tr>
<td>Jones</td>
<td>222–33–4444</td>
<td>12, 53, 119</td>
<td>JFK</td>
<td>National</td>
</tr>
<tr>
<td>Brown</td>
<td>333–44–5555</td>
<td>27</td>
<td>National</td>
<td>Logan</td>
</tr>
</tbody>
</table>

  ⇒ Does not satisfy second part of definition (contains nested relations).
• It is easy to transform the above relations to satisfy 1NF by:
  1. adding tuples or
  2. creating new relations

For the first example:

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>MILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111−22−3333</td>
<td>17</td>
<td></td>
<td>40000</td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>12</td>
<td></td>
<td>64000</td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>53</td>
<td></td>
<td>64000</td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>119</td>
<td></td>
<td>64000</td>
</tr>
<tr>
<td>Brown</td>
<td>333−44−5555</td>
<td>27</td>
<td></td>
<td>575</td>
</tr>
</tbody>
</table>

For the second example:

<table>
<thead>
<tr>
<th>PASSENGER</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>FLIGHT</th>
<th>FLT_ID</th>
<th>START–APT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111−22−3333</td>
<td>17</td>
<td>17</td>
<td>National</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>12</td>
<td>12</td>
<td>JFK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>53</td>
<td>53</td>
<td>JFK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>222−33−4444</td>
<td>119</td>
<td>119</td>
<td>National</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>333−44−5555</td>
<td>27</td>
<td>27</td>
<td>Logan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• 1NF is nowadays taken for granted (i.e., later formulations of relational theory assume relations to be in 1NF).
  ⇒ we will assume all relations are in 1NF.

• Sometimes, raw data not in 1NF is called *unnormalized* data.
6.9 2NF: Second Normal Form

- **Definition.** A FD $X \rightarrow Y$ is a partial dependency if there exists an attribute $A \in X$ such that

$$X - A \rightarrow Y.$$ 

We say that $Y$ is **partially dependent** on $X$.

Example: consider the following relation with primary key \{SSN, FLT_ID\}

$$\text{OVERTIME (NAME, SSN, FLT_ID, BONUS)}$$

and suppose that bonuses are based on flight duration, and on the crew member’s rank and salary.

Here we can identify some FD’s such as

$$\{\text{SSN, FLT_ID}\} \rightarrow \{\text{BONUS}\}$$
$$\{\text{SSN}\} \rightarrow \{\text{NAME}\}$$

Now, neither one of

$$\{\text{SSN}\} \rightarrow \{\text{BONUS}\}$$
$$\{\text{FLT_ID}\} \rightarrow \{\text{BONUS}\}$$

is true.

Thus, $\{\text{SSN, FLT_ID}\} \rightarrow \{\text{BONUS}\}$ is not a partial dependency.

But, $\{\text{SSN}\} \rightarrow \{\text{NAME}\}$

$\Rightarrow$ NAME is partially dependent on the primary key \{SSN,FLT_ID\}

$\Rightarrow$ $\{\text{SSN, FLT_ID}\} \rightarrow \{\text{NAME}\}$ is a partial dependency.

- **Definition.** A relation schema is in 2NF if no nonprime attribute is partially dependent on the primary key
  (in other words, depends on part of the primary key).
• Thus, in the above example, OVERTIME is not in 2NF. (It is, however, in 1NF).

• Why is this a problem?
  Suppose an instance looks like:

<table>
<thead>
<tr>
<th>OVERTIME</th>
<th>NAME</th>
<th>SSN</th>
<th>FLT_ID</th>
<th>BONUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smith</td>
<td>111-22-3333</td>
<td>17</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Jones</td>
<td>222-33-4444</td>
<td>28</td>
<td>375</td>
</tr>
</tbody>
</table>

Suppose we want to insert the tuple

<Brown, 111-22-3333, 18, 950>.

Because we have the FD: \{SSN\} \rightarrow \{NAME\} we will have to check that

<Brown, 111-22-3333,...>

is valid, i.e., that it matches other SSN,NAME values for SSN=111-22-3333

⇒ we have to scan the whole relation (worst-case) to check
⇒ *insertion anomaly*.

Note that

<Brown, 111-22-3333,...>

is not valid.

Similarly, if Flight # 28 is deleted

⇒ we will lose the information “222-33-4444 is the SSN of Jones”

⇒ *deletion anomaly*.

This relation also has a *modification anomaly*:

⇒ if Smith changes name to Brown

⇒ have to propagate change to all relevant tuples.
To solve the problem, consider the decomposition of

\[ \text{OVERTIME (NAME, SSN, FLT\_ID, BONUS)} \]

into

\[ \text{OVERTIME (SSN, FLT\_ID, BONUS)} \]
\[ \text{PERSONAL\_INFO (SSN, NAME)} \]

These relations are in 2NF, with the important FD’s:

\[ \{\text{SSN, FLT\_ID}\} \rightarrow \{\text{BONUS}\} \]
\[ \{\text{SSN}\} \rightarrow \{\text{NAME}\} \]

There are no partial dependencies of nonprime attributes on primary keys
\[ \Rightarrow \text{the new set of relations is in 2NF.} \]
### 6.10 3NF: Third Normal Form

- **Definition.** The FD $X \rightarrow Y$ is a transitive dependency in relation $R$ if there exists a set of attributes $Z$ in $R$ such that
  1. $X \rightarrow Z$ and $Z \rightarrow Y$
  2. $Z$ is not a subset of any key of $R$

Example: consider the relation

```
EMP (NAME, SSN, POSITION, DEPTNO, DNAME, MGRSSN).
```

- Observe that EMP is in 2NF since no partial dependencies exist at all (and hence partial dependencies on the primary key don’t exist).
- Next, consider these FD’s (there are others):

```
{SSN} \rightarrow \{DEPTNO\}
{DEPTNO} \rightarrow \{MGRSSN\}
```

Note that DEPTNO is not part of any key.

$\Rightarrow$ there is a transitive dependency of MGRSSN on SSN.

- **Definition.** A relation $R$ is in 3NF if
  1. it is in 2NF and,
  2. no nonprime attribute is transitively dependent on the primary key.

In the above example:

- EMP is in 2NF
- MGRSSN is a nonprime attribute transitively dependent on the primary key SSN.

$\Rightarrow$ EMP is not in 3NF.
• Why should we care about 3NF?

Consider the following instance of EMP:

<table>
<thead>
<tr>
<th>EMP</th>
<th>NAME</th>
<th>SSN</th>
<th>POSITION</th>
<th>DEPTNO</th>
<th>DNAME</th>
<th>MGRSSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>...</td>
<td>...</td>
<td>5</td>
<td></td>
<td>Crew</td>
<td>111-22-3333</td>
</tr>
<tr>
<td>Jones</td>
<td>...</td>
<td>...</td>
<td>6</td>
<td></td>
<td>Ticketing</td>
<td>222-33-4444</td>
</tr>
</tbody>
</table>

Suppose we insert the tuple <Brown,...,5, Security, 333-44-5555>
⇒ we would have to check that the DEPTNO matches the MGRSSN (wrong in this case)
⇒ scanning the database
⇒ insertion anomaly.

Similarly, if Smith’s DEPTNO changes to 6
⇒ we will have to also insert the correct MGRSSN in Smith’s tuple
⇒ modification anomaly.

A deletion anomaly also occurs, if we delete Smith’s tuple and Smith is the last Crew employee
⇒ we will lose the information “Dept# 6 is Crew”
⇒ deletion anomaly.

• To solve a 3NF problem, we can decompose relations.

In the above example:

E1 (NAME, SSN, POSITION, DEPTNO)
E2 (DEPTNO, DNAME, MGRSSN)

Note:

1. E1 and E2 are in 3NF.
2. EMP can be recovered by joining E1 and E2.
3. The join will not create spurious tuples.
6.11 General Definitions of 2NF and 3NF

- We have defined 2NF and 3NF using primary keys.
- General definitions based on any candidate key are desirable.
- 2NF:
  - *Primary key version*: A relation schema $R$ is in 2NF if every nonprime attribute $A$ in $R$ is not partially dependent on the primary key.
  - *General version*: A relation schema $R$ is in 2NF if every nonprime attribute $A$ in $R$ is not partially dependent on any key of $R$.

Consider the following example:

AIRCRAFT_PANTS (MANUF, CODE, PART_ID, DESCR, URL, PRICE).

Here,

- The airline keeps information about aircraft parts.
- PART_ID is the primary key
  ⇒ it is a a unique number assigned by the airline to each part.
- Each part is manufactured by a single manufacturer (MANUF) and
  the manufacturer uses a code (CODE) to identify the part
  ⇒ the combination \{MANUF, CODE\} is a key.
- The URL is the (internet) address of the manufacturer’s webpage.

Now, each manufacturer has a web page
⇒ we have the FD \{MANUF\} → \{URL\}
⇒ a dependency from part of a key to something else.

Then, AIRCRAFT_PANTS is in 2NF according to the primary version of the definition (no partial dependency on the primary key).

378
But the partial dependency on MANUF causes the general definition to fail
⇒ AIRCRAFT_PARTS is not in 2NF.

- We want the general definition to hold, because otherwise we will have to check the FD \{MANUF\} → \{URL\} for every insertion.

We can decompose

```
AIRCRAFT_PARTS (MANUF, CODE, PART_ID, DESCR, URL, PRICE).
```

into

```
PARTS (MANUF, CODE, PART_ID, DESCR, PRICE)
WEBSITES (MANUF, URL)
```

This schema is in 2NF.

- Thus we see how our elaborate definitions of normal forms helps us catch problems in seemingly innocuous schemas (like AIRCRAFT_PARTS).

- 3NF:

  - **Primary key version:** A relation \( R \) is in 3NF if
    1. it is in 2NF, and
    2. no nonprime attribute is transitively dependent on the primary key of \( R \).

  - **General version:** A relation \( R \) is in 3NF if
    1. it is in 2NF, and
    2. no nonprime attribute is transitively dependent on any key of \( R \).

Now observe this:

- If \( X \subseteq \{A_1, \ldots, A_n\} \) is any key then \( X \rightarrow Y \) for any \( Y \subseteq \{A_1, \ldots, A_n\} \)

- Suppose for some relation \( R \)
  1. \( X \) is the primary key.
2. $Y$ is some other key.
3. $Z$ is transitively dependent on $Y$, i.e., there are FD’s
   \[ Y \rightarrow W \text{ and } W \rightarrow Z. \]

But $X \rightarrow W$ since $X$ is a key.
$\Rightarrow Z$ is transitively dependent on $X$ (the primary key)
$\Rightarrow$ the two 3NF definitions are identical.

For example, consider
\[
\text{AIRCRAFT\_PARTS (MANUF, CODE, PART\_ID, EMAIL, URL, PRICE).}
\]

Then, the FD $\{\text{EMAIL}\} \rightarrow \{\text{URL}\}$ may be a reasonable choice
$\Rightarrow$ there is a transitive dependency $\text{PART\_ID} \rightarrow \{\text{EMAIL}\} \rightarrow \{\text{URL}\}$.

But, since $\{\text{MANUF, CODE}\}$ is a key
$\Rightarrow \{\text{MANUF, CODE}\} \rightarrow \{\text{PART\_ID}\}$ trivially
$\Rightarrow \{\text{MANUF, CODE}\} \rightarrow \{\text{EMAIL}\} \rightarrow \{\text{URL}\}$
$\Rightarrow$ transitive dependency on a nonprimary key.
6.12 **BCNF: Boyce-Codd Normal Form**

- Consider the relation

\[
\text{PARTS (MANUF, CODE, URL)}.
\]

Suppose that each manufacturer has a webpage form that depends on the part being ordered

\[\Rightarrow\text{ a different URL for each part.}\]

We can identify the natural FD:

\[
\{\text{MANUF, CODE}\} \rightarrow \{\text{URL}\}.
\]

Note that we also have the FD:

\[
\{\text{URL}\} \rightarrow \{\text{MANUF}\}
\]

since a given URL can only correspond to a unique manufacturer.

Is PARTS in 2NF?

- Recall: no nonprime attribute should have a partial dependence on a key.
- Here, a manufacturer has different URL’s
  \[\Rightarrow\text{ no dependence of URL on MANUF.}\]

\[\Rightarrow\text{ it passes the 2NF test}\]

Is PARTS in 3NF?

- It is in 2NF.
- Recall: we should not have any transitive dependence on a key.
- Now, \{\text{MANUF, CODE}\} is the only key
  \[\Rightarrow\text{ URL is the only attribute left}\]
  \[\Rightarrow\text{ can’t have a transitive dependency with only one nonprime attribute.}\]

\[\Rightarrow\text{ PARTS is in 3NF.}\]
• So, what is the problem?

Unfortunately, PARTS (MANUF, CODE, URL) has all the anomalies (insertion, deletion and modification).

  – The FD \{URL\} \rightarrow \{MANUF\} is the real problem.
  – Suppose, we delete the tuple

    If this is the only Boeing tuple in the relation, we will lose Boeing’s URL
    \Rightarrow \textit{deletion anomaly}.

It is easy to check that insertion and modification anomalies are also present.

• The problem appears to be:

  – In 2NF: we did not allow FD’s from parts of keys to nonprime attributes.
  – Here we have an FD from an attribute to part of a key.

• One option is to introduce the following rule for every relation:

  1. it should be in 3NF
  2. there should be no FD \(X \rightarrow Y\) such that \(Y\) is part of a key.

Unfortunately, this rule is too \textit{restrictive}.

E.g., consider

\texttt{AIRCRAFT\_PARTS (MANUF, CODE, PART\_ID, DESCR, PRICE)}.

Here,

  – PART\_ID is the primary key.
  – \{MANUF, CODE\} is another key.
  – The FD \{PART\_ID\} \rightarrow \{MANUF\} follows.
Thus, if we disallow relations of this sort, we will be essentially barring all non-primary keys from having multiple attributes.  
⇒ may be too restrictive in practice.

• Let us try to soften the rule:

  1. it should be in 3NF
  2. for every FD $X \rightarrow Y$, such that $Y$ is part of a key, $X$ should itself be a key.

That is, we do allow part of keys to be dependent on things – provided those things are keys.

This is a reasonable assumption because:

– If $X$ is a key, we would likely have to check uniqueness anyway (and that’s all we have to do – using the unique keyword in SQL).
– Deletion causes less of an anomaly, e.g., in

  AIRCRAFT PARTS (MANUF, CODE, PART ID, DESCR, PRICE).

  the FD {PART ID} $\rightarrow$ {MANUF} is not important.

Deleting the only tuple with ‘Boeing’, e.g.,

  <Boeing, 423, 12, Coat-rack, $50>,$

we lose the information “Part id 12 is made by Boeing”.

But, if we delete the tuple

  <Boeing, 423, Coat-rack, $50>,$

we are really saying “Boeing is the only company who makes the coat-racks we use, and we don’t need coat-racks”

⇒ it’s OK to lose “Part id 12 is made by Boeing”.

• The softened rule above needs a small modification:

  Observe that in the above example, we have the FD

  \{PART ID\} $\rightarrow$ \{MANUF\}.  

383
This passes our new test.

However, the following is also an FD:

\[
\{\text{PART\_ID, PRICE}\} \rightarrow \{\text{MANUF}\}.
\]

This fails the test because \{\text{PART\_ID,PRICE}\} is not a key.

However, it is a superkey (contains a key).

- Final form:

**Definition.** A relation \( R \) is in Boyce-Codd Normal Form (BCNF) if:

1. it is in 3NF
2. for every FD \( X \rightarrow Y \) such that \( Y \) is part of a key, \( X \) is a superkey.
• First recall the 3NF definition:

  1. 2NF
  2. no transitive dependency from a key to a nonprime attribute should exist.

Here, a transitive dependency means:

- \( X \rightarrow Y \) and \( Y \rightarrow Z \)
- \( Y \) is not part of any key
- \( X \) is a key
- \( Z \) is a nonprime attribute

Now, since \( X \) is a key, the FD \( X \rightarrow Y \) must be true for any \( Y \).
Thus, the condition is really saying (given \( X \) is a key) that for \( Y \rightarrow Z \):

- (a) \( Y \) is not part of any key
- (b) \( Z \) is a nonprime attribute

Next, recall that 2NF is essentially:

- if \( Y \rightarrow Z \) then \( Y \) cannot be a proper subset of a key.

Combine this with the first item (a) in 3NF and write (b) separately:
A relation \( R \) is in 3NF if for every FD \( Y \rightarrow Z \) either

  1. \( Y \) is a superkey, or
  2. \( Z \) is a prime attribute.

• This is an alternate definition of 3NF which does not mention 2NF.
• Note that if $Z$ is a prime attribute, we allow $Y \rightarrow Z$ even if $Y$ is not a superkey, e.g. in

\[
\text{PART (MANUF, CODE, URL)}
\]

we allowed \{URL\} $\rightarrow$ \{MANUF\} because \{MANUF\} is a prime attribute (it is part of the key \{MANUF, CODE\}).

But BCNF does not allow this.

Hence, an alternate definition of BCNF is:
A relation $R$ is in BCNF if for every FD $Y \rightarrow Z$, $Y$ is a superkey of $R$.

– This definition does not use 3NF.

• NOTE:

– We must be careful to rule out trivial dependencies from consideration:
  * The dependency $X \rightarrow A$ where attribute $A \in X$ is called a \textit{trivial dependency}.
  * Example: \{SSN, NAME\} $\rightarrow$ \{SSN\}.
  * We rule out trivial dependencies because they occur with any subset of attributes.

– Suppose $Y = \{A_1, \ldots, A_k\}$ is a subset of attributes and $X \rightarrow Y$.
  * We know that $X \rightarrow A_i$ for $i = 1, \ldots, k$ by the decomposition rule.
  * Thus, the BCNF definition can also be stated as: \textit{a relation is in BCNF if every nontrivial dependency is one in which a superkey determines an attribute.}
– Informally, the only functional dependencies in a BCNF go from keys to other attributes.

– Example:
  * Suppose $X$ is a superkey and $X \rightarrow A$ in a BCNF relation, $R$.
  * Suppose $B$ is some other attribute.
  * Consider the following tuples:
    \[
    \begin{array}{ccc}
    R & X & A & B \\
    x & a & b \\
    x & a & ? \\
    \end{array}
    \]

    * The value $X = x$ determines the value $A = a$.
    * But could we have different $B$-values?
    * Different $B$-values raise the familiar problem of $X \rightarrow A$ anomalies.
    * But since $R \in BCNF$, $X$ is a superkey and so $X \rightarrow B$ (simply by being a superkey).
    * Thus, the $B$-value must be $b$.
    * Since we can’t have duplicate tuples, it won’t be allowed.

• Finally, observe that

    \[
    R \text{ is in BCNF} \quad \Rightarrow \quad R \text{ is in 3NF} \\
    \Rightarrow \quad R \text{ is in 2NF} \\
    \Rightarrow \quad R \text{ is in 1NF}
    \]
6.14 Another View of Normal Forms

• If the discussion so far has been confusing, let us try to explain normal forms a little differently.

• First, some simplifications:
  – Let us only consider relations with a single key – a primary key.
  – Assume this key has several attributes.

Note: this simplification is only for conveying the key idea behind normal forms. In practice you would have to use the full definition.

• Let $R(A_1, \ldots, A_6)$ be a relation with primary key $\{A_1, A_2, A_3\}$.

• 2NF says: FD’s like $A_2 \rightarrow A_5$ are not allowed.
  $\Rightarrow$ a proper subset of a key should not be on the left side of an FD:

  \[
  R (A_1, A_2, A_3, A_4, A_5, A_6)
  \]

• 3NF says:
  1. at least 2NF, and
  2. FD’s like $A_4 \rightarrow A_6$ are not allowed.
     $\Rightarrow$ an FD between non-key attributes is not allowed:

  \[
  R (A_1, A_2, A_3, A_4, A_5, A_6)
  \]
• Next, BCNF:

Unfortunately 3NF allows an FD like \( A_5 \rightarrow A_3 \), where \( A_5 \) is nonprime
and \( A_3 \) is part of the key:

\[
\text{R (A1, A2, A3, A4, A5, A6)}
\]

We saw why this was a problem in the BCNF example.
On the other hand we did not want to be too restrictive: if \( A_5 \) happened
to be a key we would allow it:

\[
\text{R (A1, A2, A3, A4, A5, A6)}
\]

• The key ideas above are generalized to allow for:
  – multiple keys in a relation
  – keys consisting of groups of attributes.
6.15 Decomposition and its Problems

- We have seen that it is desirable to have relations in BCNF (or at least 3NF).
- We have seen how to test for BCNF and 3NF.
- But how do we create a BCNF (or 3NF) database?
  - One approach: Ad-hoc
    * Create relations intuitively
    * Test each for BCNF
  - More formal approach:
    * Start with a single large relation with all attributes
    * Systematically decompose relations not in BCNF
    * Repeat until all relations are in BCNF
- Unfortunately, decomposition can create problems:
  - Dependencies may be lost after decomposition.
  - Joins of decomposed relations may create spurious tuples.
  - Joins of decomposed relations may lose tuples.
- Note: thus far, we have identified problems with individual relations
  ⇒ we have not placed constraints among multiple relations.
6.16  Dependency Preservation

- Suppose we decompose \( R = (A_1, \ldots, A_n) \) into relations \( R_1, \ldots, R_m \).

- Of course, we should have **attribute preservation**, i.e., attributes should not be lost in the shuffle:

\[
R_1 \cup R_2 \cup \ldots R_m = R
\]

- Unfortunately, FD’s can be lost, e.g.,

  - Suppose \( F \) is a set of FD’s containing the dependency
    \( \{ \text{PART\_ID} \} \rightarrow \{ \text{PRICE} \} \).

  - Suppose also that \( \{ \text{PART\_ID} \} \) is put in relation \( R_3 \) and \( \{ \text{PRICE} \} \) is put in relation \( R_7 \)
    \( \Rightarrow \) we can’t check the dependency.

- In the above example, the lost FD would be OK, if the dependency were somehow not important
  \( \Rightarrow \) we need to consider the **closure** of FD’s.

- **Definition.** Let \( F \) be a set of FD’s and suppose \( R \) is decomposed into relations \( R_1, \ldots, R_m \). Let \( E \) be the set of FD’s in \( R_1, \ldots, R_m \). Then the decomposition is **dependency preserving** if \( E^+ = F^+ \).

- **Fact:** It is always possible to decompose any relation \( R \) into 3NF relations \( R_1, \ldots, R_m \) such that the decomposition is dependency preserving.
6.17 Nonadditive and Lossless Decompositions

• Suppose we decompose $R$ into $R_1, \ldots, R_m$. Later, we wish to recover $R$ (perhaps as a view).
  
  - The natural join on $R_1, \ldots, R_m$ should return $R$.
  - If we’re not careful, this join can create spurious tuples
    e.g, consider the relation $r$ with schema $R = (\text{CAR}, \text{OWNER}, \text{COLOR})$:

<table>
<thead>
<tr>
<th>CAR</th>
<th>OWNER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>Smith</td>
<td>blue</td>
</tr>
<tr>
<td>Ford</td>
<td>Jones</td>
<td>blue</td>
</tr>
</tbody>
</table>

Suppose we decompose this into $r_1$ and $r_2$ with schemas $R_1 = (\text{CAR}, \text{COLOR})$ and $R_2 = (\text{OWNER}, \text{COLOR})$.

How? Let $r_1 = \Pi_{\text{CAR,COLOR}}(r)$ and $r_2 = \Pi_{\text{OWNER,COLOR}}(r)$:

<table>
<thead>
<tr>
<th>CAR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>blue</td>
</tr>
<tr>
<td>Ford</td>
<td>blue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>blue</td>
</tr>
<tr>
<td>Jones</td>
<td>blue</td>
</tr>
</tbody>
</table>

What happens when we join $r_1$ and $r_2$?

<table>
<thead>
<tr>
<th>CAR</th>
<th>OWNER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>Smith</td>
<td>blue</td>
</tr>
<tr>
<td>Toyota</td>
<td>Jones</td>
<td>blue *</td>
</tr>
<tr>
<td>Ford</td>
<td>Smith</td>
<td>blue *</td>
</tr>
<tr>
<td>Ford</td>
<td>Jones</td>
<td>blue</td>
</tr>
</tbody>
</table>

$\Rightarrow$ Spurious tuples!

• A decomposition of $R$ into $R_1, \ldots, R_m$ is nonadditive if for every instance $r$ of $R$, the natural join of the corresponding instances $r_1, \ldots, r_m$ is equal to $r$, i.e.,

$$ r_1 \ast r_2 \ast \ldots \ast r_m = r$$
where \( r_i = \Pi_{R_i}(r) \).

- Note: nonadditive is the same as ‘creates no spurious tuples’.
- Sometimes, one can inadvertently lose tuples in a join.
- Example:

Suppose EMP (SSN, NAME, FLT_ID, DEPTNO) has too many NULLs in the DEPTNO attribute (because many employees have no assigned department).

<table>
<thead>
<tr>
<th>EMP</th>
<th>SSN</th>
<th>NAME</th>
<th>FLT_ID</th>
<th>DEPTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>Smith</td>
<td>12</td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>222-33-4444</td>
<td>Jones</td>
<td>55</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>333-44-5555</td>
<td>Brown</td>
<td>119</td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>

⇒ One solution is to decompose EMP into two relations:

EMP1 (SSN, NAME, FLT_ID)  
DEPT (SSN, DEPTNO)

e.g.,

<table>
<thead>
<tr>
<th>EMP1</th>
<th>SSN</th>
<th>NAME</th>
<th>FLT_ID</th>
<th>DEPT</th>
<th>SSN</th>
<th>DEPTNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-22-3333</td>
<td>Smith</td>
<td>12</td>
<td>222-33-4444</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222-33-4444</td>
<td>Jones</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-44-5555</td>
<td>Brown</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here,

- Only those employees assigned to a department will have department numbers  
  ⇒ DEPT is small.
- Both EMP1 and DEPT are in BCNF.
- The decomposition is nonadditive and dependency preserving.

Consider the join EMP1 \( \ast \) DEPT:
⇒ the ‘Smith’ and ‘Brown’ tuples are lost!
⇒ we have to be careful in letting joins replace relations.

- We call a decomposition is **lossless** if it does not lose tuples in recovering the original relation.

- **Note:**
  - Nonadditivity and losslessness are two sides of the same coin.
  - We will use the term **lossless** to refer to both.
  - Some books use **additive** to refer to both.

- It would be useful, if given a decomposition, to test whether the decomposition is lossless.

- **A useful fact.** A decomposition of $R$ into $R_1$ and $R_2$ is nonadditive with respect to a set of FD’s $F$, if and only if either one of the FD’s
  \[
  - R_1 \cap R_2 \rightarrow R_1 - R_2 \\
  - R_1 \cap R_2 \rightarrow R_2 - R_1
  \]
is in $F^+$.

Intuition:

- Observe: the attributes $R_1 \cap R_2$ are in both $R_1$ and $R_2$
  ⇒ these are the join attributes.

- Suppose the FD $R_1 \cap R_2 \rightarrow R_1 - R_2$ holds.
  This is the same as $R_1 \cap R_2 \rightarrow R_1 - (R_1 \cap R_2)$
  ⇒ $R_1 \cap R_2$ is a **key** for $R_1$.
  ⇒ weird, unwanted tuple combinations can’t occur.

- In the $R=\{\text{CAR,OWNER,COLOR}\}$ example:
We joined

<table>
<thead>
<tr>
<th>CAR</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>blue</td>
</tr>
<tr>
<td>Ford</td>
<td>blue</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWNER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>blue</td>
</tr>
<tr>
<td>Jones</td>
<td>blue</td>
</tr>
</tbody>
</table>

to get

<table>
<thead>
<tr>
<th>CAR</th>
<th>OWNER</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota</td>
<td>Smith</td>
<td>blue</td>
</tr>
<tr>
<td>Toyota</td>
<td>Jones</td>
<td>blue *</td>
</tr>
<tr>
<td>Ford</td>
<td>Smith</td>
<td>blue *</td>
</tr>
<tr>
<td>Ford</td>
<td>Jones</td>
<td>blue</td>
</tr>
</tbody>
</table>

Note that \{COLOR\} is not a key for either relation.

Here, \( R_1 = (\text{CAR, COLOR}) \) and \( R_2 = (\text{OWNER, COLOR}) \) and,

\[
\begin{align*}
R_1 \cap R_2 &= \text{COLOR} \\
R_1 - R_2 &= \text{CAR} \\
R_2 - R_1 &= \text{OWNER}
\end{align*}
\]

Clearly, the neither of FD’s

\[
\begin{align*}
\{\text{COLOR}\} &\rightarrow \{\text{CAR}\} \\
\{\text{COLOR}\} &\rightarrow \{\text{OWNER}\}
\end{align*}
\]

hold

\( \Rightarrow \) the decomposition is *not* nonadditive.
6.18 Algorithms for Decomposition of Relations

- First, recall that an FD set $E$ covers FD set $F$ if $E^+ = F^+$, i.e., the closure of $E$ is the closure of $F$
  $\Rightarrow$ if $E$ is smaller it will be easier to work with
  $\Rightarrow$ it is useful to determine the minimal cover for an FD set $F$.

- Minimal covers can be defined in a number of ways:
  - $E$ is an FD-minimal cover of $F$ if $E$ covers $F$ and no other FD set
    covers $F$ that has fewer FD’s than $E$.
  - $E$ is an attribute-minimal cover of $F$ if $E$ covers $F$ and no other FD
    set covers $F$ with fewer attributes.
  - $E$ is a left-minimal cover of $F$ if $E$ covers $F$ and no other FD set
    covers $F$ with smaller left-hand-sides.

Note:

- Computing an attribute-minimal cover is a hard (NP-complete) problem
  $\Rightarrow$ no fast algorithm is known.
- Computing FD-minimal covers and left-minimal covers is fairly straightforward.
- Left-minimal covers are all that’s needed for 3NF decompositions.

- Key ideas in finding a left-minimal cover:
  - Consider the relation
    
    \[
    \text{EMP (NAME, SSN, FLT_ID, START_APT, END_APT)}.
    \]
  and the FD set $F$
(1) \{SSN, NAME\} \to \{FLT\_ID, START\_APT\}
(2) \{SSN\} \to \{FLT\_ID\}
(3) \{FLT\_ID\} \to \{START\_APT\}
(4) \{SSN\} \to \{NAME\}
(5) \{SSN, NAME\} \to \{FLT\_ID\}

Note that, given (2) and (4), we don’t need (5) since the combination of (2) and (4) will imply (5).

- The first step is to break up the FD’s so that the right-hand-sides are only single attributes:

\begin{align*}
\{SSN, NAME\} & \to \{FLT\_ID\} \\
\{SSN, NAME\} & \to \{START\_APT\} \\
\{SSN\} & \to \{FLT\_ID\} \\
\{FLT\_ID\} & \to \{START\_APT\} \\
\{SSN\} & \to \{NAME\}
\end{align*}

- Next, see if left-hand-side attributes can be removed.
  * For example, consider the FD \{SSN, NAME\} \to \{FLT\_ID\}.
  * The left-hand-side here is \{SSN, NAME\}.
  * Suppose we remove SSN: \{SSN, NAME\} - \{SSN\}.
  * Can we replace the earlier FD with \{NAME\} \to \{FLT\_ID\}? 
  * To check, we compute the attribute closure of the new left-hand-side, i.e., check whether (\{SSN, NAME\} - \{SSN\})\+ contains the right-hand-side \{FLT\_ID\}.
  * In this case, \{NAME\}\+ does not contain \{FLT\_ID\}
    \Rightarrow cannot remove \{SSN\} from \{SSN, NAME\} \to \{FLT\_ID\}.

- **Definition:** An FD \(X \to Y\) where \(Y\) has more than one attribute is called a *multiple-RHS* FD.

- **Algorithm** for computing a minimal cover:
Algorithm: **LEFT-MIN-COVER** \((F)\)

**Input:** An FD set \(F\).

**Output:** A left-minimal cover \(E\).

1. \(E := F\);
2. **for each** multiple-RHS FD \(X \rightarrow A_1A_2...A_k\) in \(E\)
3. \(E := E - \{X \rightarrow A_1A_2...A_k\}\);
4. **for** \(i \leftarrow 1\) **to** \(k\)
5. \(E := E \cup \{X \rightarrow A_i\}\);
6. /* All multiple-RHS FD’s have been replaced by single-RHS FD’s*/
7. **for each** FD \(X \rightarrow A\) in \(E\)
8. \(X^+ := \text{ATTRIBUTE-SET-CLOSURE} (X, E - \{X \rightarrow A\});\)
9. **if** \(A \in X^+\)
10. \(E := E - \{X \rightarrow A\}\);
11. /* Now, we are rid of unnecessary FD’s. Next, reduce left-hand-sides*/
12. **for each** FD \(X \rightarrow A\) in \(E\)
13. **for each** attribute \(B \in X\)
14. \(D := E - \{X \rightarrow A\} \cup \{(X - B) \rightarrow A\};\)
15. \((X - B)^+ := \text{ATTRIBUTE-SET-CLOSURE} (X - B, D);\)
16. **if** \(A \in (X - B)^+\)
17. \(E := E - \{X \rightarrow A\};\)
18. \(E := E \cup \{(X - B) \rightarrow A\};\)
19. **endif**
20. **endfor**
21. **return** \(E\);

- The following algorithm decomposes a relation \(R\) into a set of 3NF relations \(R_1, R_2, ...\) that are dependency-preserving and nonadditive.
Algorithm: 3NF-DECOMPOSITION \((R, F)\)

**Input:** Relation \(R = (A_1, \ldots, A_k)\) with FD set \(F\).

**Output:** 3NF decomposition \(R_1, R_2, \ldots\)

1. \(E := \text{LEFT-MIN-COVER} (F);\)
2. **for each** left-hand-side \(X_i\) in \(E\)
3. \(R_i := \{X_i\};\)
4. **for each** \(X_i \rightarrow A_j\) in \(F\)
5. \(R_i := R_i \cup \{A_j\};\)
6. **endfor**
   
   // At this point we have a collection of relations \(R_1, \ldots, R_n\)
7. \(R_{n+1} := \emptyset;\)
8. **for each** \(A_i \notin R_1 \cup \ldots \cup R_n\)
9. \(R_{n+1} := R_{n+1} \cup \{A_i\};\)
10. **return** \(R_1, \ldots, R_{n+1};\)

- Why does this work?

  - First note that all the FD’s find their way (see lines 4-5) into the decomposition
    \(\Rightarrow\) it is dependency-preserving.

  - Are the resulting relations in 3NF?
    * Consider a transitive dependency \(X \rightarrow Y \rightarrow Z\) in the original relation.
    * The FD \(X \rightarrow Z\) will be removed in minimal cover since \(X \rightarrow Y\)
      and \(Y \rightarrow Z\) are sufficient to generate \(Z \in Z^+\).
    * Thus, the decomposition (lines 4-5 above) will not create a relation
      with attributes \((X, Y, Z)\) and thus transitive dependencies will be removed.

  - Is the decomposition nonadditive?
    * Note this general property: if \(R\) is a relation and \(X \rightarrow A\) is an FD
then the decomposition $R - A$ and $R' = (X, A)$ is nonadditive. Why? Because a join of $R - A$ and $R'$ only involves $X$ and since $X$ determines $A$, no spurious tuples will be created.

* In the above algorithm, all decomposition steps are of the above type.

- An algorithm for decomposing a relation into a collection of nonadditive BCNF relations.

**Algorithm:** NONADDITIVE-BCNF-DECOMPOSITION ($R, F$)

**Input:** Relation $R$, FD set $F$.

**Output:** A nonadditive BCNF decomposition $R_1, R_2, ...$

1. $R_1, ..., R_k :=$ 3NF-DECOMPOSITION ($R, F$);
2. while $\exists R_i \in R_1, ..., R_k$ not in BCNF
3. if $X \rightarrow Y$ is an FD in $R_i$ that violates BCNF
4. $R_i := R_i - Y$;
5. $k := k + 1$;
6. $R_k := (X, Y)$;
7. endif
8. return $R_1, ..., R_k$;

Intuition:

If $X \rightarrow Y$ is in some $R_i$ and it violates BCNF
  $\Rightarrow$ $X$ is not a superkey of $R_i$ (definition of BCNF)
  $\Rightarrow$ we create a relation $R_k = X \cup Y$
Here $X \rightarrow Y$ implies $X$ is a superkey for $R_k$
  $\Rightarrow$ since $Y$ is removed from $R_i$, it does not cause the BCNF violation.

- Unfortunately, we can’t always decompose $R$ into BCNF relations that are both dependency preserving and nonadditive.

  - The nonadditive property is preserved by the above algorithm.
– It may produce a decomposition that is not dependency-preserving.
– In general, it is impossible to achieve both.
– Example: consider the relation

\[
\text{PARTS (MANUF, CODE, URL)}
\]

where each part has a unique URL.

* The FD’s are:

\[
\begin{align*}
\{\text{MANUF, CODE}\} & \rightarrow \{\text{URL}\} \quad (\text{unique URL for each part}) \\
\{\text{URL}\} & \rightarrow \text{MANUF} \quad (\text{knowing a URL tells you the manufacturer})
\end{align*}
\]

* The PARTS relation is not in BCNF since we have a dependency from an attribute (URL) to part of a key (MANUF).
* Any decomposition will have to separate URL from MANUF.
* This means the FD \(\{\text{MANUF, CODE}\} \rightarrow \{\text{URL}\}\) cannot be preserved in the decomposition

\(\Rightarrow\) no BCNF decomposition of PARTS can be dependency-preserving.
6.19  Formal Schema Design: A Summary

- We saw that ad-hoc designs led to anomalies with insertions, deletions and modifications.

- To analyze relations, we developed the theory of normalization:
  - Definition of functional dependency (FD).
  - Properties of FD’s.
  - Computation of attribute closures.
  - Definition of Normal forms (primary and general versions).

- In practice: try to achieve BCNF. If not possible, live with 3NF.
  If your design is not in 3NF
  ⇒ you have a weird schema.

- Also need to check for nonadditivity and dependency preservation.

- Before using a join to replace existing relations, check to see tuples don’t get lost.

- Sometimes, a BCNF decomposition or a 3NF decomposition can lead to inefficiencies
  ⇒ many queries require expensive joins.
  In this case, one sometimes permits BCNF and 3NF violations for efficiency reasons
  ⇒ violations can be checked separately at leisure.

- Some issues we have not covered:
  - Formal proofs asserting the correctness of algorithms.
  - Finding minimal FD-sets with other definitions of minimality.
– General mechanisms for testing nonadditivity (an algorithm called the Tableau Chase Method).
– Multivalued FD’s and 4NF.
– Other dependencies and normal forms.
Chapter 7

Transaction Processing: Recovery and Concurrency Control

Course Notes on Database Systems
7.1 What is a Transaction?

- To explain what a transaction is, we’ll first consider an example:
  
  - Consider the McVALUE Airlines database with the following additional relations: CORP_ACCOUNTS and BILLING:

CORP_ACCOUNTS	CORP_ID	CNAME	BALANCE
3	IBM	649,314	
19	Intel	213,617	
7	GM	65,973	
42	DuPont	143,112	

BILLING	PNAME	CORP_ID	BALANCE
Sam	19	615	
Joe	7	700	
Sue	42	419	
Pam	0	445	

    BILLING contains the outstanding balance for individual passengers. CORP_ACCOUNTS contains the amount owed by some corporate clients.

    - Some individuals belonging to a corporation can have their ticket charged to the corporate account.
    
    For example, Joe’s outstanding balance is $700 – it can be charged to his corporate (GM’s) account by transferring the amount $700 to 65,973.
    
    ⇒ Joe’s balance becomes 0, GM’s balance becomes 66,673.

    - A corporate id of 0 indicates no corporate affiliation.

    - An embedded SQL program to achieve corporate billing looks like this:

      ```sql
 EXEC SQL DECLARE SECTION
 varchar pass_name[50]; // Passenger name
      ```
int cid; // Corporate id
int amount; // Amount outstanding
EXEC SQL END DECLARE SECTION
// Read in passenger name from screen (not shown)
amount = 0;
EXEC SQL SELECT B.CORP_ID, B.BALANCE // Get the guy’s
        INTO :cid, :amount // Corp_id and balance
        FROM BILLING B
        WHERE B.PNAME = :pass_name;
if (cid > 0) { // Corporate employee?
    EXEC SQL UPDATE BILLING // Zero-out balance
        SET BALANCE = 0
        WHERE PNAME = :pass_name;
    EXEC SQL UPDATE CORP_ACCOUNTS // Add to corporation
        SET BALANCE = BALANCE + :amount
        WHERE CORP_ID = :cid;
}

- For example, if the passenger name entered is “Joe”, the relations are updated to:

<table>
<thead>
<tr>
<th>CORP_ACCOUNTS</th>
<th>CORP_ID</th>
<th>CNAME</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>IBM</td>
<td>649,314</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Intel</td>
<td>213,617</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GM</td>
<td>66,673</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>DuPont</td>
<td>143,112</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BILLING</th>
<th>PNAME</th>
<th>CORP_ID</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam</td>
<td>19</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>Joe</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sue</td>
<td>42</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>Pam</td>
<td>0</td>
<td>445</td>
<td></td>
</tr>
</tbody>
</table>

- Let us observe the interaction between main memory and disk when this change is made:

1. Initially, data is only on disk:
2. Read in passenger name ("Joe") from keyboard:

3. After first SQL statement, Joe’s corporate id (7) and outstanding balance ($700) are read into the client variables cid and amount:
4. After second SQL statement, Joe’s balance is zeroed out:

```
<table>
<thead>
<tr>
<th>CLIENT MEMORY</th>
<th>SERVER MAIN MEMORY</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass_name</td>
<td></td>
<td>Block in BILLING file</td>
</tr>
<tr>
<td>cid</td>
<td></td>
<td>tuple for "Joe"</td>
</tr>
<tr>
<td>amount</td>
<td></td>
<td>tuple for GM</td>
</tr>
<tr>
<td>Joe</td>
<td>0</td>
<td>65973</td>
</tr>
</tbody>
</table>

```

5. For third SQL statement, the block containing GM’s tuple in CORP_ACCOUNTS is first fetched:

```
<table>
<thead>
<tr>
<th>CLIENT MEMORY</th>
<th>SERVER MAIN MEMORY</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass_name</td>
<td></td>
<td>Block in BILLING file</td>
</tr>
<tr>
<td>cid</td>
<td></td>
<td>tuple for "Joe"</td>
</tr>
<tr>
<td>amount</td>
<td></td>
<td>tuple for GM</td>
</tr>
<tr>
<td>Joe</td>
<td>0</td>
<td>65973</td>
</tr>
</tbody>
</table>

```

Then, it is updated and written to disk:
- Note: the method of immediately writing (*Immediate-Write Method*) to disk every update can be very inefficient for multiple updates to a block.

  - For example, consider the following SQL statement:

    ```
 update CORP_ACCOUNTS
 set BALANCE = BALANCE * 0.9;
    ```

  - Next, suppose a block contains 50 tuples
    ⇒ 50 disk writes for each block
    ⇒ 1 second per block (at 20 ms per access)
  
  - It’s better to postpone writing a block until either:
    1. Memory space is needed for other blocks
       ⇒ must write some block to disk.
    2. All the work for the block is done.

Thus, an alternative scenario (*Deferred-Write Method*) for the BAL-ANCE example is:

- Initially, data is only on disk:
- Read in passenger name ("Joe") from keyboard:

- After first SQL statement, Joe’s corporate id (7) and outstanding balance ($700) are read into the client variables cid and amount:
• After second SQL statement, Joe’s balance is zeroed out only in memory:

CLIENT MEMORY

<table>
<thead>
<tr>
<th>pass_name</th>
<th>cid</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>7</td>
<td>700</td>
</tr>
</tbody>
</table>

SERVER MAIN MEMORY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

DISK

Block in BILLING file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700</td>
</tr>
</tbody>
</table>

tuple for “Joe”

Block in CORP_ACCOUNT file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65973</td>
</tr>
</tbody>
</table>

• For third SQL statement, the block containing GM’s tuple in CORP_ACCOUNTS is first fetched:

CLIENT MEMORY

<table>
<thead>
<tr>
<th>pass_name</th>
<th>cid</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>7</td>
<td>700</td>
</tr>
</tbody>
</table>

SERVER MAIN MEMORY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

DISK

Block in BILLING file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700</td>
</tr>
</tbody>
</table>

tuple for “Joe”

Block in CORP_ACCOUNT file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65973</td>
</tr>
</tbody>
</table>

tuple for GM

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65973</td>
</tr>
</tbody>
</table>

• After all modifications are made, the updated blocks are written to disk:

CLIENT MEMORY

<table>
<thead>
<tr>
<th>pass_name</th>
<th>cid</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>7</td>
<td>700</td>
</tr>
</tbody>
</table>

SERVER MAIN MEMORY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

DISK

Block in BILLING file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

tuple for “Joe”

Block in CORP_ACCOUNT file

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66673</td>
</tr>
</tbody>
</table>

tuple for GM

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66673</td>
</tr>
</tbody>
</table>

• In either scenario, an important question arises: what happens if the system crashes before updates to disk are complete?
  
  – In the first scenario, system could crash after ‘0’ is written to Joe’s tuple, but the corporate tuple is untouched
    \[ \Rightarrow \] inconsistent data left in system.
  
  – In the second scenario, system could crash during either disk write’s
    \[ \Rightarrow \] inconsistent data or incomplete execution.

• Thus, we would like the embedded SQL program to change the database completely or not at all.

• **Definition:** Computations that are required to execute completely or not have any effect on the database are called transactions.

• Typically, most transactions are of short duration (like the above example). However, some can be long, e.g.,

\[
\text{update } \text{CORP\_ACCOUNTS} \\
\text{set } \text{BALANCE} = \text{BALANCE} * 0.9;
\]

(affects all the data in one relation).

• More formally, a transaction is a piece of code that has the **ACID** properties:

  – **Atomicity:** Either a transaction completes its changes to the database or it does not modify the database at all.

  – **Consistency:** A transaction should not violate integrity constraints on the data.

  For example, an account transfer transaction should maintain the total to be the same as it was before the transaction.

  \[ \Rightarrow \] programming should be correct.

  – **Isolation:** If transactions \( X_A \) and \( X_B \) run concurrently, then the effects to the database should be the same as if they ran in some serial order (either \( X_A, X_B \) or \( X_B, X_A \)).
- **Durability**: When a transaction completes, its effects on the database must be guaranteed to be written to disk.

- **Definition**: when a transaction “completes its work”, we say it *commits*. 
7.2 Specifying Transactions in SQL

- SQL provides commands for managing transactions.

- Transaction processing commands in SQL:
  - `commit` or `commit work`
    - declare that a transaction’s work is completed.

  - `rollback` or `rollback work`
    - cancel a transaction

  - `set transaction [...]`
    - set isolation properties (how exclusively it locks its data).

- For example, let’s consider a small variation of our running example:

  - Transfer a particular passenger’s balance to his/her corporate account.

  - A corporation’s outstanding balance is not allowed to be higher than $100,000.

  - The following embedded SQL program is a transaction that achieves the task:

    ```sql
 EXEC SQL DECLARE SECTION
 varchar pass_name[50]; // Passenger name
 int cid; // Corporate id
 int cbalance; // Corporate balance
 int amount; // Amount outstanding
 EXEC SQL END DECLARE SECTION
 // Read in passenger name from screen (not shown)
    ```
amount = 0;
EXEC SQL SELECT B.CORP_ID, B.BALANCE // Get the guy’s
    INTO :cid, :amount // Corp_id and balance
    FROM BILLING B
    WHERE B.PNAME = :pass_name;
if (cid > 0) {
    // Corporate employee?
    EXEC SQL UPDATE BILLING // Zero-out balance
        SET BALANCE = 0
        WHERE PNAME = :pass_name;
    EXEC SQL SELECT C.BALANCE // Fetch corp. balance
        INTO :cbalance
        FROM CORP_ACCOUNTS C
        WHERE CORP_ID = :cid
    if (cbalance + amount <= 100000) {
        EXEC SQL UPDATE CORP_ACCOUNTS // Add to corporation
            SET BALANCE = BALANCE + :amount
            WHERE CORP_ID = :cid;
        EXEC SQL COMMIT; // Commit transaction
    }
    else { // Cancel transaction
        EXEC SQL ROLLBACK;
    }
}

– Note: start of transaction is implicit.
7.3 Transaction Processing: The Read-Write Model

- The *read-write model* is a way to abstract away SQL detail and concentrate on what matters in a transaction:
  - when data is written to and from disk;
  - when data is written to and from main memory.

- SQL details we’d like to avoid: data types, the particular SQL statement (e.g., *select* vs. *update*), the names of the relations, etc.

- Define the following commands of the read-write model:
  - `diskread(x)` - read block containing data item $x$ from disk.
  - `diskwrite(x)` - write block containing data item $x$ to disk.
  - `memread(x)` - read or use data item $x$ from block in memory.
  - `memwrite(x)` - write into item $x$ in memory.
  - `commit` - commit the current transaction.
  - `rollback` - rollback or cancel the current transaction.

The idea is:

- We only care about knowing whether a value is being changed in memory or whether it’s changed on disk.
- We don’t really care whether the value is an int, float, char or whatever.
  - $\Rightarrow$ we will use algebraic labels like $x$.

- Consider the previous example:
  - Let the balance in Joe’s billing tuple be called $x$. 
Let Joe's corporate balance in CORP_ACCOUNT be called \( y \).

Let's identify corresponding read-write statements in the embedded SQL program:

```sql
EXEC SQL DECLARE SECTION
 varchar pass_name[50]; // Passenger name
 int cid; // Corporate id
 int cbalance; // Corporate balance
 int amount; // Amount outstanding
EXEC SQL END DECLARE SECTION
// Read in passenger name from screen (not shown)
amount = 0;
EXEC SQL SELECT B.CORP_ID, B.BALANCE // diskread(x)
 INTO :cid, :amount // memread(x)
 FROM BILLING B
 WHERE B.PNAME = :pass_name;
if (cid > 0) {
 EXEC SQL UPDATE BILLING // memwrite(x)
 SET BALANCE = 0 // diskwrite(x)
 WHERE PNAME = :pass_name;
 EXEC SQL SELECT C.BALANCE // diskread(y)
 INTO :cbalance // memread(y)
 FROM CORP_ACCOUNTS C
 WHERE CORP_ID = :cid
 if (cbalance + amount <= 100000) {
 EXEC SQL UPDATE CORP_ACCOUNTS // memwrite(y)
 SET BALANCE = BALANCE + :amount
 WHERE CORP_ID = :cid; // diskwrite(y)
 EXEC SQL COMMIT; // commit
 }
 else { // Cancel transaction
 EXEC SQL ROLLBACK; // rollback
 }
}
```
If we drop the SQL, we get the following program using the read-write model:

```plaintext
diskread(x) // Get Joe’s balance from disk
memread(x) // Read from memory
if (condition 1) {
 memwrite(x) // Zero out Joe’s balance in memory
diskwrite(x) // Write Joe’s block to disk
diskread(y) // Get GM tuple
if (condition 2) {
 memread(y)
 memwrite(y) // Write new GM balance in memory
diskwrite(y) // Write it to disk
}
}
else {
 rollback
}
```

Note: using *Deferred-Write* the diskwrite’s can be done later:

```plaintext
diskread(x) // Get Joe’s balance from disk
memread(x) // Read from memory
if (condition 1) {
 memwrite(x) // Zero out Joe’s balance in memory
diskread(y) // Get GM tuple
memread(y)
if (condition 2) {
 memwrite(y) // Write new GM balance in memory
 commit
}
```

418
} else {
    rollback
}
diskwrite(x) // Write Joe’s block to disk
diskwrite(y) // Write GM’s block to disk

- Using the read-write model helps us discuss algorithms for recovery and concurrency without the clutter of SQL.
7.4  Recovery: The Problem

• *Recovery* refers to the problem of recovering from a failure, usually a system failure.

• Various kinds of failures:
  1. System crash: (hardware or operating system).
     – For example, an operating system may seize if too many processes are spawned.
  2. Logical errors, interrupts and traps, e.g.,
     – Division by zero.
     – Bugs in C (embedding SQL) that cause a core dump.
     – User-driven interrupts.
  3. Programmed rollbacks (when *rollback* is executed).
  4. Major system failures, e.g.,
     – Disk failures
     – Power outages.
     – Sabotage.

Whatever the reason for the failure, we want to make sure the ACID properties hold for all transactions.

• The recovery problem: how to ensure that ACID properties hold in the presence of failures.

• In general,
  – For a transaction that commits, we want to ensure that changes to the database are made on disk.
  – For a transaction that does not, we want to ensure that it doesn’t affect the database on disk.
7.5 Recovery: The Shadow Paging Method

• Note: in disk I/O jargon, a *block* is often called a *page*.

• Key ideas in shadow paging:
  
  – Bring data blocks into memory.
  – Make all writes to memory blocks first (*memwrite’s*).
  – Write modified blocks to new locations on disk.
  – Retain old versions (shadows) in their current locations on disk.
  – After new version is completely written to disk, mark old version as deleted.
  
  – A transaction is allowed to commit only after the new version is successfully written to disk.
  – If a failure occurs before or during writing the new version, then simply use old version upon recovery (reboot).
  
  – Thus, moments before committing, both old and new versions are on disk
    
    ⇒ At the moment of committing, simply choose between the two versions.

• Example:
  
  – Consider the following modifications to the FLIGHT relation:

    \[
    \begin{align*}
    &\text{UPDATE FLIGHT} \\
    &\text{SET FLT_NO = ’F12’} \\
    &\text{WHERE FLT_ID = 155;} \\
    &\text{UPDATE FLIGHT} \\
    &\text{SET FLT_NO = ’F63’} \\
    &\text{WHERE FLT_ID = 773;} \\
    &\text{COMMIT;}
    \end{align*}
    \]
– Suppose the tuple for FLT_ID=155 has FLT_NO='F13' and the tuple for FLT_ID=773 has FLT_NO='F45'. Thus, the desired actions are:

Change 'F13' to 'F12'
Change 'F45' to 'F63'

– If \( x \) denotes the 155-tuple and \( y \) denotes the 773-tuple, then the read-write version can be written as:

\[
\begin{align*}
\text{diskread}(x) \\
\text{memread}(x) \\
\text{memwrite}(x) \\
\text{diskread}(y) \\
\text{memread}(y) \\
\text{memwrite}(y) \\
\text{diskwrite}(x) \\
\text{diskwrite}(y)
\end{align*}
\]

– Assume that FLIGHT is stored as a heapfile and that we have the block numbers for the two tuples of interest.

– We will not show client memory in this example.

– Let us now trace through the changes made using shadow paging:

1. Initially, the blocks are on disk. The directory is read into memory.
2. Bring block 51 into memory for an update:

3. Copy existing directory into new directory

4. Create new block, copy old block data, and modify data:
5. Similarly, read in block 32 (for the F45-tuple) and create new data block for second modification:

6. Next, write modifications to disk, while maintaining old blocks (shadows):
7. Write new directory to disk:

8. Set pointer to new directory and commit transaction:

9. Delete old blocks:
What happens in case of a failure?

1. **CASE 1: Failure occurs before any **diskwrite**’s take place**
   * Thus, failure occurs before transaction commits
     ⇒ must not make changes to database.
   * Failure occurs before diskwrite’s
     ⇒ no changes made
     ⇒ atomicity condition satisfied.

2. **CASE 2: Failure occurs during **diskwrite**’s.**
   * E.g., failure occurs just after block 48 is written but before block 96 is written.
   * Failure occurs before transaction commits
     ⇒ must preserve old data (no changes to database).
   * On reboot or recovery, old page table is retrieved
     ⇒ old version of data is preserved.

3. **CASE 3: Failure occurs after blocks are written but before or during writing of directory.**
   * Failure occurs before commit
     ⇒ must preserve old data.
   * Since current still points to old data
     ⇒ old directory table is used on reboot.

4. **CASE 4: Failure occurs after commit.**
* Since failure occurs after commit
  ⇒ must preserve changes to database.
* Upon recovery, new directory will be read
  ⇒ changes will be preserved.
* Note: deletion of old blocks can be done after recovery from failure (garbage collection).

- Problems with the shadow paging method:
  - It forces page-level concurrency:
    * Consider multiple transactions accessing the same block.
    * It’s possible that several different transactions want to modify the same block, e.g.,

      A block

<table>
<thead>
<tr>
<th></th>
<th>19</th>
<th>615</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam</td>
<td></td>
<td></td>
<td>Transaction X1 modifies this to 0</td>
</tr>
<tr>
<td>Joe</td>
<td>7</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Sue</td>
<td>42</td>
<td>419</td>
<td>Transaction X3 modifies this to 425</td>
</tr>
<tr>
<td>Pam</td>
<td>0</td>
<td>445</td>
<td>Transaction X2 modifies this to 0</td>
</tr>
</tbody>
</table>

  * If the transactions run concurrently, but only some commit and others rollback, then one shadow and one new version is not enough.
  * Only option: allow only one transaction to modify a block
    ⇒ limits concurrency if others have to wait.

- Shadow paging creates problems for indices like B-trees:
  * Recall: B-trees have datapointers into the heapfile.
  * If we’re changing the heapfile
    ⇒ must modify corresponding datapointers in B-tree
    ⇒ must keep shadow of index
    ⇒ can be expensive to implement (lots of disk accesses).
- Shadow paging can be inefficient:
* Forcing all the \texttt{diskwrite}'s to occur together causes an I/O bottleneck.
* Does not overlap CPU and I/O work.
* If several transactions modify a block, page-level concurrency forces serialization
  \[\Rightarrow\text{block is read and written once for each transaction’s shadow paging.}\]

- Shadow paging is rarely used; it serves as a benchmark for comparison and to better illustrate other methods.
7.6 Log-Based Recovery

- Recall the key idea in shadow paging: “We’re doing OK as long as there’s enough information on disk to recover from failure before starting diskwrite’s.”
  - In shadow paging, the “information” was the fully-preserved old version itself.
  - In log-based recovery, the “information” is a log: a list of modifications made to the database.

- The meaning of “log” here is the same as in “Captain’s Log.”

- Key ideas in log-based recovery:
  - When a transaction does a \texttt{memwrite}(x), it puts the old value of \( x \) and the new value of \( x \) in a log file – the log.
  - The log is written to disk \textit{before} the operation \texttt{diskwrite}(x) occurs.
  - If there’s a failure during \texttt{diskwrite}(x):
    - We can \texttt{undo} changes to the database by recovering old values from the log.
    - We can \texttt{redo} the write by writing the new value from the log.
  - We make sure a transaction’s log records are written to disk before it is allowed to commit.

- The log is usually itself a relation with several attributes, e.g.,

  \[
  \text{LOG (TYPE, TRANS_ID, DATA_ITEM, OLD, NEW)}
  \]

  where

  - TYPE is either “start”, “data”, “commit” or “rollback.”
  - TRANS_ID indicates which transaction is logging the information.
- DATA_ITEM is the datapointer (blocknumber, tuple and offset) of the data tuple being modified.
- OLD is the old value that we’re writing over.
- NEW is the new value to be written.

Thus, log entries are really tuples in the log relation.

- We will add operations to the read-write model to indicate log operations:
  1. \texttt{memwrite\_log(\langle\text{type}\rangle, \langle\text{t\_id}\rangle, \langle\text{data\_item}\rangle, \langle\text{old\_value}\rangle, \langle\text{new\_value}\rangle)} – this function adds a record (log entry) to the log with the values indicated in the parameters.
     
     For example, the call
     
     \begin{verbatim}
     memwrite\_log('data', 117, x, 'F13', 'F12')
     \end{verbatim}
     
     causes the tuple
     
     \begin{verbatim}
     <data, 117, x, F13, F12>
     \end{verbatim}
     
     to be written to the log.
  2. \texttt{diskwrite\_log} – this function causes the log to be written to disk.

- The key ideas in the log-based recovery can now be explained:
  
  - Consider a transaction with \texttt{TRANS\_ID=117} that writes to the data item \(x\) and changes its value from \'F13’ to \'F12’.
  
  - In the read-write model:
     
     1. \texttt{memwrite\_log('start', 117)}
     2. \texttt{diskread(x)}
     3. \texttt{memread(x)}
     4. \texttt{memwrite(x)}
     5. \texttt{memwrite\_log('data',117,x,'F13','F12')}
     6. \texttt{diskwrite\_log}
     7. \texttt{diskwrite(x)}
     8. \texttt{memwrite\_log('commit',117)}
     9. \texttt{diskwrite\_log}
10. **commit**

   - Let’s illustrate the steps:

   1. Initially:

      ![Initial diagram](image)

   2. After `memwrite_log('start', 117)`: 

      ![Diagram after memwrite_log](image)

   3. After `diskread(x)` and `memread(x)`: 

      ![Diagram after diskread and memread](image)
4. After `memwrite(x)`:

5. After `memwrite_log(\textquote{data}, 117, x, \textquote{F13}, \textquote{F12})`:
6. After `diskwrite_log` (which must precede `diskwrite(x)`):

```
<table>
<thead>
<tr>
<th>SERVER MAIN MEMORY</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>log buffer</td>
<td></td>
</tr>
<tr>
<td>start, 117</td>
<td>start, 117</td>
</tr>
<tr>
<td>data, 117, x, F13, F12</td>
<td>data, 117, x, F13, F12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>F13</td>
</tr>
</tbody>
</table>
```

7. After `diskwrite(x)`:

```
<table>
<thead>
<tr>
<th>SERVER MAIN MEMORY</th>
<th>DISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>log buffer</td>
<td></td>
</tr>
<tr>
<td>start, 117</td>
<td>start, 117</td>
</tr>
<tr>
<td>data, 117, x, F13, F12</td>
<td>data, 117, x, F13, F12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F12</td>
<td>F12</td>
</tr>
</tbody>
</table>
```

8. After `memwrite_log('commit')` and `diskwrite_log`:
9. Finally, the transaction is allowed to commit.

- A failure can occur at any time during the execution of transaction 117:
  
  1. Failure occurs during the execution of lines 1-5:
     * No changes are made to the database
       ⇒ failure can be ignored (leave it to user to restart transaction).
  
  2. Failure occurs after line 6.
     * Log contains the records
       
       ```
 <'start', 117>
 <'data', 117, x, 'F13', 'F12'>
       ```
     
       * On recovery, we know the intention was to write 'F12' over 'F13'.
       * This could have happened during Line 7.
       * However, transaction did not commit
         ⇒ must ensure old value remains in database
         ⇒ go to location x in data file and write 'F13' (old value).

     * Log contains the records:
       
       ```
 <'start', 117>
 <'data', 117, x, 'F13', 'F12'>
 <'commit', 117>
       ```
* This could have happened only after data was written
  ⇒ changes already made
  ⇒ nothing to be done.

• Note: when a failure occurs, we won’t know at which line of code it occurs

  – We will only be able to look at the log.
  – action to be taken depends on the state of the log:
    1. Log is empty
       ⇒ Failure could have occurred in lines 1-6
       ⇒ Do nothing.
    2. Log only contains
       `<start', 117>
       `<data', 117, x, 'F13', 'F12'>
       ⇒ Failure could have occurred in lines 7-9
       ⇒ undo changes made.
    3. Log contains
       `<start', 117>
       `<data', 117, x, 'F13', 'F12'>
       `<commit', 117>
       ⇒ Transaction commits.
7.7 Log-based Recovery: Writing Options

- Recall: a diskwrite \(x\) always occurs after memwrite \(x\).
- There are three ways in which diskwrite’s are usually handled:
  1. The Immediate-Write Method:
     - do a diskwrite right after the corresponding memwrite.
     - Example: consider a transaction that writes to items \(x\) and \(y\)
       diskread \(x\) // Get ‘F13’ block
       memread \(x\)
       memwrite \(x\) // Write ‘F12’
       diskwrite \(x\) // Write block to disk
       diskread \(y\) // Get ‘F45’ block
       memread \(y\)
       memwrite \(y\) // Write ‘F63’
       diskwrite \(y\) // Write block to disk
       commit // Commit after all write’s

     - Note: all diskwrite’s occur before a transaction commits.
  2. The Deferred-Write Method:
     - Always postpone all diskwrite’s for a transaction to after the transaction commits.
     - Example:
       diskread \(x\) // Get ‘F13’ block
       memread \(x\)
       memwrite \(x\) // Write ‘F12’
       diskread \(y\) // Get ‘F45’ block
       memread \(y\)
       memwrite \(y\) // Write ‘F63’
       commit // Commit before write’s
3. **Flexible-Write** Method:

- Here, `diskwrite`'s may occur both before and after a transaction commits.
- This method is the most flexible (it encompasses both Immediate-Write and Deferred-Write).
- Example:

```
diskread(x) // One write before commit
memread(x)
memwrite(x)
diskread(y)
memread(y)
diskwrite(x) // Another write after commit
memwrite(y)
commit
diskwrite(y) // Another write after commit
```

- Flexible-write's allow for better management of concurrency in I/O.

**Rule:** A log entry for item \( x \) must be written to disk *before* its corresponding `diskwrite` starts.

- There are three ways of permitting a transaction to commit with respect to when `diskwrite`’s are done:

1. **R-NU:** a transaction is required to commit before its first `diskwrite` occurs.
2. **U-NR:** a transaction may commit only after all its `diskwrite`’s are complete.
3. **R-U:** a transaction may commit at any time, provided its log entries are first written to disk.
Note that some commit-methods may be used with some of the writing methods but not necessarily all of them:

<table>
<thead>
<tr>
<th>Write Method</th>
<th>Commit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-NU</td>
</tr>
<tr>
<td>Immediate-Write</td>
<td>No</td>
</tr>
<tr>
<td>Deferred-Write</td>
<td>Yes</td>
</tr>
<tr>
<td>Flexible-Write</td>
<td>No</td>
</tr>
</tbody>
</table>

Why this is so will become clear when we consider recovery.

- Let’s now consider the three commit-methods in some detail:

1. **R-NU [Redo - No Undo]**
   - A transaction’s `diskwrite`’s begin only after it commits  
     ⇒ a Deferred-Write takes place.
   - Example:
     ```
 memwrite_log('start',117)
 diskread(x)
 memread(x)
 memwrite(x)
 memwrite_log('data',117,x,'F13','F12')
 memwrite_log('commit',117)
 diskwrite_log // before commit
 commit
 diskwrite(x) // deferred write
     ```
   - Upon recovery after failure, the log can be in one of three states:
     (a) Log is empty  
         ⇒ nothing to be done.
     (b) Log contains  
         `<start', 117>
         `<data', 117, x, 'F13', 'F12'>
         `<commit', 117>
⇒ transaction committed, but changes may not have been made
⇒ redo transaction.

- Note: no undo was needed.
- Note: if a transaction is long and many, many records are written to the log buffer in memory, it may be necessary to write parts of the log to disk (to make space)
⇒ Log entries may contain entries for uncommitted transactions
⇒ ignore these transactions since diskwrite’s did not begin.

2. U-NR [Undo - No Redo]

- In this case, a transaction’s diskwrite’s must be done before it commits.

- Example:
  ```
 memwrite_log(’start’)
diskread(x)
memread(x)
memwrite(x)
memwrite_log(’data’,117,x,’F13’,’F12’)
diskwrite_log // before commit
diskwrite(x)
memwrite_log(’commit’,117)
diskwrite_log // before commit
commit
  ```

  - Upon recovery after failure, the log can be in one of four states:
(a) Log is empty
⇒ nothing to be done.
(b) Log contains
  ```
 <’start’, 117>
  ```
⇒ No diskwrite’s occurred
⇒ No action taken.
(c) Log contains

\[
\text{<start', 117>}
\text{<data', 117, x, 'F13', 'F12'>}
\]

⇒ A diskwrite may have occurred, but the transaction did not commit
⇒ must undo transaction
⇒ write old values back to data items (using log entries).

(d) Log contains

\[
\text{<start', 117>}
\text{<data', 117, x, 'F13', 'F12'>}
\text{<commit', 117>}
\]

⇒ transaction committed
⇒ data got written (since commit occurs later)
⇒ nothing to be done.

– Note: no redo is needed.

3. R-U [Redo-Undo]

– A transaction may commit at any time, provided its log is written to disk first.
– Example: consider a transaction that modifies items \( x \) and \( y \)
  
  \[
  \begin{align*}
  &\text{memwrite_log('start', 118)} \\
  &\text{diskread(x)} \\
  &\text{memread(x)} \\
  &\text{memwrite(x)} \\
  &\text{memwrite_log('data', 118, x, 'F13', 'F12')} \\
  &\text{diskread(y)} \\
  &\text{memread(y)} \\
  &\text{diskwrite_log} \quad \text{// Log for x must be written first} \\
  &\text{diskwrite(x)} \quad \text{// x is written before commit} \\
  &\text{memwrite(y)} \\
  &\text{memwrite_log('data', 118, y, 'F45', 'F63')} \\
  &\text{memwrite_log('commit', 118)} \\
  &\text{diskwrite_log} \\
  &\text{commit}
  \end{align*}
  \]
\textbf{diskwrite}(y)  // y is written after commit

- Upon recovery from failure, the log can be in one of five states:
  (a) Log is empty  
      \Rightarrow no action.
  (b) Log contains
      \begin{Verbatim}
      \text{<’start’, 118>}
      \text{<’data’, 118, x, ’F13’, ’F12’>}
      \end{Verbatim}
      \Rightarrow A write (of x) may have occurred but transaction didn’t commit  
      \Rightarrow use \textbf{undo} effect by writing old value (’F13’) to x.
  (c) Log contains
      \begin{Verbatim}
      \text{<’start’, 118>}
      \text{<’data’, 118, x, ’F13’, ’F12’>}
      \text{<’data’, 118, y, ’F45’, ’F63’>}
      \end{Verbatim}
      \Rightarrow Write’s to x or y may have occurred without a commit  
      \Rightarrow must use \textbf{undo} effect by writing old values.
  (d) Log contains
      \begin{Verbatim}
      \text{<’start’, 118>}
      \text{<’data’, 118, x, ’F13’, ’F12’>}
      \text{<’data’, 118, y, ’F45’, ’F63’>}
      \text{<’commit’, 118>}
      \end{Verbatim}
      \Rightarrow transaction committed, but all write’s may not have completed  
      \Rightarrow use \textbf{redo} transaction.
  (e) Note: in the last case, we don’t know which write’s were successful and which weren’t  
      \Rightarrow must use \textbf{redo} entire transaction.

- \textbf{Rollback’s}: sometimes a transaction issues a \textbf{rollback}  
  \Rightarrow a log entry of the type \text{<’rollback’, 118> is written.}

Example: consider the earlier example of transferring balance from BILLING to CORP\_ACCOUNT.
– Consider the read-write version of the program.
– We will add log-based recovery to this code.
– We will use the redo - no undo scheme.
– Suppose transaction id is 243.

```plaintext
memwrite_log('start', 243)
diskread(x) // Get Joe’s balance from disk
memread(x) // Read from memory
if (condition 1) {
 memwrite(x) // Zero out Joe’s balance in memory
 memwrite_log('data', 243, x, ...)
diskread(y) // Get GM tuple
memread(y)
if (condition 2) {
 memwrite(y) // Write new GM balance in memory
 memwrite_log('data', 243, y, ...)
 memwrite_log('commit', 243)
diskwrite_log
commit
}
else {
 memwrite_log('rollback', 243)
diskwrite_log
rollback
}
diskwrite(x) // Write Joe’s block to disk
diskwrite(y) // Write GM’s block to disk
}
```

Thus, for example, upon recovery from failure the log may contain

```plaintext
<’start’, 243>
<’data’, 243, x, ...>
<’rollback’, 243>
```
In this case, no action is needed since write’s occur after commit and here, the transaction didn’t commit.
7.8 Log-Based Recovery: Summary and Odds & Ends

• A summary of the rules used in recovery:
  
  - The log entry \(<\text{data}',...,x,...>\) must be written to the log buffer when \text{memwrite}(x) \text{ occurs}.
  
  - All log entries up to the most recent one for \(x\) are written to disk \text{before} a \text{diskwrite}(x) \text{ occurs}.
  
  - All log entries pertaining to a transaction are written to disk \text{before} it commits.
  
  - Three ways of organizing the logging/disk-writing process:

  1. **Redo - No Undo:**
     * Make a transaction’s \text{diskwrite}’s occur only after it commits.
     * Upon recovery:
       • **Redo** committed transactions.
       • Ignore uncommitted or rolledback transactions.

  2. **Undo - No Redo:**
     * Allow a transaction to commit only after its \text{diskwrite}’s are completed.
     * Upon recovery:
       • **Undo** uncommitted or rolledback transactions.
       • Ignore committed transactions.

  3. **Redo - Undo:**
     * Allow \text{diskwrite}’s to occur before and after commit.
     * Upon recovery:
       • **Redo** committed transactions.
       • **Undo** uncommitted or rolledback transactions.
• **Redo** followed by **Undo**:
  
  – In some systems that use **Redo-Undo**, the following is done upon recovery:
    * First, **redo** all transactions.
    * Then, **undo** uncommitted or rollback transactions.
  
  – Why? If all transactions are **redone**, then the system is brought to the same state it was in before the crash.
    ⇒ if software problems caused the crash, the crash could be made to repeat
    ⇒ useful in learning what caused the crash.

• Failures during recovery:
  
  – What if there’s another failure right in the middle of the recovery process?
  
  – Recovery must be designed so that it can be re-started at will.
  
  – Since both the old and new values are stored for each modified data item, we can always both **redo** and **undo** after multiple failures during recovery.

• In practice:
  
  – Most systems use **Redo-Undo** since it is the most flexible scheme.
  
  – Writing of data can be done independently
    ⇒ CPU and I/O overlap can be arranged.
  
  – Most systems have separate processes for writing data and logging
    ⇒ these processes communicate to synchronize.

• Checkpointing:
  
  – Suppose 10,000 transactions have executed when we get a failure and suppose, of these, 9807 transactions committed.
    ⇒ **redo** required for 9807 transactions and **undo** required for 193 transactions.
- Recovery can take longer if number of transactions is higher (e.g., $10^9$).
- To reduce the work in recovery, checkpointing is used.
- Key ideas in checkpointing:
  * Old transactions which were successfully run long ago shouldn’t have to be redone.
  * Introduce checkpoints at regular intervals.
  * For each checkpoint:
    * Hold off starting the execution of new transactions.
    * Let current transactions run to completion.
    * Write all log entries to disk.
    * Write all data blocks in memory to disk.
    * Write a `<checkpoint’> entry to the log and write that entry to disk.
    * Resume normal operation.
  * Then, upon recovery, we don’t have to worry about log entries prior to the most recent checkpoint.
  * Example:

    ```
 <’start’, 117>
 <’data’, 117, ...>
 <’commit’, 117>
 <’checkpoint’>
 <’start’, 243>
 <’data’, 243, ...>
    ```

    Here, only transactions after the checkpoint are examined for redo or undo.

- Safety in numbers:
  - To increase reliability, many systems maintain a copy of the log.
  - While one copy is being updated, the other is archived to tape or some other device.
7.9 Concurrency Control: Introduction

- What do we mean by “concurrency”?
  
  - We mean: executing transactions concurrently.
  
  - Think of it as concurrently running several embedded SQL programs (perhaps from different users).
  
  - Concurrent execution can mean
    * executing programs on different processors of a multiprocessor, or
    * interleaving the execution of different programs on a single processor.
  
  - In either case, shared data is accessed and access to shared data is \textit{interleaved}.
  
  - Example: recall the relations CORP\_ACCOUNTS and BILLING:

<table>
<thead>
<tr>
<th>CORP_ACCOUNTS</th>
<th>CORP_ID</th>
<th>CNAME</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>IBM</td>
<td></td>
<td>649,314</td>
</tr>
<tr>
<td>19</td>
<td>Intel</td>
<td></td>
<td>213,617</td>
</tr>
<tr>
<td>7</td>
<td>GM</td>
<td></td>
<td>65,973</td>
</tr>
<tr>
<td>42</td>
<td>DuPont</td>
<td></td>
<td>143,112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BILLING</th>
<th>PNAME</th>
<th>CORP_ID</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sam</td>
<td>19</td>
<td></td>
<td>615</td>
</tr>
<tr>
<td>Joe</td>
<td>7</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>Sue</td>
<td>42</td>
<td></td>
<td>419</td>
</tr>
<tr>
<td>Pam</td>
<td>0</td>
<td></td>
<td>445</td>
</tr>
</tbody>
</table>

BILLING contains the outstanding balance for individual passengers. CORP\_ACCOUNTS contains the amount owed by some corporate clients.

- Consider the following interleaving of transactions $N_A$ and $N_B$ (only SQL shown):
In practice, interleaving occurs at the machine-instruction level.

- Why permit concurrency?
  - If all transactions are of short duration (e.g., 1 ms to $10^3$ ms), forcing serialization is feasible.
  - Consider serializing long and short transactions, e.g.,

// Obtain average mileage
SELECT AVG(MILES)
INTO :avg
FROM PASSENGER;

SELECT MILES
INTO :miles
FROM PASSENGER
WHERE NAME = 'Joe' ;
In the serial order \( N_A \rightarrow N_B \), \( N_B \) waits a long time for \( N_A \) to complete.

- Both can be interleaved, allowing \( N_B \) to complete early, with little noticeable increase in the time to complete \( N_A \).

- What about guaranteeing Isolation (the I in the “ACID” properties)?
  - A transaction must be given the illusion that, once it starts execution, it alone reads or modifies the data it accesses until it’s done.
  - Thus, for example, given a concurrent execution of transactions \( N_A \) and \( N_B \), then after the concurrent execution, the data should be in the form it would be in if either serial execution \( N_A \rightarrow N_B \) or \( N_B \rightarrow N_A \) took place.

- An execution history of a concurrent execution is the particular interleaving of instructions that occurs for a particular concurrent execution of a set of transactions.

- A concurrent execution history satisfies isolation if it results in changes to the data equivalent to changes wrought by some serial execution of the transactions involved.

- NOTE: we could define isolation to mean “same order as order of arrival” but that would severely limit concurrency (see above example).

- Clearly, for a group of transactions that don’t modify the data, any execution history will do the job (satisfies isolation).

- Also, transactions that modify disparate data can run concurrently in any way, e.g.,
\[ N_A \]

// 10% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

\[ N_B \]

// 1% discount for corp’s
UPDATE CORP_ACCOUNTS
SET BALANCE = BALANCE * 0.99

• Consider the following interleaving:

\[ N_A \]

Initially, say, Joe has $700

// Count passengers in BILLINGS
SELECT COUNT(*)
INTO :num
FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE
INTO :amount
WHERE PNAME = 'Joe'

Output by \( N_A \): 700\times 0.9 = 630.

\[ N_B \]

// 10% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

Is this execution history equivalent to some serial history?
Yes. It is equivalent to:
\[ N_A \]
Initially, Joe has $700

\[ N_B \]
// 10\% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

// Count passengers in BILLINGS
SELECT COUNT(*)
INTO :num
FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE
INTO :amount
WHERE PNAME = 'Joe'

Output by \( N_A \): 700 \times 0.9 = 630.

It is NOT equivalent to:

\[ N_A \]
Initially, Joe has $700

\[ N_B \]
// Count passengers in BILLINGS
SELECT COUNT(*)
INTO :num
FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE
INTO :amount
WHERE PNAME = 'Joe'

// 10\% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

Output for \( N_A \): $700

Note: isolation property is satisfied since it is equivalent to at least one serial ordering.
• Q: Is it possible that every concurrent execution history is equivalent to some serial history?
  Ans: No.

• Before we describe problems with concurrency, let’s revisit the Read-Write model for purposes of analysing concurrency problems:
  
  – From the point of view of concurrency, we don’t care whether data is modified in memory or disk.
  
  – If data is modified in memory, the recovery system will make sure it will be modified on disk.
    ⇒ we don’t distinguish between diskwrite(x) and memwrite(x)
    ⇒ simply use write(x) to denote both.
  
  – Similarly, we will use read(x) to denote “reading some item x.”
  
  – In the code examples that follow, the read-write commands will be indicated as comments.
- Problems with un-controlled concurrent execution:
  Arbitrarily executing transactions concurrently can create strange behavior.

1. The Case of the Unrepeatable Read:

\[ N_A \]	\[ N_B \]
   \[ // \text{Read in Joe's balance, corp.id} \]
   \[ \text{SELECT BALANCE, CORP_ID} \]
   \[ \text{INTO :amount, :cid} \]
   \[ \text{FROM BILLING} \]
   \[ \text{WHERE PNAME = 'Joe';} \]
   
   \[ // \text{Read GM's balance} \]
   \[ \text{SELECT BALANCE // read}(x) \]
   \[ \text{INTO :cbalance} \]
   \[ \text{FROM CORP_ACCOUNTS} \]
   \[ \text{WHERE CNAME = 'GM';} \]
   
   \[ // \text{Add Joe's to GM's balance} \]
   \[ \text{UPDATE CORP_ACCOUNTS // write}(x) \]
   \[ \text{SET BALANCE = BALANCE + :amount} \]
   \[ \text{WHERE CORP_ID = :cid;} \]
   
   \[ // \text{Companies having} \leq \text{GM's balance} \]
   \[ \text{SELECT COUNT(*) // read}(x) \]
   \[ \text{INTO :num} \]
   \[ \text{FROM CORP_ACCOUNTS} \]
   \[ \text{WHERE BALANCE} \leq :cbalance; \]
   
   \[ N_A \text{'s output doesn't include GM!} \]
   
   - In either serial execution (\( N_A \rightarrow N_B \) or \( N_B \rightarrow N_A \)), GM will be counted among corporations that have balance less than or equal to GM's balance.
   - However, in the above interleaving, it won't be counted
     \[ \Rightarrow \] execution history is not serializable.
   - In the read-write model:
- Thus, the history does not satisfy the isolation property for $N_A$.
- From $N_A$'s point of view: “I'm re-reading the same data and it’s different!”
- The problem of *unrepeatable reads* is sometimes called a Read-Write conflict:
2. The Case of the Dirty Read.

<table>
<thead>
<tr>
<th>$N_A$</th>
<th>$N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>// Read Joe's balance, corp.id</td>
<td>// Count # people with 0-balance</td>
</tr>
<tr>
<td>SELECT BALANCE, CORP_ID</td>
<td>SELECT COUNT(*) // read($x$)</td>
</tr>
<tr>
<td>INTO :amount, :cid</td>
<td>FROM BILLING</td>
</tr>
<tr>
<td>FROM BILLING</td>
<td>WHERE BALANCE = 0</td>
</tr>
<tr>
<td>WHERE PNAME = 'Joe'</td>
<td></td>
</tr>
<tr>
<td>// Set Joe's balance to 0</td>
<td></td>
</tr>
<tr>
<td>UPDATE BILLING // write($x$)</td>
<td></td>
</tr>
<tr>
<td>SET BALANCE = 0</td>
<td></td>
</tr>
<tr>
<td>WHERE PNAME = 'Joe';</td>
<td></td>
</tr>
<tr>
<td>// Transfer balance, if allowed</td>
<td></td>
</tr>
<tr>
<td>SELECT BALANCE</td>
<td></td>
</tr>
<tr>
<td>INTO :cbalance</td>
<td></td>
</tr>
<tr>
<td>FROM CORP_ACCOUNTS</td>
<td></td>
</tr>
<tr>
<td>WHERE CORP_ID = :cid;</td>
<td></td>
</tr>
<tr>
<td>if (:amount + :cbalance ≤ 100,000)</td>
<td></td>
</tr>
<tr>
<td>{</td>
<td></td>
</tr>
<tr>
<td>UPDATE CORP_ACCOUNTS</td>
<td></td>
</tr>
<tr>
<td>SET BALANCE = BALANCE + :amount</td>
<td></td>
</tr>
<tr>
<td>WHERE CORP_ID = :cid;</td>
<td></td>
</tr>
<tr>
<td>COMMIT;</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>else {</td>
<td></td>
</tr>
<tr>
<td>ROLLBACK // rollback</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joe gets counted</td>
</tr>
</tbody>
</table>

- The problem is easily seen in the read-write model:
$N_A$ && $N_B$

// Set Joe's balance to 0
write(x)

// Read Joe's balance as 0
read(x)

// Did not commit
rollback

- $N_B$ reads a value written by an uncommitted transaction.
- In either serialization, this would not happen
  $\Rightarrow$ does not satisfy isolation property.
- The problem of reading an uncommitted write, the *Dirty Read* problem, is also called a *Write-Read conflict*: 

\[ \begin{array}{c|c}
N_A & N_B \\
write(x) & WR conflict \\
rollback & read(x) \\
\end{array} \]
3. The Case of the Lost Update:

\[ N_A \]

// Read Joe's balance, corp.id
SELECT BALANCE, CORP_ID
INTO :amount, :cid
WHERE PNAME = 'Joe';

// Set Joe's balance to 0
UPDATE BILLING // write(x)
SET BALANCE = 0
WHERE PNAME = 'Joe';

// Transfer balance, if allowed
SELECT BALANCE
INTO :cbalance
FROM CORP ACCOUNTS
WHERE CORP_ID = :cid;
if (:amount + :cbalance ≤ 100,000)
{
    UPDATE CORP ACCOUNTS
    SET BALANCE = BALANCE + :amount
    WHERE CORP_ID = :cid;
    COMMIT;
}
else {
    ROLLBACK // rollback
}

\[ N_B \]

// 10% discount to all passengers
UPDATE BILLING // write(x)
SET BALANCE = BALANCE * 0.9

– The problem is easily seen in the read-write model:
// Joe gets 10% discount
write(x)

write(x)
rollback

- If $N_A$ rolls back, $N_B$’s update is lost.
- In either serial execution $N_B$’s update would have worked
  $\Rightarrow$ isolation property not satisfied.
- The lost update problem is sometimes called a Write-Write conflict:

\begin{tabular}{|c|c|}
  \hline
  N_A & N_B \\
  \hline
  write(x) & write(x) \hspace{1cm} WW conflict \\
  rollback & \\
  \hline
\end{tabular}

- To summarize:

  - There are problems when one transaction writes into a data item (\texttt{write(x)}) and another reads (\texttt{read(x)}) or writes (another \texttt{write(x)}) into the same item.
  
  - Three types of conflicts: \textbf{RW} (Read-Write), \textbf{WR} (Write-Read) and \textbf{WW} (Write-Write).

    Note: \textbf{RR} (Read-Read) causes no problem.

  - The three problems we saw (Unrepeatable Read, Uncommitted-Write Read, Lost Update) are examples what can go wrong when these conflicts occur.

  - These are the only types of conflicts we need to analyze for the purposes of concurrency.
7.10 Concurrency Control: Conflict Serializability

• Note:
  – In our examples, we have interleaved at a high-level (alternating SQL statements).
  – In practice, interleaving occurs at the machine instruction level.
  – However, from a data item’s point of view, access (read or write) is strictly interleaved.
    ⇒ we will consider the read-write model in the sequel.

• Sometimes, an execution history is called a schedule. Usually,
  – execution history is used in the past tense (as in comparing histories of transactions that already executed concurrently).
  – schedule is used to discuss construction of a future interleaving of a group of transactions.

• Definition: Two particular instances of read or write operations are conflicting if
  1. they belong to different transactions;
  2. they operate on the same data item; and,
  3. at least one of them is a write.

• Definition: The execution order of two steps of a concurrent schedule can be interchanged or swapped if
  1. the steps are consecutive in the schedule;
  2. each step involves a different transaction; and,
  3. the two operations (in the two steps) are non-conflicting.
- Example:

<table>
<thead>
<tr>
<th></th>
<th>$N_A$</th>
<th>$N_B$</th>
<th>$N_C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>read($x$)</td>
</tr>
<tr>
<td>2.</td>
<td>read($x$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>read($y$)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>write($y$)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>read($z$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td>write($z$)</td>
</tr>
<tr>
<td>7.</td>
<td>write($z$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Steps 1 and 2 can be swapped (both are reads).
- Steps 4 and 5 can be swapped (they read or write different items).
- Steps 3 and 4 cannot be swapped (same transaction).
- Steps 5 and 6 cannot be swapped (operations conflict).

- **Definition:** A schedule (or history) is *conflict-serializable* if it can be transformed by a series of swaps into a serial schedule.

- **Key idea:** swaps don’t affect the outcome
  $\Rightarrow$ outcome is same as a serial schedule
  $\Rightarrow$ isolation property will be satisfied.
- Example (conflict-serializable schedule):

```
<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(x)</td>
<td>read(y)</td>
</tr>
<tr>
<td>write(x)</td>
<td>write(y)</td>
</tr>
<tr>
<td>read(x)</td>
<td>write(x)</td>
</tr>
<tr>
<td>write(y)</td>
<td>write(y)</td>
</tr>
</tbody>
</table>

Swap

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(x)</td>
<td>read(y)</td>
</tr>
<tr>
<td>write(x)</td>
<td>write(y)</td>
</tr>
<tr>
<td>read(x)</td>
<td>write(x)</td>
</tr>
<tr>
<td>write(y)</td>
<td>write(y)</td>
</tr>
</tbody>
</table>

Schedule is conflict-serializable

- Example (non-conflict-serializable schedule):

```
<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(y)</td>
<td>read(y)</td>
</tr>
<tr>
<td>write(y)</td>
<td>write(y)</td>
</tr>
</tbody>
</table>

Cannot swap in either direction

Not conflict-serializable

Note, however, that the last write overwrites all previous y values. ⇒ the schedule is equivalent to
Thus, a non-conflict-serializable schedule may still be serializable.

Nonetheless, conflict-serializability at least guarantees isolation (if the transactions commit).

- Testing for conflict-serializability by trying all possible swaps is too inefficient,
  e.g. with 100 transactions
  \( \Rightarrow \) too many serial orders to consider.

- The Precedence Graph Method:

  - Step 1: Given transactions \( N_1, N_2, \ldots, N_k \), and a schedule, construct
    the following graph:

  - * Step 1A: Represent each transaction by a vertex.

    **Example:**

    |   | \( N_A \) | \( N_B \) | \( N_C \) | \( N_D \) |
    |---|---|---|---|
    1. | read(\( x \)) |   |   | write(\( x \)) |
    2. |   |   |   | write(\( x \)) |
    3. |   | write(\( x \)) |   |   |
    4. |   | write(\( y \)) |   |   |
    5. |   |   | write(\( z \)) |   |
    6. |   | read(\( z \)) |   | write(\( z \)) |
    7. |   |   |   |   |

    Then, the vertices are:
* Step 1B: Draw an edge from $N_i$ to $N_j$ if any of the following is true:
1. $N_i$ executes a **write**($x$) before $N_j$ executes a **read**($x$) (for some $x$).
2. $N_i$ executes a **read**($x$) before $N_j$ executes a **write**($x$) (for some $x$).
3. $N_i$ executes a **write**($x$) before $N_j$ executes a **write**($x$) (for some $x$).

Example:
- Add edges from $N_A$ to $N_B$ and $N_C$ because the **read**($x$) in line 1 conflicts with the **write**’s in lines 2 and 3.
- Add an edge from $N_C$ to $N_B$ because the **write** in line 2 ($N_C$) conflicts with the **write** in line 3 ($N_B$).
- Add an edge from $N_B$ to $N_D$ because the **read** in line 6 ($N_B$) conflicts with the **write** in line 7 ($N_D$).
- Similarly, add an edge from $N_C$ to $N_D$ because the **read** in line 5 conflicts with the **write** in line 7.

- Step 2: Check to see if the graph has a cycle (a traversal along edges in which a vertex is repeated).
**Example:** No cycles.

- Step 3: If it has no cycles, it is conflict-serializable; otherwise it is not.

**Example:** The schedule is conflict-serializable.

Why does this work? Here’s the key idea:

- An edge from $N_i$ to $N_j$ indicates that at least one of $N_j$’s instructions (read or write) cannot be swapped to before at least one of $N_j$’s instructions.
  \[ \Rightarrow N_j \text{ must appear after } N_i \text{ in a serialization created by swaps.} \]

- Consider a cycle like $N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow N_1$.
- This says “$N_1$ must appear after itself”.
  \[ \Rightarrow \text{a contradiction!} \]

- Thus, cycle \[ \Rightarrow \text{not conflict-serializable.} \]

- Finally, if there are no cycles, a serialization is possible, using a topological sort.

- Example of a schedule that’s not conflict-serializable:

<table>
<thead>
<tr>
<th></th>
<th>$N_A$</th>
<th></th>
<th>$N_B$</th>
<th></th>
<th>$N_C$</th>
<th></th>
<th>$N_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>read($x$)</td>
<td>2</td>
<td>read($x$)</td>
<td>3</td>
<td>write($x$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>write($x$)</td>
<td>4</td>
<td>write($y$)</td>
<td>5</td>
<td>read($z$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>read($z$)</td>
<td>7</td>
<td></td>
<td>8</td>
<td>read($z$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(This example is the last one with one additional line – line 8.)

The precedence graph now has an edge from $N_D$ to $N_A$: 464
There is a cycle: $N_A \rightarrow N_B \rightarrow N_D \rightarrow N_A$
$\Rightarrow$ not conflict-serializable.

- Recall: we considered precedence graphs because trying swaps was too inefficient.
  - Is the precedence graph method efficient?
  - If the graph has $E$ edges, it can be built in time $O(E)$.
  - Cycle-testing can be done in time $O(E)$.

- Problems with testing for conflict-serializability:
  - In practice, we cannot obtain schedules in advance (since scheduling is usually done by the operating system).
  - Another problem: not all conflicts are covered, e.g.,

<table>
<thead>
<tr>
<th></th>
<th>$N_A$</th>
<th>$N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>read($x$)</td>
<td></td>
<td>write($x$)</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td>rollback</td>
</tr>
</tbody>
</table>

* Here, $N_A$ reads a value of $x$ written by a transaction that later fails to commit
  $\Rightarrow$ the problem of reading an uncommitted-write.
* Yet, this schedule is conflict-serializable (can be swapped to $N_B \rightarrow N_A$).
* Conflict-serializability is only guaranteed to work if the transactions commit
  $\Rightarrow$ not practical, since we can’t predict commits.
Nonetheless, conflict-serializability is a useful theoretical tool that is used in proving that other (more practical) schemes work.

- **Note**: in the above example, if $N_B$ rolls back, we really need to roll back $N_A$ (because it read $N_B$'s writes)
  $\Rightarrow$ a cascading rollback.

- **Definition**: A schedule is *recoverable* if at the time of a transaction’s commit, the transactions that wrote into data it has read have committed.

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>write(x)</td>
<td>read(x)</td>
<td>write(x)</td>
<td>read(x)</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td>commit</td>
<td>commit</td>
</tr>
</tbody>
</table>

Recoverable                         Not recoverable

- Thus, for example, if $N_A$ writes into $N_B$’s data and $N_B$ is about to commit, then if $N_A$ has not committed the schedule is *not* recoverable.
- If $N_A$ rolls back, $N_B$ will have to be rolled back as well.

- **Definition**: A schedule is *strict* if at the time of a transaction’s read or write, any other transaction that wrote into the data item has already committed.

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>write(x)</td>
<td>read(x)</td>
<td>write(x)</td>
<td>commit</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td>commit</td>
<td>commit</td>
</tr>
</tbody>
</table>

Not strict                        Strict

- For example, if $N_B$ reads data written into by $N_A$, $N_A$ has already committed
  $\Rightarrow$ the data written was safe.
- Thus, a strict schedule is recoverable but not vice versa.
- However, a recoverable schedule can allow for greater concurrency.
- Note: strict schedules don’t incur cascading rollback’s.
- In practice, strict schedules are used (even though they are less flexible).
7.11 Concurrency Control Via Locking

- In practice, transaction schedules cannot be constructed ahead of execution time to ensure serializability.
  - Transactions are executed as processes or threads.
  - Operating System (OS) does the interleaving
    \[ \Rightarrow \] OS might create a non-serializable history.

- A different (and practical) approach to serializability:
  - Allow OS to perform scheduling.
  - Introduce safeguards so that OS schedule is always serializable.

- Observe:
  - Lack of serializability occurs because of Read-Write, Write-Read or Write-Write conflicts.
  - Thus, we can try to prevent these conflicts.

- Key ideas:
  - Use locks on data items.
  - A transaction that wants to use item \( x \) must lock \( x \)
    \[ \Rightarrow \] No one else can touch \( x \) until the transaction unlocks \( x \).
  - Transactions that encounter a locked item simply wait until item is unlocked.

Thus, locking attempts to prevent conflicts.

- In the read-write model, we introduce the following commands:
  - \( \text{lock}(x) \) – put a lock on data item \( x \).
- \textbf{unlock}(x) – unlock data item \( x \) (provided a lock on it was acquired earlier).

- \textbf{Example:}

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(x)</td>
<td></td>
<td>lock(x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>read(y)</td>
<td>read(x)</td>
<td>blocked</td>
</tr>
<tr>
<td>write(x)</td>
<td>write(x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unlock(x)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
\text{Not serializable} \\
\text{Serialization via locking}
\end{array}\]

Here, \( N_A \) managed to acquire the lock on \( x \) first. If \( N_B \) acquired it first:

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>read(x)</td>
<td></td>
<td>blocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>read(y)</td>
<td>lock(x)</td>
<td></td>
</tr>
<tr>
<td>write(x)</td>
<td>write(x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>read(x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>read(y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>write(x)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>unlock(x)</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
\text{Not serializable} \\
\text{Serialization via locking}
\end{array}\]

- \textbf{Read and write locks:}
  - As currently defined, locks also serialize reads.
- It’s better to use separate locks for reading and writing:
  * \texttt{readlock}(x) – lock for reading.
  * \texttt{writelock}(x) – lock for writing.
- Associate a counter with each locked item.
- When a transaction \( N_A \) does a \texttt{readlock}(x):
  * If any other transaction has a \texttt{writelock} on \( x \), make \( N_A \) wait.
  * If the only locks on \( x \) are \texttt{readlock}'s, increment the counter associated with \( x \) and allow \( N_A \) to proceed.
- When a transaction \( N_A \) does a \texttt{writelock}(x):
  * If anyone else has a lock on \( x \), make \( N_A \) wait.
  * Otherwise, grant \( N_A \) the \texttt{writelock} and allow it to proceed.
- When a transaction \( N_A \) executes \texttt{unlock}(x):
  * If \( N_A \) had a \texttt{writelock} on \( x \), release the lock.
  * If \( N_A \) had a \texttt{readlock} on \( x \), decrement the counter. If the counter is zero, there is no lock on \( x \).

- Implementing locks:
  - If a separate lock is used for each data item
    \( \Rightarrow \) lots of locks needed.
  - E.g., suppose a database has
    \begin{align*}
    &20 \text{ relations} \\
    &100,000 \text{ tuples per relation (average)} \\
    &5 \text{ attributes per relation (average)}
    \end{align*}
\[ \Rightarrow 10^7 \text{ possible locks!} \]

- Of course, not all locks will be active at any given moment.
- A common approach is to decide apriori how many distinct locks to support, e.g. 1024 locks
  \[ \Rightarrow \text{use a 10-bit hash value for each data item.} \]
- Recall: a data item is an address: blocknumber, offset and size.
- From these, create a 10-bit hash value and index into a hash table (lock table).

**Example: blocknumber=1732, offset=29 , 6 hash bits**

\[ \text{Hashing function } (1732, 29) = 110011 \ (\text{6 bit value}) \]

\[ \begin{array}{c}
\text{Lock table} \\
110011 \\
N_B \\
\end{array} \]

\[ \begin{array}{c}
\text{Additional info (data item, read/write etc)} \\
\text{list of blocked transactions} \\
N_A \rightarrow N_C \rightarrow N_D \\\n\text{transaction that holds the lock} \\
\end{array} \]

- Note: the actions \textbf{readlock}(x), \textbf{writelock}(x) and \textbf{unlock}(x) must be atomic
  \[ \Rightarrow \text{usually implemented via semaphores.} \]

- Other details about locks:
  - A transaction must not be allowed to block on itself:
    \[
    \text{writelock}(x) \\
    \text{write}(x) \\
    \text{writelock}(x)
    \]
– The system must make sure every transaction releases its locks after a commit or rollback.
– A transaction should only be able to unlock something it’s locked before.

• Deadlock:
  – Sometimes, transactions can deadlock.

<table>
<thead>
<tr>
<th>$N_A$</th>
<th>$N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock($x$)</td>
<td>writelock($y$)</td>
</tr>
<tr>
<td>read($x$)</td>
<td>write($y$)</td>
</tr>
<tr>
<td>readlock($y$) // blocked</td>
<td>writelock($x$) // blocked</td>
</tr>
</tbody>
</table>

We will consider deadlocks later.
7.12  2-Phase Locking

- Unfortunately, locking by itself does not guarantee serializability, e.g.,

<table>
<thead>
<tr>
<th></th>
<th>$N_A$</th>
<th>$N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock($x$)</td>
<td></td>
<td>writelnlock($x$)</td>
</tr>
<tr>
<td>read($x$)</td>
<td>// Conflicts with $N_B$’s write</td>
<td>write($x$)  // Conflicts with $N_A$’s read</td>
</tr>
<tr>
<td>unlock($x$)</td>
<td></td>
<td>unlock($x$)</td>
</tr>
</tbody>
</table>

- By a series of swaps, we cannot serialize this schedule
  ⇒ it has the RW-conflict (unrepeatable read problem).
- The problem is: $N_A$ unlocked $x$ and allowed $N_B$ to write $x$.
- In 2-Phase Locking, this temporary unlocking is not allowed.

- Key ideas in 2PL (2-Phase Locking):
  - A transaction is never granted a lock after it executes its first unlock.
  - Thus, a transaction has two successive phases:
    * Expanding phase: acquire locks, but do not unlock anything.
    * Shrinking phase: unlock items, but do not request any locks.
  - If 2PL were used in the previous example:
\begin{tabular}{|c|c|}
\hline
$N_A$ & $N_B$ \\
\hline
\texttt{readlock}(x) & \texttt{writelock}(x) // blocked \\
\texttt{read}(x) // Do not release lock & \texttt{write}(x) // continued \\
\texttt{read}(x) & \texttt{unlock}(x) \\
\texttt{unlock}(x) & \\
\hline
\end{tabular}

$\Rightarrow$ isolation satisfied.

- **2PL and deadlock:**
  - A 2PL schedule can still deadlock, e.g.,
    \begin{tabular}{|c|c|}
    \hline
    $N_A$ & $N_B$ \\
    \hline
    \texttt{readlock}(x) & \texttt{writelock}(y) \\
    \texttt{readlock}(y) // blocks on y-lock & \texttt{writelock}(x) // blocks on x-lock \\
    \hline
    \end{tabular}

- **Fact:** a deadlock-free 2PL schedule is always conflict-serializable.

**Proof sketch:**

- For simplicity, consider 3 transactions $N_A, N_B, N_C$ and assume only \texttt{write} conflicts.
- Suppose we have a deadlock-free 2PL schedule that is \emph{not} conflict-serializable.
- Since it’s not conflict-serializable, the precedence graph has a cycle, e.g.,

\begin{center}
\begin{tikzpicture}
    \node (n1) at (0,0) {$N_B$};
    \node (n2) at (1,1) {$N_A$};
    \node (n3) at (1,-1) {$N_C$};
    \draw [->] (n1) -- (n2);
    \draw [->] (n2) -- (n3);
    \draw [->] (n3) -- (n1);
\end{tikzpicture}
\end{center}

- The $N_A \rightarrow N_B$ edge indicates: $N_A$ has a \texttt{write}(x) prior to $N_B$’s \texttt{write}(x) (for some x).
  $\Rightarrow$ This means $N_A$ must have \texttt{unlocked} $x$ before $N_B$’s \texttt{write}(x).
⇒ After this point, \( N_A \) cannot have locks on anything
⇒ It has no conflicts after this (since, if \( N_A \) has a conflict, it must lock).

- Similarly, the \( N_B \rightarrow N_C \) edge indicates: \( N_B \) has a \texttt{write}(y) before \( N_C \)’s \texttt{write}(y) (for some \( y \)).
- Finally, the \( N_C \rightarrow N_A \) edge indicates: \( N_C \) has a \texttt{write}(z) before \( N_A \)’s \texttt{write}(z) (for some \( z \)).
- But, \( N_A \) must place a lock before its \texttt{write}(z)
  ⇒ this lock comes after the \texttt{unlock}(x)
  ⇒ contradiction!

- **Deadlock-free 2PL:**
  - A simple modification is sufficient to remove deadlock:
    A transaction that is blocked must release all the locks it has acquired.
  - Thus, a transaction either gets all its locks or none at all.
  - Example:

<table>
<thead>
<tr>
<th>( N_A )</th>
<th>( N_B )</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{readlock}(x)</td>
<td>\texttt{writelock}(y) // Acquired</td>
</tr>
<tr>
<td>\texttt{readlock}(y) // blocked</td>
<td>\texttt{write}(y)</td>
</tr>
<tr>
<td>release all locks</td>
<td>\texttt{writelock}(x) // Acquired</td>
</tr>
<tr>
<td>\texttt{readlock}(x) // Try again</td>
<td>\texttt{write}(x)</td>
</tr>
<tr>
<td>\texttt{read}(x)</td>
<td>\texttt{unlock}(x)</td>
</tr>
<tr>
<td>\texttt{read}(y)</td>
<td>\texttt{unlock}(y)</td>
</tr>
</tbody>
</table>

475
• Strict 2PL:
  
  – Recall: a strict schedule is one in which a transaction $N_A$ reads a value written by $N_B$ only if $N_B$ has committed at the time of reading.
  
  – To enforce “strictness” in 2PL:
    
    Allow locks to be released by a transaction only after it either commits or rolls back.
  
  – Example:

<table>
<thead>
<tr>
<th>$N_A$</th>
<th>$N_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock($x$) // blocked</td>
<td>writelock($x$)</td>
</tr>
<tr>
<td>read($x$)</td>
<td>write($x$)</td>
</tr>
<tr>
<td>unlock($x$)</td>
<td>commit</td>
</tr>
</tbody>
</table>

Here, $N_A$ reads only committed data
⇒ the problem of reading an uncommitted-write can’t occur.

• In practice, one of two methods is used:
  
  1. Strict deadlock-free 2PL, or
  2. Strict 2PL with a deadlock detection and resolution method.

• Note:
  
  – It is possible for a schedule to be deadlock-free but not strict (if locks are released before commit).
  
  – It is possible for a strict schedule to deadlock (blocking can occur well before commit).
7.13 Deadlocks

- Two approaches to the deadlock problem:
  1. Deadlock prevention:
     - Make sure it can’t happen.
  2. Deadlock detection and resolution:
     - Allow deadlock to occur.
     - Find a way to detect it when it occurs.
     - Break the deadlock when found.

- Deadlock prevention using unique priorities:
  - Key ideas:
    * Each transaction is given a unique priority number (integer).
    * Typically, a transaction’s priority is related to its time of creation.

<table>
<thead>
<tr>
<th>Creation time</th>
<th>Trans ID</th>
<th>4096 (max value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100001</td>
<td>1011</td>
<td>2587 (decimal)</td>
</tr>
<tr>
<td>(8 bits)</td>
<td>(4 bits)</td>
<td></td>
</tr>
</tbody>
</table>

Here, a transaction’s creation time (8-bit) is concatenated with its ID (4-bit) to create a 12-bit string. This is subtracted from the maximum value of the 12-bit string (4096) to get the priority.

* The older the transaction (i.e., smaller the creation time), the higher (i.e., larger) the priority.
* Since priorities are unique, for any two transactions \( N_A \) and \( N_B \), either
1. \textit{priority}(N_A) < \textit{priority}(N_B), or
2. \textit{priority}(N_A) > \textit{priority}(N_B)

but not both (\textit{priority}(N_A) = \textit{priority}(N_B) is not possible).

* Note that to prevent deadlock, we need to prevent circular wait
  
  - e.g., “\(N_A\) is waiting for \(N_B\) which is waiting for \(N_C\) which is waiting for \(N_A\)” is a
    circular wait.

* The solution to circular wait: rollback one of the waiting transactions.

* Which transaction to rollback?
  
  - Use priorities to determine whether a transaction should be rolled back or whether it
    should be allowed to wait.

* Since decisions are made at lock-request time, we are usually faced with the following scenario:
  
  - \(N_B\) tries to acquire a lock already held by \(N_A\).
  - Should \(N_B\) be allowed to wait?
  - Or should it be rolled back?

* Two methods are used:

1. \textbf{Wait-die} method:
   
   If \textit{priority}(N_B) > \textit{priority}(N_A)  
   Allow \(N_B\) to wait
   Else
   Roll back \(N_B\), releasing its locks
   Restart \(N_B\) later (with its old priority)
   Endif

2. \textbf{Wound-wait} method:
   
   If \textit{priority}(N_B) > \textit{priority}(N_A)  
   Roll back \(N_A\), releasing its locks
   Restart \(N_A\) later (with its old priority)
   Else
   Allow \(N_B\) to wait
Endif

- Examples:
  1. **Wait-die:**
     (a) \( \text{priority}(N_B) < \text{priority}(N_A) \)

     **No deadlock prevention**
     \[
     \begin{array}{c|c}
     \text{N}_A & \text{N}_B \\
     \hline
     \text{readlock (x)} & \text{writelock (y)} \\
     \text{readlock (y)} & \text{writelock (x)} \\
     \text{Deadlock} & \\
     \end{array}
     \]

     **Wait–die method**
     \[
     \begin{array}{c|c}
     \text{N}_A & \text{N}_B \\
     \hline
     \text{readlock (x)} & \text{writelock (y)} \\
     \text{readlock (y)} & \text{writelock (x)} \\
     \text{Allowed to wait} & \\
     \text{N}_A \text{ continues} & \\
     \text{Release all locks} & \\
     \end{array}
     \]

     (b) \( \text{priority}(N_B) > \text{priority}(N_A) \)

     **No deadlock prevention**
     \[
     \begin{array}{c|c}
     \text{N}_A & \text{N}_B \\
     \hline
     \text{readlock (x)} & \text{writelock (y)} \\
     \text{readlock (y)} & \text{writelock (x)} \\
     \text{Deadlock} & \\
     \end{array}
     \]

     **Wait–die method**
     \[
     \begin{array}{c|c}
     \text{N}_A & \text{N}_B \\
     \hline
     \text{readlock (x)} & \text{writelock (y)} \\
     \text{readlock (y)} & \text{writelock (x)} \\
     \text{Not allowed to wait} & \\
     \text{Roll back} & \\
     \text{Release all locks} & \\
     \end{array}
     \]

  2. **Wound-wait:**
     (a) \( \text{priority}(N_B) < \text{priority}(N_A) \)
**No deadlock prevention**

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock (x)</td>
<td>writelock (y)</td>
</tr>
<tr>
<td>readlock (y)</td>
<td>writelock (x)</td>
</tr>
<tr>
<td></td>
<td>Deadlock</td>
</tr>
</tbody>
</table>

**Wound−wait method**

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock (x)</td>
<td>writelock (y)</td>
</tr>
<tr>
<td>readlock (y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For forces N_B to roll back</td>
</tr>
<tr>
<td></td>
<td>Roll back Release all locks</td>
</tr>
</tbody>
</table>

(b) \( \text{priority}(N_B) > \text{priority}(N_A) \)

**No deadlock prevention**

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock (x)</td>
<td>writelock (y)</td>
</tr>
<tr>
<td>readlock (y)</td>
<td>writelock (x)</td>
</tr>
<tr>
<td></td>
<td>Deadlock</td>
</tr>
</tbody>
</table>

**Wait−die method**

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>readlock (x)</td>
<td>writelock (y)</td>
</tr>
<tr>
<td>readlock (y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For forces N_A to roll back</td>
</tr>
<tr>
<td></td>
<td>Roll back Release all locks</td>
</tr>
</tbody>
</table>

Note: no deadlock is possible in either scheme (wait-die or wound-wait).

**Proof sketch** (for wound-wait): Let \( N' \) be the oldest (highest-priority) transaction in system. Then, \( N' \) never waits and instead preempts any contending transaction

\( \Rightarrow N' \) will eventually complete. Then, second oldest will complete...then, third oldest...and so on.

- **Deadlock detection:**
  - Key ideas:
    - The database lock manager maintains a *wait-for* graph:
      - One vertex for each transaction.
      - If \( N_i \) blocks while waiting, for a lock held by \( N_j \), then place an edge from vertex \( N_i \) to vertex \( N_j \).
    - Every time a transaction is blocked, update the *wait-for* graph.
* Check whether wait-for graph has a cycle.
* If it has a cycle ⇒ deadlock has occurred.
* Select a transaction in the cycle to roll back and roll it back.

– Example:

<table>
<thead>
<tr>
<th>N_A</th>
<th>N_B</th>
<th>N_C</th>
<th>Wait–for graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N_A N_B N_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initially</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N_A N_B N_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lock granted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N_A N_B N_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lock granted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N_A N_B N_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lock granted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Add edge N_A to N_B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Add edge N_A to N_B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– Which one to roll back? Various options:

* Roll back youngest transaction.
* Roll back transaction with fewest writes.
* Roll back shortest-running transaction.

● Deadlock suspicion:

– A simple alternative to deadlock prevention or deadlock detection and resolution.
– Every time a transaction blocks, start a timer.
- If timer goes off
  ⇒ transaction has waited too long
  ⇒ suspect deadlock
  ⇒ roll back transaction.

- Plus: Timeout’s are simple to understand and easy to implement.

- Minus: The method is too conservative (long-waiting transactions are unnecessarily rolled back).
7.14 The Phantom Problem and Other Issues

• Recall how locking works:
  
  – To read or write to a data item:
    * Obtain address of item (blocknumber, offset).
    * Compute hash-value.
    * Look up hash-value in lock table (using hash-value as index).
    * Obtain lock on hash-value entry.

  – Example: consider the SQL statement

    ```sql
 select MIN (BALANCE)
 from CORP_ACCOUNTS
 where BALANCE > 100000;
    ```

  – At a very low level, this is typically implemented as:

    ```plaintext
 for each tuple t in CORP_ACCOUNTS
 (blk, offset) := GET-BLOCK-AND-OFFSET (t.BALANCE);
 readlock (blk, offset, t.BALANCE);
 read (blk, offset, t.BALANCE);
 if it’s less than MIN then MIN := t.BALANCE;
 endfor
 Release all locks // 2nd phase of 2PL
    ```

  – Note: locking could be done at file-level, but this would reduce concurrency.

• The Phantom problem:

  – Consider the execution of transactions \( N_A \) and \( N_B \):
\[
\begin{array}{l}
N_A \\
// \text{Find lowest balance larger} \\
// \text{than 100,000} \\
\text{SELECT MIN (BALANCE)} \\
\text{INTO :\text{lowest}} \\
\text{FROM CORP\_ACCOUNTS} \\
\text{WHERE BALANCE > 100000;} \\
\end{array}
\]

\[
\begin{array}{l}
N_B \\
\text{INSERT INTO CORP\_ACCOUNTS} \\
\text{VALUES (39, ‘SONY’, 101000);} \\
// \text{Lock is granted on new tuple} \\
\end{array}
\]

- We get the \textit{unrepeatable read} problem even if 2PL is used.
- Why?
  * The locking that occurs for \(N_B\)’s INSERT does not interfere with \(N_B\)’s \textit{readlock}’s.
  * At a low level, \(N_B\) really does the rough equivalent of:
    \[
    \begin{align*}
    b &= \text{GET-LAST-BLOCK (CORP\_ACCOUNTS)}; \\
    t &= \text{GET-FIRST-EMPTY-SPACE (CORP\_ACCOUNTS)}; \\
    \text{writelock} (t); \\
    \text{Write new values;} \\
    \text{unlock} (t); \\
    \text{The hash-value computed for the new tuple need not conflict} \\
    \text{with any of the hash-values computed by \(N_A\)’s \textit{readlock}’s} \\
    \Rightarrow \text{\(N_B\) does not wait} \\
    \Rightarrow \text{repeatable-read problem.}
    \end{align*}
    \]
- Thus, an insert can cause strange effects even with 2PL
  \[
  \Rightarrow \text{the Phantom problem.}
  \]
• One solution: perform locking at the file-level.
  – However, this reduces concurrency.

• Predicate Locking:
  – Predicate locking allows sets of tuples to be locked.
  – Each set is defined by a predicate.
  – Example:
    * Consider the predicate
      \[(\text{BALANCE} > 100000).\]
    * Lock all tuples which satisfy this condition, e.g.,
      \[\text{LOCK CORP-ACCOUNTS} \text{ (BALANCE} > 100000);\]
    * Now, inserts (or reads or updates) can be checked against predicates.
    * Maintain a table of predicates and allow table entries to be locked.
  – Predicate locking is general and useful but very expensive to implement.
    * It’s hard to compare long predicates to determine if they clash
      (if one should lock out the other), e.g.,
      \[
      \begin{align*}
      \text{P1} &= (\text{BALANCE} > 100000) \text{ and } (\text{MILES} < 1000) \text{ or } \\
      & \quad (\text{NAME} < 'G') \text{ and } (\text{FLTNO} > 17) \\
      \text{P2} &= (\text{NAME} < 'G') \text{ or } (\text{BALANCE} > 100000) \text{ and } \\
      & \quad (\text{MILES} < 1000) \text{ and } (\text{FLTNO} > 17)
      \end{align*}
      \]
  – Predicate locking is not used in practice, although the concept has
    led to variations that are used.

• Precision locks:
  – A variation of predicate locks.
  – Predicates are created as in predicate locks.
  – Predicates are not compared.
- When a write occurs, the relevant predicates are computed using the given data (old and new values) to see if there’s a conflict.
- Inserts are treated similar to writes.

- Key-range locking:
  - Another variation of predicate locking.
  -Performed on queries, updates or inserts involving keys.
  -A file is divided into groups based on pre-selected ranges of the key, e.g.,

  \[
  \begin{align*}
  \text{group 1: } & \quad 0 < \text{FLT}_{ID} \leq 10 \\
  \text{group 2: } & \quad 11 < \text{FLT}_{ID} \leq 20 \\
  & \quad \vdots \\
  \end{align*}
  \]

  - This is really the same as defining the predicates:

  \[
  \begin{align*}
  P_1 & = (0 < \text{FLT}_{ID} \leq 10) \\
  P_2 & = (11 < \text{FLT}_{ID} \leq 20) \\
  & \quad \vdots \\
  \end{align*}
  \]

  - The rest is the same as predicate locking, except that numeric ranges are much easier to deal with
    \[\Rightarrow\] key-range locking can be implemented efficiently.

  - Inserts beyond the ends are handled by defining special ranges:

  \[
  \begin{align*}
  & (-\infty < \text{FLT}_{ID} \leq 0) \\
  & (\text{current maximum} < \text{FLT}_{ID} \leq \infty)
  \end{align*}
  \]

- Multiple-Granularity Locking:
  - A compromise between locking whole files or sets of files and tuple-level locking.
  - It uses the “containment property” for the hierarchy of objects we find in any database system:
Suppose we want to lock FLIGHT for an UPDATE:
Should the whole system be locked? Should all of Dbase2 be locked?

Suppose we want to access $x$ and $y$ in Dbase3:
Should all of Dbase3 or BILLING be locked?

Define new locks:

* **readintent** ($x$) – declare an intent to read something in the subtree of object $x$, e.g., **readintent** (Dbase3).

* **writeintent** ($x$) – declare an intent to write something in the subtree of object $x$, e.g., **writeintent** (Dbase3).

Also, allow **readlock** and **writelock** to apply to higher-level objects (files, databases).

When a transaction wishes to lock something, it must lock top-down, stating its intentions along the way (using **readintent** and **writeintent**).

**Example:**
<table>
<thead>
<tr>
<th>$N_A$</th>
<th>$N_B$</th>
<th>$N_C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>writeintent(Debe3)</td>
<td></td>
<td>writeintent(Debe3)</td>
</tr>
<tr>
<td>writeintent(BILLING)</td>
<td></td>
<td>writeintent(BILLING)</td>
</tr>
<tr>
<td>writelock($x$)</td>
<td></td>
<td>writelock(BILLING)</td>
</tr>
<tr>
<td>write ($x$)</td>
<td></td>
<td>// Blocked</td>
</tr>
</tbody>
</table>

- Permitted combinations that can be held on an object:

<table>
<thead>
<tr>
<th></th>
<th>readintent</th>
<th>read</th>
<th>writeintent</th>
<th>write</th>
</tr>
</thead>
<tbody>
<tr>
<td>readintent</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>read</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>writeintent</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>write</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Example: if $N_A$ has a **writeintent** on object $x$, then if $N_B$ does a **readlock** on $x$, it will block.
7.15 Transactions in SQL

- Generally speaking,
  - the more careful we are about locking, the less concurrency we permit;
  - the less we’re fussy about locking, the more the potential concurrency;

- SQL allows the user to decide what level of protection (and therefore, concurrency) a transaction wants.

- SQL allows the user to define one of four levels of protection:

  
  ```
 set transaction isolation level
 [read uncommitted |
 read committed |
 repeatable read |
 serializable]
  ```
  
  - An isolation level determines the protection a transaction receives.
  - In particular:

Isolation Level	Lost Update	Dirty Read	Unrepeatable Read	Phantom Problem
read uncommitted	yes	yes	yes	yes
read committed	no	no	yes	yes
repeatable read	no	no	no	yes
serializable	no	no	no	no

  - Thus, a transaction that has set the isolation level to **read committed** will not experience the lost update problem, but might experience an unrepeatable read.
- **Serializable** is the strictest (but allows for the least concurrency).

- Guidelines in choosing the isolation level:
  - Use **read uncommitted** for casual browsing of data (nothing guaranteed).
  - Use **Serializable** for any write’s.
  - Use **read committed** for computing approximate statistics (max, count, etc).

Note:
- Default is **Serializable**.
- To use **read uncommitted**, a transaction must be read-only.
Chapter 8

Oracle

Course Notes on Database Systems
8.1 Oracle: An Introduction

- What is Oracle?
  \[ \Rightarrow \] Oracle is a commercial database product.

Oracle consists of:

1. A DBMS server:
   - Parses and executes SQL.
   - Executes “stored” PL/SQL code.
   - Handles query processing and optimization.
   - Handles disk I/O, file system and memory management (paging).
   - Provides concurrency, recovery and security.

2. Database tools:
   - DBA tools: svrmgrl (line mode) and svrmgrm (window mode).
     * System startup and monitoring.
     * Add/delete users, set privileges for users.
     * Control space usage.
   - SQL interpreter: sqlplus
     * Prompt user for SQL input and connect to server.
     * Pass SQL queries to server and retrieve results.
     * Other features: formatting, transaction processing, Oracle extensions to SQL.
     * PL/SQL compiler.
   - A dbase programming language: PL/SQL
     * An (almost) full programming language.
     * Syntax and keywords based on Ada.
     * Standard libraries for process control, transaction processing, I/O.
- A window-based programmable user-interface: OracleForms
  * Can set up window-based environment for end-users.
  * Customizable and programmable.
- Other tools:
  * A tool for designing web-based interfaces: Webserver.
  * A tool for handling spatial data.
  * Tools for distributed data, parallel execution of server, graphics and multimedia.

- Oracle is designed to work in client-server mode:
  ⇒ the tools operate as server clients.

- Oracle supports all of SQL/92 (the most recent ANSI SQL standard).

- Oracle on Unix:
  - Oracle is usually under a directory called `/home/dba/`.
  - The directory structure in the standard installation looks like:
• Oracle files and tablespaces:
  – Oracle keeps data in a bunch of tablespaces:
    ⇒ a tablespace is a group of related data
    For example, all students have their data in tablespace **STUDENT97**.
  – Each tablespace consists of a number of (unix) files.
  – A relation is placed in a tablespace and may spread across several files.
  – The files are in `/home/dba/oradata/`.
  – Each user is required to have a:
    * Default tablespace: where the user’s data is stored.
    * Temp tablespace: for intermediate computations (e.g., sorting).
  – Standard tablespaces: **SYSTEM**, **TEMP**, **TOOLS**, **USER**.

• Oracle processes: an Oracle server installation will have several processes running simultaneously:
– DBWR: Database writer – for disk I/O.
– LGWR: Log writer – for writing recovery information.
– SMON, PMON: System monitor and process monitor – to handle connections, client-server communication.
– Server processes.

• Oracle handles its own memory management: a huge piece of main memory (System Global Area) is kept for:
  – Data and catalogs.
  – Current and “stored” SQL and PL/SQL.
  – Memory for indexing, processing, recovery.
8.2 Oracle Datatypes

- Oracle has several datatypes, among which are:
  - CHAR($n$) – Fixed-length character string.
    * $n$ is the length.
    * Default length is 1.
    * Length must be between 1 and 255 bytes.
    * Fixed amount of space is allocated.
  - VARCHAR2($n$) – variable-length character string.
    * $n$ is the maximum length (must be specified). $1 \leq n \leq 2000$.
    * Space usage depends on length of string.
    * Use VARCHAR2 where possible.
  - VARCHAR($n$) – currently same as VARCHAR2.
    * VARCHAR2 and VARCHAR correspond to the ANSI definition of VARCHAR.
    * VARCHAR may change with the next change in ANSI standards.
  - NUMBER($m,n$) – fixed and floating point numbers.
    * $m$ is the total number of digits.
    * $n$ is the number of digits after the decimal point.
    * NUMBER(*,$n$) specifies decimal accuracy but unlimited size.
    * Numbers are in the range $10^{-130}$ to $10^{125}$.
  - INTEGER – integers.
  - DATE – to store a dates (year,month,day,time).
    * Date range: Jan 1, 4712 BC to Dec 31, 4712 AD.
    * A library of date-manipulation functions is provided.
- LONG – to store large amounts of text data.
  * Up to 2GB of text data.
  * Only one LONG column is permitted per relation.
  * LONG attributes cannot be used in the WHERE subclause and in certain other places.

- RAW(n) – to store non-text data.
  * n is size of field: 1 ≤ n ≤ 255.
  * RAW data is not converted into any format.

- LONG RAW – to store images, graphics etc.

- For comparison, here are some standard datatypes in SQL/92:

  CHAR, VARCHAR, NCHAR, NATIONAL CHAR, BIT, NUMERIC, DECIMAL, DEC, INTEGER, INT, SMALL-INT, FLOAT, REAL, DOUBLE PRECISION, DATE, TIME, TIMESTAMP.
8.3 Oracle and SQL

- Oracle provides the tool sqlplus to execute SQL statements:
  - You can type SQL statements at the Sqlplus the command line directly:
    
    ```sql
 % sqlplus <username>/<password>
 SQL> select * from EMP;
    ```

  - Alternatively, you can place SQL statements in a file and execute them by specifying the file name, e.g.,
    * Suppose the file `test1.sql` contains the string “select * from EMP”.
    * To execute the SQL:
      ```sql
 SQL> @test1.sql
      ```

- Sqlplus has number of Oracle-specific commands and features:
  - Use `help` to obtain a complete list of commands.
  - The command `describe` tells you the structure of a table, e.g., to find out the definition of relation EMP:
    ```sql
 SQL> desc EMP
    ```

  - Output can be directed to a file using `spool`, e.g.,
    ```sql
 SQL> spool test1.output
 SQL> @test1.sql
 SQL> spool off
    ```

  - Sqlplus supports the definition and use of variables, e.g.,
define name_var = 'Smith'
select E.SSN
from EMP E
where E.NAME = '&name_var';

If a variable name is used without definition, e.g.,

select E.SSN
from EMP E
where E.NAME = '&name_var';

then Sqlplus prompts the user for the value.

- Sqlplus has features for rudimentary screen I/O, e.g.,

  clear screen
  accept name_var prompt Enter an employee name:

  select E.SSN
  from EMP E
  where E.NAME = '&name_var';

- Oracle SQL differs from standard SQL in some ways, e.g., Oracle uses **minus** instead of **except** for set difference.

- Some additional useful facts:
  - Use ‘;’ (semi-colon) to see the last command executed.
    - command is in server’s SQL buffer
    - already parsed and ready for execution.
  - Use ‘\’ (backslash) to execute last command.
  - Use ‘!’ (exclamation) before Unix command to execute a Unix command.
  - To see a list of tables that you have created:
    select table_name from user_tables;
– System tables that may be useful to you: all_tables, all_users, dba_free_space, dba_tablespaces, dba_users.
8.4 PL/SQL: Introduction

- Consider the following relation:

<table>
<thead>
<tr>
<th>TRAVEL</th>
<th>FLT_NO</th>
<th>DEST</th>
<th>NEAREST</th>
<th>AIRLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>Montreal</td>
<td>New York</td>
<td>Air Canada</td>
<td></td>
</tr>
<tr>
<td>452</td>
<td>Brussels</td>
<td>London</td>
<td>Sabena</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td>London</td>
<td>New York</td>
<td>British Airways</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Macau</td>
<td>Hong Kong</td>
<td>Macau Air</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>Hong Kong</td>
<td>Tokyo</td>
<td>Japan Air Lines</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Tokyo</td>
<td>San Francisco</td>
<td>USAir</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>San Francisco</td>
<td>New York</td>
<td>McValue</td>
<td></td>
</tr>
</tbody>
</table>

- Suppose we are given a destination and we want to produce a list of flights starting from New York to that destination.

- We can’t do this in SQL.
  ⇒ cannot compute transitive closure in SQL
  ⇒ alternative programming language needed.

- Most DBMS’s extend SQL with their own programming language.

- In Oracle: PL/SQL (Procedural Language extensions to SQL):
  - PL/SQL has (almost) the full power of many programming languages (like C).
  - PL/SQL’s syntax and keywords are modeled on Ada.
  - PL/SQL has dbase-specific constructs such as cursors and anchored declarations.
  - PL/SQL has pre-defined libraries for I/O, process control and interprocess communication.

- “Hello World” in PL/SQL:
  - There is no separate tool for PL/SQL.
- PL/SQL can be entered at the command line of Sqlplus or run as a file.
- Suppose the file test1.pl contains:

```plsql
begin
 dbms_output.enable;
 dbms_output.put_line('Hello World');
end;
/
```

- Then, the Sqlplus commands

```sql
SQL> set serveroutput on;
SQL> @test1.pl
Hello World
```

cause the file to be executed.

- In general a PL/SQL program will have the following structure:

```sql
declare
 /* variables, if any, are declared here */
begin
 /* code */
exception
 /* exception handling code -- optional */
end; /* Note the semi-colon */
/ /* Note the forward-slash */
```

- Datatypes in PL/SQL: all of Oracle's SQL datatypes are available in PL/SQL, and with the same names, e.g.,

```sql
char, varchar2, number, date, boolean, long, raw
```
Example: the following are declarations in PL/SQL:

```sql
declare
 i integer;
 x number(10,3);
 ename varchar2(50);
begin
 null;
end;
```

- Anchored declarations:
  - Suppose I have the following declaration:
    ```sql
 emp_name varchar2(50);
    ```
  - Later, we want to make comparisons with a variable called `mgr_name`.
  - One option:
    ```sql
 emp_name varchar2(50);
 mgr_name varchar2(50);
    ```
  - Instead, it’s better to let the type of `mgr_name` depend on `emp_name` using an anchored declaration:
    ```sql
 emp_name varchar2(50);
 mgr_name emp_name%TYPE;
    ```
  - Anchored declarations are even more useful in creating variables to hold tuples.
  - For example, suppose we have created (in SQL) a table called `Travel`: 
create table Travel (  Flt_no integer
  Dest varchar(50)
  Nearest varchar(50)
  Airline varchar(50) );

To declare variables of the same types as above in PL/SQL:

    fltnum Travel.Flt\_no\%TYPE;
    which_airline Travel.Airline\%TYPE;

– It is even possible to define a variable to hold a complete tuple:

    declare
       travel_tuple Travel\%ROWTYPE;
    begin
       ...
       dbms_output.put_line (travel_tuple.Airline);
       ...
    end;
8.5 PL/SQL: Control Statements

- Like any standard high-level programming language, PL/SQL has conditional constructs:

  ```sql
 if <cond> then
 /* statements */
 end if; /* Note the space between end and if */

 if <cond> then
 /* blah-blah */
 else
 /* rah-rah */
 end if;

 if <cond> then
 /* s1 */
 elsif <cond>
 /* s2 */
 elsif <cond>
 /* s3 */
 else
 /* s4 */
 end if;
  ```

- Loops:
  - The simplest loop in PL/SQL is of this form:

    ```sql
 loop
 ...
    ```
if <cond> then exit;
...
ed loop;

– To simulate a C-while loop, for example

    i = 1;
    while (i <= n) {
        ...
    }

use the following PL/SQL loop:

    i := 1;
    loop
        if (i > n) then exit;
        ...
    end loop;

– Similarly, for example, the following C-forloop

    for (i=1; i<=n; i++) {
        ...
    }

can be simulated in PL/SQL as:

    i := 1;
    loop
        if (i > n) then
            exit;
        else
            i := 1 + 1;
        end if;
        ...

end loop;

- Note: several variants of loops exist in PL/SQL (see the manual).
8.6 PL/SQL: Cursors

- SQL by itself provides no for-loop like mechanism to iterate through the tuples of a relation.

- Yet, it is very useful to be able to retrieve tuples one-by-one for processing.

- Most DBMS vendors provide such mechanisms – often called cursors.

- Oracle provides cursors in PL/SQL as well as in the C interfaces.

- What exactly is a cursor?

  - To understand cursors, first consider a list of items in C++, e.g.,

    ```
 struct list_item {
 ...
 } item_type;

 class list {
 ...
 // Access functions
 void start (); // Initialize walk through list
 item item_next (); // Return current item
 boolean list_empty (); // Is the list empty?
 boolean at_end (); // Are we at the end?
 };

 - This list class would be used as:

 list A;
 item_type item;
 ...
    ```
if (! A.list_empty ()) {
    A.start ();
    while (! A.at_end ()) {
        item = A.next ();
        ...
    }
}

- Note that the class list is a generalization of a simple for-loop variable.

- A cursor is similar:
  * Cursors provide ways to determine if a relation is empty, to start a scan and determine if the scan has ended.
  * A cursor is an “object” that scans a relation.
  * Several cursors can be defined for a single relation.
  * Each cursor applies to only one relation.

- In PL/SQL, you can:
  * Declare a cursor.
  * Open a cursor.
  * Use a cursor repeatedly.
  * Close a cursor.

- Example: consider the relation

  travel (Flt_no, Dest, Nearest, Airline).

Let’s write a PL/SQL program to “curse” through the relation:

```sql
DECLARE
 CURSOR travel_cursor IS /* Declaration of cursor */
 SELECT *
 FROM Travel;
```
travel_tuple Travel%ROWTYPE;
BEGIN

DBMS_OUTPUT.ENABLE;

OPEN travel_cursor;

/* Fetch first tuple from travel relation */
FETCH travel_cursor INTO travel_tuple;

IF travel_cursor%FOUND THEN
  DBMS_OUTPUT.PUT ('First FLT\_NO found is: ');
  DBMS_OUTPUT.PUT_LINE (travel_tuple.Flt\_no);
ELSE
  DBMS_OUTPUT.PUT_LINE ('Empty relation');
END IF;

CLOSE travel_cursor;
END;

Note:

- If the above code is in a file called test2.pl, it can be run from Sqlplus:
  SQL> set serveroutput on;
  SQL> @test2.pl

- The program doesn’t do much: it only fetches one tuple.
- PL/SQL keywords are capitalized for reading convenience.

• Let’s now write a more interesting program: to print out all the tuples in Travel.
DECLARE
    CURSOR travel_cursor IS /* Declaration of cursor */
        SELECT *
        FROM Travel;
    travel_tuple Travel%ROWTYPE;
    i INTEGER;
BEGIN
    DBMS_OUTPUT.ENABLE;
    IF travel_cursor%ISOPEN THEN
        DBMS_OUTPUT.PUT_LINE ('Error: cursor already open');
    ELSE
        OPEN travel_cursor;
    END IF;

    /* Now curse through Travel */
    i := 1;
    LOOP
        FETCH travel_cursor INTO travel_tuple;
        IF travel_cursor%NOTFOUND THEN
            EXIT;
        END IF;
        DBMS_OUTPUT.PUT ('Tuple #');
        DBMS_OUTPUT.PUT (i);
        DBMS_OUTPUT.PUT (' : ');
        DBMS_OUTPUT.PUT (travel_tuple.Flt\_no);
        DBMS_OUTPUT.PUT (travel_tuple.Dest);
        DBMS_OUTPUT.PUT (travel_tuple.Nearest);
        DBMS_OUTPUT.PUT_LINE (travel_tuple.Airline);
        i := i + 1
END LOOP;

CLOSE travel_cursor;

END;

• Thus, the key steps in using a cursor are:

1. Declaring a cursor via an SQL select, e.g.,

   CURSOR travel_cursor IS  /* Declaration of cursor */
   SELECT *
   FROM Travel;

2. Opening a cursor, e.g.,

   IF travel_cursor%ISOPEN THEN
     DBMS_OUTPUT.PUT_LINE ('Error: cursor already open');
   ELSE
     OPEN travel_cursor;
   END IF;

   Note: it’s always wise to check whether another cursor has been opened on the same relation.

3. Using FETCH to obtain successive tuples.

4. CLOSE-ing a cursor.

• Note that the select in a cursor declaration can be quite powerful, e.g.,

   CURSOR travel_cursor IS  /* Declaration of cursor */
   SELECT *
   FROM Travel
   WHERE Travel.Airline = 'McValue'
   ORDER BY Travel.Dest;
This cursor will only retrieve those tuples satisfying the \texttt{where} condition.

Similarly, a cursor can be limited to a few attributes (via a projection):

\begin{verbatim}
DECLARE
CURSOR travel_cursor IS /* Declaration of cursor */
     SELECT Dest, Nearest
     FROM Travel
     WHERE Travel.Airline = 'McValue';

  travel_tuple travel_cursor%ROWTYPE
/* travel_tuple only has 2 fields */
\end{verbatim}

- The following special attributes are automatically available with any cursor, e.g., for \texttt{travel_cursor}:

  \begin{verbatim}
  travel_cursor%FOUND      Check if a tuple was retrieved
  travel_cursor%NOTFOUND   See if nothing was retrieved
  travel_cursor%ISOPEN     Is the cursor already open?
  travel_cursor%ROWCOUNT   How many tuples are returned?
  \end{verbatim}

The last attribute counts the number of tuples that matched the defining \texttt{select} in the cursor definition.
8.7 PL/SQL: Procedures and Functions

- PL/SQL supports the definition and use of procedures and functions.
- Example:

```sql
PROCEDURE print_tuple_num (i IN INTEGER) IS

 /* Local variables are declared here */

 BEGIN
 DBMS_OUTPUT.PUT ('Tuple #');
 DBMS_OUTPUT.PUT (i);
 DBMS_OUTPUT.PUT (': ');
 END;

 DECLARE
 ...
 BEGIN
 ...
 print_tuple_num (i);
 ...
 END;
```

Note:
- The general definition of a procedure has this structure:

```sql
PROCEDURE <name> (<parameters>)
 <local variables>
BEGIN
 <body>
EXCEPTION
 <exception code>
```
END;

- Each parameter, apart from having a data type, also has an input type: either IN, OUT or IN OUT.
- Example:

  \[
  \text{PROCEDURE proc1 (x IN INTEGER, y OUT INTEGER, z IN OUT INTEGER)}
  \]

• Functions can be defined which return a value. The general form is

  \[
  \text{FUNCTION <name> ( <parameters> )}
  \]

  \[
  \text{RETURN <return type>}
  \]

  \[
  \text{IS}
  \]

  \[
  \text{<local variables>}
  \]

  \[
  \text{BEGIN}
  \]

  \[
  \text{<body>}
  \]

  \[
  \text{EXCEPTION}
  \]

  \[
  \text{<exception code>}
  \]

  \[
  \text{END;}
  \]

For example:

  \[
  \text{FUNCTION circle_area (radius IN REAL)}
  \]

  \[
  \text{RETURN REAL}
  \]

  \[
  \text{IS}
  \]

  \[
  \text{area REAL;}
  \]

  \[
  \text{BEGIN}
  \]

  \[
  \text{area := 3.141 * radius * radius;}
  \]

  \[
  \text{RETURN area;}
  \]

  \[
  \text{END;}
  \]

• Packages:
- A collection of functions and procedures can be encapsulated in a **package** that other developers can use.
- PL/SQL’s **package** is weaker than C++’s **class**.  
  ⇒ encapsulation, but no dynamic creation.
8.8 Oracle and C

- Oracle (as does almost every dbase vendor) provides two mechanisms for programming in C and accessing the dbase:

1. Using the Oracle Call Interface:
   - A library of C functions.
   - Functions for executing SQL, directing output and taking input from user-defined C variables.
   - Currently, Oracle supports only some loaders.
     ⇒ Use the loader ld in /opt/SUNWspro/bin.

2. Using precompilers:
   - SQL-statements can be inserted in a C program.
   - The C precompiler parses the SQL blocks.
   - Precompilation allows for some compile-time optimizations.

- Oracle also has language support for Ada, Fortran and Cobol.

- First, we’ll focus on the OCI SQL library.

- To create your C program that interfaces with Oracle, you will need the following includes:

```
#include <stdio.h> /* Standard C library */
#include <ctype.h> /* Standard C library */
#include <string.h> /* Standard C library */

#include <oratypes.h> /* Definitions of Oracle datatypes, constants */
#include <ocidfn.h> /* Variable types for local data */
#include <ociapr.h> /* Definitions of function calls */
#include <ocidem.h> /* Constants used in demo programs. Useful */
```

517
8.9 Oracle OCI: Setting up a Connection

- The first thing your C program will do is to set up a connection with the Oracle server.
  ⇒ username and password need to be specified

- The library function `olog(...)` is used to set up a connection.

- The file `ORACLE_HOME/rdbms/demo/ociapr.h` contains the definition:

  ```c
 sword olog (struct cda_def *lda, ub1* hda,
 text *uid, sword uid1,
 text *pswd, sword pswd1,
 text *conn, sword conn1,
 ub4 mode);
  ```

  which makes very little sense.

- Oracle defines its own data types in place of standard C data types:
  - Example: the data type `text *` is really `char *`, a character string.
  - Example: the data types `sword` and `uword` correspond to `signed int` and `unsigned int` in C.
  - Here are some of the more important ones:

<table>
<thead>
<tr>
<th>ORACLE</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>text *</td>
<td>char *</td>
</tr>
<tr>
<td>sb1, ub1</td>
<td>char</td>
</tr>
<tr>
<td>sb2, ub2</td>
<td>signed and unsigned 2-byte int’s</td>
</tr>
<tr>
<td>sb4, ub4</td>
<td>signed and unsigned 4-byte int’s</td>
</tr>
<tr>
<td>sword, uword</td>
<td>signed and unsigned int’s</td>
</tr>
</tbody>
</table>

518
Note: most often you will use `sword` instead of `int`.

Use these declarations for variables used in OCI calls. For example, to pass the integer `num_rows` to a call that requires `ub4`, do a cast:

```c
int my_mode = 5;
ub4 mode_in_call;
mode_in_call = (ub4) my_mode;
/* Now mode_in_call can be used in the function call */
```

These weird type names have been defined so that the definitions can vary from system to system (in the file `oratypes.h`) while keeping function definitions the same (in `ocidfn.h`).

Every OCI program `must` have certain global variables:

```c
/* Global variables */
Lda_Def lda; /* Logon data area */
Cda_Def cda; /* Cursor data area */
ub4 hda[HDA_SIZE/sizeof(ub4)]; /* Host data area */
```

The `logon data area` is for Oracle (the OCI client) to place your connection ID, error codes relating to function calls etc.

The `cursor data area` is for Oracle to keep track of current locations of cursors.

Note: a cursor is a programming technique unique to databases.

The `host data area` is also used by Oracle for information related to your program.

How does Oracle know the addresses of these variables?

⇒ you are going to pass these on to Oracle very early.

Note: multiple lda's and cda's may be used for multiple connections. [See the documentation].

519
• A typical olog call looks like:

```c
 text * username = (text *) "Smith";
 text * password = (text *) "S93JfiIE";
 if (olog (&lda, (ub1 *)hda, username, -1, password, -1,
 (text *) 0, -1, OCI_LM_DEF)) {
 /* olog does not return 0 */
 printf ("Function call failed\n");
 exit (0);
 }
 /* Else, olog returned 0 => successful connection */
```

• Let’s take a closer look:

```c
 if (olog
 /* Returns 0 if successful */
 (&lda, /* Pass address of lda */
 (ub1 *)hda, /* Pass address of hda */
 username, /* Give username */
 -1, /* If username is not null-terminated,
 give length */
 password, /* Give username */
 -1, /* Length, if not null-terminated */
 (text *) 0, /* For use in a networking application */
 -1, /* Length for above */
 OCI_LM_DEF) /* Blocking or non-blocking mode */
) {
```

Thus, the only “real” information is: username and password.
• Note: the C code contained the password. A more intelligent way to handle this problem:

```c
 text username[20];
 text password[20];
 printf ("username: "); gets((char*) username);
 printf ("password: "); gets((char*) password);
 if (olog (&lda, (ub1 *)hda, username, -1, password, -1,
 (text *) 0, -1, OCI_LM_DEF)) {
 printf ("Connection failed. Exiting...
");
 exit (1);
 }
```

• To close a connection, use ologof (...):

```c
 if (ologof (&lda)) {
 printf ("Error during log out
");
 exit (1);
 }
```
8.10 Oracle OCI: Executing SQL from C

• An SQL statement in a C program is executed with three steps:

  1. **Cursor definition:** every SQL query is associated with a cursor. Thus, a cursor is first associated with a connection using the `oopen` call:

     ```c
 oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
     ```

  2. **Parsing:** the function `oparse` is used to parse an SQL string:

     ```c
 text * sqlquery = "select NAME, SSN from EMP";
 oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
 oparse (&cda, sqlquery, -1, FALSE, VERSION_7);
     ```

  3. **Execution:** the function `oexec` is then used to execute the query:

     ```c
 text * sqlquery = "select NAME, SSN from EMP";
 oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
 oparse (&cda, sqlquery, -1, FALSE, VERSION_7);
 oexec (&cda);
     ```

• A closer look at these functions:

  1. The `oopen` function:

     ```c
 oopen (&cda, /* The cursor global variable we’ve defined */
 &lda, /* The current connection identifier */
 (text *) 0, /* Remaining parameters can be ignored. */
 -1, /* They are for compatibility with earlier */
 -1, /* Oracle versions */
 (text *) 0,
     ```
Thus, the oopen call really tells Oracle “Here’s a cursor variable that I want you to associate with my current connection”.

2. The oparse function:

```c
oparse(&cda, /* Ptr to CDA specified by OOPEN */
 sqlquery, /* String containing sql query*/
 (sb4) -1, /* Length of SQL statement, if not
 NULL terminated */
 FALSE, /* Value 0 => parse NOW
 Value 1 => parse later */
 VERSION_7) /* Value 2: version info */
```

NOTE:
– This function causes Oracle to parse the SQL query in the string sqlquery.
– It is possible to request deferred parsing for efficiency reasons.
– The deferred parsing will force parsing at the time of execution.
– The SQL statement can be a Data Definition statement (e.g., a create table statement) in which case it is executed if you did not defer parsing.

3. The oexec statement:

```c
oexec (&cda); /* Simply specify the cursor associated
 with the query */
```

NOTE:
– The oexec function can be used for queries, updates and inserts.
– Oracle recommends using other functions for queries only.

• What about output from the query?
- When `oexec` is called, the query is executed and the results are placed in a temporary buffer.

- To actually obtain the data, there are two steps:
  1. Use the `odefin` call to indicate where you want the result placed (in your C variables).
  2. Use the function `ofetch` repeatedly to get one tuple at a time.

- Getting results into C variables using `odefin`:
  - Consider the following SQL statement:
    ```sql
 select NAME, FLT_ID
 from PASSENGER
    ```
  - Suppose that `NAME` is VARCHAR(50) and `FLT_ID` is an INTEGER.
  - In the C program, we would create the following string:
    ```c
 text * sqlquery = "select NAME, FLT_NO from PASSENGER"
    ```
  - This SQL statement would be parsed using `oparse`:
    ```c
 text * sqlquery = "select NAME, FLT_NO from PASSENGER";
 oopen (&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
 oparse (&cda, sqlquery, -1, FALSE, VERSION_7);
    ```
  - Now, we want the output (NAME and FLT_NO) to be placed in C variables of our choice.
  - Accordingly, define the C variables:
    ```c
 #define PNAME_LEN 50
 text pname[PNAME_LEN];
 sword fltnum;
    ```
  - Unfortunately, Oracle requires that three additional variables be defined for each such attribute:
text pname[PNAME_LEN];    /* Passenger name */
sb2 ind pname;         /* An indicator code for function calls */
ub2 retc pname;        /* A return code - to indicate errors */
ub2 retl pname;        /* The length of the value returned */
sword fltnum;           /* Flight number */
sb2 ind fltnum;
ub2 retc fltnum;
ub2 retl fltnum;

Thus, for any variable x, you need ind_x, retc_x and retl_x defined.

- Next, use the odefin call to tell Oracle your intentions for each variable:

  odefin (&cda, 1, (ub1*) pname, (sword) PNAME_LEN, SQLT_STR,
     -1, &ind pname, (text *) 0, -1, -1,
     &retl pname, &retc pname);

  odefin (&cda, 2, (ub1*) &fltnum, (sword) sizeof(int), SQLT_INT,
     -1, &ind fltnum, (text *) 0, -1, -1,
     &retl fltnum, &retc fltnum);

- Let’s look at one of these in a little more detail:

  odefin (          /* The cursor associated with the query */
   &cda,            /* Position of NAME in select query:
   1,               /* Name is the *first* attribute in
               /* select NAME, FLT_NO from ... 
               /* Use 2 for FLT_NO */
   (ub1*) pname,    /* Address of the C variable 
     - cast to ub1* */
   (sword) PNAME_LEN, /* Size of space allocated for result */
   SQLT_STR,        /* It’s a string type: SQLT_STR is a
pre-defined constant in ociidfn.h */
-1, /* Not used */
&ind_pname, /* Did a row-fetch work? */
(text *) 0, /* Not used */
-1, /* Not used */
-1, /* Not used */
&retl_pname, /* Length of data returned to be put here */
&retc_pname) /* A return code */

– After the addresses of your C variables have been handed over to
Oracle, tuples can be fetched one at a time using ofetch:

      ofetch (&cda); /* Provide the cursor identification */

• A complete example: consider the relations:

ACCOUNTS (SSN, ACC_CODE, ACCNUM, BRANCHNUM, AMOUNT)
CUSTOMER (SSN, NAME, ADDR, CITY, STATE)

Goal: print each customer’s name and balance.

– First, include’s and global variables:

    #include <stdio.h> /* Standard C library */
    #include <ctype.h> /* Standard C library */
    #include <string.h> /* Standard C library */

    #include <oratypes.h> /* Definitions of Oracle datatypes */
    #include <ociidfn.h> /* Variable types for local data */
    #include <ociapr.h> /* Definitions of function calls */
    #include <ocidem.h> /* Constants used in demo programs */

    lda_Def lda; /* Logon data area */
    cda_Def cda; /* Cursor data area */
    ub4 hda[HDA_SIZE/sizeof(ub4)]; /* Host data area */
– Second, let’s define a function called `connect` that handles username and password:

```c
void connect () {
 text username[20];
 text password[20];
 printf ("username: "); gets((char*) username);
 printf ("password: "); gets((char*) password);
 if (olog (&lda, (ub1 *)hda, username, -1, password, -1,
 (text *) 0, -1, OCI_LM_DEF)) {
 printf ("Connection failed. Exiting...
"');
 exit (1);
 }
}
```

– Define the SQL statement that produces the desired result:

```c
text * sqlquery
 = "select C.NAME, A.AMOUNT from ACCOUNTS A, CUSTOMER C
 where A.SSN=C.SSN";
```

– Next, define the variables in which we want the results:

```c
#define CNAME_LEN 50
 text cname[CNAME_LEN]; /* Customer name */
 sb2 ind_cname; ub2 retc_pname; ub2 rel1_pname;
 sword amount /* Amount */
 sb2 ind_amount; ub2 retc_amount; ub2 retl_amount;
```

– Next, connect, define a cursor, parse the SQL statement and alias the C variables.

```c
 connect ();
 oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
```
oparse (&cda, sqlquery, -1, FALSE, VERSION_7);

odefin (&cda, 1, (ub1*) cname, (sword) CNAME_LEN, SQLT_STR,
-1, &ind_cname, (text *) 0, -1, -1,
&retl_cname, &retc_cname);

odefin (&cda, 2, (ub1*) &amount, (sword) sizeof(int), SQLT_INT,
-1, &ind_amount, (text *) 0, -1, -1,
&retl_amount, &retc_amount);

− Now execute and fetch resulting tuples one by one:
  
  oexec (&cda);

  do {
  ofetch (&cda);
  /* Check whether anything was returned
   -- look at the .rc field of cda */
  if (cda.rc == NO_DATA_FOUND) break;
  printf ("%s %d \n", cname, amount);
} while (1);

− Close cursors and log off:
  
  oclose (&cda);
  ologoff (&lda);

The complete code is:

#include <stdio.h>
#include <ctype.h>
#include <string.h>

#include "oratypes.h"  /* Definitions of Oracle datatypes, constants*/
#include "ocidfn.h"    /* Variable types for local data */
#include "ociapr.h"    /* Definitions of function calls */
#include "ocidem.h"    /* Constants used in demo programs. Useful */

#define VERSION_7 2

Lda_Def lda;          /* Logon data area */
Cda_Def cda;          /* Cursor data area */
ub4 hda[HDA_SIZE/sizeof(ub4)];  /* Host data area */

void connect ()
{
    text username[20];
    text password[20];

    printf ("username: ");    gets( (char*) username);
    printf ("password: ");    gets( (char*) password);
    if ( olog (&lda, (ub1 *)hda, username, -1, password, -1,
        (text *) 0, -1, OCI_LM_DEF) ) {
        printf ("Connection failed. Exiting...
");
        exit (1);
    }
}


text * sqlquery = (text *) "select C.NAME, A.AMOUNT from simha.ACCOUNT "

#define CNAME_LEN 50


text cname[CNAME_LEN]; /* Customer name */
    sb2 ind_cname; ub2 retc_cname; ub2 retl_cname;
sword amount;       /* Amount */
    sb2 ind_amount;   ub2 retc_amount; ub2 retl_amount;

    int n;
void main ()
{
    connect ();

    if (oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1) ) {
        printf("oopen failed \n"); exit (0);
    }

    if (oparse (&cda, sqlquery, -1, FALSE, VERSION_7)) {
        printf("oparse failed \n"); exit (0);
    }

    if (odefin (&cda, 1, (ub1*) cname, (sword) CNAME_LEN, SQLT_STR,
                -1, &ind cname, (text *) 0, -1, -1,
                &retl cname, &retc cname)) {
        printf("first odefin failed \n"); exit (0);
    }

    if (odefin (&cda, 2, (ub1*) &amount, (sword) sizeof(int), SQLT_INT,
                -1, &ind_amount, (text *) 0, -1, -1,
                &retl_amount, &retc_amount)) {
        printf("second odefin failed \n"); exit (0);
    }

    if (oexec (&cda)) {
        printf("oexec failed \n"); exit (0);
    }

    n = 0;
    do {
        ofetch (&cda);
        /* Check whether anything was returned
           -- look at the .rc field of cda */

    } while (1);
if ( (n > 100) || (cda.rc == NO_DATA_FOUND) ) break;
cname[retl_cname + 1] = '\0';
printf("%s %d \n", cname, amount);
n++;
} while (1);

printf("%d tuples found\n", n);

close (&cda);
ologof (&lda);
}

To obtain the complete code, see the file ~/simha/321/oracle/test1.c.

- Suppose we want to have the user input values to be used in queries:
  
  - Consider these relations:
    CUSTOMER (SSN, NAME, ADDR, CITY, STATE)
    ACCOUNTS (SSN, ACC_CODE, ACCNUM, BRANCHNUM, AMOUNT)
  
  - Suppose we want the user to input a customer name and obtain the amounts in his/her accounts.
  
  - In SQL, for customer Ray we would write this query as:
    
    \begin{verbatim}
    select A.AMOUNT
    from CUSTOMER C, ACCOUNTS A
    where A.SSN=C.SSN and C.NAME = 'Ray';
    \end{verbatim}
    
  - However, in our C program we want to be able to \textit{read in} the value 'Ray' from the keyboard:
    
    \begin{verbatim}
    char * cname;
    printf("Enter customer name: ");
    gets ( cname );
    /* We need to use cname in the SQL statement */
    \end{verbatim}
- Defining and using placeholders in Oracle OCI:
  
  - Oracle allows SQL statements to contain so-called placeholders or temporary variables.
  - These placeholders can be aliased to a C variable which can contain desired values.
  - The aliasing is done using either the obndrv or obndrn function calls.
  - For the above example:

    ```c
 text * sqlquery
 = (text *) "select A.AMOUNT \
 from ACCOUNTS A, CUSTOMER C \
 where A.SSN=C.SSN and C.NAME= :1"
 ;

 #define CNAME_LEN 50
 text cname[CNAME_LEN]; /* Customer name */
 sb2 ind_cname;
 sword amount; /* Amount */
 sb2 ind_amount; ub2 retc_amount; ub2 retl_amount;

 /* Connect, open a cursor and parse the SQL statement */
 connect ();
 oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1)
 oparse (&cda, sqlquery, -1, FALSE, VERSION_7)

 /* Use obndrn to bind cname to ":1" */
 obndrn (&cda, 1, (ub1*) cname, CNAME_LEN,
 SQLT_STR, -1, &ind_cname, (text*) 0, -1, -1);

 /* Alias the output */
 odefine (&cda, 1, (ub1*) &amount, (sword) sizeof(int), SQLT_INT,
 -1, &ind_amount, (text *) 0, -1, -1,
 &retl_amount, &retc_amount);
    ```
/ * Now read in the customer name */
    printf("Enter customer name: "); gets((char*)cname);
    oexec(&cda);

    /* Fetch tuples from result */
    do {
        ofetch(&cda);
        if (cda.rc == NO_DATA_FOUND) break;
        printf("%s %d \n", cname, amount);
    } while (1);

- Note that an SQL placeholder is a string preceded by a colon.
- SQL placeholders are of two types:
  1. Numeric placeholders: these are integers (starting from 1), e.g.,
     text * sqlquery
     = (text *) "select C.NAME \
            from CUSTOMER C \
            where C.NAME= :1 and C.CITY = :2";

Numeric placeholders are always bound using the obndrn call, e.g., for the above example:
#define CNAME_LEN 50
#define TOWN_LEN 50
text cname[CNAME_LEN];
text ccity[CITY_LEN];
obndrn(&cda, 1, (ub1*)cname, CNAME_LEN,
     SQLT_STR, -1, &ind cname, (text*) 0, -1, -1);
obndrn(&cda, 2, (ub1*)ccity, CITY_LEN,
     SQLT_STR, -1, &ind ccity, (text*) 0, -1, -1);
2. **String placeholders**: these are strings used for identification (and have nothing to do with C variables).

```c
 text * sqlquery
 = (text *) "select C.NAME \n from CUSTOMER C \n where C.NAME = :cname and C.CITY = :town";
```

String placeholders are always bound using `obndrv`:

```c
 #define CNAME_LEN 50
 #define TOWN_LEN 50
 text cname[CNAME_LEN];
 text ccity[CITY_LEN];
 obndrv (&cda, (ub1*) ":cname", -1, (ub1*) cname, CNAME_LEN,
 SQLT_STR, -1, &ind_cname, (text*) 0, -1, -1);

 obndrv (&cda, (ub1*) ":town", -1, (ub1*) ccity, CITY_LEN,
 SQLT_STR, -1, &ind_ccity, (text*) 0, -1, -1);
```

- Let's take a look at `obndrv`:

```c
 obndrv (/* The cursor reference */
 &cda, /* Placeholder string */
 (ub1*) ":city", /* If not null-delimited */
 -1,
 (ub1*) ccity, /* Address of C variable */
 CITY_LEN, /* Space allocated */
 SQLT_STR, /* Variable type */
 -1,
 &ind_ccity, /* For return code */
 (text*) 0, -1, -1); /* Not used */
```

- An example of using placeholders can be found in `simha/321/oracle/test2.c`.

- OCI summary:
- Oracle OCI is a library of C functions that let you pass in SQL statements for execution.
- Use olog, ologof to set up a connection.
- Use oopen and oclose to open and close cursors.
- Use odefin to SQL results into C variables.
- Use obndrv and obndrn to use C variables as part of SQL statements.
- Use oparse and oexec to parse and execute a query.
- Use ofetch to retrieve one tuple at a time from the results.
- Other functions are available – see manual.
8.11  Embedded SQL: Using the Oracle C Precompiler

- An alternative to using an SQL library is to use a *precompiler* and *embed* SQL in a C program.

- The precompiler is a *translator* provided by Oracle that converts a C program with embedded SQL into a C program with function calls.

- Embedded SQL makes it easy to declare C variables for input and output.

- Embedded SQL allows SQL’s datatypes to be declared like C variables, e.g.,

  ```
 varchar cname[50]; /* An SQL type */
 char custname[50]; /* Standard C type */
  ```

- Embedded SQL makes it easy to declare and fetch from cursors, e.g.,

  ```
 EXEC SQL DECLARE cust_cursor CURSOR FOR
 SELECT C.NAME, A.AMOUNT
 FROM ACCOUNTS A, CUSTOMER C
 WHERE A.SSN=C.SSN and C.NAME = :custname;

 EXEC SQL OPEN cust_cursor;
  ```

- Let’s examine a complete program:
  This program reads in a customer’s name and prints out the amounts owned by this customer.
#include <stdio.h>
#include <string.h>
#include "sqlca.h"    /* You need this include */

#define UNAME_LEN    20
#define PWD_LEN      20

varchar username[UNAME_LEN];    /* Note the varchar data type */
varchar password[PWD_LEN];
char usrn[UNAME_LEN];
char passw[PWD_LEN];

/* We will obtain these attributes from a query */
varchar cname[50];    /* Corresponds to SQL's VARCHAR */
int amount;           /* Corresponds to SQL’s INTEGER */
char custname[50];

/* Must declare error handling function. */
void sql_error();

main()
{
    printf("username: ");    gets((char*) usrn);
    printf("password: ");    gets((char*) passw);
    /* Connect to ORACLE--
     * Copy the username into the VARCHAR.
     */
    strncpy((char *) username.arr, usrn, UNAME_LEN);

    /* Set the length component of the VARCHAR. */
    username.len = strlen((char *) username.arr);
}
/* NOTE the structure of varchar: fields .arr and .len */

/* Copy the password. */
strcpy((char *) password.arr, passw, PWD_LEN);
password.len = strlen((char *) password.arr);

/* Register sql_error() as the error handler. */
EXEC SQL WHENEVER SQLError DO sql_error("ORACLE error--\n");

/* Connect to ORACLE. Program will call sql_error() */
* if an error occurs when connecting to the default database. */
EXEC SQL CONNECT :username IDENTIFIED BY :password;

printf("\nConnected to ORACLE as user: %s\n", username.arr);

printf("\nEnter customer name: ");
gets(custname);
printf("Customer name entered: %s\n", custname);

/* NOTE the use of a C variable as placeholder */
EXEC SQL DECLARE cust_cursor CURSOR FOR
   SELECT C.NAME, A.AMOUNT
   FROM simha.ACCOUNTS A, simha.CUSTOMER C
   WHERE A.SSN=C.SSN and C.NAME = :custname;

EXEC SQL OPEN cust_cursor;

printf ("Amounts owned by Customer %s: \n", custname);

for (; ;) {
   EXEC SQL WHENEVER NOT FOUND DO break;
   EXEC SQL FETCH cust_cursor
      INTO :cname, :amount;

538
/ * NOTE the availability of Oracle datatypes for use in C */ printf("%s %4d\n", cname.arr, amount); } EXEC SQL CLOSE cust_cursor; EXEC SQL COMMIT WORK RELEASE; exit(0); } void sql_error (char *msg) { char err_msg[128]; size_t buf_len, msg_len; EXEC SQL WHENEVER SQLERROR CONTINUE; printf("\n%s\n", msg); buf_len = sizeof (err_msg); sqlglm(err_msg, &buf_len, &msg_len); printf("%.%s\n", msg_len, err_msg); EXEC SQL ROLLBACK RELEASE; exit(1); } • NOTE: – While not always necessary, it’s best to enclose those variables that store parts of tuples in an embedded SQL block: EXEC SQL BEGIN DECLARE SECTION; varchar cname[50];
int amount;
EXEC SQL END DECLARE SECTION;

- Pointers to character arrays can be used instead of declaring a fixed size of type varchar:

EXEC SQL BEGIN DECLARE SECTION;
  char *cname;
  int amount;
EXEC SQL END DECLARE SECTION;

char *custname;
...
custname = (char *) malloc (50*sizeof(char));
...
EXEC SQL DECLARE cust_cursor CURSOR FOR
  SELECT C.NAME, A.AMOUNT
  FROM simha.ACCOUNTS A, simha.CUSTOMER C
  WHERE A.SSN=C.SSN and C.NAME = :custname;
EXEC SQL OPEN cust_cursor;

for (; ;) {
  EXEC SQL WHENEVER NOT FOUND DO break;
  EXEC SQL FETCH cust_cursor
    INTO :cname, :amount;
  printf ("%4d\n", amount);
}
...

However, it's best to use varchar where possible.

- It is often inefficient to fetch only a tuple at a time.
  * Consider the following relation:
    EMP (NAME, SSN, AGE)

    with millions of tuples.
* Each tuple fetch may occur across a network (client-server mode) ⇒ very time-consuming.
* It’s better to retrieve batches of tuples.
* First, declare an array (of your desired batch size) of variables to receive the output of the SQL statement:

```sql
EXEC SQL BEGIN DECLARE SECTION;
 varchar ename[20][50]; /* Batch size 20, ename size is 50*/
 varchar ssn[20][12];
 int age[20];
EXEC SQL END DECLARE SECTION;
```

NOTE: arrays of pointers and multidimensional arrays are not allowed.
* Next, declare the cursor:

```sql
EXEC SQL DECLARE emp_cursor FOR
 SELECT E.NAME, E.SSN, E.AGE
 FROM EMP E;
```

* Each fetch from the cursor will retrieve a batch:

```sql
for (;;) {
 EXEC SQL WHENEVER NOT FOUND DO break;
 EXEC SQL FETCH emp_cursor;
}
```

* It is possible that fewer than 20 items are retrieved ⇒ could be near end of table.
* The precompiler-defined variable `sqlca.sqlerrd[2]` keeps track of the number of tuples returned so far.
* Thus, the following method tells you how many rows were returned:

```sql
n = 0;
for (;;) {
 EXEC SQL WHENEVER NOT FOUND DO break;
 n = n + 1;
}```
EXEC SQL FETCH emp_cursor;
rows_returned = sqlca.sqlerrd[2] - n;
n = sqlca.sqlerrd[2];
}

– Note: batches can be used for insert’s, update’s and delete’s as well.

• Compilation and execution:

– The C/C++ precompiler in Oracle is called proc (for Pro-C).
– The suffix used for embedded SQL (in C) programs is .pc, for example, testpc1.pc.
– Now, as part of compilation, a C file will be generated. Thus, if you have a C file called test1.c then DO NOT name your Pro-C file test1.pc
 ⇒ compilation will overwrite your test1.c file.
– Consider the file testpc1.pc.
– You can compile this file as follows:

 % proc testpc1.pc

However, you are likely to get linking errors.
– Oracle recommends that you use their pre-defined makefile for compilation.
– Copy over their proc.mk makefile and use it as:

 % make -f proc.mk EXE=testpc1 OBJ=testpc1.o

– Observe that several files are produced as the result of compilation:
 * testpc1.c – this is a plain C file which has the embedded SQL replaced by incomputible C code.
 * testpc1.o – an object file.
 * testpc1 – an executable.
- Unfortunately, you don’t get much help with errors.
 Two kinds of compilation errors are produced:
 1. Pre-compiler errors: these are likely errors in the embedded SQL.
 2. C compiler errors: errors found in the “intermediate” C file
 testpc1.c.

- What does the mysterious “intermediate” file look like?
 For example, the declaration

 varchar cname[50];

becomes

 /* varchar cname[50]; */
 struct { unsigned short len; unsigned char arr[50]; } cname;

Similarly, the statement:

 EXEC SQL OPEN cust_cursor

becomes

 struct sqlexc sqlstmt;
 sqlstmt.sqlvsn = 8;
 sqlstmt.arrsz = 3;
 sqlstmt.stmt = sq0002;
 sqlstmt.iters = (unsigned int)1;
 sqlstmt.offset = (unsigned int)28;
 ...
sqlctx((void **)0, &sqlctx, &sqlstmt, &sqlfpn);
 if (sqlca.sqlcode < 0) sql_error("ORALEASE error--\n");
Thus, it has been translated to the function call `sqlcxt`.

- **Embedded SQL in C: a summary**
 - SQL statements can be embedded in a C program.
 - C variables can be used to determine values in SQL statements.
 - C variables can be used to receive the results of SQL queries.
 - A precompiler translates the source into a regular C program, which is then compiled by a regular C compiler.
8.12 Useful SQL Functions in Oracle

- Oracle provides a number of useful functions to manipulate various data types.

- Type help functions in sqlplus for descriptions.

- **Numeric functions:**
 Consider the following relation:

  ```sql
  create table PATIENT ( NAME VARCHAR(50),
                      AGE INTEGER,
                      WEIGHT FLOAT,
                      HEIGHT FLOAT,
                      BALANCE NUMBER(8,2) );
  ```

 The following numeric functions can be used: `ceil`, `floor`, `mod`, `power`, `round`,

 - Example:

    ```sql
    select round (P.WEIGHT, 2)
    from PATIENT P;
    ```

 - Example:

    ```sql
    select P.NAME, sign (P.BALANCE)
    from PATIENT P;
    ```

 - Example:

    ```sql
    select P.NAME, P.WEIGHT, P.HEIGHT
    from PATIENT P
    where floor (P.WEIGHT) > 10;
    ```

- **Character functions:**
 The following functions operate on strings and return strings:
- **initcap**: capitalize first letter of string, e.g.,

  ```sql
  select initcap (E.NAME) 
  from   EMP E;
  ```

- **replace**(strA, strB, strC): Replace every occurrence of string strB with strC in the string strA, e.g.,

  ```sql
  select replace (E.POSITION,'man','person') 
  from   EMP E 
  where  E.POSITION = 'Chairman';
  ```

- **soundex**: for phonetic searches:

  ```sql
  select  E.NAME 
  from    EMP E 
  where   soundex (E.NAME) = soundex ('Meyer');
  ```

 (Should match: Maier, Meier, Mayer, Meyer).

- Other functions of interest: **lower**, **substr**, **length**.

Date functions:

Several date-related functions are useful:

- **sysdate** – current date and time, e.g.,

  ```sql
  select  L.NAME, L.BOOK 
  from    LIBRARY_BOOKS L 
  where   L.DUE_DATE < sysdate
  ```

- **last_day** – last day of the month, e.g.,

  ```sql
  select  L.NAME, L.BOOK 
  from    LIBRARY_BOOKS L 
  where   last_day (L.DUE_DATE) < sysdate;
  ```

- **months_between** – difference in months between 2 dates, e.g.,

  ```sql
  select  L.NAME, L.BOOK 
  from    LIBRARY_BOOKS L 
  where   months_between (L.DUE_DATE), sysdate) > 3;
  ```

- Conversion functions: to convert from one data type to another.
- **to_char** – converts from *any* data type to a character string, e.g.

```
select M.TITLE, M.YEAR
from MOVIES M
where M.TITLE = to_char (10)
```

- **to_date** – converts *character* data in the specified format to a date, e.g.,

```
select P.NAME
from PATIENTS P
where P.BIRTHDAY = to_date (24-Jan-66,'DD)
```

The function **to_date** figures out the *day of the week* for 24-Jan-66 for use in the comparison.
Chapter 9

Summary

Course Notes on Database Systems
9.1 CS 321: A Summary

- What did we learn in this course?

 Concepts:

 - What is a database? How is it different from a simple file system?
 ⇒ File system does not provide recovery, concurrency, fast querying etc.

 - Data Models.
 ⇒ The Relational Model (tables), constraints.

 - Relational databases: relational algebra.
 ⇒ σ, Π, ♯ etc.

 - Relational databases: SQL.
 ⇒ select statement, create table, update etc.

 - Example: Oracle.
 ⇒ Structure of Oracle, using SQLPlus for SQL queries.

 - Database programming in Oracle.
 ⇒ Using the C-library (OCI) and embedded SQL.

 - Physical implementation: file structures.
 ⇒ Heapfiles, hashfiles, sorted files, disk I/O.

 - B-trees and B+-trees
 ⇒ Insertion, search and deletion.

 - Hashing
 ⇒ Extendible hashing, linear hashing.

 - Sorting
 ⇒ Binary merge-sort, polyphase merge-sort, snowplow method.

 - Query processing
 ⇒ Developing a query plan, evaluating different plans.
– Database design: normalization
 ⇒ Theory of Functional Dependencies (FD’s), normal forms: 2NF, 3NF, BCNF
– Recovery
 ⇒ Shadow paging, Log-based recovery, redo’s and undo’s.
– Concurrency
 ⇒ Problems with concurrent execution, serializability, locking, deadlock.

• Advanced topics we have not covered:

 – Database systems (of interest to dbase system developers):
 * Details of implementing a transaction manager
 ⇒ Including code for locking, recovery, buffer management.
 * Advanced query processing
 ⇒ Query plan enumeration, transformation heuristics.
 * Disk subsystem implementation
 ⇒ Disk I/O, partitions and extents, directory management.
 * Parallel databases
 ⇒ parallel algorithms for implementing relational operators.
 * Distributed databases
 ⇒ Concurrency control and recovery in a distributed system.
 – Database theory:
 * Proofs for results on functional dependencies and normal forms.
 * Higher normal forms.
 * Detailed algorithms for decomposition and minimal covers.
 * logic databases, deductive databases.
 – Applications development:
 * Generating reports.
 * Oracle Report, combining forms and report.
 * Client-server application development, web-based interfaces.
 * ODBC and standard interfaces to other database systems.
* JDBC and Java-related interfaces.

- Text processing and document retrieval:
 * String and pattern search algorithms
 ⇒ string search, approximate search, regular expression search.
 * Indices for text data, keyword-searching.
 * Organizing document databases
 ⇒ indices, clustering, thesaurus construction.
 * Data compression
 ⇒ Huffman coding, Liv-Zempel algorithm.

- Other data models:
 * Network and hierarchical models.
 * Object-oriented databases, persistent objects.
 * Object-relational databases.

- Non-traditional databases:
 * Geographic and spatial databases.
 ⇒ Storage and retrieval of maps, geographic queries.
 * Image and multimedia databases.
 ⇒ Storage and retrieval of image, audio and video data.
 * Scientific databases
 ⇒ Databases for CAD, astronomy, DNA and medical applications.
 * Temporal databases
 ⇒ history-related queries.

- New business applications:
 * Data mining.
 * Online Analytical Processing (OLAP) and multidimensional databases.
9.2 Object-Oriented and Object-Relational Databases

- The development of OO (Object-Oriented) and OR (Object-Relational) databases is motivated by:
 - Supporting new data types: image, spatial and multimedia data.
 - Providing applications developers with mechanisms to define their own data types, their own operators.
 - Allowing for efficient implementation of the above.
 - Integrating a database-like file system (with recovery and concurrency) into a high-level programming language (like C++).
 - Providing applications programmers with powerful OO features (inheritance, encapsulation).

- Consider supporting image data:
 - We want to allow users to store and retrieve images in a variety of formats (GIF, Postscript, Xbitmap, JPEG, etc).
 - We want to allow some kinds of querying, e.g., to determine if two images are of approximately equal intensity.
 - Currently, most commercial systems have a data type for binary (raw bits) data.
 - Thus, an image can be stored as follows:

    ```sql
    create table IMAGE_TABLE ( bit IMAGE,
                              varchar NAME,
                              char(3) TYPE,
                              number CODE);
    ```

 - Now, a C program can be written (as a client) to retrieve images and work with them (e.g., to compute mean intensity etc).
- Unfortunately, this “compute-at-the-client” design causes lots of data to move back and forth between client and server memory:

- Thus, a query that searches through the whole database of images will cause a lot of data transfer
 ⇒ better to have all the work done at the server.

- Some database systems provide SQL-like functions to support non-traditional data.
 * These are usually very limited (e.g., only very few data types).
 * Also, there is no programmer flexibility in defining new types and functions.

- **Object-Oriented Databases.**

 OODB vendors take the view that:

 - Object-oriented programming is here to stay (e.g., C++, Smalltalk, Java).

 - Objects are the natural way to treat all types of data.

 - If database models can’t handle objects, then it’s time to change database software.

- There are three schools of thought on this matter:
– **Pure OO:**

* Forget the concerns of dbase folks and instead simply design persistence into a programming language, e.g., persistent C++.
* What does persistence mean? All objects that are written into are stored in an object repository and can be retrieved later.
* Dbase vendors then can use a persistent language to develop dbase-specific libraries for applications programmers.
* Do not provide a database server.

– **OODB:**

* Since pure-OO folks don’t really care about dbase concerns (such as recovery and concurrency), design a dbase-specific object repository.
* Provide an interface via an object-oriented language but provide a full-fledged database server.
* Allow applications programmers to program assuming persistent objects.
* Handle recovery and concurrency (and efficient memory management).
* Provide a library for SQL programmers (parser, interpreter, query optimizer etc).

– **Object-Relational:**

* Relational systems aren’t broken – let’s instead amend them to handle newer data types.
* Allow programmers to define new data types and functions that manipulate the data types.
* The system then loads programmer-defined functions *into* the server (incorporating it as server code) to handle the new types.

• Object-Oriented Databases (OODB):

– In a typical implementation, an application programmer will define an object using an Object Definition Language, e.g.,
object definition my_object {

 private data:

 int size; // For a size x size image
 real image[100][100];

 methods:

 int get_size ();
 set_size (int val);
 real** get_image ();
 set_image (real** I);

}

– The programmer then compiles this using a special compiler for the language.

– The compiler produces C++ output (in a .h file) that looks like the above:

 class my_object {
 private:
 int size;
 float image[100][100]
 public:
 int get_size ();
 void set_size (int);
 float ** get_image ();
 void set_image (float** I);
 }

– Then, the programmer is expected to write code for the functions in the class.

– Finally, the system compiles the code for use when the object is manipulated.

– An applications programmer then defines the object using an encapsulation (usually via templates in C++):
encap<my_object> A;
A.set_size (5); // Not allowed (won’t work)

The trick is to define the encapsulation so that it returns a pointer (usually a const pointer in C++). Then, an applications programmer cannot modify the data
⇒ must go via a member function of the encapsulation instead
⇒ server has control over modification.
– Since updates go via the OO-system, the data remains at the server, allowing for recovery and concurrency control.
– Example: The SHORE (Scalable Heterogeneous Object REpository) System, developed at the University of Wisconsin, Madison.

• The Object-Relational approach:
 – The programmer is allowed to create types and new functions.
 – Creating a type:
 * Suppose we want to create an image type called image.
 * First, create the image type in C:
      ```
      typedef struct image {
       int size;
       float image[100][100];
      } image;
      
      * Then, create two C functions that handle I/O for this new data type:
        ```
        ```
        image* image_in (char *data) {
            // Code to take in raw data and put it in the struct
        }
        
        char* image_out (image* I)
{  
    // Code to take in an image and put out char data, e.g.
}

and compile them.
* Now, tell the database what you’ve done:

    CREATE FUNCTION image_in (char*)
    RETURNS function
    AS '/usr/mom3/joe/321/image.o'
    LANGUAGE 'C';

    CREATE FUNCTION image_out (image)
    RETURNS char*
    AS '/usr/mom3/joe/321/image.o'
    LANGUAGE 'C';

* Next, create the type in the database:

    CREATE TYPE image (  size = 10002,
    input = image_in,
    output = image_out);

* Finally, create manipulation functions and declare them.
* After all of this is done, an applications programmer can use the
  new data type in a query:

    SELECT name
    FROM image_file
    WHERE approx_equal (image_file.image, :test_image);

- Example: Postgres95 (University of California, Berkeley), Illustra
  (part of Informix), Oracle 8.
9.3 Spatial Information Systems: Introduction

• Standard relational databases store and manipulate alphanumerical data:
  – Vast majority of data consists of simple ASCII text.
  – Numbers (reals, integers) are stored using standard numeric representations.
  – Data sizes are most often known in advance.
  – Data is carefully organized:
    * At high-level: relations.
    * At low-level: file systems, indices.

• Newer applications demand the ability to store different kinds of data, e.g., Image data, Video data, Geometric data, Scientific data.

• Image data:
  – Application example: X-rays in a medical database.
  – Data type: 2D images (e.g., JPEG images).
  – Typical queries:
    * “Retrieve Smith’s shoulder X-rays”
    * “Find all X-rays similar to this one”

• Video data:
  – Application example: Sports.
  – Data type: Video clips in a suitable format (e.g., MPEG).
  – Typical queries:
    * “Find all scenes in which Michael Jordan scores over 3 defenders”.
    * “Find all scenes containing Olympic pole vaults”.

558
• Geometric data:
  – Application example: CAD database.
  – Data type: points, lines, polygons.
  – Typical queries:
    * (Architecture) “Find all floor plans similar to this one”.
    * (VLSI) “Find all chip layouts which use less than 10 square micro-
      crons of area”.
  – Application example: Geographic Information System (GIS).
  – Typical queries:
    * “Find the nearest hospital to this school”.
    * “Find all towns and counties covered by the hurricane path”.

• Scientific data:
  – Application example: data recorded from weather satellites and
    probes.
  – Data type: vectors of numbers.
  – Typical queries:
    * “Find all previous hurricanes with similar air-pressure patterns.”
    * “Find all measurements with this pressure-temperature combi-
      nation”.

• Other kinds of non-standard data:
  – Financial data (stock prices, macroeconomic indicators, etc).
  – 3D data (terrain and contour maps).
  – Audio data (ultrasound, music, sonar).
  – Temporal data (time-specific data).
  – Typical query: “Find similar stock price patterns in history” (given
    a particular 1-week trend).
• A *spatial information system*

  – stores and manipulates spatial data:
    * Image data: usually gray-scale or color images.
    * Geometric data: usually points, lines, polygons and polygonal maps.
  – supports queries related to spatial information:
    * distance-related (e.g., “nearest hospital”).
    * spatial relationships (e.g., “Find lakes Northwest of Richmond”).
  – also allows annotation using text and searching using text.

• Image and geometric data are quite different:

  – Image data:
    * usually larger in size (must store each pixel).
    * easy to display.
    * easy to obtain (via photography).
    * difficult to extract information from.
    * querying by annotation is easy (using text annotation), e.g., “Find Smith’s X-rays”.
    * querying by context is hard, e.g., “Does this fingerprint exist in the database?”
  – Geometric data:
    * usually smaller in size (only need to store endpoints of lines).
    * special rendering software needed (graphics).
    * difficult to obtain (usually requires manual intervention).
    * easier to extract information from
      ⇒ searching is easier.
• Current state-of-the-art in image databases:
  
  – Examples: IBM’s QBIC, MIT Multimedia Lab (Photobook), Virage Corp., several medical dbases.
  – Query by annotation (easy).
  – Query by content (hard, varies with vendor).
    * Queries based on physical characteristics are a little easier, “Find all images that are 40% white and 40% black”
      ⇒ use color histograms.
  A sample from QBIC:

  * Similarity searches based on similarity metrics, e.g., “Find all images similar to this one”.
  * Object recognition is hard (manual annotation is often needed).

• Current state-of-the-art in geometric databases:

  – Examples: ArcInfo, Intergraph, U.S. Census (TIGER) project.
  – Query by annotation (easy).
  – Several geometric queries are efficiently implemented:
    * queries based on distance.
    * object relationships (directional and topological).
    * range queries (using a query rectangle).
    * spatial joins.
• Note: there’s a big difference between implementing a query and implementing it efficiently:
  – Example: color-percentage example above.
  – Wrong way:
    * search all images.
    * compute color percentages for each image.
    * test condition for each image.
  – Right way:
    * use an index.
    * the index results in a narrowing down the list of images to test.
    ⇒ a key problem in spatial databases: designing useful indices for various kinds of data.

• Issues in spatial information systems:
  – Data storage:
    * Store images in compressed or uncompressed form?
    * Store maps as collections of line segments or store individual polygons separately?
  – Display:
    * Image display tool (like xv) needed.
    * Map display tool needed.
  – Input/conversion:
    * conversion of raster data to geometric data and vice-versa.
    * extraction of features.
    * correlation with text data.
  – Indexing.
  – High-level issues:
    * How to integrate with relational system.
    * Query languages.
* Query optimization.

- Why relational dbases are inadequate for spatial queries:
  - Consider storing an image as an attribute, e.g., a 256×256 image:

    ```
 create table PATIENT (NAME char(20),
 SSN char(11),
 DIAGNOSIS char(100),
 XRAY image(256,256));
    ```

  - One option is to store each image with each tuple:

    ![Diagram of storing each image with each tuple]

    This will make the file very large
    ⇒ standard relational operations will be slow (even text-only queries)

  - Another option: store images separately and use a pointer:

    ![Diagram of storing images separately with pointers]

    - While storage issues are straightforward, the real problem is querying
      ⇒ can’t use SQL for querying by content.

    - One solution: use C API to implement image-specific queries
      ⇒ a common solution (image query tool needed).

    - Another solution: modify relation system to allow for non-standard data and new functions
      ⇒ object-relational approach.

    - Discard relational approach altogether
      ⇒ object-oriented dbases.
- Another example: consider storing geometric data, e.g.,

```sql
create table CITY (
 NAME char(20),
 XVALUE real,
 YVALUE real);
```

- Then, the query

```sql
select NAME
from CITY C1, CITY C2
where C1.NAME='Richmond' and
 (sqr(C1.XVALUE-C2.XVALUE)+sqr(C1.YVALUE-C2.YVALUE)) < 10000;
```

finds all cities within 100 miles of Richmond.

- However, more complicated queries are not possible in SQL (e.g., intersection and containment queries).

- Storing polygons as collections of lines (an old approach) can be inefficient, e.g.,

In a relational database, the polygon would typically stored as:

<table>
<thead>
<tr>
<th>POLYGON</th>
<th>NAME</th>
<th>LINE_NUM</th>
<th>LINE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td></td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>P₁</td>
<td></td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>LINE</td>
<td>LINE_ID</td>
<td>STARTX</td>
<td>STARTY</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

This is inefficient for many reasons:

* Duplication of points (only the vertices of the polygon are needed).
* Any processing of the polygon will have to use the LINE relation ⇒ if it’s large, disk I/O needed.
* Repeated access of the POLYGON relation to retrieve the line segments itself takes up CPU time.
9.4 Geometric Databases: Introduction

- Geometric databases form the core of Geometric Information Systems (GIS)
  ⇒ most examples will concern GIS.

- Data types:
  - 0-D: points
    * Points are specified using a (planar) coordinate system.
    * In a GIS points are cross-referenced to latitude/longitude.
    * Points are used for landmarks, for cities/towns etc at large scales.
    * Points are used for query specification.
  - 1-D: line segments and lines:
    * Line segments are specified by end points.
    * Lines are sequences of line segments (with common end points).
    * Lines are used to represent road systems, rivers and boundaries.
  - 2-D: polygons, polygonal maps and networks:
    * A polygon is an ordered collection of line segments with exactly one point in common between successive line segments.
    * A simple polygon has intersections only between successive line segments.
    * Polygons are used to represent regions (countries, states, lakes etc).
    * A polygonal map is a collection of polygons.
    * Polygonal maps are used for complex regions, e.g., a country map showing states.
    * A network is a Euclidean graph: a collection of vertices some of which have an edge between them.
* Networks are used to represent road maps, river maps and transportation systems.

– Other geometric objects:
  * Special polygons: e.g., triangles, rectangles.
  * Circles, ellipses.
  * Text labels.

– Example: Consider the following map of downtown Washington, DC (taken from the TIGER Census Project):
A close-up view of the area near the White House reveals:

Note the representation using line segments.
• Formal theory underlying geometric dbases:
  – (Euclidean) Geometry.
  – Computational Geometry: efficient algorithms for manipulating geometric objects.
  – Topology (to a lesser extent): formal theory of spatial properties.

• Storage issues:
  – Points and line segments have fixed-size storage.
  – For polygons, store list of vertices in order (using, say, clockwise order)
    ⇒ one option: use heapfile with variable-size records.
  – Note: Large polygons may cross block boundaries
    ⇒ need a robust file system.
  – Most systems today allow the storage of BLOBs (Binary Large OB-
    jects) for images, polygons etc.
  – Some dbases create specific types, e.g., Postgres has a \textit{polygon} type.
• Types of queries:
  
  – *Range queries:*
    
    * Example: “Find all lakes within 100 miles of Richmond”.
    * Example: “Retrieve all objects that intersect with or are contained in a specified query rectangle.

  ![Database of geometric objects]

  – *Nearest neighbor queries:*
    
    * Example: “For each elementary school, find the nearest hospital.”
    * Distances are usually Euclidean distances, but may also be street/driving distances.

  – *Spatial joins:*
    
    * Example: Given two files of spatial objects, find all pairs of objects, one from each file, that intersect.
• Indices:
  
  – Several types of indices exist: for point data, for polygonal data.
  
  – Indices greatly speed up access.
  
  – Example: consider a file with 10,000 polygonal objects and a query rectangle:
    
    * Naive approach: scan through all objects and compute intersection with query rectangle.
    * Better: use a spatial index.
  
  – Key problem in spatial indexing: index should capture “spatialness” of data.

• An important difference between standard relational databases and spatial databases:
  
  – In standard relational databases, we pretty much ignored CPU costs in processing data
    
    ⇒ only focused on I/O costs.
  
  – In spatial databases, CPU costs are also significant.
  
  – Example: Suppose we want to report intersection points of two polygons:
    
    * One approach: test each segment of first polygon against each segment of the other.
    * If both polygons have 1000 segments each
      
      ⇒ $10^6$ intersection line intersection tests
      ⇒ can be very time consuming!
Chapter 10

Spatial Information Systems

Course Notes on Database Systems
10.1 Spatial Information Systems: Introduction

• Standard relational databases store and manipulate alphanumeric data:
  – Vast majority of data consists of simple ASCII text.
  – Numbers (reals, integers) are stored using standard numeric representations.
  – Data sizes are most often known in advance.
  – Data is carefully organized:
    * At high-level: relations.
    * At low-level: file systems, indices.

• Newer applications demand the ability to store different kinds of data, e.g., Image data, Video data, Geometric data, Scientific data.

• Image data:
  – Application example: X-rays in a medical database.
  – Data type: 2D images (e.g., JPEG images).
  – Typical queries:
    * “Retrieve Smith’s shoulder X-rays”
    * “Find all X-rays similar to this one”

• Video data:
  – Application example: Sports.
  – Data type: Video clips in a suitable format (e.g., MPEG).
  – Typical queries:
    * “Find all scenes in which Michael Jordan scores over 3 defenders”.
    * “Find all scenes containing Olympic pole vaults”.

573
• Geometric data:
  – Application example: CAD database.
  – Data type: points, lines, polygons.
  – Typical queries:
    * (Architecture) “Find all floor plans similar to this one”.
    * (VLSI) “Find all chip layouts which use less than 10 square microns of area”.
  – Application example: Geographic Information System (GIS).
  – Typical queries:
    * “Find the nearest hospital to this school”.
    * “Find all towns and counties covered by the hurricane path”.

• Scientific data:
  – Application example: data recorded from weather satellites and probes.
  – Data type: vectors of numbers.
  – Typical queries:
    * “Find all previous hurricanes with similar air-pressure patterns.”
    * “Find all measurements with this pressure-temperature combination”.

• Other kinds of non-standard data:
  – Financial data (stock prices, macroeconomic indicators, etc).
  – 3D data (terrain and contour maps).
  – Audio data (ultrasound, music, sonar).
  – Temporal data (time-specific data).
  – Typical query: “Find similar stock price patterns in history” (given a particular 1-week trend).
• A spatial information system:
  – stores and manipulates spatial data:
    * Image data: usually gray-scale or color images.
    * Geometric data: usually points, lines, polygons and polygonal maps.
  – supports queries related to spatial information:
    * distance-related (e.g., “nearest hospital”).
    * spatial relationships (e.g., “Find lakes Northwest of Richmond”).
  – also allows annotation using text and searching using text.

• Image and geometric data are quite different:
  – Image data:
    * usually larger in size (must store each pixel).
    * easy to display.
    * easy to obtain (via photography).
    * difficult to extract information from.
    * querying by annotation is easy (using text annotation), e.g., “Find Smith’s X-rays”.
    * querying by context is hard, e.g., “Does this fingerprint exist in the database?”
  – Geometric data:
    * usually smaller in size (only need to store endpoints of lines).
    * special rendering software needed (graphics).
    * difficult to obtain (usually requires manual intervention).
    * easier to extract information from
      ⇒ searching is easier.
- Current state-of-the-art in image databases:
  - Examples: IBM’s QBIC, MIT Multimedia Lab (Photobook), Virage Corp., several medical dbases.
  - Query by annotation (easy).
  - Query by content (hard, varies with vendor).
    * Queries based on physical characteristics are a little easier, “Find all images that are 40% white and 40% black”
      ⇒ use color histograms.
    A sample from QBIC:
    
    ![Sample from QBIC](image)
    
    * Similarity searches based on similarity metrics, e.g., “Find all images similar to this one”.
    * Object recognition is hard (manual annotation is often needed).
- Current state-of-the-art in geometric databases:
  - Examples: ArcInfo, Intergraph, U.S. Census (TIGER) project.
  - Query by annotation (easy).
  - Several geometric queries are efficiently implemented:
    * queries based on distance.
    * object relationships (directional and topological).
    * range queries (using a query rectangle).
    * spatial joins.
• Note: there’s a big difference between implementing a query and implementing it efficiently:

  – Example: color-percentage example above.
  – Wrong way:
    * search all images.
    * compute color percentages for each image.
    * test condition for each image.
  – Right way:
    * use an index.
    * the index results in a narrowing down the list of images to test.

⇒ a key problem in spatial dbases: designing useful indices for various kinds of data.

• Issues in spatial information systems:

  – Data storage:
    * Store images in compressed or uncompressed form?
    * Store maps as collections of line segments or store individual polygons separately?
  – Display:
    * Image display tool (like xv) needed.
    * Map display tool needed.
  – Input/conversion:
    * conversion of raster data to geometric data and vice-versa.
    * extraction of features.
    * correlation with text data.
  – Indexing.
  – High-level issues:
    * How to integrate with relational system.
    * Query languages.
* Query optimization.

- Why relational dbases are inadequate for spatial queries:
  - Consider storing an image as an attribute, e.g., a 256×256 image:

    ```
 CREATE TABLE PATIENT (
 NAME char(20),
 SSN char(11),
 DIAGNOSIS char(100),
 XRAY image(256,256);
)
    ```
  - One option is to store each image with each tuple:

    ![Diagram of storing images with tuples]

    This will make the file very large
    ⇒ standard relational operations will be slow (even text-only queries)
  - Another option: store images separately and use a pointer:

    ![Diagram of storing images separately]

    - While storage issues are straightforward, the real problem is querying
      ⇒ can’t use SQL for querying by content.
  - One solution: use C API to implement image-specific queries
    ⇒ a common solution (image query tool needed).
  - Another solution: modify relation system to allow for non-standard
    data and new functions
    ⇒ object-relational approach.
  - Discard relational approach altogether
    ⇒ object-oriented dbases.
Another example: consider storing geometric data, e.g.,

```sql
create table CITY (NAME char(20),
 XVALUE real,
 YVALUE real);
```

Then, the query

```sql
select NAME
from CITY C1, CITY C2
where C1.NAME='Richmond' and
 (sqr(C1.XVALUE-C2.XVALUE)+sqr(C1.YVALUE-C2.YVALUE)) < 10000;
```

finds all cities within 100 miles of Richmond.

However, more complicated queries are not possible in SQL (e.g., intersection and containment queries).

Storing polygons as collections of lines (an old approach) can be inefficient, e.g.,

In a relational database, the polygon would typically be stored as:

<table>
<thead>
<tr>
<th>POLYGON</th>
<th>NAME</th>
<th>LINE_NUM</th>
<th>LINE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>2</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>3</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>4</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>5</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
This is inefficient for many reasons:

* Duplication of points (only the vertices of the polygon are needed).

* Any processing of the polygon will have to use the LINE relation
  \(\Rightarrow\) if it’s large, disk I/O needed.

* Repeated access of the POLYGON relation to retrieve the line segments itself takes up CPU time.
10.2 Geometric Databases: Introduction

- Geometric databases form the core of Geometric Information Systems (GIS)
  ⇒ most examples will concern GIS.
- Data types:
  - 0-D: points
    * Points are specified using a (planar) coordinate system.
    * In a GIS points are cross-referenced to latitude/longitude.
    * Points are used for landmarks, for cities/towns etc at large scales.
    * Points are used for query specification.
  - 1-D: line segments and lines:
    * Line segments are specified by end points.
    * Lines are sequences of line segments (with common end points).
    * Lines are used to represent road systems, rivers and boundaries.
  - 2-D: polygons, polygonal maps and networks:
    * A polygon is an ordered collection of line segments with exactly one point in common between successive line segments.
    * A simple polygon has intersections only between successive line segments.
    * Polygons are used to represent regions (countries, states, lakes etc).
    * A polygonal map is a collection of polygons.
    * Polygonal maps are used for complex regions, e.g., a country map showing states.
    * A network is a Euclidean graph: a collection of vertices some of which have an edge between them.
* Networks are used to represent road maps, river maps and transportation systems.

- Other geometric objects:
  * Special polygons: e.g., triangles, rectangles.
  * Circles, ellipses.
  * Text labels.

- Example: Consider the following map of downtown Washington, DC (taken from the TIGER Census Project):
A close-up view of the area near the White House reveals:

Note the representation using line segments.
• Formal theory underlying geometric dbases:
  – (Euclidean) Geometry.
  – Computational Geometry: efficient algorithms for manipulating geometric objects.
  – Topology (to a lesser extent): formal theory of spatial properties.
• Storage issues:
  – Points and line segments have fixed-size storage.
  – For polygons, store list of vertices in order (using, say, clockwise order)
    ⇒ one option: use heapfile with variable-size records.
  – Note: Large polygons may cross block boundaries
    ⇒ need a robust file system.
  – Most systems today allow the storage of BLOBs (Binary Large Objects) for images, polygons etc.
  – Some dbases create specific types, e.g., Postgres has a polygon type.
• Types of queries:

  – *Range queries*:
    * Example: “Find all lakes within 100 miles of Richmond”.
    * Example: “Retrieve all objects that intersect with or are contained in a specified query rectangle.

  ![A database of geometric objects](image)

  – *Nearest neighbor queries*:
    * Example: “For each elementary school, find the nearest hospital.”
    * Distances are usually Euclidean distances, but may also be street/driving distances.

  – *Spatial joins*:
    * Example: Given two files of spatial objects, find all pairs of objects, one from each file, that intersect.
• Indices:
  – Several types of indices exist: for point data, for polygonal data.
  – Indices greatly speed up access.
  – Example: consider a file with 10,000 polygonal objects and a query rectangle:
    * Naive approach: scan through all objects and compute intersection with query rectangle.
    * Better: use a spatial index.
  – Key problem in spatial indexing: index should capture “spatialness” of data.

• An important difference between standard relational databases and spatial databases:
  – In standard relational databases, we pretty much ignored CPU costs in processing data
    ⇒ only focused on I/O costs.
  – In spatial databases, CPU costs are also significant.
  – Example: Suppose we want to report intersection points of two polygons:
    * One approach: test each segment of first polygon against each segment of the other.
    * If both polygons have 1000 segments each
      ⇒ $10^6$ intersection line intersection tests
      ⇒ can be very time consuming!
Chapter 11

Spatial Indices

Course Notes on Database Systems
11.1 Peano Curves: Introduction

- A *Peano Curve Index* is a spatial index constructed from a unidimensional key (and often using a unidimensional index).

- Recall: unidimensional indices can actually be used for multiple attributes:
  - Example: Consider EMP (FNAME, LNAME, SSN, SALARY).
  - Suppose we want to handle queries on FNAME-LNAME values.
  - To answer equality queries, a hash table can be used on the concatenation of the two, e.g.,

  ![Hash function diagram]

  - For range queries, a B+-tree on FNAME-LNAME can be used.

- Consider using a unidimensional index for point data:
  - Hash tables
    * Can be used for equality queries.
    * Useless for range or nearest-neighbor queries.
- What about B+-trees?
  * We’d have to pick some linear order in which to store the point data.
  * Example: consider the following point data: (5, 3), (1, 1), (5, 4), (5, 5), (3, 3), (4, 2), (4, 3), (1, 2), (1, 4), (3, 1), (2, 1), (2, 4).

* Suppose we use *column-major* order:

* For a nearest-neighbor search, we would still have to search the whole file.
* Example: consider the query point \( q = (4, 4) \):

The nearest points are \((5, 4)\) and \((4, 3)\). But how do we locate, for example, \((5, 4)\) in the file quickly?

\[\Rightarrow\text{ need to map } (4, 4) \text{ to } (5, 4) \text{’s location in file.}\]

- Mapping a 2D-value to a 1D-value:
  - Consider the function \( F(x, y) = 5(x - 1) + y \).
  - If we compute \( F \) for each of the points in the above example, we get:
- Suppose now we store the points in order of $F$-value and include the $F$-value in each record:

\[
\begin{array}{c|c}
\text{point} & \text{F-value} \\
(1,1) & 1 \\
(1,2) & 2 \\
(1,4) & 4 \\
(2,1) & 6 \\
(2,4) & 9 \\
(3,1) & 11 \\
(3,3) & 13 \\
(4,2) & 17 \\
(4,3) & 18 \\
(5,3) & 23 \\
(5,4) & 24 \\
(5,5) & 25 \\
\end{array}
\]

- Notice: it’s the same order as before.
- Consider the nearest-neighbor query $q = (4, 4)$:

\[
F(q) = F(4,4) = 5*(4-1)+4 = 19
\]

* Compute $F(q) = F(4, 4) = 19$.
* Use key=19 to search the sorted file using binary search
  \[ \Rightarrow \text{search ends between keys } 18 \text{ and } 23. \]
* Use keys 18 and 23 as starting point for nearest-neighbor search.
• What other formulas (like $F(x, y) = 5(x - 1) + y$) might be useful?
  - For nearest-neighbor queries, the following property would be useful:
    For points $a = (x_0, y_0)$ and $b = (x_1, y_1)$:
    
    $$x_0 \approx x_1 \text{ and } y_0 \approx y_1 \Rightarrow F(x_0, y_0) \approx F(x_1, y_1).$$
    
    i.e., if $a$ “is close to” $b$, then $F(a)$ should be approximately equal to $F(b)$.
  - Can we design such a function?
  - Consider $F(x, y) = xy$ (product):
    * Rationale:
      
      $x_0, y_0$ both large $\Rightarrow x_0y_0$ large
      $x_1, y_1$ both large $\Rightarrow x_1y_1$ large
    * Example: consider points (4,3) and (5,4)
      $\Rightarrow F(4, 3) = 12$ and $F(5, 4) = 20$.
    * Similarly for points (1,2) and (1,1):
      $\Rightarrow F(1, 2) = 2$ and $F(1, 1) = 1$.

* On the other hand, consider (5,1) and (1,5):
  $\Rightarrow F(5, 1) = 5 = F(1, 5)$, but they are not close.
* Let’s join the dots in $F$-order:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4 \\
\end{array}
\]

$\Rightarrow$ the $F$-curve jumps all over the place.

- Consider the following unusual function:
  - This function is defined only on $k$-bit integers, in the range $0, \ldots, 2^k$
    for some $k$ (we can pick $k$ as large as we want).
  - Define $F(x,y) = \text{interleave } x\text{'s and } y\text{'s bits}.$
  - Example: consider 2-bit integer coordinates ($k = 2$).
    Suppose $x = 1$ and $y = 3$
    $\Rightarrow$ binary$(x) = 01$ and binary$(y) = 11$
    $\Rightarrow$ interleaved bitstring = 0111 (decimal: 7)
    $\Rightarrow F(1,3) = 7.$

- Example: consider 5-bit integer coordinates ($k = 5$).
  Suppose $x = 20$ and $y = 6$
  $\Rightarrow$ binary$(x) = 10100$ and binary$(y) = 00110$
⇒ interleaved bitstring = 1000110100 (decimal: 564).
⇒ $F(20, 6) = 564$.

\[
x: \quad 1 \quad 0 \quad 1 \quad 0 \quad 0
\]
\[
y: \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow
\]
\[
F(x,y): \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0
\]

- Suppose we consider $k = 2$ and compute $F$ for all possible points
  ⇒ 16 possible points.
- Then, join the dots in $F_Z$ order:

- This ordering method is the Z-order.

- Why should Z-order be better than, say, column-major order?
Let $F_Z(x, y)$ denote the $Z$-value of a point $(x, y)$ and let $F_C(x, y)$ denote the corresponding $F$-value using column-major ordering.

Note: column-major ordering is: $F_C(x, y) = cx + y$ where $c$ is the column size.

Let’s apply the following test to each order:

* Pick a distance $d$, e.g., $d = 3$.
* Set $count := 0$.
* For each point $p$ in the set:
  
  · Identify $N(p) =$ neighboring points of $p$.
  
  · For each point $q \in N(p)$, set $count := count + 1$, if $|F(p) - F(q)| \leq d$.

Thus, we are counting how often a neighbor occurs within a short distance ($d$) along the linear ordering $F$. 
Here’s a comparison of $F_Z$ and $F_C$:

<table>
<thead>
<tr>
<th>Size</th>
<th>$d$</th>
<th>Using $F_C$</th>
<th>Using $F_Z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>1</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>42</td>
<td>62</td>
</tr>
<tr>
<td>$k = 3$</td>
<td>1</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>112</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>112</td>
<td>248</td>
</tr>
</tbody>
</table>

This example shows that the chances of finding spatial neighbor “close by” in the file are higher using the Z-order
⇒ point neighbors are more often clustered together in a file using $F_Z$
than using $F_C$.

Because of its self-similar nature, the Z-ordering often referred to as a fractal ordering. (Also called a space-filling curve – Hausdorff dimension = 2). Discovered by the mathematician Giuseppe Peano in the late 19th century.

Note: a $2^k \times 2^k$ curve is obtained from a $2^{k-1} \times 2^{k-1}$ curve by the following steps:

- Make four copies and place them in a square.
- Join appropriate points in the four copies (by adding three line segments).
11.2 Peano Curve Indices

- So far, we’ve only dealt with integer-valued coordinates in a power-of-2 square.
- What’s needed for a useful index:
  - The ability to handle arbitrary real-valued coordinates.
  - A mechanism for storing and searching the data.
  - A mechanism for nearest-neighbor queries.
- Key ideas:
  - We will assume MBR of data is known in advance:

  ![MBR of data](image)

  - Select a granularity for the Peano key
    - select a power-of-2 \( - 2^k \).
  - Impose an imaginary grid on the MBR of size \( 2^k \times 2^k \), e.g., if \( k = 2 \):

    ![Imaginary grid](image)
- Label rows and columns of grid $0, \ldots, 2^k - 1$
  $\Rightarrow$ each grid cell has an address $[i, j]$ where $0 \leq i, j \leq 2^k - 1$.
- To compute the Peano-key of a point $p = (x_0, y_0)$:
  * Find the cell $[i, j]$ containing $p$.
  * Compute the Peano-value of $(i, j) \Rightarrow F(i, j)$.
  * Example: if Z-order is being used, interleave bits of $i$ and $j$.
  * Return the Peano-value $F(i, j)$ as the Peano-key of $p$.
- Note:
  * Points in the same cell have the same Peano-key
    $\Rightarrow$ we will allow duplicates
    $\Rightarrow$ it’s not strictly a key.
  * Notation: use $PK(p)$ to denote the Peano-key of point $p$.
    * $PK(p)$ is an integer in the range $0, \ldots, 2^{2k} - 1$.
- Create a tuple for point $p$ and include $p$’s Peano-key:

  ![Peano key diagram]

  - Insert tuple in a standard unidimensional index, such as a B+-tree using the Peano-key attribute as the search key.
  - To handle a nearest-neighbor query:
    * Compute the Peano-key of the query point $q$, $PK(q)$.
    * Use the search-value $PK(q)$ to search in the unidimensional index.
    * After finding closest (by PK-value) point in index, proceed with remainder of nearest-neighbor search.

  - Notation: we will use
    - $PK_Z(p)$ to denote the Peano-key using Z-order.
− \( PK_C(p) \) to denote the Peano-key using column-major order. 
− \( PK_H(p) \) to denote the Peano-key using Hilbert order. 

• We distinguish between two kinds of settings:

1. Applications which require frequent insertions and deletions:
   − In this case, a B+-tree is used to store the tuples.
   − The leaf-level of the B+-tree is useful for range searches.

2. Applications which do not require many insertions and deletions:
   − Usually, the data is a set of points that doesn’t change much.
   − In this case, the tuples are placed in a sorted file
      \[ \Rightarrow \] sorted by Peano-key.
   − Binary search is used for handling queries.

• Example:

− Consider the following data set with MBR \( L_x = 1.0, U_x = 3.4 \) and
  \( L_y = 6.5, U_y = 8.5 \):

  \[
  \begin{array}{|c|c|c|}
  \hline
  p_1 & (1.4, 7.9) & p_5 & (2.0, 8.1) & p_9 & (1.4, 6.6) \\
  p_2 & (1.1, 6.9) & p_6 & (2.7, 7.3) & p_{10} & (1.7, 6.8) \\
  p_3 & (2.1, 7.1) & p_7 & (1.8, 7.6) & p_{11} & (1.7, 7.7) \\
  p_4 & (1.1, 7.4) & p_8 & (3.3, 6.8) & p_{12} & (3.2, 7.6) \\
  \hline
  \end{array}
  \]

− Suppose we use a \( 2^3 \times 2^3 \) grid
  \[ \Rightarrow \] cell addresses have 3-bit coordinates.

− Note: size of cell is \( 0.3 \times 0.25 \).
– We will use Z-order.

• Examples of Peano-key calculation:

– $p_1 = (1.4, 7.9)$:
  * Compute x-coordinate of cell:

$$\left[ \begin{array}{c} 1.4 - 1.0 \\ 0.3 \end{array} \right] = 1$$

  * Compute y-coordinate of cell:

$$\left[ \begin{array}{c} 7.1 - 6.5 \\ 0.25 \end{array} \right] = 5$$

  ⇒ Cell [1,5].

  * Compute Peano-key of [1,5]:

    • Binary(1) = 001 ($k = 3$ bits).
    • Binary(5) = 101.
    • Interleave: 010011 = 19.
    • Thus, $PK_Z(1.4, 7.9) = 19$.

– $p_7 = (1.8, 7.6)$:
  * Compute x-coordinate of cell:

$$\left[ \begin{array}{c} 1.8 - 1.0 \\ 0.3 \end{array} \right] = 2$$

  * Compute y-coordinate of cell:

$$\left[ \begin{array}{c} 7.6 - 6.5 \\ 0.25 \end{array} \right] = 4$$

  ⇒ Cell [2,4].

  * Compute Peano-key of [2,4]:

    • Binary(1) = 010 ($k = 3$ bits).
- Binary(5) = 100.
- Interleave: 011000 = 24.
- Thus, \( PK_Z(1.8, 7.6) = 24. \)

\[- p_{11} = (1.7, 7.7): \]

* Compute x-coordinate of cell:

\[
\begin{bmatrix}
1.7 - 1.0 \\
0.3
\end{bmatrix} = 2
\]

* Compute y-coordinate of cell:

\[
\begin{bmatrix}
7.7 - 6.5 \\
0.25
\end{bmatrix} = 4
\]

\( \Rightarrow \) Cell [2,4].

* Compute Peano-key of [2,4]:
- Binary(1) = 010 \((k = 3\) bits).  
- Binary(5) = 100.
- Interleave: 011000 = 24.
- Thus, \( PK_Z(1.7, 7.7) = 24. \)

- Similarly, we compute the Peano-key of the remaining points:

<table>
<thead>
<tr>
<th>Point</th>
<th>((x, y))</th>
<th>(PK_Z(x, y))</th>
<th>Point</th>
<th>((x, y))</th>
<th>(PK_Z(x, y))</th>
<th>Point</th>
<th>((x, y))</th>
<th>(PK_Z(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>(1.4,7.9)</td>
<td>19</td>
<td>(p_5)</td>
<td>(2.0,8.1)</td>
<td>30</td>
<td>(p_9)</td>
<td>(1.4,6.6)</td>
<td>3</td>
</tr>
<tr>
<td>(p_2)</td>
<td>(1.1,6.9)</td>
<td>1</td>
<td>(p_6)</td>
<td>(2.7,7.3)</td>
<td>39</td>
<td>(p_{10})</td>
<td>(1.7,6.8)</td>
<td>9</td>
</tr>
<tr>
<td>(p_3)</td>
<td>(2.1,7.1)</td>
<td>14</td>
<td>(p_7)</td>
<td>(1.8,7.6)</td>
<td>24</td>
<td>(p_{11})</td>
<td>(1.7,7.7)</td>
<td>24</td>
</tr>
<tr>
<td>(p_4)</td>
<td>(1.1,7.4)</td>
<td>5</td>
<td>(p_8)</td>
<td>(3.3,6.8)</td>
<td>43</td>
<td>(p_{12})</td>
<td>(3.2,7.6)</td>
<td>58</td>
</tr>
</tbody>
</table>

and create a sorted file:
• Nearest-neighbor query example: \( q = (1.2, 8.1) \)
  
  – Compute \( PK_Z(q) \):
    * Compute x-coordinate of grid cell containing \( q \):
      \[
      \begin{bmatrix}
      1.2 - 1.0 \\
      0.3
      \end{bmatrix} = 0
      \]

    * Compute y-coordinate of grid cell containing \( q \):
      \[
      \begin{bmatrix}
      8.1 - 6.5 \\
      0.25
      \end{bmatrix} = 6
      \]

    * Compute Peano-key:
      • Binary(0) = 000.
      • Binary(6) = 110.
      • Interleave: 010100 (decimal: 20).

  \( \Rightarrow PK_Z(q) = 20. \)
- Use $PK_Z(q) = 20$ to search in sorted file (binary search).

- Nearest Peano-keys in file:
  * $PK_Z(p_1) = 19$ in 2nd block.
  * $PK_Z(p_7) = 24$ in 2nd block.
  * $PK_Z(p_{11}) = 24$ in 2nd block (Must consider others with identical keys).

- Compute distances to these points:
  * $dist(q, p_1) = \left( (1.2 - 1.4)^2 + (8.1 - 7.9)^2 \right)^{1/2} = 0.28$.
  * $dist(q, p_7) = \left( (1.2 - 1.8)^2 + (8.1 - 7.6)^2 \right)^{1/2} = 0.78$.
  * $dist(q, p_{11}) = \left( (1.2 - 1.7)^2 + (8.1 - 7.7)^2 \right)^{1/2} = 0.64$.
  \( \Rightarrow p_1 \) is closest with distance $d = 0.28$.

- Draw an imaginary square with $q$ as center and $d$ as half-side:
- Find cells covered by square
  \[ [0,5], [1,5], [0,6], [1,6], [0,7], [1,7] \].
- Compute Peano-keys of these cells:
  \[
  PK_Z(0, 5) = 17 \\
  PK_Z(1, 5) = 19 \\
  PK_Z(0, 6) = 20 \\
  PK_Z(1, 6) = 22 \\
  PK_Z(0, 7) = 21 \\
  PK_Z(1, 7) = 23
  \]

- Sort the above keys using this metric: the distance of each cell to the query point
  (Use closest corner of cell in computing distance).
- For each of the above Peano-keys in sort order:
  If distance of cell is greater than \( d \), stop. Otherwise,
- Search for the key in the sorted file (using binary search).
- Find closest Peano keys to the key (in the file).
- Compute distances to those points.
- If any point’s distance is less than \(d\), use that point.
- Set \(d\) to closest distance so far.

  - In this example, since 2nd block contains all Peano keys in the range 14-24
    \(\Rightarrow\) don’t need to search further.
  - Final result: nearest-neighbor of \(q\) is \(p_1\).

- Nearest-neighbor query example: \(q = (2.4, 7.1)\)

  - Compute \(PK_Z(q)\):
    * Compute x-coordinate of grid cell containing \(q\):
      \[
      \begin{bmatrix}
        2.4 - 1.0 \\
        0.3
      \end{bmatrix} = 4
      \]
    * Compute y-coordinate of grid cell containing \(q\):
      \[
      \begin{bmatrix}
        7.1 - 6.5 \\
        0.25
      \end{bmatrix} = 2
      \]
    * Compute Peano-key:
      - Binary(0) = 100.
      - Binary(6) = 010.
      - Interleave: 100100 (Decimal: 36)
      \(\Rightarrow\) \(PK_Z(q) = 36\).
      - Use \(PK_Z(q) = 36\) to search in sorted file (binary search).
- Nearest Peano-keys in file:
  * $PK_Z(p_5) = 30$ in 2nd block.
  * $PK_Z(p_6) = 39$ in 2nd block.
- Compute distances to these points:
  * $dist(q, p_5) = \left( (2.4 - 2.0)^2 + (7.1 - 8.1)^2 \right)^{1/2} = 1.1$.
  * $dist(q, p_6) = \left( (2.4 - 2.7)^2 + (7.1 - 7.3)^2 \right)^{1/2} = 0.36$.
  $\Rightarrow p_6$ is closest with distance $d = 0.36$.
- Draw an imaginary square with $q$ as center and $d$ as half-side.
- Find cells covered by square
  $\Rightarrow [3,0], [4,0], [5,0], [6,0], [3,1], [4,1], [5,1], [6,1], [3,2], [4,2], [5,2], [6,2], [3,3], [4,3], [5,3], [6,3]$. 

<table>
<thead>
<tr>
<th>PK-value</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1, 6.9</td>
</tr>
<tr>
<td>3</td>
<td>1.4, 6.6</td>
</tr>
<tr>
<td>5</td>
<td>1.1, 7.4</td>
</tr>
<tr>
<td>9</td>
<td>1.7, 6.8</td>
</tr>
<tr>
<td>14</td>
<td>2.1, 7.1</td>
</tr>
<tr>
<td>19</td>
<td>1.4, 7.9</td>
</tr>
<tr>
<td>24</td>
<td>1.8, 7.6</td>
</tr>
<tr>
<td>24</td>
<td>1.7, 7.7</td>
</tr>
<tr>
<td>30</td>
<td>2.0, 8.1</td>
</tr>
<tr>
<td>39</td>
<td>2.7, 7.3</td>
</tr>
<tr>
<td>43</td>
<td>3.3, 6.8</td>
</tr>
<tr>
<td>58</td>
<td>3.2, 7.6</td>
</tr>
</tbody>
</table>

Search ends here
Sort by distance: (Spiral order)

\[ [3, 1], [4, 1], [5, 1], [3, 2], [4, 2], [5, 2], [3, 3], [4, 3], [5, 3], [5, 0], [6, 2], [3, 0], [4, 0], [6, 0], [6, 1], [6, 3]. \]

Compute Peano-keys of these cells:
\[
PK_Z(3, 1) = 11, \quad PK_Z(4, 1) = 33, \quad PK_Z(5, 1) = 35, \quad PK_Z(6, 1) = 41 \\
PK_Z(3, 2) = 14, \quad PK_Z(4, 2) = 36, \quad PK_Z(5, 2) = 38, \quad PK_Z(3, 3) = 15, \\
PK_Z(4, 3) = 37, \quad PK_Z(5, 3) = 39, \quad PK_Z(6, 3) = 45, \quad PK_Z(6, 2) = 44 \\
PK_Z(5, 0) = 34, \quad PK_Z(3, 0) = 10, \quad PK_Z(4, 0) = 32, \quad PK_Z(6, 0) = 40
\]

For each of the above Peano-keys:

* Search for the key in the sorted file (using binary search).
* Find closest Peano keys to the key (in the file).
* Compute distances to those points.
– Final result: nearest-neighbor of $q$ is $p_3 = (2.1, 7.1)$.

• Note: when searching for multiple cells, it is more efficient to keep track of which blocks have been processed
  $\Rightarrow$ process block by block.
11.3 The Hilbert Curve

- The Hilbert Curve is another space-filling fractal.
- It is thought to be slightly “better” than the Z-curve (in terms of neighbor-proximity).
- As with the Z-curve, one starts with a power-of-2:

```
2 x 2

4 x 4

8 x 8
```

General rule for creating higher-order curves:

- Start with lower order curve.
– Make 4 copies and place in a square pattern.
– Rotate bottom-left copy clockwise by 90°.
– Rotate bottom-right copy anti-clockwise by 90°.
– Join in the order: bottom-left, top-left, top-right, bottom-right.

• As with the Z-order, we first impose a $2^k \times 2^k$ grid over the data MBR.
• The Hilbert-key of a point is the Hilbert-key of the cell containing the point
  ⇒ we need to define the function $PK_H(i, j)$ for a cell address $[i, j]$.
• For the Z-order, we interleaved $i$ and $j$'s bits. The Hilbert-key is more complicated to compute.
• Consider the creation of an $2^k \times 2^k$ curve using a $2^{k-1} \times 2^{k-1}$ curve.
- Four copies (of a $2^{k-1} \times 2^{k-1}$) curve are made and arranged in a square.
- The bottom two copies are rotated.
- Each rotation can also be considered a reflection:
  * The bottom-left copy is reflected about a 45° line.
  * The bottom-right copy is reflected about a 135° line.
- The computation of a Hilbert-key $PK_H(i, j)$ reduces to this problem:
  * Suppose $a = a_{k-1}a_{k-2} \ldots a_0$ is the binary representation of $i$.
  * Suppose $b = b_{k-1}b_{k-2} \ldots b_0$ is the binary representation of $j$.

\[
\begin{array}{cccccc}
  a_2 & a_1 & a_0 & b_2 & b_1 & b_0 \\
  0 & 0 & 1 & 1 & 0 & 1
\end{array}
\]

* We need to compute $h_{2k-1}h_{2k-2} \ldots h_0$, the Hilbert-key of $(i, j)$ using $a$ and $b$.
- Notation: let $H_k(a, b)$ denote the Hilbert-key obtained using the lowest $k$-order bits of bitstrings $a$ and $b$.
- Observation: the first two bits of $H_k$ depend on the quadrant:
$\Rightarrow h_{2k-1} = a_{k-1}$ and $h_{2k-2} = a_{k-1} \oplus b_{k-1}$.

- Each quadrant contains an $H_{k-1}$-curve, except that the bottom two quadrants contain reflected $H_{k-1}$ curves.

- Consider the coordinates 001 and 110
  $\Rightarrow$ it turns out that $H_3(001, 110) = 010111$.

- We know that 01 are the first two bits of $H_3$.

- What about the others?
  $\Rightarrow$ use the smaller H-curves in each quadrant (recursively).

- The above example was easy because no reflections were involved.

- Example with reflection:
- Implementing reflection:
  - About the 45°-line: switch $x$ and $y$ coordinates.
  - About the 135°-line: Subtract $x$ and $y$ from $2^k$ and switch.

- Let $a^{(k)}$ denote the lowest $k$ bits of a bitstring $a$.

- Recursive algorithm for computing $H_k(a, b)$:

  1. $h_{2k-1} = a_{k-1}$.
  2. $h_{2k-2} = a_{k-1} \oplus b_{k-1}$.
  3. if $b_{k-1} = 1$ return $h_{2k-1}h_{2k-2}H_{k-1}(a^{(k-1)}, b^{(k-1)})$
  4. else if $a_{k-1} = b_{k-1} = 0$ return $h_{2k-1}h_{2k-2}H_{k-1}(b^{(k-1)}, a^{(k-1)})$
  5. else return $h_{2k-1}h_{2k-2}H_{k-1}(2^{k-1} - 1 - b^{(k-1)}, 2^{k-1} - 1 - a^{(k-1)})$
11.4  R-trees: Introduction

- An R-tree is a spatial index that supports insertion, search and deletion of spatial objects.

- R-trees are similar to B+-trees:
  - An R-tree is an index; the actual data is in a heapfile.
  - Each R-tree node has a minimum and maximum occupancy.
  - Internal and leaf nodes are different.
  - Internal nodes are used for navigation.
  - Leaf nodes contain datapointers.

However, R-trees are also different from B+-trees:
  - In a B or B+-tree, a search traverses a unique path from the root.
  - In an R-tree, a search may require traversing multiple paths to the leaf level.

- Minimum Bounding Rectangles:
  - A Minimum Bounding Rectangle (MBR) of an object is the the smallest rectangle that completely contains the object.
  - Conventionally, MBR’s are constrained to have sides parallel to the axes.
  - An MBR of a collection of objects is the smallest rectangle enclosing all the objects.
  - An MBR of a collection of MBR’s $M_1, M_2, \ldots, M_k$ is the smallest rectangle enclosing $M_1, M_2, \ldots, M_k$.

- While the data objects are usually polygons, they can really be anything, as long as an MBR can be computed for each object (e.g., a circle).

- Point data have degenerate MBR’s.
• An R-tree works only with MBR’s: you insert MBR’s, you delete MBR’s and you search for MBR’s.

Thus, a user

– inserts an object into a heapfile (thereby obtaining a datapointer),
– computes the object’s MBR, and
– inserts the MBR and datapointer into the R-tree.

For example:

– Suppose the object is a circle with center $(5.0,4.0)$ and radius $3.0$.
– Suppose the object is inserted into block# 873 as the 6th tuple.
  \[ \Rightarrow \] the datapointer is $(873,6)$.
– The MBR is the rectangle with
  
  * Lower left corner: the point $(2,1)$.
  * Upper right corner: the point $(8,7)$

– The item inserted into the R-tree is the MBR and the datapointer: [ $(2,1)$, $(8,7)$, $(873,6)$ ] (6 numbers).
  \[ \Rightarrow \] an R-tree leaf entry is of the form [$MBR$, $datapointer$].
• Description of R-tree nodes:
  
  – Leaf nodes:
    * A leaf node contains \([MBR, datapointer]\) entries.
    * Each leaf node contains a maximum \(M\) entries
      \[\Rightarrow M\text{ is determined by the blocksize.}\]
    * Each leaf node contains at least \(\frac{M}{2}\) entries.
  
  – Internal nodes (except the root):
    * An internal node contains \([MBR, treepointer]\) entries.
    * The treepointer points to a (child) node at the next level.
    * The MBR value is the MBR of all the MBR’s in the child node.
    * Each internal node contains between \(\frac{M}{2}\) and \(M\) entries.
  
  – The root node:
    * The root may contain fewer than \(\frac{M}{2}\) entries.
    * The root node contains at least 1 entry.

All nodes also contain a boolean value (indicating whether it’s a leaf) and an integer (the number of current entries).
Structure of R-tree nodes (example):

Leaf

2 entries

datapointer

datapointer

1 entry

Not a leaf

Object MBR's

leaf−level node

MBR of all child MBR's

internal node

Conceptual view:

How this relates to the object data:
• Example of computing $M$:
  
  – Block size 256 bytes.
  – 2 bytes used for block-specific information.
  – 4 bytes per MBR coordinate
    \[ \Rightarrow 16 \text{ bytes per MBR} \]
  – 6 bytes per datapointer or tree pointer
    \[ \Rightarrow 16+6 = 22 \text{ bytes per entry.} \]
  – Max entries $M = \frac{254}{22} = 11 \text{ entries.}$

• NOTE: it is the user’s responsibility to:
  
  – insert a data object tuple into a heapfile;
  – compute the MBR;
  – present the R-tree with the datapointer and MBR.

Why not have the R-tree do the heapfile insertion?

  – The R-tree would have to know how to compute the MBR.
  – Object tuple sizes depend on type of object
    \[ \Rightarrow \text{e.g., circle is fixed-size, polygons are variable-size.} \]
  – MBR computations depend on the type of object
    \[ \Rightarrow \text{e.g., radically different for polygons and circles.} \]
  – We want the R-tree to be independent of the object type
    \[ \Rightarrow \text{R-tree cannot compute MBR or know tuple size.} \]
11.5 Insertion in an R-tree

• Key ideas:
  R-tree insertion is similar to B+-tree insertion:
  
  – Find the appropriate leaf node by navigating down the tree.
  – Insert into leaf node if space is available.
  – If the leaf node is full, split the leaf node and make an insertion at the parent level.
  – If the parent is full, split the parent ... and so on, recursively.

What’s different in an R-tree:

  – The input is an MBR (and a datapointer).
  – In finding an appropriate leaf node:
    * Start at the root.
    * Pick the subtree whose MBR needs the least expansion to accommodate the new rectangle.
    * Go to this child node and repeat the search criterion until the leaf-level is reached.
  – If space is available in the leaf-level, insert the node.
  – Next, go back up the path taken from the root, and adjust (expand) successive parent MBR’s to accommodate the new insertion.
  – If a split is required:
    * Place entries $1, \ldots, \left\lfloor \frac{M}{2} \right\rfloor$ in the left child (current node).
    * Place entries $\left\lceil \frac{M}{2} \right\rceil + 1, \ldots, M$ in newly-created right node.
    * Place new rectangle in the right child.
    * Compute new MBR’s for both left and right child.
* At the parent’s level, adjust the left child’s MBR and insert the
  new right child’s MBR
  ⇒ this may cause a split
  ⇒ split parent ... etc.

- Consider the following simple example with circle objects:

![Diagram with circles]

We are going to insert the circle objects in the order 6,7,8,9,10.
In the example, \( M = 2 \)
- ⇒ at most 2 entries per node
- ⇒ at least 1 entry per node.

- Initially: create empty root.

```
 [] []
```

- Insert circle 6:
  - User computes MBR of object: \([(2, 1) (8, 7)]\).
  - Search for appropriate leaf:
    ⇒ only root node.
- Space available $\Rightarrow$ insert MBR.

- Insert circle $7$:
  - User computes MBR of object: $[ (7,0) \ (9,2) ]$.
  - Search for appropriate leaf:
    $\Rightarrow$ only root node.
  - Space available $\Rightarrow$ insert MBR.
- Insert circle 8:
  - User computes MBR of object: \([(8, 3) \ (10, 5)]\).
  - Search for appropriate leaf:
    \(\Rightarrow\) root is already a leaf.
  - Node is full \(\Rightarrow\) split node:
    * Place half the entries in left node (current node):
      \(\Rightarrow\) \([(2, 1) \ (8, 7)]\).
    * Compute MBR of left node (call it \(M_L\)):
      \(\Rightarrow\) \([(2, 1) \ (8, 7)]\).
    * Create new block (right node).
    * Place remaining entries in right node:
      \(\Rightarrow\) \([(7, 0) \ (9, 2)]\).
    * Place new MBR in right node.
    * Compute MBR of right node (call it \(M_R\)):
      \(\Rightarrow\) \([(7, 0) \ (10, 5)]\).
* Insert $M_L$ and $M_R$ in parent:
  ⇒ no parent
  ⇒ create new root:

• Insert circle 9:
  – User computes MBR of object: $[(0, 0) \ (2, 2)]$.
  – Search for appropriate leaf:
    * For each MBR in root, compute expansion needed to accommodate new rectangle.
⇒ 20 units of expansion needed for MBR [(2, 1) (8, 7)].

⇒ 35 units of expansion needed for MBR [(7, 0) (10, 5)]
⇒ select left subtree to search.

* Left child is at leaf level ⇒ search complete.
- Space available ⇒ insert new rectangle.
- Work backwards up the path to the root and expand MBR’s along the way to accommodate new rectangle
  \[ \Rightarrow \text{expand } [(2,1) \ (8,7)] \text{ to } [(0,0) \ (8,7)]. \]

- Insert circle 10:
  - User computes MBR of object: (7,7) \ (9,9)].
  - Search for appropriate leaf:
    * For each MBR in root, compute expansion needed to accommodate new rectangle.
⇒ 25 units of expansion needed for MBR \([2, 1) (8, 7)]\).

⇒ 12 units of expansion needed for MBR \([7, 0) (10, 5)]\)
⇒ select right subtree to search.

* Right child is at leaf level ⇒ search complete.

– No space available ⇒ split node:
* Place half the entries in left node (current node):
  \[ \Rightarrow [(7,0) \ (9,2)]. \]
* Compute MBR of left node \( M_L \):
  \[ \Rightarrow [(7,0) \ (9,2)]. \]
* Create new block (right node).
* Place remaining entries in right node:
  \[ \Rightarrow [(8,3) \ (10,5)]. \]
* Place new MBR in right node.
* Compute MBR of right node \( M_R \):
  \[ \Rightarrow [(7,3) \ (10,9)]. \]

![Diagram](image)

* Remember the MBR of the split node that was in the parent?
  \[ \Rightarrow [(7,0) \ (10,5)]. \]
* This needs to be adjusted to accommodate the new left child
  \[ \Rightarrow \text{new left child MBR is } [(7,0) \ (9,2)] \ (M_L). \]
  \[ \Rightarrow \text{old MBR entry is } \text{over-written} \text{ with this value.} \]

- Next, insert the new MBR \( M_R \) into the parent.
- Parent is full \( \Rightarrow \) split node:
  * Place half the entries in left node (current node):
    \[ \Rightarrow [(0,0) \ (8,7)]. \]
  * Compute MBR of left node (call this \( M_L \)):
    \[ \Rightarrow [(0,0) \ (8,7)]. \]
  * Create new block (right node of split).
  * Place new MBR in right node.
  * Compute MBR of right node (call this \( M_R \)):
    \[ \Rightarrow [(7,0) \ (10,9)]. \]
* These two MBR’s are passed to the next level.

- There is no next level
  ⇒ create new root (with entries $M_L$ and $M_R$):
• Pseudocode for insertion:

The following convention will be used:

– Calls to Disk functions return either a disk block number (an integer type) or a memory address (an address type).

– Disk-Newblock returns a block number.

– Disk-Writeblock and Disk-Readblock take a block number as input.

– Disk-Readblock returns a memory address. Thus,

\[ b := \text{Disk-Readblock}(\text{blknum}); \]

reads block number blknum into memory and returns the address, which can be used as

\[ b \rightarrow \text{leaf} := \text{false}; \]

– The MBR’s will be stored in \( b \rightarrow R[1], b \rightarrow R[2], \ldots \)

– \( b \rightarrow \text{child}[i] \) refers to the node at the next level pointed to by the \( i \)-th entry in \( b \).
**Algorithm**: Rtree-Create

**Input**: none.

**Output**: root block written to disk.

1. Compute max Entries in an R-tree node;
2. root := Disk-Newblock();
3. b := Disk-ReadBlock (root);
4. b \rightarrow leaf := true;
5. b \rightarrow num_{entries} := 0;
6. Disk-WriteBlock (root);
7. return;
**Algorithm:**  \texttt{RTREE-INSERT} \((R, D)\)

**Input:** MBR \(R\) and datapointer \(D\).

**Output:** The pair \(<R, D>\) is inserted into the tree.

1. Initialize stack;
2. \(b := \text{Disk-ReadBlock} (\text{root});\)
3. \(\text{blknum} := \text{root};\)
   
   // First search for correct leaf
4. \textbf{while} \(b \rightarrow \text{leaf} \neq \text{true}\)
5. \quad \text{Find } k \text{ such that } b \rightarrow \text{R}[k] \text{ needs the least expansion}
       \quad \text{among } b \rightarrow \text{R}[1], ..., b \rightarrow \text{R}[\text{b} \rightarrow \text{num.entries}] \text{ to accommodate } R.
6. \quad \text{STACK-PUSH} (\text{blknum}, k);
7. \quad \text{blknum} := b \rightarrow \text{child}[k];
8. \quad b := \text{Disk-ReadBlock} (\text{blknum});
9. \quad \textbf{endwhile}

   // Now \(b\) is the desired leaf
10. \textbf{if} \(b \rightarrow \text{num.entries} < \text{max.entries}\)
11. \quad // Space available \(\Rightarrow\) insert directly
12. \quad \(b \rightarrow \text{num.entries} := b \rightarrow \text{num.entries} + 1;\)
13. \quad \(b \rightarrow \text{R}[b \rightarrow \text{num.entries}] := R;\)
14. \quad \text{R2} := \text{Block-MBR} (b);
15. \quad \text{Disk-WriteBlock} (\text{blknum});
16. \quad \text{RTREE-Recursive-Insert} (\text{R2}, 0, \text{false});
17. \quad \text{return};
18. \textbf{endif}

   // Otherwise, a split is needed
19. \((\text{LeftR}, \text{RightR}) := \text{Split-Rtree-Node} (b, R);\)
   
   // Assume \text{Split-Rtree-Node} writes the two blocks
20. \textbf{if} \(b\) \text{ is not the root
21. \quad \text{RTREE-Recursive-Insert} (\text{LeftR}, \text{RightR}, \text{true});\)
22. \textbf{else}
23. \quad \text{Create-New-RTREE-Root} (\text{LeftR}, \text{RightR});
24. \quad \text{return};

632
**Algorithm:** \textsc{Rtree-Recursive-Insert} (LeftR, RightR, new)

**Input:** MBR’s LeftR, RightR, and boolean New.

**Output:** The MBR’s are inserted into node obtained from stack.

1. if \textsc{Stack-empty}() return
2. (blknum, k) := \textsc{Stack-Pop}();
3. b := \textsc{Disk-ReadBlock} (blknum);
   // Re-adjust child rectangle to LeftR
4. b \rightarrow R[k] := LeftR;
5. if not new
   // No new MBR being added ⇒ only need to re-adjust
6. \textsc{Disk-WriteBlock} (blknum);
7. R := \textsc{Block-MBR} (b);
8. \textsc{Rtree-Recursive-Insert} (R, 0, false);
9. return;
10. endif
   // Otherwise, we need to add RightR
11. if b \rightarrow \text{num\_entries} < \text{max\_entries}
   // Space available ⇒ insert directly
12. b \rightarrow \text{num\_entries} := b \rightarrow \text{num\_entries} + 1;
13. b \rightarrow R[b \rightarrow \text{num\_entries}] := RightR;
14. R := \textsc{Block-MBR} (b);
15. \textsc{Disk-WriteBlock} (blknum);
16. \textsc{Rtree-Recursive-Insert} (R, 0, false);
17. endif
   // Otherwise, a split is needed.
18. (LeftR2, RightR2) := \textsc{Split-Rtree-Node} (b, RightR);
19. if b is not the root
20. \textsc{Rtree-Recursive-Insert} (LeftR2, RightR2, true);
21. else
22. \textsc{Create-New-Rtree-Root} (LeftR2, RightR2);
23. return;
**Algorithm:** \textsc{Create-New-Rtree-Root} (LeftR, RightR)

**Input:** MBR’s LeftR and RightR.

**Output:** A new root written to disk.

1. root := \textsc{Disk-Newblock} ();
2. \( b := \textsc{Disk-Readblock} (\text{root}); \)
3. \( b \rightarrow \text{num\_entries} := 2; \)
4. \( b \rightarrow R[1] := \text{LeftR}; \)
5. \( b \rightarrow R[2] := \text{RightR}; \)
6. \textsc{Disk-Writeblock} (\text{root});
7. return;

---

**Algorithm:** \textsc{Split-Rtree-Node} (\( b \), R, LeftR, RightR)

**Input:** block pointer \( b \), MBR R.

**Output:** Split blocks written to disk, MBR’s for each block returned.

1. median := (\text{max\_entries} + 1) / 2;
2. \( b \rightarrow \text{num\_entries} := \text{median}; \)
3. \text{LeftR} := \text{Block-MBR} (b);
4. \text{blknum} := \text{Disk-Newblock} ();
5. \( b_2 := \text{Disk-Readblock} (\text{blknum}); \)
6. Place entries median+1, ..., \text{max\_entries} in \( b_2; \)
7. Place new MBR R in \( b_2; \)
8. \text{RightR} := \text{Block-MBR} (b_2);
9. Write blocks \( b \) and \( b_2 \) to disk;
10. return \text{LeftR}, \text{RightR};
11.6 Searching in an R-tree

- Key ideas:
  - Searching usually consists of specifying a *query rectangle*.
  - The R-tree is required to return all data MBR’s that intersect with the given query rectangle.
  - For example, consider the queries Q1, Q2, Q3, Q4:

* Q1 returns no MBR (and therefore no object).
* Q2 returns MBR for Circle 10, although a subsequent retrieval of the object reveals no intersection.
* Q3 returns the MBR of Circle 6 and the MBR of Circle 10 (if touching counts as intersection).
* Q4 returns the MBR’s of circles 6, 7 and 8.
Consider a query rectangle $Q$.

Start the search by computing which of the MBR’s in the root intersect with $Q$

$\Rightarrow$ Explore all those corresponding subtrees.

In general, for each internal node encountered, find all the MBR’s which intersect with $Q$

$\Rightarrow$ Explore all those corresponding subtrees.

For a leaf node, return all MBR’s (and datapointers) that intersect with $Q$.

- Example: $Q = [(5, 8.8) (7.2, 10)]$.

- Check MBR’s in root

  $\Rightarrow$ $Q$ intersects only $[(7,0) (10,9)]$:

- Explore the subtree of $[(7,0) (10,9)]$. 

637
- Check MBR’s in child node (next level)
  \[\Rightarrow\] Q intersects only \([(7,3) \ (10,9)]\)

- Explore the subtree of \([(7,3) \ (10,9)]\).

- Check MBR’s at next (leaf) level
  \[\Rightarrow\] Q intersects \([(7,7) \ (9,9)]\)
  \[\Rightarrow\] return the corresponding datapointer.
• Example:  \( Q = [(6,1) (8,4)] \).

  – Check MBR’s in root
    ⇒ \( Q \) intersects both MBR’s
    ⇒ must explore both subtrees.

  – Explore first subtree (child of \([0,0) (8,7)]\).

  – Check MBR’s at next level
    ⇒ \( Q \) intersects \([0,0) (8,7)]\)
    ⇒ must explore subtree of \([(0,0) (8,7)]\).

  – Check MBR’s of child of \([(0,0) (8,7)]\):
    ⇒ \( Q \) intersects \([(2,1) (8,7)]\)
    ⇒ return corresponding datapointer.
- Are there unexplored subtrees?
  ⇒ yes, right subtree of root.

- Check subtree of [(7, 0) (10, 9)].
  ⇒ Q intersects both MBR's
  ⇒ must explore both subtrees.
- Check subtree \([ (7,0) \ (9,2) ] \)
  \( \Rightarrow \) Q intersects MBR \([ (7,0) \ (9,2) ] \)
  \( \Rightarrow \) return corresponding datapointer.
- Any unexplored subtrees?
  ⇒ check [(7, 3) (10, 9)] at the second level
  ⇒ check MBR’s at leaf level
  ⇒ Q intersects (touches) MBR [(8, 3) (10, 5)].
  ⇒ return corresponding datapointer.
- Summary: datapoints for circles 6, 7 and 8 are returned.

- The above examples illustrate what’s good and bad about an R-tree:
  - An R-tree works well when a query rectangle intersects only a few high-level MBR’s
    - search is similar to a B+-tree.
  - An R-tree works poorly when a query intersects many high-level MBR’s
    - lots of subtrees must be explored
    - cannot provide $O(\log n)$ minimum performance.
  - Worst-case, the whole tree might have to be searched.

- Pseudocode for search:
Algorithm: RTree-Search (Q)

Input: Query rectangle Q.
Output: List of MBR’s (with associated datapointers).
1. Initialize MBR-list.
2. RTree-Recursive-Search (root, Q);

Algorithm: RTree-Recursive-Search (blknum, Q)

Input: block number blknum, query rectangle Q.
Output: if a leaf MBR in blknum intersects Q, add it to MBR-list.
1. \( b := \text{Disk-ReadBlock} (\text{blknum}) \);
2. for \( i \leftarrow 1 \) to \( b \rightarrow \text{num\_entries} \)
   3. if Q intersects \( b \rightarrow R[i] \)
      4. if \( b \rightarrow \text{leaf} = \text{true} \)
         5. Add \( R[i] \) to MBR-list;
      6. else
         7. RTree-Recursive-Search \( (b \rightarrow \text{child}[i], Q) \);
   8. endif
9. endfor
10. return;
Algorithm: Rtree-getnext

Input: none.
Output: next MBR in MBR-list if one exists, NULL otherwise.
1. if MBR-list is empty
2. return null;
3. else
4. return next MBR in list;
11.7 Rtrees: Discussion

- Better splitting algorithms:
  - The splitting algorithm above might as well be called *Random* since no effort is made to separate MBR’s prudently.
  - Consider the following example (with \( M = 3 \)):

```latex
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
(3,0) & (4,1) & (8,8) (9,9) & (1,1) (2,2) \\
\hline
\end{tabular}
\end{center}
```

- The insertion of MBR \([ (6, 7) (7, 9) ]\) causes a split.
Consider the queries:

- Query Q2 searches both subtrees.
- Query Q1 (unnecessary) searches the right subtree.

This corresponds to the parent MBRs:

Using the simple splitting algorithm:
– Instead, consider a different split during the insertion of MBR 4:

which corresponds to the parent MBR’s:

– Q1 does not need searching of subtrees.
– Q2 searches only one subtree.
– What was the problem with the simple method?
  ⇒ rectangles were randomly distributed among the split nodes.
– Is it possible to do better?
- **Quadratic split algorithm:**
  * Consider a node to be split.
  * For each pair of rectangles, $R_i$ and $R_j$:
    - compute MBR of the pair $R_i, R_j$;
    - compute area of pair-MBR
    - compute joint area of $R_i$ and $R_j$;
    - compute deadspace area:
      \[
      \text{Area(pair-MBR)} - (\text{Area}(R_i) + \text{Area}(R_j));
      \]
  * Pick pair with largest such difference.
  * Place these rectangles in different nodes.
  * For each remaining rectangle:
    - Compute resulting MBR if it were placed in each block.
    - Place it in block whose MBR needs least enlargement to accommodate it.

- Note identifying the pair takes quadratic (in the number of entries per node) time (why?).
- Similar linear heuristics also exist.
• Variants of R-trees:
  
  – R+-trees:
   * In an R-tree, MBR’s overlap
     ⇒ multiple overlaps could cause searching multiple subtrees.
   * R+-trees eliminate overlap.
   * Instead, object MBR’s themselves are split and duplicated at the leaf-level.
   * While R+-trees do not overlap MBR’s, they however duplicate object MBR’s
     ⇒ a tradeoff.
   * R+-trees work well in some applications.

  – R*-trees:
   * When a node is split, MBR’s are re-inserted into the R-tree
     ⇒ greater (tree-wide) reorganization during split.
   * In practice, R*-trees are thought to work slightly better than R-trees and R+-trees.

  – Hilbert-Rtrees:
   * Similar to R-tree except that Hilbert-values of the MBR’s are used in addition.
   * Define the Hilbert-value of an MBR to be the Hilbert value of its center.
   * Each data MBR descriptor also contains its Hilbert-value.
   * Each interior node of the tree also contains the largest Hilbert value among all the MBR’s in the node.
   (Define LHV = largest Hilbert-value of an interior node).
   * Search is exactly the same as in the R-tree.
   * Insertion differs slightly from R-tree insertion:
     • In an R-tree, the child whose MBR needs the least expansion is selected.
     • In a Hilbert R-tree, the child whose MBR’s Hilbert value is closest to the input MBR’s Hilbert value is selected.
· When working back up the tree to update MBR’s, the LHV values are re-computed up the tree.

- Bulk-loading of R-trees:
  
  – Given a large collection of data objects, it is inefficient to load the R-tree by successive insertions.

  – Bulk-loading algorithms:
    
    * are faster;
    
    * achieve faster packing.

  – Various bulk loading algorithms exist
    
    ⇒ most arrange MBR’s according to their centers.
• Spatial joins using R-trees:

  – What is a *spatial join*?

    * Consider two files of objects, $F_A$ and $F_B$.
    * A spatial join based on intersection (overlap) is a list of pairs of objects, one from each file, that overlap.
    * We will use the convention that intersection includes “touching”.
    * Other spatial join operators are possible. For example, a *containment* join will have all those pairs of objects $(O_A, O_B)$ where $O_A \in F_A, O_B \in F_B$ such that $O_B$ is completely contained in $O_A$.
    * Example (intersection join):

![Diagram showing spatial joins with circles representing objects and their centers and radii.]

**FILE 1**

- Circle 1: center at (3,9), radius 2
- Circle 2: center at (8,6), radius 2
- Circle 3: center at (1,3), radius 2
- Circle 4: center at (1,1), radius 2
- Circle 5: center at (6,1), radius 2

**FILE 2**

- Circle 6: center at (5,4), radius 3
- Circle 7: center at (8,1), radius 2
- Circle 8: center at (9,4), radius 2
- Circle 9: center at (1,1), radius 2
- Circle 10: center at (8,8), radius 2
The tuples that get joined are:

<table>
<thead>
<tr>
<th>From first file</th>
<th>From second file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle 2</td>
<td>Circle 6</td>
</tr>
<tr>
<td>Circle 2</td>
<td>Circle 10</td>
</tr>
<tr>
<td>Circle 3</td>
<td>Circle 9</td>
</tr>
<tr>
<td>Circle 4</td>
<td>Circle 9</td>
</tr>
<tr>
<td>Circle 5</td>
<td>Circle 6</td>
</tr>
<tr>
<td>Circle 5</td>
<td>Circle 7</td>
</tr>
</tbody>
</table>

- The straightforward algorithm is a nested loop (as in the case of relational databases).

- The R-tree can be used effectively by scanning one file (say, File 1) tuple-by-tuple, and using an R-tree for the second file:
  * Insert items from File 2 into R-tree.
  * Scan tuples in File 1.
  * For each tuple (object) scanned in File:
    - Compute MBR of object.
    - Use this MBR as query rectangle in R-tree.
    - Retrieve list of intersected object-MBR’s.
    - Test for true intersection.
11.8 Deletion in an R-tree

- Several deletion methods are known. We will consider only one.
- Key ideas:
  - Find object MBR using search and delete from leaf
    \( \Rightarrow \) Leaf may or may not underflow.
  - If leaf does not underflow:
    * Compute block MBR of leaf after deletion.
    * Adjust this value in the parent.
    * Now, the parent’s own MBR has changed
      \( \Rightarrow \) adjust MBR entry in grandparent...
    * ... and so on, recursively all the way to the root.
  - If leaf underflows:
    * Try to borrow from (any) sibling:
      * If possible, re-arrange MBR’s with sibling to get more compact block-MBR’s (as we did in splitting).
      * Recompute MBR’s all the way up to the root.
    * If borrow is not possible, merge with sibling if possible:
      * Recompute block MBR of merged node.
      * Propagate MBR’s to root.
    * If no sibling is available, collapse one level.
    * If merging causes underflow at parent’s level, merging may need to be propagated upwards.
- Example with \( M = 3 \)
  \( \Rightarrow \) at least \( \lceil \frac{M}{2} \rceil = 1 \) entries per node.
Delete \([(4, 4) \ (6, 5)]\):

- Delete at leaf level.
- Adjust node MBR: \([(3, 1) \ (4, 2)]\).
- Adjust at parent’s level: \([(3, 1) \ (4, 2)]\).
- Adjust parent’s MBR
  ⇒ compute MBR of \([(3, 1) \ (4, 2)]\) and \([(5, 0) \ (10, 2)]\)
  ⇒ \([(3, 0) \ (10, 2)]\).
- Adjust at next level (root).
- Root reached \( \Rightarrow \) done.

\begin{itemize}
  \item Delete \([(3,1) \ (4,2)]\):
    \begin{itemize}
    \item Delete at leaf
      \( \Rightarrow \) underflow.
    \item Borrow from sibling (borrow \([(8,1) \ (10,2)]\)).
  \end{itemize}
\end{itemize}
- Recompute MBR’s at parent’s level
  ⇒ $[(8,1) \ (10,2)]$ and $[(5,0) \ (7,1)]$.
- Recompute parent’s MBR
  ⇒ $[(5,0) \ (10,2)]$.
- Re-write this value at grandparent’s level:
• Delete [(8,1) (10,2)]:
  
  – Delete from leaf
    \[\Rightarrow\] underflow.
  
  – Cannot borrow from sibling
    \[\Rightarrow\] merge.
  
  – Recompute MBR’s all the way up.
• Delete \([(5,0) \ (7,1)]\):
  
  – Delete from leaf
    \(\Rightarrow\) underflow.
  
  – No sibling
    \(\Rightarrow\) borrow at parent’s level.
  
  – Recompute MBR’s as needed.
• Delete [(4, 6) (6, 7)]:
  
  – Delete at leaf
    ⇒ underflow.
  
  – Cannot borrow or merge
    ⇒ look at parent’s level.
  
  – Merge at parent’s level.
11.9 Grid Files: Introduction

- A grid file is an index structure for multidimensional queries – queries on multiple attributes.

- Recall: B-trees, B+-trees and Hashing were used for unidimensional queries.

- Example of a multidimensional query:
  Consider the relation
  
  \[
  \text{PASSENGER (NAME, SSN, FLT_ID, MILES)}
  \]

  and the query: “Find all passengers with names that begin with letters in A–E and have between 10000 and 40000 miles”.

  In SQL:

  ```sql
 select P.NAME, P.MILES
 from PASSENGER P
 where P.NAME >= 'A' and P.NAME < 'F'
 and P.MILES >= 10000 and P.MILES <= 40000;
  ```

  Note: this is sometimes called a multikey query even though NAME and MILES are not keys.

- Suppose we use a B+-tree on NAME:
  
  – Suppose PASSENGER has 100,000 tuples with 20 tuples per block
    \(\Rightarrow\) 5000 blocks.
  
  – About 4-5 levels of the B+-tree.
  
  – Suppose there are 20000 tuples in the A–E range
    \(\Rightarrow\) 1000 data blocks if clustered.
  
  – Also, scanning the leaf level of B+-tree will need, say, 400 blocks.
  
  – The 1000 data blocks have to be tested for the MILES condition.
- Suppose only 5 blocks satisfy the MILES condition
  \( \Rightarrow \) lot of I/O for only a 5-block result.

- Key idea in a grid file:
  - Create a grid directory:

    ![Grid file diagram]

    - Perform range search (A–E, 10000–40000) on each axis to determine which cells apply.
    - Use pointers in cells to get to data.
• A grid file consists of:
  
  – A grid directory:
    * A collection of grid cells.
    * Each cell contains a pointer to a chain of data blocks.
  
  – One grid scale per dimension:
    * A scale consists of the intervals in each dimension.
      ⇒ e.g., the NAME scale above has A-D, E-H etc.
    * Note: interval boundaries mark grid partitions.
  
  – Chains of data blocks:
    * Each cell points to a data block chain.
    * Multiple cells may point to the same chain.
  
  – Additional meta-data such as the number of data blocks, the number of tuples etc.

• Main principle in grid files: choose partitions judiciously
  ⇒ keep chains small.

  Note: many implementations allow at most one block per chain.

• Grid files can be of more than 2 dimensions:
• Grid files can be used for geometric point data. We will consider 2D point data.

• Grid files support insertion, search and deletion of point data.

• Grid files support range queries efficiently.

• There are two basic types of grid file:
  1. Grid files with fixed-size cells.
  2. Grid files with variable-size cells.

• There are many different algorithms for insertion and deletion within the class of grid files.
11.10 Grid Files: Insertion

- We will study insertion via an example:
  - Insert the following point data:

    \[
    \begin{array}{ccc}
    p_1 & (0.35, 0.37) & p_6 & (0.82, 0.87) & p_{11} & (0.31, 0.24) \\
    p_2 & (0.74, 0.23) & p_7 & (0.25, 0.53) & p_{12} & (0.94, 0.35) \\
    p_3 & (0.55, 0.81) & p_8 & (0.24, 0.77) & p_{13} & (0.82, 0.15) \\
    p_4 & (0.82, 0.66) & p_9 & (0.23, 0.35) & p_{14} & (0.05, 0.12) \\
    p_5 & (0.75, 0.78) & p_{10} & (0.25, 0.24) & p_{15} & (0.03, 0.24) \\
    \end{array}
    \]

  - We will assume all the point data falls in the unit square.
    \( \Rightarrow \) i.e., assume MBR of the set of points is known.
  - Assume blocksize = 64 bytes.
  - Suppose we use

    \[
    \begin{array}{l}
    \text{4 bytes for x-coordinate (float)} \\
    \text{4 bytes for y-coordinate (float)} \\
    \text{2 bytes for a point ID (integer)} \\
    \text{10 bytes for a text label (character string)}
    \end{array}
    \]

    \( \Rightarrow \) totally 20 bytes
    \( \Rightarrow \) 3 point-tuples per block.

- We will first consider the fixed-size cell version of the grid file.
  The values \textit{x-interval} and \textit{y-interval} determine the size of each cell.

- Key ideas in inserting a point \( p = (x_0, y_0) \):
  - Locate the cell that contains the point:
    \* Divide \textit{x-value} by \textit{x-interval} and round up:
    \[
    i \leftarrow \left\lfloor \frac{x_0}{x\text{-interval}} \right\rfloor
    \]
* Divide y-value by \( y\text{-interval} \) and round up:

\[
j \leftarrow \left\lfloor \frac{y_0}{y\text{-interval}} \right\rfloor
\]

* This gives us \( \text{Cell}[i,j] \).
* Example: \( p = (0.74, 0.33) \), \( x\text{-interval}=y\text{-interval}=0.2 \)

\[
\left\lfloor \frac{0.74}{0.2} \right\rfloor = 4
\]

\[
\left\lfloor \frac{0.33}{0.2} \right\rfloor = 2
\]

\( \Rightarrow \text{Cell}[4,2] \)

– Retrieve cell from grid directory.
– Retrieve data block pointed to by cell.
– If space available, insert point in block.
– Otherwise, block is split:
  * Try to use an existing partition.
  * If no existing partition does the job, create a new partition.
  * Insert point in appropriate block.

– Partitions or cuts are always made along cell boundaries.
– Sometimes, the grid needs to be refined
  \( \Rightarrow \) double grid size.

– Try to alternate between vertical and horizontal partitions:
  * Use a variable \( \text{Current} \) to indicate which direction.
  * If a vertical cut (partition) is made:
    \( \Rightarrow \) set \( \text{Current} := \) horizontal.
  * Initially, say, \( \text{Current} := \) vertical.

• The example will emphasize concepts; we will consider implementation details later.
• Initially:
  
  - Suppose we start with $5 \times 5$ grid in the unit square.
  - Take $x$-interval=$y$-interval=0.2.

  - Initially, all grid cells point to a single data block, $b_0$.
  - $\text{Current} := \text{vertical}.$

• Insert $p_1 = (0.35, 0.37)$:
  
  - Locate cell: $\left[ \frac{0.35}{0.2} \right] = 2, \left[ \frac{0.37}{0.2} \right] = 2$
    $\Rightarrow \text{Cell}[2,2].$
  
  - Cell points to block $b_0$
    $\Rightarrow \text{retrieve block } b_0.$
  
  - Space available
    $\Rightarrow \text{insert point in block}.$

668
Note: The point is shown in Cell[2,2] only for conceptual ease
⇒ only the data block contains the point.

- Insert $p_2 = (0.74, 0.23)$:
  - Locate cell: $\left\lfloor \frac{0.74}{0.2} \right\rfloor = 4$, $\left\lfloor \frac{0.23}{0.2} \right\rfloor = 2$
    ⇒ Cell[4,2].
  - Cell points to block $b_0$
    ⇒ retrieve block $b_0$.
  - Space available
    ⇒ insert point in block.
• Insert $p_3 = (0.55, 0.81)$:
  
  - Locate cell: $\left\lfloor \frac{0.55}{0.2} \right\rfloor = 3$, $\left\lfloor \frac{0.81}{0.2} \right\rfloor = 5$
    
    $\Rightarrow$ Cell[3,5].
  
  - Cell points to block $b_0$
    
    $\Rightarrow$ retrieve block $b_0$.
  
  - Space available
    
    $\Rightarrow$ insert point in block.
• Insert \( p_4 = (0.82, 0.66) \):
  
  – Locate cell: \( \left\lceil \frac{0.82}{0.2} \right\rceil = 5, \left\lfloor \frac{0.66}{0.2} \right\rfloor = 4 \)
    \( \Rightarrow \) Cell[5,4].
  
  – Cell points to block \( b_0 \)
    \( \Rightarrow \) retrieve block \( b_0 \).
  
  – Block \( b_0 \) is full
    \( \Rightarrow \) split needed.
  
  – No existing partition available
    \( \Rightarrow \) create new partition.
  
  – \textit{Current} = vertical
    \( \Rightarrow \) make a vertical partition to approximately halve the total number of points (4)
  
  – Note: consider new point when making partition.
  
  – \textit{Current} := horizontal.
- Insert $p_5 = (0.75, 0.78)$:
  - Locate cell: $\lceil \frac{0.75}{0.2} \rceil = 4, \lfloor \frac{0.78}{0.2} \rfloor = 4$  
    $\Rightarrow$ Cell[4,4].
  - Cell points to block $b_1$  
    $\Rightarrow$ retrieve block $b_1$.
  - Space available  
    $\Rightarrow$ insert point.
• Insert $p_6 = (0.82, 0.87)$:
  
  - Locate cell: $\left\lfloor \frac{0.82}{0.2} \right\rfloor = 5$, $\left\lfloor \frac{0.87}{0.2} \right\rfloor = 5$
    
    $\Rightarrow$ Cell[5,5].
  
  - Cell points to block $b_1$
    
    $\Rightarrow$ retrieve block $b_1$.
  
  - Block $b_1$ is full
    
    $\Rightarrow$ split needed.
  
  - No existing partition does the job
    
    $\Rightarrow$ create new partition.
  
  - $Current = \text{horizontal}$
    
    $\Rightarrow$ make a horizontal partition.
  
  - $Current := \text{vertical}$. 
• Insert $p_7 = (0.25, 0.53)$:

  - Locate cell: $\left[ \frac{0.25}{0.2} \right] = 2$, $\left[ \frac{0.53}{0.2} \right] = 3$
    $\Rightarrow$ Cell[2,3].
  
  - Cell points to block $b_0$
    $\Rightarrow$ retrieve block $b_0$.
  
  - Space available
    $\Rightarrow$ insert point.
• Insert $p_8 = (0.24, 0.77)$:
  
  - Locate cell: $\left\lfloor \frac{0.24}{0.2} \right\rfloor = 2, \left\lfloor \frac{0.77}{0.2} \right\rfloor = 4$
    
    $\Rightarrow$ Cell[2,4].
  
  - Cell points to block $b_0$
    
    $\Rightarrow$ retrieve block $b_0$.
  
  - Block $b_0$ is full
    
    $\Rightarrow$ split needed.
  
  - $Current = \text{vertical}$
    
    $\Rightarrow$ No existing vertical partition is sufficient.
  
  - However, the horizontal partition at 0.8 works
    
    $\Rightarrow$ use partition to split block $b_0$.
  
  - $Current := \text{vertical}.$
• Insert $p_9 = (0.23, 0.35)$:
  
  - Locate cell: $\left\lceil \frac{0.23}{0.2} \right\rceil = 2, \left\lceil \frac{0.35}{0.2} \right\rceil = 2$
    
  $\Rightarrow$ Cell[2,2].
  
  - Cell points to block $b_0$
    
  $\Rightarrow$ retrieve block $b_0$.
  
  - Block $b_0$ is full
    
  $\Rightarrow$ split needed.
  
  - $Current =$ vertical.
  
  - No existing vertical partition is sufficient.
  
  - No existing horizontal partition is sufficient.
  
  - No new vertical partition (either at 0.2 or 0.4) is sufficient
    
  $\Rightarrow$ try new horizontal partition.
- Horizontal partition at 0.4.
- Current := vertical.

- Insert $p_{10} = (0.25, 0.24)$:
  - Locate cell: $\left[ \frac{0.25}{0.2} \right] = 2$, $\left[ \frac{0.24}{0.2} \right] = 2$
    $\Rightarrow$ Cell[2,2].
  - Cell points to block $b_0$
    $\Rightarrow$ retrieve block $b_0$.
  - Space available
    $\Rightarrow$ insert point.
Insert $p_{11} = (0.31, 0.24)$:

- Locate cell: $\left[ \frac{0.31}{0.2} \right] = 2, \left[ \frac{0.24}{0.2} \right] = 2$
  $\Rightarrow$ Cell[2,2].

- Cell points to block $b_0$
  $\Rightarrow$ retrieve block $b_0$.

- Block $b_0$ is full
  $\Rightarrow$ split needed.

- Current = vertical
  $\Rightarrow$ No existing vertical partition is sufficient.
- No existing horizontal partition is sufficient.
- Try vertical partition
  ⇒ partitions at 0.2 and 0.4 are not sufficient.
- Try horizontal partition
  ⇒ partitions at 0.2 and 0.4 are not sufficient.

Need to refine grid
⇒ double grid size
- \( x\text{-interval} := 0.1; \ y\text{-interval} := 0.1 \).
- Current = vertical
  ⇒ try vertical cut (at 0.3).
- $Current := \text{horizontal.}$

- Insert $p_{12} = (0.94, 0.35)$:
  - Locate cell: \((x\text{-interval}=y\text{-interval}=0.1)\) $\left\lfloor \frac{0.94}{0.1} \right\rfloor = 10, \left\lfloor \frac{0.35}{0.1} \right\rfloor = 4$
    \implies \text{Cell}[10, 4].
  - Cell points to block $b_1$
    \implies \text{retrieve block } b_1.\n  - Block $b_1$ is full
    \implies \text{split needed.}\n  - $Current = \text{horizontal}$
    \implies \text{try existing horizontal partitions.}
- Horizontal partition at 0.4 is sufficient.
- Current := vertical.

- Insert $p_{13} = (0.82, 0.15)$:
  - Locate cell: $\left[ \frac{0.82}{0.1} \right] = 9$, $\left[ \frac{0.15}{0.1} \right] = 2$
    - Cell $[9,2]$.  
  - Cell points to block $b_1$
    - retrieve block $b_1$.
  - Space available
    - insert point.
• Insert \( p_{14} = (0.05, 0.12) \):
  
  - Locate cell: \( \left\lfloor \frac{0.05}{0.1} \right\rfloor = 1, \left\lfloor \frac{0.12}{0.1} \right\rfloor = 2 \)
    \( \Rightarrow \) Cell[1,2].
  
  - Cell points to block \( b_0 \)
    \( \Rightarrow \) retrieve block \( b_0 \).
  
  - Space available
    \( \Rightarrow \) insert point.
• Insert \( p_{15} = (0.03, 0.24) \):
  
  – Locate cell: \( \left[ \frac{0.03}{0.1} \right] = 1, \left[ \frac{0.24}{0.1} \right] = 3 \)  
  \( \Rightarrow \) Cell[1,3].  
  – Cell points to block \( b_0 \)  
  \( \Rightarrow \) retrieve block \( b_0 \).  
  – Block \( b_0 \) is full  
  \( \Rightarrow \) split needed.  
  – No existing vertical or horizontal partition is sufficient.  
  – \( \mathit{Current} = \) vertical  
  \( \Rightarrow \) partition at 0.1.  
  – \( \mathit{Current} := \) horizontal.
To summarize:
  - Locate cell for given point and retrieve corresponding data block.
  - If block has space, insert point.
  - Otherwise use splitting rules to split block:
    * If an existing partition can be used, use it.
    * Otherwise, create a new partition.
    * If creating a partition doesn’t work, a grid refinement is needed.
11.11 Grid Files: Nearest Neighbor Query

- Given a query point \( q = (x_0, y_0) \) we wish to find the closest point to \( q \) in the grid file.

- Key ideas:
  - Obtain the cell containing \( q \).
  - Get the data block pointed to by the cell.
  - Find the closest point among points in the block.
  - Suppose \( d \) is the distance to this point.
  - Consider a circle with radius \( d \) around \( q \).
  - Retrieve all cells that lie in or on the circle.
  - Search corresponding data blocks.

- Example: \( q = (0.75, 0.65) \)
  - Locate cell: \( \left[ \frac{0.75}{0.1} \right] = 8, \left[ \frac{0.65}{0.1} \right] = 7 \)
    \( \Rightarrow \) Cell[8,7].
  - Cell points to block \( b_6 \)
    \( \Rightarrow \) retrieve block \( b_6 \).
  - Block \( b_6 \) has points \( p_4 \) and \( p_5 \).
  - Point \( p_4 = (0.82, 0.66) \) is closest.

- \( d = dist(q, p_4) = \left( (0.75 - 0.82)^2 + (0.65 - 0.66)^2 \right)^{1/2} = 0.07. \)

- A circle about \( q \) with radius 0.07 covers cells \([7,6], [8,6], [9,6], [7,7], [8,7], [9,7], [7,8], [8,8], [9,8].\)

- For each of these cells:
  * Retrieve block pointed to by cell:
    \( \Rightarrow \) in the example, block \( b_6 \).
* Compute distance to points in block:
  \( \Rightarrow \) in the example, no need to compute.

- Pick closest point
  \( \Rightarrow p_4 = (0.82, 0.66). \)

- Example: \( q = (0.55, 0.45) \)
  - Locate cell: \( \left[ \frac{0.55}{0.1} \right] = 6, \left[ \frac{0.45}{0.1} \right] = 5 \)
    \( \Rightarrow \) Cell[6,5].
  - Cell points to block \( b_4 \)
    \( \Rightarrow \) retrieve block \( b_4 \).
– Block $b_4$ has points $p_7$ and $p_8$.
– Point $p_7 = (0.25, 0.53)$ is closest.

$$d = dist(q, p_7) = \left( (0.55 - 0.25)^2 + (0.45 - 0.53)^2 \right)^{1/2} = 0.31.$$ 
– A circle about $q$ with radius 0.31 covers cells that point to blocks $b_1, b_4, b_5, b_6$ and $b_7$.
– For each of these cells:
  * Retrieve block pointed to by cell.
  * Compute distance to points in block:
– Pick closest point
  \[ p_1 = (0.35, 0.37) \].
• Note: instead of using a circle to determine “must-see” cells, a square can be used:

  – Consider the above example.
  
  – \( d = \text{dist}(q, p_7) = 0.31 \).
  
  – Construct the square that circumscribes the circle with radius 0.31 about \( q \):

  \[ \begin{array}{ccc}
  & Block b3 & Block b4 \\
  10 & \text{ } & \text{ } \\
  9 & \text{ } & \text{ } \\
  8 & \text{ } & \text{ } \\
  7 & \text{ } & \text{ } \\
  6 & \text{ } & \text{ } \\
  5 & \text{ } & \text{ } \\
  4 & \text{ } & \text{ } \\
  3 & \text{ } & \text{ } \\
  2 & \text{ } & \text{ } \\
  1 & \text{ } & \text{ } \\
  \end{array} \]

  – Check cells in the square.
  
  – Advantage: easier to compute cells covered.
  
  – Disadvantage: covers more cells.

• Range queries:
Range queries can be implemented by finding all the cells in the given range.

Example: find all points in the range $[0.0, 0.3]$.

- The range corresponds to all cells with x-coordinates in the range $[1,3]$.
  \[\Rightarrow \text{columns 1, 2 and 3.}\]
- Next, identify all blocks in these columns.
  \[\Rightarrow b_0, b_3, b_4 \text{ and } b_7.\]
- Retrieve points in these blocks.
  \[\Rightarrow \text{points 1,3,7,8,9,10,11,14,15.}\]
- Identify which points lie in the desired range.
  \[\Rightarrow \text{points 7,8,9,10,14,15.}\]
11.12 Grid Files: Some Implementation Details

- Details: the grid directory
  - What really is a grid directory?
    * Basically, a collection of grid cells.
    * Each cell has a block pointer.
  - Thus, in the previous example:

Note that each cell has a block pointer to the appropriate block.
How is the directory stored on disk?

* Cells have addresses, e.g., Cell[8,3].
* We need to retrieve a cell given its address.
* Suppose blocksize = 64 bytes.
* Suppose a block pointer is 4 bytes
  \( \Rightarrow \) a cell needs 4 bytes
  \( \Rightarrow \) 16 cells per block.
* If we stored the cells in row-major order:

* Example: To obtain Cell[9,4]:
  - Compute cell number in linear order: \( 3 \times 10 + 9 = 39 \).
  - Compute which block: \( \left\lceil \frac{39}{16} \right\rceil = 3 \)rd block.
  - 7th item in 3rd block.
- Note: we need to store the positions of the partition lines 
  ⇒ can be stored in an array or linked list.

- Details: nearest neighbor query

  - Example: consider the query \( q_1 = (0.75, 0.65) \).
  
  - First, locate cell: \( \left\lfloor \frac{0.75}{0.1} \right\rfloor = 8, \left\lfloor \frac{0.65}{0.1} \right\rfloor = 7 \)
  
  ⇒ Cell[8,7].

  - Retrieve grid block containing cell
  
  ⇒ 7th grid directory block.

  - Retrieve cell contents
  
  ⇒ pointer to block \( b_6 \).
- Retrieve block $b_6$ and check distance to each point
  ⇒ point $p_4$ is closest.

- $d = \text{dist}(q, p_4) = ((0.75 - 0.82)^2 + (0.65 - 0.66)^2)^{1/2} = 0.07$.

- Consider a square with $q$ as center and half-side $= 0.07$.


- Search cells covered.

- Note: not all cells need to be searched, since some point to the same blocks:

```
- The square covers only the 4th and 5th directory blocks
 ⇒ first consider all the square-cells in the 4th directory block
 ⇒ fewer disk accesses.
```
11.13 Grid Files: Variable-Size Cells

• The fixed-size cell version has a few drawbacks:

  – Highly non-uniform point distributions can cause multiple grid refinements
    ⇒ the grid directory can occupy a lot of space.
  – A lot of cells in the grid directory point to the same block
    ⇒ unnecessary redundancy.
  – A grid refinement results in a lot of copying
    ⇒ time-consuming step.

• In the variable-size version:

  – The grid directory grows more rapidly, but does not need refinement.
  – Fewer cells point to the same block.
  – No grid refinement is needed. Instead, the grid directory only grows
    one column and row for each partition.

• Consider the same example as before:

  – Insert the following point data:

    \[
    \begin{array}{ccc}
    p_1 & (0.35,0.37) & p_6 & (0.82,0.87) & p_{11} & (0.31,0.24) \\
    p_2 & (0.74,0.23) & p_7 & (0.25,0.53) & p_{12} & (0.94,0.35) \\
    p_3 & (0.55,0.81) & p_8 & (0.24,0.77) & p_{13} & (0.82,0.15) \\
    p_4 & (0.82,0.66) & p_9 & (0.23,0.35) & p_{14} & (0.05,0.12) \\
    p_5 & (0.75,0.78) & p_{10} & (0.25,0.24) & p_{15} & (0.03,0.24) \\
    \end{array}
    \]

  – We will assume all the point data falls in interval [0,1]
    ⇒ i.e., assume MBR of the set of points is known.

  – Assume blocksize = 64 bytes.

  – Suppose we use
4 bytes for x-coordinate (float)
4 bytes for y-coordinate (float)
2 bytes for a point ID (integer)
10 bytes for a text label (character string)

⇒ totally 20 bytes
⇒ 3 point-tuples per block.

• Key ideas in inserting a point \( p = (x_0, y_0) \):
  - Locate the cell that contains the point:
    * Use the \( Xscale \) to locate the x-interval containing the point.
    * Use the \( Yscale \) to locate the y-interval containing the point.
    * Then, retrieve the corresponding cell.
    * Next, retrieve the block pointed to by the cell.
    * If space available, insert point in block.
    * Otherwise, the block is split:
      * Try to use an existing partition.
      * If no existing partition works, create a new one.
      * Insert point in appropriate block.
      * If a vertical partition was created, update \( Xscale \).
      * If a horizontal partition was created, update \( Yscale \).
    * Try to alternate between vertical and horizontal partitions.
      * Use a variable \( Current \) to indicate which direction.
      * If a vertical cut (partition) is made (or used):
        ⇒ set \( Current := \) horizontal.
      * Initially, say, \( Current := \) vertical.

• The example will emphasize concepts; we will consider implementation details later.

Note: in the fixed-size cell example, each grid-picture stood for both the grid directory and the data description. In the variable-size version, the directory and data description are drawn separately.

• Initially:
- A sufficiently large contiguous area on disk is allocated for the grid directory (to allow it to grow).
- Initially, there is only one cell, pointing to an empty block.
- Current := vertical.

![Diagram](image)

- Insert $p_1 = (0.35, 0.37)$:
  - Locate cell:
    * Take the x-value, 0.35, and use the Xscale to see which interval it lies in
      ⇒ lies in the interval $[0.0, 1.0]$
      ⇒ corresponds to column 1.
* Take the y-value, 0.37, and use the Yscale to see which interval it lies in
  ⇒ lies in the interval [0.0,1.0]
  ⇒ corresponds to row 1.

- Retrieve Cell[1,1] of the grid directory.
- Retrieve the block it points to
  ⇒ block b0.
- Block b0 has space available
  ⇒ insert point.

- Insert \( p_2 = (0.74, 0.23) \):
  - Locate cell:
* Take the x-value, 0.74, and use the $X_{scale}$ to see which interval it lies in
  ⇒ lies in the interval $[0.0,1.0]$
  ⇒ corresponds to column 1.

* Take the y-value, 0.23, and use the $Y_{scale}$ to see which interval it lies in
  ⇒ lies in the interval $[0.0,1.0]$
  ⇒ corresponds to row 1.

- Retrieve Cell[1,1] of the grid directory.
- Retrieve the block it points to
  ⇒ block $b_0$.
- Block $b_0$ has space available
  ⇒ insert point.
• Insert $p_3 = (0.55, 0.81)$:

  – Locate cell:
    * Take the x-value, 0.55, and use the $Xscale$ to see which interval it lies in
      ⇒ lies in the interval $[0.0, 1.0]$  
      ⇒ corresponds to column 1.
    * Take the y-value, 0.81, and use the $Yscale$ to see which interval it lies in
      ⇒ lies in the interval $[0.0, 1.0]$  
      ⇒ corresponds to row 1.

  – Retrieve Cell[1,1] of the grid directory.

  – Retrieve the block it points to
    ⇒ block $b_0$.

  – Block $b_0$ has space available
    ⇒ insert point.
• Insert $p_4 = (0.82, 0.66)$:
  
  – Locate cell:
    * Take the x-value, 0.82, and use the $Xscale$ to see which interval it lies in
      ⇒ lies in the interval $[0.0, 1.0]$
      ⇒ corresponds to column 1.
    * Take the y-value, 0.66, and use the $Yscale$ to see which interval it lies in
      ⇒ lies in the interval $[0.0, 1.0]$
      ⇒ corresponds to row 1.
  
  – Retrieve Cell[1,1] of the grid directory.
  
  – Retrieve the block it points to
    ⇒ block $b_0$. 

701
- Block $b_0$ is full
  ⇒ split block.
- $Current$ = vertical
  ⇒ use vertical partition so that half the points are in a block.
- For example, partition at 0.6.
- Add new column to grid directory.
- Update $Xscale$ to contain new interval (with correct column number).
- $Current :=$ horizontal.

- Insert $p_5 = (0.75, 0.78)$:
- Locate cell:
  * Take the x-value, 0.75, and use the Xscale to see which interval it lies in
    ⇒ lies in the interval [0.6,1.0]
    ⇒ corresponds to column 2.
  * Take the y-value, 0.78, and use the Yscale to see which interval it lies in
    ⇒ lies in the interval [0.0,1.0]
    ⇒ corresponds to row 1.
- Retrieve the block it points to
  ⇒ block $b_1$.
- Block $b_1$ has space available
  ⇒ insert point.
• Insert $p_6 = (0.82, 0.87)$:
  
  - Locate cell:
    * Take the x-value, 0.82, and use the $Xscale$ to see which interval it lies in
      $\Rightarrow$ lies in the interval [0.6,1.0]
      $\Rightarrow$ corresponds to column 2.
    * Take the y-value, 0.87, and use the $Yscale$ to see which interval it lies in
      $\Rightarrow$ lies in the interval [0.0,1.0]
      $\Rightarrow$ corresponds to row 1.
  
  
  - Retrieve the block it points to
    $\Rightarrow$ block $b_1$.  

704
- Block \( b_1 \) is full
  \( \Rightarrow \) split block.
- No existing partition works.
- \( Current = \) horizontal
  \( \Rightarrow \) use horizontal partition so that half the points are in a block.
- For example, partition at 0.7.
- Add new row to grid directory.
- Update \( Yscale \) to contain new interval (with correct row number).
- \( Current := \) vertical.

- Insert \( p_7 = (0.25, 0.53) \):
- Locate cell:
  * Take the x-value, 0.25, and use the $Xscale$ to see which interval it lies in
    $\Rightarrow$ lies in the interval [0.0,0.6]
    $\Rightarrow$ corresponds to column 1.
  * Take the y-value, 0.53, and use the $Yscale$ to see which interval it lies in
    $\Rightarrow$ lies in the interval [0.0,0.7]
    $\Rightarrow$ corresponds to row 1.
- Retrieve Cell[1,1] of the grid directory.
- Retrieve the block it points to
  $\Rightarrow$ block $b_0$.
- Block $b_0$ has space available
  $\Rightarrow$ insert point.
• Insert \( p_8 = (0.24, 0.77) \):

  - Locate cell:
    * Take the x-value, 0.24, and use the Xscale to see which interval it lies in
      \( \Rightarrow \) lies in the interval \([0.0, 0.6]\)
      \( \Rightarrow \) corresponds to column 1.
    * Take the y-value, 0.77, and use the Yscale to see which interval it lies in
      \( \Rightarrow \) lies in the interval \([0.7, 1.0]\)
      \( \Rightarrow \) corresponds to row 1.

  - Retrieve Cell[1,2] of the grid directory.
- Retrieve the block it points to
  ⇒ block \( b_0 \).
- Block \( b_0 \) is full
  ⇒ split block.
- \( Current = \) vertical
  ⇒ Try existing vertical partitions
  ⇒ None can be used.
- Horizontal partition at 0.7 can be used to split \( b_0 \).
- Update grid directory.
- \( Current := \) vertical.
• Insert \( p_9 = (0.23, 0.35) \):
  
  - Locate cell:
    
    * Take the x-value, 0.23, and use the \( Xscale \) to see which interval it lies in
      
      \( \Rightarrow \) lies in the interval \([0.0, 0.6]\)
      
      \( \Rightarrow \) corresponds to column 1.
    
    * Take the y-value, 0.35, and use the \( Yscale \) to see which interval it lies in
      
      \( \Rightarrow \) lies in the interval \([0.0, 0.7]\)
      
      \( \Rightarrow \) corresponds to row 1.
  
  - Retrieve \( \text{Cell}[1,1] \) of the grid directory.
  
  - Retrieve the block it points to
    
    \( \Rightarrow \) block \( b_0 \).
  
  - Block \( b_0 \) has space available
    
    \( \Rightarrow \) insert point.
• Insert $p_{10} = (0.25, 0.24)$:
  
  - Locate cell:
    * Take the x-value, 0.25, and use the Xscale to see which interval it lies in
      $\Rightarrow$ lies in the interval $[0.0, 0.6]$
      $\Rightarrow$ corresponds to column 1.
    * Take the y-value, 0.24, and use the Yscale to see which interval it lies in
      $\Rightarrow$ lies in the interval $[0.0, 0.7]$
      $\Rightarrow$ corresponds to row 1.
  
  - Retrieve Cell[1,1] of the grid directory.
– Retrieve the block it points to
   ⇒ block \( b_0 \).
– Block \( b_0 \) is full
   ⇒ split block.
– No existing partition works.
– \( \text{Current} = \text{vertical} \)
   ⇒ use vertical partition so that half the points are in a block.
– For example, partition at 0.3.
– Add new column to grid directory.
– Update \( Xscale \) to contain new interval (with correct column number).
– \( \textbf{Note}: \) columns are out of order in \( Xscale \).
– \( \text{Current} := \text{horizontal} \).
• Insert $p_{11} = (0.31, 0.24)$:
  
  - Locate cell:
    * Take the x-value, 0.31, and use the $Xscale$ to see which interval it lies in
      $\Rightarrow$ lies in the interval $[0.3,0.6]$  
      $\Rightarrow$ corresponds to column 3.
    * Take the y-value, 0.24, and use the $Yscale$ to see which interval it lies in
      $\Rightarrow$ lies in the interval $[0.0,0.7]$  
      $\Rightarrow$ corresponds to row 1.
  
- Retrieve the block it points to
  ⇒ block $b_4$.
- Block $b_4$ has space available
  ⇒ insert point.

- Insert $p_{12} = (0.94, 0.35)$:
  - Locate cell:
    * Take the x-value, 0.94, and use the Xscale to see which interval it lies in
      ⇒ lies in the interval $[0.6, 1.0]$
      ⇒ corresponds to column 2.
* Take the y-value, 0.35, and use the Yscale to see which interval it lies in
  \( \Rightarrow \) lies in the interval \([0.0, 0.7]\)
  \( \Rightarrow \) corresponds to row 1.

- Retrieve the block it points to
  \( \Rightarrow \) block \( b_1 \).
- Block \( b_1 \) has space available
  \( \Rightarrow \) insert point.

\[ \begin{array}{c}
\text{Grid directory} \\
\hline
1 & 2 & 3 \\
\hline
b0 & b1 & b4 \\
\hline
\end{array} \]

\[ \begin{array}{c}
\text{Yscale} \\
\hline
1 & 2 \\
0.0 & 0.7 & 1.0 \\
\hline
\end{array} \]

\[ \begin{array}{c}
\text{Xscale} \\
\hline
1 & 2 \\
0.0 & 0.3 & 0.6 & 1.0 \\
\hline
\end{array} \]

- Insert \( p_{13} = (0.82, 0.15) \):
- Locate cell:
  
  * Take the x-value, 0.82, and use the \textit{Xscale} to see which interval it lies in
    \Rightarrow \text{lies in the interval } [0.6,1.0]
    \Rightarrow \text{corresponds to column 2.}
  
  * Take the y-value, 0.15, and use the \textit{Yscale} to see which interval it lies in
    \Rightarrow \text{lies in the interval } [0.0,0.7]
    \Rightarrow \text{corresponds to row 1.}


- Retrieve the block it points to
  \Rightarrow \text{block } b_1.

- Block $b_1$ is full
  \Rightarrow \text{split block.}

- No existing partition works.

- \textit{Current} = horizontal
  \Rightarrow \text{use horizontal partition so that half the points are in a block.}

- For example, partition at 0.3.

- Add new row to grid directory.

- Update \textit{Yscale} to contain new interval (with correct row number).

- \textbf{Note}: rows are out of order in \textit{Yscale}.

- \textit{Current} := vertical.
- Insert \( p_{14} = (0.05, 0.12) \):
  
  - Locate cell:
    
    * Take the x-value, 0.05, and use the Xscale to see which interval it lies in
      
      \( \Rightarrow \) lies in the interval \([0.0, 0.3]\)
      
      \( \Rightarrow \) corresponds to column 1.
    
    * Take the y-value, 0.12, and use the Yscale to see which interval it lies in
      
      \( \Rightarrow \) lies in the interval \([0.0, 0.3]\)
      
      \( \Rightarrow \) corresponds to row 1.
  
  - Retrieve Cell[1,1] of the grid directory.
- Retrieve the block it points to
  \( \Rightarrow \) block \( b_0 \).
- Block \( b_0 \) is full
  \( \Rightarrow \) split block.
- The horizontal partition at 0.3 works.
- However, for the sake of creating an interesting example, we will
  change the policy a little and use a fresh vertical partition.
  \( Current \) = vertical
  \( \Rightarrow \) use vertical partition so that half the points are in a block.
- In this case, use partition at 0.1.
- Add new column to grid directory.
- Update \( Xscale \) to contain new interval (with correct column num-
  ber).
- \( Current \) := horizontal.
• Insert $p_{15} = (0.03, 0.24)$:
  
  – Locate cell:
    * Take the x-value, 0.03, and use the Xscale to see which interval it lies in
      ⇒ lies in the interval $[0.0,0.1]$
      ⇒ corresponds to column 1.
    * Take the y-value, 0.24, and use the Yscale to see which interval it lies in
      ⇒ lies in the interval $[0.0,0.3]$
      ⇒ corresponds to row 1.
  
  – Retrieve Cell[1,1] of the grid directory.
- Retrieve the block it points to
  \[ \Rightarrow \text{block } b_0. \]
- Block \( b_0 \) has space available
  \[ \Rightarrow \text{insert point.} \]
• Implementation details: $Xscale$ and $Yscale$

  – For example, consider $Xscale$.

  – Recall: $Xscale$ provides the mapping between intervals on the x-axis and grid directory columns:

```
\begin{tabular}{|c|c|c|c|}
\hline
 1 & 3 & 2 & 1.0 \\
\hline
 0.0 & 0.3 & 0.7 & 1.0 \\
\hline
\end{tabular}
```

$Yscale$

```
\begin{tabular}{|c|c|c|c|c|}
\hline
 1 & 4 & 3 & 2 & 1.0 \\
\hline
 0.0 & 0.1 & 0.3 & 0.6 & 1.0 \\
\hline
\end{tabular}
```

$Xscale$

  – Implementation options:

1. Array implementation:

   * Each array element would contain interval endpoints and a row or column number, e.g.,

     ```
 typedef struct scale_type {
 int index;
 double low, high;
 };
 scale_type *Xscale, *Yscale;
 ...
 Xscale[2].low = 0.1; Xscale[2].high = 0.3;
 Xscale[2].index = 4;
     ```

   * Advantages: binary search can be used while searching.

   * Disadvantages: insertions (into array) require expansion of array

       $\Rightarrow$ memory reallocation and copying overhead.

2. Linked-list implementation:

   * Place $Xscale$ elements in a linked-list.

   * Advantages: insertion is efficient.

   * Disadvantages: Search has linear cost. List needs to be created every time the scale is read from disk.
• Implementation details: the grid directory.
  
  – Recall: the grid directory is a 2D-array that adds columns and rows incrementally, e.g.,

  ![Grid directory diagram]

  – Implementation options:
  1. Standard row-major order array:
    * To implement row-major order, the row size has to be known ⇒ number of columns is needed in advance.
    * Initially, select a large enough array size and allocate space for it.
    * Note: when the desired array is small, space is wasted in array blocks:

    ![Array in use diagram]

    * If array fills up, an expansion may be needed ⇒ allocate new, larger array and copy over data.
    * Advantages: straightforward implementation.
* Disadvantages: Reallocation and copying overhead during expansion. Inefficient use of space when array size is small.

2. L-order implementation:
* Note: grid directory expansions can be quite irregular
  ⇒ several column expansions in sequence, for example.
* The L-order implementation always adds both a row and column whenever an expansion is desired:

![Diagram showing L-order expansion]

* The array elements are stored in L-order:

```
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>20</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>17</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
```

* To access element [5,3] of the array, we need to find the L-order number corresponding to [5,3]
  ⇒ L-order number is 19.
* The L-order number is used to fetch the correct block and value within the block.

* Advantages: if grid directory is small, it may occupy only a few blocks
⇒ grid directory can reside in memory.

* Disadvantages: non-standard computation of array offsets.
• Next, consider a nearest neighbor query:
  
  – Example: consider the query \( q_1 = (0.75, 0.65) \).
  
  – First, locate grid cell:
    
    * Find column using \( Xscale \):
      \[ 0.75 \in [0.6, 1.0] \]
      \[ \Rightarrow \text{column 2}. \]
    
    * Find row using \( Yscale \):
      \[ 0.65 \in [0.3, 0.7] \]
      \[ \Rightarrow \text{row 3}. \]

  – Retrieve grid cell \([2,3]\):
    
    * Compute L-order number of \([2,3]\)
      \[ \Rightarrow \text{L-order number is 6}. \]
    
    * Retrieve item from grid blocks.
- Retrieve block pointed to by cell
  \[ \Rightarrow \text{block } b_5. \]
- Closest point in \( b_5 \): \( p_4 = (0.82, 0.66) \).
- \( d = \text{dist}(q, p_4) = \left( (0.75 - 0.82)^2 + (0.65 - 0.66)^2 \right)^{1/2} = 0.07. \)
- Consider a square with \( q \) as center and half-side= 0.07.
- Find all the x-intervals covered by square
  ⇒ only the \([0.6,1.0]\) interval.

- Find all the y-intervals covered by square
  ⇒ \([0.3,0.7]\) and \([0.7,1.0]\).

- Retrieve corresponding grid cells
  ⇒ cells \([2,3]\) and \([2,3]\).

- Retrieve blocks pointed to by these cells
  ⇒ blocks \(b_2\) and \(b_5\).

- Test against all points in these blocks
  ⇒ \(p_4\) is closest.
• Pseudocode for the variable-size case:

  – We will assume $Xscale$ and $Yscale$ are implemented with arrays (for ease of presentation).

  – The nearest-neighbor query is considered, but code for range search is omitted.

  – The following functions are used:

    * GRIDFILE-CREATE ($x_{low}, x_{high}, y_{low}, y_{high}$) – Create a new gridfile given MBR of data set.
    * GRIDFILE-INSERT ($p$) – Insert the point $p$ into the gridfile.
    * L-ORDER ($i, j$) – Find the L-order value of cell $i, j$.
    * GRIDFILE-FINDCELL ($p$) – Find the grid cell containing the point $p$.
    * GRIDFILE-PARTITION ($S_X, S_Y$) – Find a partition, using points sorted by x-value and by y-value.
    * GRIDFILE-UPDATE-DIRECTORY ($p_{type}, bnum, I, J$) – Adjust directory entries for an existing partition.
    * GRIDFILE-EXPAND-DIRECTORY ($p_{type}, p_{val}, bnum, I, J$) – Adjust directory entries for a newly created partition.
    * GRIDFILE-NEXT-NEARBY-NEIGHBOR ($q$) – Locate the data point closest to the query point $q$.

  – We will assume the grid directory is simply a list of blocknumbers in L-order.
**Algorithm:**  GRIDFILE-CREATE (xlow, xhigh, ylow, yhigh)

**Input:** MBR of region.

**Output:** First data block and first dir block, written to disk.

1. \( \text{Xscale}[1].\text{low} := \text{xlow}; \)
2. \( \text{Xscale}[1].\text{high} := \text{xhigh}; \)
3. \( \text{Xscale}[1].\text{index} := 1; \)
4. \( \text{Yscale}[1].\text{low} := \text{ylow}; \)
5. \( \text{Yscale}[1].\text{high} := \text{yhigh}; \)
6. \( \text{Xscale}[1].\text{index} := 1; \)
7. \( \text{num}_{\text{columns}} := 1; \)
8. \( \text{num}_{\text{rows}} := 1; \)
9. \( \text{Current} := \text{vertical}; \)
    
    // Create new data block
10. \( \text{bnum} := \text{DISK-NEWBLOCK}(); \)
11. \( \text{b} := \text{DISK-READBLOCK} (\text{bnum}); \)
12. \( \text{b} \rightarrow \text{num}_{\text{entries}} := 0; \)
13. \( \text{DISK-WRITEBLOCK} (\text{bnum}); \)
14. Compute \( \text{max}_{\text{entries}} \) allowed in a block;
15. \( \text{min}_{\text{entries}} := \lfloor \alpha \times \text{max}_{\text{entries}} \rfloor; \quad \text{// Usually, } \alpha = 0.5 \)
16. \( \text{k} := \text{L-ORDER} (1, 1); \)
17. Set \( k \)-th entry of directory file to \( \text{bnum} \) and write to disk;
18. \( \text{return}; \)
Algorithm: GRIDFILE-INSERT \((p)\)

**Input:** point \(p\).

**Output:** \(p\) is inserted into the gridfile.

// First, find cell and get appropriate data block.
1. \((I, J) := \text{GRIDFILE-FINDCELL} \,(p)\);
2. \((i, j) := \text{Xscale}[I].\text{index}, \text{Yscale}[J].\text{index}\);
3. \(k := \text{L-ORDER} \,(i, j)\);
4. \(\text{bnum} := k\)-th entry in grid directory;
5. \(b := \text{DISK-READBLOCK} \,(\text{bnum})\);
   // Check if space available for direct insert.
6. \(\text{if } b \rightarrow \text{num}._\text{entries} < \text{max}._\text{entries};\)
7. Insert point in \(b\) and update \(b\)'s header;
8. \(\text{DISK-WRITEBLOCK} \,(\text{bnum})\);
9. \(\text{return};\)
10. \(\text{endif};\)
   // Otherwise, block needs to be split.
11. \(S := \{\text{points in } b\} \cup \{p\};\)
12. \(S_X := \text{SORT-BY-XVALUE} \,(S)\);
13. \(S_Y := \text{SORT-BY-YVALUE} \,(S)\);
   // Find the partition.
14. \((\text{ptype}, \text{pval}, I', J') := \text{GRIDFILE-PARTITION} \,(S_X, S_Y)\);
   // Create new block, assign points between old and new blocks.
15. \(\text{bnum2} := \text{DISK-NEWBLOCK} \,();\)
16. \(b2 := \text{DISK-READBLOCK} \,(\text{bnum2})\);
17. \(\text{if } \text{ptype} \in \{\text{existing}._\text{vertical}, \text{new}._\text{vertical}\}\)
18. \(\text{for each } p \in S_X\)
19. \(\text{if } p.x < \text{pval}\)
20. \(\text{put } p \text{ in block } b;\)
21. \(\text{else}\)
22. \(\text{put } p \text{ in block } b2;\)
23. \(\text{else} // \text{partition was horizontal}\)
24. \(\text{endif}; // \text{Similar to above - code omitted.}\)
25. \(\text{endif};\)
   // continued...
Algorithm: Gridfile-Insert ... continued

    // Write the blocks and update directory.
25. Disk-Writeblock (bnum);
26. Disk-Writeblock (bnum2);
27. if ptype = existing_vertical
28.    Gridfile-Update-Directory (vertical, bnum2, I’, J);
29. else if ptype = new_vertical
30.    Gridfile-Expand-Directory (vertical, pval, bnum, bnum2, I’, J);
31. else if ptype = existing_horizontal
32.    Gridfile-Update-Directory (horizontal, bnum2, I, J’);
33. else
34.    Gridfile-Expand-Directory (horizontal, pval, bnum, bnum2, I, J’);
35. return;

Algorithm: Gridfile-Findcell (p)

Input: point p.
Output: coordinates of the cell containing point p.
1. Find I such that Xscale[I].low <= p.x < Xscale[I].high;
2. Find J such that Yscale[J].low <= p.y < Yscale[I].high;
3. return (I, J);
Algorithm: Gridfile-Partition ($S_X, S_Y$)

Input: sets of points $S_X, S_Y$.
Output: partition type, partition, index into Xscale or Yscale.

// Try existing partitions first.
1. if Current = vertical
2. for $I := 1$ to num_columns-1 do
3. pval := Xscale[$I$].high;
4. $S' := \{ p \in S_X : p.x < pval \}$;
5. if $|S'| \geq \text{min\_entries}$ and $|S - S'| \geq \text{min\_entries}$
   // We’ve found a suitable partition.
6. Current := horizontal;
7. return (existing_vertical, pval, $I$, 0);
8. endif
9. endfor

// Now try existing horizontal partitions.
10. for $J := 1$ to num_rows-1 do
11. pval := Yscale[$J$].high;
13. if $|S'| \geq \text{min\_entries}$ and $|S - S'| \geq \text{min\_entries}$
15. return (existing_horizontal, pval, $J$, 0);
16. endif
17. endfor
18. else // Try horizontal first, then vertical;
   // Similar to above - code omitted.
19. endif

// If existing partitions didn’t work, we need to create one;
20. if Current = vertical
21. pval := average of the two middle values in $S_X$;
22. Current := horizontal;
23. Find $I$ such that Xscale[$I$].low $\leq$ pval $<$ Xscale[$I$].high;
24. return (new_vertical, pval, $I$, 0);
25. else // Find a new horizontal partition.
   // Similar to above – code omitted.
26. endif;
27. return;
Algorithm: \texttt{GRIDFILE-UPDATE-DIRECTORY (ptype, bnum, I, J)}

\textbf{Input}: partition type, block number, Xscale or Yscale index.
\textbf{Output}: Change block pointer to bnum in appropriate cell.

1. if ptype = vertical
2. \hspace{10pt} i := Xscale[I + 1].index;
3. \hspace{10pt} j := Yscale[J].index;
4. \hspace{10pt} k := \texttt{L-ORDER (i, j)};
5. \hspace{10pt} Change k-th entry in directory to bnum and write to disk;
6. \hspace{10pt} return;
7. else \hspace{10pt} // Horizontal partition
8. \hspace{20pt} // Code omitted – similar to above.
9. endif;
**Algorithm**: GRIDFILE-EXPAND-DIRECTORY (ptype, pval, bnum, bnum2, I, J)

**Input**: partition type and value, block number, Xscale or Yscale index.

**Output**: new row or column in directory.

1. if ptype = vertical
   
   // Add a new column to Xscale, shift right.

2. num_columns := num_columns + 1;

3. for i := num_columns downto I + 1;

4. Xscale[i] := Xscale[i - 1];

5. Xscale[I + 1].low := pval;

6. Xscale[I].high := pval;

7. Xscale[I + 1].index := num_columns; //New column #

   // Next, we need to create a new column.

8. i := Xscale[I].index;

9. i' := Xscale[I + 1].index;

10. for j := 1 to num_rows do

    // Copy column i to new column i'.

11. k := L-ORDER (i, j);

12. blknum := k-th entry in directory file;

    // Replace each occurence of bnum with bnum2.

13. if blknum = bnum

14. blknum := bnum2;

15. k' := L-ORDER (i', j);

16. Write blknum to entry k' in directory file;

17. endfor;

18. return;

19. else // Horizontal partition.

    // Code is omitted – similar to above.

20. endif;
**Algorithm:** \textsc{Gridfile-Nearest-Neighbor} \((q)\)

**Input:** query point \(q\).

**Output:** closest point to \(q\) in data set.

1. \((I, J) := \textsc{Gridfile-FindCell} (p)\);
2. \((i, j) := (\text{Xscale}[I].\text{index}, \text{Yscale}[J].\text{index})\);
3. \(k := \textsc{L-Order} (i, j)\);
4. \(\text{bnum} := k\)-th entry in directory file;
5. \(b := \textsc{Disk-ReadBlock} (\text{bnum})\);
6. \(p := \text{closest point in } b \text{ to query point } q\);
7. \(d := \text{distance}(p, q)\);
8. \(\text{closest} := p\);
9. Create new blocklist \(B\) and add \(\text{bnum}\) to it;
10. Consider square \(S\) about \(q\) with half-side=\(d\);
11. Find all cells \(C_1 = (i_1, j_1), \ldots, C_n = (i_n, j_n)\) that overlap \(S\);
12. Sort list of cells by distance to \(q\) (using closest corner);
13. \textbf{for} \(m := 1 \text{ to } n \textbf{ do}\)
    14. \textbf{if} \(\text{distance}(C_m, q) < d\)
        15. \(k := \textsc{L-Order} (i_m, j_m)\);
        16. \(\text{blknum} := k\)-th entry in directory file;
        17. \textbf{if} \(\text{blknum} \notin B\)
            18. \text{Add blocknum to } B;
            19. \(p := \text{closest point in blknum to } q\);
            20. \(d' := \text{distance}(p, q)\);
            21. \textbf{if} \(d' < d\)
                22. \(d := d'\);
                23. \(\text{closest} := p\);
        24. \textbf{endif};
    25. \textbf{endif};
16. \textbf{endfor};
27. \textbf{return} \((\text{closest}, d)\);
11.14  Grid Files: Deletion

- Deletion operation: given a point, delete it from the grid file.
- Two approaches to deletion:
  1. Lazy deletion:
      - Locate point in data block:
          * Identify correct grid cell.
          * Retrieve block pointed to by cell.
      - Delete point from block.
      - Leave grid directory untouched.
      - Periodically, rebuild entire grid file.
  2. Full deletion:
      - Locate point in data block:
          * Identify correct grid cell.
          * Retrieve block pointed to by cell.
      - Decide whether block underflows (too few points in block).
      - If underflow, then merge block with a suitable “neighboring” block
        ⇒ part of merging policy.
- Lazy deletion is straightforward.
  ⇒ we will only consider full deletion.
- A merging policy involves
  1. Deciding when a block underflows (and needs to be merged).
  2. Deciding which (among several neighboring blocks) to merge with.

Note: it is not always possible to merge (see example below).
Consider the following example:

- Fixed-size cell version with the following points:

- Delete following points (in order): $p_2, p_{13}, p_6, p_3, p_{14}, p_7, p_{10}, p_8, p_{11}$.

- Merging policy:
  * Merge when a block is less than half-full
    ⇒ in this example, merge when a block has 0 or 1 points.
  * Among neighbors, pick the cell with the fewest points. If there are several, pick in clockwise order starting from North.
* Merging is triggered only by deletes.

- Delete $p_2 = (0.74, 0.23)$:
  
  - Locate cell
    
    $\Rightarrow$ Cell[8,3].
  
  - Retrieve block
    
    $\Rightarrow$ block $b_1$.
  
  - Delete from block $b_1$.
  
  - Block does not underflow.
• Delete $p_{13} = (0.82, 0.15)$:
  
  – Locate cell  
  \[ \Rightarrow \text{Cell [9,2].} \]

  – Retrieve block  
  \[ \Rightarrow \text{block } b_1. \]

  – Delete from block  
  \[ \Rightarrow \text{causes underflow.} \]
- Can merge with either block $b_7$ or block $b_6$.
  \[ \Rightarrow \text{select } b_6 \text{ (priority: start from North)} \].
- Return block $b_1$ to free space.

- Delete $p_6 = (0.82, 0.87)$:
  - Locate cell
  \[ \Rightarrow \text{Cell } [9,9] \].
- Retrieve block
  ⇒ block $b_2$.
- Delete from block
  ⇒ causes underflow.
- Among neighboring blocks ($b_3$ and $b_6$), $b_3$ has the fewest elements
  ⇒ merge with $b_3$.
- Return $b_2$ to free space.
• Delete $p_3 = (0.55, 0.81)$:
  
  – Locate cell
    ⇒ Cell [6,9].
  
  – Retrieve block
    ⇒ block $b_3$.
  
  – Delete from block
    ⇒ causes underflow.
  
  – Cannot merge with any other block
    ⇒ retain empty block.
• Delete $p_{14} = (0.05, 0.12)$:
  
  - Locate cell
    ⇒ Cell [1,2].
  
  - Retrieve block
    ⇒ block $b_0$.
  
  - Delete from block
    ⇒ causes underflow.
  
  - Block $b_0$ can only be merged with $b_7$. 
- Remove partition after column 1.
- Return $b_0$ to free space.
• Delete \( p_7 = (0.25, 0.53) \):
  - Locate cell
    \( \Rightarrow \) Cell [3,6].
  - Retrieve block
    \( \Rightarrow \) block \( b_4 \).
  - Delete from block
    \( \Rightarrow \) causes underflow.
  - Can’t merge with any other block.

![Diagram of the grid with blocks and cells labeled](image-url)
• Delete $p_{15} = (0.03, 0.24)$:
  
  - Locate cell
    $\Rightarrow$ Cell [1,3].
  
  - Retrieve block
    $\Rightarrow$ block $b_7$.
  
  - Delete from block
    $\Rightarrow$ no underflow.
• Delete $p_{10} = (0.25, 0.24)$:
  
  - Locate cell  
    $\Rightarrow$ Cell [3,3].  
  
  - Retrieve block  
    $\Rightarrow$ block $b_7$.  
  
  - Delete from block  
    $\Rightarrow$ causes underflow.  

  - Can only merge with block $b_5$.  
  
  - Remove partition after column 6.
• Delete \( p_8 = (0.24, 0.77) \):
  
  - Locate cell
    \[ \Rightarrow \text{Cell [4,8].} \]
  - Retrieve block
    \[ \Rightarrow \text{block } b_4. \]
  - Delete from block
    \[ \Rightarrow \text{underflow.} \]
  - Can only merge with block \( b_5 \), but \( b_5 \) is full
    \[ \Rightarrow \text{retain empty block.} \]
- Delete $p_{11} = (0.31, 0.24)$:
  
  - Locate cell
    \[ \Rightarrow \text{Cell [4,3]}. \]
  
  - Retrieve block
    \[ \Rightarrow \text{block } b_5. \]
  
  - Delete from block
    \[ \Rightarrow \text{no underflow}. \]
Delete $p_1 = (0.35, 0.37)$:

- Locate cell
  $\Rightarrow$ Cell [4,4].

- Retrieve block
  $\Rightarrow$ block $b_5$.

- Delete from block
  $\Rightarrow$ causes underflow.
- Merge with $b_4$.
- Remove horizontal partition after row 4.
- Return $b_4$ to free space.

- Implementation details: deletion
  - There are two significant aspects to implementing deletion:
    1. Merging blocks.
2. Shrinking the grid directory.

These aspects differ in the two versions (fixed-size cells and variable-size cells).

- Fixed-size cell version:
  - Merging two blocks requires overwriting the cells of one of the blocks.
  - Example: merge blocks $b_7$ and $b_5$ below

![Diagram of block merging](image-url)
- To remove a partition, we need to keep track of partitions
  ⇒ use array or linked-list.
- If the current set of partitions allow a coarser directory
  ⇒ grid directory can be coarsened.
- Coarsening the directory is an expensive operation
  ⇒ similar to refinement.

• Variable-size version:
  - Merging requires adjusting elements in the grid directory.
  - Example: merge $b_1$ and $b_5$

- When a partition is removed, the grid directory can be reduced
  ⇒ expensive operation.
• Since collapsing the grid directory is expensive, it is often left in expanded form.
11.15  Grid Files: Summary

- The grid file is an index structure designed to support multikey queries.
- A grid file consists of:
  - A grid directory.
  - Grid scales (partitions).
  - Data blocks.
  - Meta-data such as the interval sizes, grid directory size etc.
- A grid file is a conceptual structure: several implementations are possible.
  We have seen two:
  - A grid file using fixed-size cells.
  - A grid file using variable-size cells.
- Several varieties of insertion are possible:
  - We alternated between vertical and horizontal partitions.
  - It might be better to use more vertical partitions if the data tends to be horizontally distributed.
- Likewise, several deletion strategies are possible.
  Shrinking the directory during deletion is an expensive operation
  ⇒ not worth implementing.
  If deletions are not common, lazy deletion is a good option.
- For general data, grid files are useful for range searches.
- For geometric point data, grid files are also useful for nearest-neighbor queries.
Chapter 12

Geometric Query Processing

Course Notes on Database Systems
12.1 Geometric Query Processing: Introduction

- Query processing in relational databases:
  - Query trees are transformed using relational algebra properties.
  - Disk I/O is the chief metric.
  - Several methods for efficiently implementing relational operators.

- Query processing in a geometric database:
  - Query processing involves implementing geometric “operators”:
    * Topological operators: e.g., containment, overlap (intersection), disjunction
    * Directional operators: e.g., southwest, above, below.
    * Search operators: e.g., range queries, nearest neighbor queries, spatial joins.
  - Often, CPU costs are quite high
    ⇒ I/O is not the only cost consideration.
  - Currently, geometric query processing is only in the (early) research stages.

- We will focus on fast algorithms for certain well-defined in-memory geometric computations
  ⇒ problems in computational geometry.

- Examples of problems:
  - Point location (polygon): given a query point q and a polygon P, is q ∈ P?
  - Point location (polygonal map): given a query point q and polygonal map (region) M, which polygon in M contains q?
- **Range search**: given a query rectangle $R$ and a collection of points $S$, which points lie in $R$?
- **Diameter**: given a collection of points $S$, find two that are farthest apart.
- **Nearest neighbor (point)**: given a collection of points $S$ and a query point $q$, what is the nearest point to $q$ in $S$?
- **Nearest neighbor (set)**: given a collection of points $S$, find the nearest neighbor of each point.
- **Intersection (pair)**: find whether two given geometric objects intersect.
- **Intersection (set)**: given a collection of geometric objects find all pairs that intersect.

- Many of these problems come in two versions:
  1. **Single-shot**: only a single query is given.
  2. **Repetitive-mode**: several queries are to be handled.

For example, consider the **point location (polygon)** problem: given a polygon $P$ determine whether a given query point is inside $P$.

1. **Single-shot** version:
   - Given a single query point $q$ and a polygon $P$ consisting of $n$ points, is $q \in P$?
   - Here, options are limited
     - $\Rightarrow$ must process all points in $P$
     - $\Rightarrow$ computation is at least $O(n)$ (assume $P$ has $n$ points).
   - Main question of interest: is there an algorithm that performs no worse than $O(n)$?

2. **Repetitive-mode** version:
   - Given a polygon and many query points $q_1, \ldots, q_m$, determine which points are in $P$?
- Here, we could treat each query point separately using the single-shot algorithm $O(n)$ times
  \[ \Rightarrow O(mn) \text{ for all the points.} \]
- On the other hand, we can \textit{preprocess} the polygon $P$ (at cost $O(f(n))$).
- After preprocessing, cost of answering a point query is $O(g(n))$ per point
  \[ \Rightarrow \text{cost for all points is } O(mg(n)). \]
- Example: $f(n) = n \log n$ and $g(n) = \log n$
  \[ \Rightarrow O(\log n) \text{ per point query.} \]
- Usually, there is also a storage cost to consider.

- Some useful definitions:
  - We will consider the standard Euclidean plane $\mathbb{R}^2$.
  - A polygon is a collection of $n$ vertices $v_1, \ldots, v_n$ and $n$ (directed) edges $e_1, \ldots, e_n$ where
    1. $e_i = v_i v_{i+1}$, $i = 1, \ldots, n - 1$.
    2. $e_n = v_n v_1$.
  - A \textit{simple polygon} is a polygon in which only successive edges intersect:
    \[ \Rightarrow e_i \cap e_j = \emptyset \text{ if } j \neq i + 1 \text{ or if } i = n, j \neq 1. \]

\begin{itemize}
  \item A polygon (not simple)
  \item A simple polygon
\end{itemize}

- Assumption: we will assume that all polygons henceforth are simple.
- Convention: vertices are numbered in counter-clockwise order.
- A vertex is *convex* if its internal angle is no larger than 180°.
- A vertex is *concave* if its internal angle is larger than 180°.
- A *convex* polygon is a polygon with no concave vertices.
- $\partial P$ denotes the boundary of polygon $P$.
- For a point $q$, we will use either $q = (x_0, y_0)$ or $(q.x, q.y)$ to denote the individual coordinates.

**Example of implementation:**

```c
typedef struct point {
 double x; // x-coordinate
 double y; // y-coordinate
} point;

typedef struct polygon {
 long n; // Number of vertices
 point *v; // Coordinates of vertices
} polygon;

...

polygon P;

P->v = (point *) malloc (sizeof(point) * (4));
P->n = 3;
P->v[1].x = 0.0; P->v[1].y = 0.0;
P->v[2].x = 1.5; P->v[2].y = 3.5;
P->v[3].x = 0.5; P->v[3].y = 4.5; // A triangle.
```
12.2 The Point Location Problem: Introduction

- We will consider the polygon version of the problem (the polygonal map version is not much more complex).
- Single-shot version: given a query point $q$ and a polygon $P$, is $q \in P$?
- The *Ray-Crossings* method:

- Draw a line (ray) from $q$ in any one direction.
- Count the number of intersections with edges of $P$.
- If number of intersections is odd
  \[ \Rightarrow q \in P \]
- else
  \[ \Rightarrow q \notin P. \]
- Why does this work?
  * Picture walking along the ray from infinity towards $q$.
  * When you cross an edge for the first time, you are “in”.
  * Next time you cross an edge you are “out”.
  * The next time, you are “in”, etc.
• Details:

- Suppose the point \( q \) has coordinates \( q = (x_0, y_0) \).
- Which ray emanating from \( q \) do we use?
  \( \Rightarrow \) use \( y = x_0 \) (horizontal line) going right of \( q \) (to \( +\infty \)).
- How do we know which edges of \( P \) intersect with \( y = x_0 \)?
  \( \Rightarrow \) must test each edge against the line \( y = x_0 \).
- What if intersection point lies to the left of \( q \)? e.g., intersection with edge \( e \) is to the left of \( q \):

\[ \Rightarrow \text{must make sure intersection point is to the right of } q. \]

- What about degenerate cases?
  * ray passes through a vertex;
  * ray passes through an edge;
  * query point is on an edge.
  * query point is on an vertex.
Here, the ray from $q$ passes through edge $e$ and vertex $v$. Point $q'$ lies on $\partial P$.

- Convention: $q \in P$ if $q \in \partial P$.
- If $q$ is collinear with an edge but not contained in it
  \[\Rightarrow\] ignore edge (in counting crossings).
- If ray passes through a vertex
  \[\Rightarrow\] count as 2 crossings (each edge counts).

- To summarize: for each edge, make sure that at least one point is strictly above (below) while the other point is on or below (above).
• Pseudocode:

```
Algorithm: Ray-Crossings (q, P)

Input: query point q, polygon P.
Output: true, if q ∈ P; false, otherwise.
1. num_crossings := 0;
2. for each edge e = (u,v) in P
3. if e contains q
4. return true;
5. if (u.y > q.y and v.y ≤ q.y)
 or (u.y ≤ q.y and v.y > q.y)
 // Compute intersection point with ray y = q.x
6. c := Intersection-Point (q, e);
7. if c.x > q.x
8. num_crossings := num_crossings + 1;
9. endif
10. endfor
11. if num_crossings is odd
12. return true;
13. else
14. return false;
```

• Algorithm complexity:

  – Each edge is tested against the ray once.
  – Each intersection computation is O(1)
    ⇒ O(n) overall.

• The ray-crossings method is suited to the single-shot type of query.
  Consider the repetitive mode, e.g., 5000 queries on a 10,000-point polygon
  ⇒ 5 × 10^7 intersection computations.
12.3 Point Location Using 2D-Hashing

- For repetitive-mode queries, it is often better to organize the edges in the polygon in some way
  ⇒ reduce the number of tests per point.

- Key ideas in 2D-hashing:
  - Consider an imaginary grid superimposed on the given polygon:

    ![Diagram](image)

    - For each cell (bucket), identify the edges that intersect the cell, e.g.,
      
      Cell [5,7]: edges 11, 12.
      Cell [3,4]: edges 16, 21, 22, 23.

    - For each cell, store the list of edges that intersect the cell
      ⇒ the cell-list for each cell.
- For empty cells, identify whether the cell is inside the polygon or not.
- Given a query point $q$:
  * Identify the cell containing the point.
  * If cell is empty, determine location of point using location of cell (inside or outside).
  * Otherwise, test query point against all edges in cell-list.
  * Find closest edge and use it to determine whether $q \in P$.
- Example: $q = (7.5, 8.5)$:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{array}
\]

* $q$ lies in Cell [7,8].
* Cell [7,8] is empty.
* Cell [7,8] is entirely contained in $P$
  \[ \Rightarrow q \text{ is contained in } P. \]
- Example: $q = (3.75, 4.5)$:

* $q$ lies in Cell [3,4].
* Cell [3,4] is not empty.
* Cell [3,4] has edges 16, 21, 22 and 23.
* Edge 23 is closest.
* $q$ is to the left of edge 23
  $\Rightarrow q \in P$.

- Preprocessing cost:
  - Suppose we use a $k \times k$ grid.
  - Each polygon edge intersects at most $O(k)$ cells.
    $\Rightarrow O(k)$ insertions per edge
    $\Rightarrow O(nk)$ insertions overall.
Storage cost:

- $O(k^2)$ for the cells.
- $O(nk)$ for the edges in the cell-lists.

Query cost per point query:

- Worst-case, all edges hash to a single cell:

Here, Cell [3,3] has all edges.
⇒ $q$ must be tested against all edges
⇒ $O(n)$ worst-case.

- If the edges are somewhat uniformly distributed, then hopefully each cell has approximately $O\left(\frac{n}{k}\right)$ edges.

Choosing $k$:

- To make $O\left(\frac{n}{k}\right) = O(1)$, we need $k = O(\sqrt{n})$.
- Preprocessing cost: $O(n\sqrt{n})$.
- Storage cost: $O(n)$.
• Sometimes it is better to use different partitions along $x$ and $y$ axes:

  – Consider this example:

    * $n = 15$ edges.
    * $k = \sqrt{n} \approx 4$
      
      $\Rightarrow$ a $4 \times 4$ grid:
Each cell as at least 4 edges
\[ \Rightarrow O(\sqrt{n}) \text{ edges per cell} \]
\[ \Rightarrow \text{query cost is } O(\sqrt{n}). \]

- Instead, suppose we use different x and y partitions:
  * Let \( k_x \) = number of x divisions.
  * Let \( k_y \) = number of y divisions.
  * Example: take \( k_x = 8 \) and \( k_y = 2 \) (in example above):
* 2 edges per cell in most cells ⇒ better!

- Intuition:
  * Consider walking along $\partial P$.
  * You tend to walk a lot along the y-direction
  * Thus, to separate out the edges thin long slabs are needed ⇒ more divisions along x direction.

- A heuristic for choosing $k_x$ and $k_y$:
  * Consider an edge $e$ with endpoints $(x_0, y_0)$ and $(x_1, y_1)$:

![Diagram](image)

* Define the projections:

\[
x_e \triangleq |x_1 - x_0|
\]
\[
y_e \triangleq |y_1 - y_0|
\]
* Define the total horizontal (projected) length:

\[ D_x \triangleq \sum_e x_e \]

* Define the total vertical (projected) length:

\[ D_y \triangleq \sum_e y_e \]

* Let \( L_x \) and \( L_y \) be the span of the polygon in the x and y directions, respectively.

* Thus, there will be more “y-travel” per unit-length if

\[ \frac{D_y}{L_y} > \frac{D_x}{L_x} \]

\[ \Rightarrow \text{we want more x-partitions if} \]

\[ \frac{D_y}{L_y} > \frac{D_x}{L_x} \]

\[ \Rightarrow \text{take} \]

\[ \frac{k_x}{k_y} \propto \frac{D_y/L_y}{D_x/L_x}. \]

* But we still want \( k_xk_y = O(n) \).

* Let \( \alpha \) be a parameter associated with the algorithm.

* Then, pick \( k_x \) and \( k_y \) such that

\[ k_xk_y = \alpha n \]

and

\[ \frac{k_x}{k_y} \propto \frac{D_y/L_y}{D_x/L_x}. \]
**This gives**

\[ k_x = \left\{ \alpha n \frac{L_x D_y}{L_y D_x} \right\}^{\frac{1}{2}} \]

\[ k_y = \left\{ \alpha n \frac{L_y D_x}{L_x D_y} \right\}^{\frac{1}{2}} \]

**Previous example (with \( \alpha = 1.0 \):**

\[ L_x = 7.0 \quad \text{and} \quad L_y = 7.25 \]

- To compute \( D_x \):
  - edge 1 has length 7
  - 7 odd-numbered edges have length 0.25
    \[ \Rightarrow 1.75 \]
  - 7 even-numbered edges have length 0.75
    \[ \Rightarrow 5.25 \]
  - \( D_x = 7.0 + 1.75 + 5.25 = 14.00 \).

- To compute \( D_y \):
  - edge 1 has length 0
edges 2 and 15 have length 7.25
⇒ 14.5
12 remaining edges have length 6.5 each
⇒ 78
⇒ \( D_y = 0 + 14.5 + 78 = 92.5 \).

· This gives

\[
\begin{align*}
k_x &= \left\lfloor 15 \times \frac{7.0 \times 92.5}{7.25 \times 14.0} \frac{1}{2} \right\rfloor = 9.78 \\
k_y &= \left\lfloor 15 \times \frac{7.25 \times 14.0}{7.0 \times 92.5} \frac{1}{2} \right\rfloor = 1.53
\end{align*}
\]

· Thus, \( k_x = 10 \) and \( k_y = 2 \) are appropriate choices.

● Some implementation details:

- Use a 2D-array for the buckets (cells).
- Use a linked list to store the edges associated with each bucket.
- To create the hashtable:
  * Find the minimum and maximum x values among all vertices.
  * Find the minimum and maximum y values among all vertices.
  * Create the boundary points for the grid
    ⇒ essentially the MBR of the polygon.
- Process edges one by one.
- For each edge:
  * Find out which cells are traversed by the edge.
  * Add the edge to each such cell (bucket).
  * For example:
Edge traverses cells [1,1], [1,2], [1,3], [2,3] and [2,4].

– What about edges that pass through a cell crosspoint?

Insert in the edge lists of all adjoining cells.
Above, insert edge into cells [1,1], [1,2], [1,3], [2,2], [2,3] and [2,4].
- To process a query point:
  * Find the cell containing the query point.
  * Example:

```
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{grid.png}
\end{figure}
```

In this example \((q = (12.6, 6.4))\):

- The grid boundaries are \([7.3, 15.7]\) (x-axis) and \([0.5, 8.5]\) (y-axis).
- \(k_x = 4\)
  \(\Rightarrow\) x-length of cell is 2.1.
- \(k_y = 2\)
  \(\Rightarrow\) y-length of cell is 4.0.
- 4 x-intervals: \([7.3, 9.4], [9.4, 11.5], [11.5, 13.6], [13.6, 15.7]\).
- 2 y-intervals: \([0.5, 4.5], [4.5, 8.5]\).
- To get x-interval: divided by interval length

\[
\frac{12.6 - 7.3}{2.1} = 2.52
\]

\(\Rightarrow\) 3rd column.
- Similarly, the y-interval is given by

\[
\frac{6.4 - 0.5}{4.0} = 1.475
\]

\(\Rightarrow\) 2nd row.
* Once the correct bucket (cell) is identified, there are two cases to consider.

* CASE 1: The bucket has edges
  - Find the closest edge to point.
  - Recall: each edge is directed.
  - Find out which side of the edge (left or right) the point lies.
  - If point is to the left, it is inside the polygon. Otherwise, it is outside.
  - Why does this work?

![Diagram of query points](image)

Recall: the points are in counter-clockwise order.

* CASE 2: the bucket has no edges
  - In this case, the bucket is either completely inside or completely outside the polygon.
  - Use this to determine the location of the point.

Note: locations of empty buckets are identified during preprocessing.

- Additional implementation details:
  - How do we know whether a point is to the left of a directed edge?
  - First, consider finding the area of a triangle:
    Given 3 points \( A = (a_x, a_y), B = (b_x, b_y), C = (c_x, c_y) \), the area of triangle ABC is given by:

\[
    \text{Area}(A, B, C) = \frac{1}{2} (a_x b_y - a_y b_x + a_y c_x - a_x c_y + b_x c_y - b_y c_x)
\]
- It turns out that if $A$, $B$ and $C$ are in counter-clockwise order, then $\text{Area}(A, B, C) > 0$. In general:

\[\begin{align*}
\text{Area}(A, B, C) &> 0 & \text{Area}(A, B, C) &< 0 & \text{Area}(A, B, C) &= 0
\end{align*}\]

- The area calculation can be used to see if point $C$ is to the left of edge $(A, B)$

  $\Rightarrow$ $C$ is left of $(A, B)$ if $\text{Area}(A, B, C) > 0$.

- Hence if we have a function double area (point A, point B, point C) we can write

  ```java
 boolean left (point A, point B, point C)
 {
 return area (A,B,C) > 0;
 }

 boolean leftron (point A, point B, point C)
 {
 return area (A,B,C) >= 0;
 }

 boolean collinear (point A, point B, point C)
 {
 return area (A,B,C) == 0;
 }
  ```

- Note: using integer coordinates will give exact results.
- A related issue: how do we check whether a point $C$ is on the segment $(A, B)$?
* See if $C$ is collinear with $A, B$.
* If so, check to see if $C$’s x-value is between $A$’s x-value and $B$’s x-value.

- How does one check edge intersections?
  * It is not enough to simply use line equations and analytic geometry. For example:

    ![Diagram of line AB intersecting but the segment does not intersect](image1)
    ![Diagram of segments intersecting](image2)

* For proper intersection:
  * Segment $CD$ forces $A$ and $B$ on different sides of $CD$.
  * Segment $AB$ forces $C$ and $D$ on different sides of $AB$.

* Suppose we have a function called `area_sign()` that returns the sign of the area of a triangle.
* Then, for proper intersection we want:
  1. `area_sign(A, B, C) * area_sign(A, B, D) < 0` and
  2. `area_sign(C, D, A) * area_sign(C, D, B) < 0`.
* Note: the above conditions don’t allow collinearity:

    ![Diagram of collinear points](image3)

Here, $B$ is collinear with $C, D$.

* Thus, to include collinearity of one endpoint as part of proper intersection, a separate test is needed.
12.4 Point Location: The Slab Method

- One of the most effective unidimensional searching methods is *binary search.*
  Binary search requires organizing the data (sorting) to suit binary search.
- Main idea behind the slab method: organize the data (polygon vertices and edges) to facilitate binary search.
- Key ideas:
  - Construct the polygon’s MBR.
  - Pass a horizontal line through each polygon vertex.

- The lines partition the MBR into horizontal slabs.
- Each slab is a collection of trapezoids ordered left to right.
- The trapezoids are *horizontal trapezoids:* the two parallel edges are parallel to the x-axis.
- Some trapezoids are triangles: one side has zero length.
- Each trapezoid is either completely inside or completely outside the polygon.
- Suppose we have identified the status (inside or outside) of each trapezoid.
- To process a point query \( q = (x_0, y_0) \):
  * Identify the correct slab.
  * Search for the proper trapezoid within the slab.
  * Return status of trapezoid (inside or outside).

- Details:
  - Use binary search to identify the correct slab
    \( \Rightarrow \) slab intervals must be stored in an array.
  - To construct slab array, the vertices of \( P \) need to be sorted by \( y \)-value.
  - For each slab, we need to know which polygon edges cut through the slab:
    * Maintain an array of edges for each slab.
    * Process polygon edges one by one.
    * For each edge, check which slabs it intersects.
    * Add edge to that slab’s array.
  - Edges within a slab have to be ordered left to right
    \( \Rightarrow \) sorting needed.
  - In sorting edges, we need to “compare” two edges. How?
    * While placing edges in a slab’s array, find intersection point with mid-line of slab.

![Diagram of slabs and edges](image-url)
* While processing edges in a slab, sort by these intersection points.
- Use any non parallel edge to determine if a trapezoid is inside or outside.

- For each trapezoid, store left and right edges.
- To determine if a point is inside a particular trapezoid:
  * Check intersections of trapezoid edges with the line $y = y_0$.
  * If intersection points are on either side of point
    \[ \Rightarrow \text{point is inside} \]

- Given a query point $q = (x_0, y_0)$:
  * Use binary search with $y_0$ to find correct slab.
  * Use binary search with $x_0, y_0$ to find correct trapezoid.
  * Return status of trapezoid.
• Preprocessing time:
  
  - \( O(n \log n) \) to sort vertices by y-value.
  
  - Each edge may pass through \( O(n) \) slabs
    \( \Rightarrow O(n^2) \) insertions into slab arrays.
  
  - Each slab may have \( O(n) \) trapezoids
    \( \Rightarrow O(n \log n) \) to sort within a slab
    \( \Rightarrow O(n^2 \log n) \) to sort all slabs.
  
  - Identification for each trapezoid takes \( O(1) \) time
    \( \Rightarrow \) Overall, \( O(n^2) \).

Thus, preprocessing time is \( O(n^2 \log n) \).

• Storage cost:
  
  - \( O(n) \) slabs
    \( \Rightarrow O(n) \) intervals.
  
  - Each slab may have \( O(n) \) trapezoids
    \( \Rightarrow O(n^2) \) for trapezoids.

Thus, \( O(n^2) \) storage is needed.

Worst-case example:
By adding more zig-zags between \( u \) and \( v \), additional slabs can be added. The total number of trapezoids is of the order

\[
(\text{const}) \ (3 + 5 + 7 + \ldots) = O(n^2)
\]

- Query cost:
  - \( O(\log_2 n) \) for binary search among slabs.
  - \( O(\log_2 n) \) for binary search within a slab.
  \[\Rightarrow O(\log_2 n) \] overall.
  
  Note: the constant is small: \( 2[\log_2 n] \) steps for search.

- Summary:
  - Preprocessing: \( O(n^2 \log n) \).
  - Storage: \( O(n^2) \).
  - Query: \( O(\log n) \).

- Can we do better?
  - It’s unlikely that query time can be improved (Improvement would result in faster unidimensional search).
  - Storage cost cannot be improved for this method.
  - What about preprocessing?
    * Consider two adjacent slabs.
    * Once we’ve sorted one slab (takes \( O(n \log n) \) time), how much time does it take to sort the next one?
    * Currently, \( O(n \log n) \).
  * However, how different are the two slabs?
  * If they are similar it should be possible to use that information to reduce sorting time.
12.5 Plane Sweep

- Plane sweep is a fundamental method in computational geometry ⇒ useful as part of several algorithms.

- For simplicity of presentation, we’ll first consider polygons with unique vertex y-values ⇒ no two points lie on the same horizontal line.

- Key ideas:

- Consider a horizontal line above the polygon.
- Picture moving the line towards the lowest point of the polygon.
- Stop the line (temporarily) at each vertex the line encounters.
- Some processing occurs at each stop.
- Example: above the line starts by sweeping down from vertex 5.
Next stop in sweep is vertex 3.
⇒ vertices are visited in the order: 5, 3, 6, 4, 2, 7, 1.
- Notation: let $v[i]$ denote the vertex encountered in the $i$-th stop of the plane sweep.
- Each stop is a slab boundary.
- At each stop: create the correct order of edges (left-to-right) in the slab immediately below.

- Example: when the sweep is at vertex 3, the second slab is processed.
- Denote the ordered list of edges for slab $i$ by $L[i]$.
- The key observation:
  * Suppose we have created $L[i]$ at the $i$-th stop in the sweep.
  * Next, we want to create $L[i+1]$. 

785
* Question: how different is $L_{[i+1]}$ from $L_{[i]}$?
* Answer: not much!

- Example:
  * $L_{[3]} = e_6, e_4, e_3, e_2$ (in that order).
  * Now sweep down to $v_{[4]} = 4$.
  * $L_{[4]} = e_6, e_2$.
  * Observe: to get $L_{[4]}$ from $L_{[3]}$, remove $e_4, e_3$.
    $\Rightarrow e_4, e_3$ are the edges incident at $v_{[4]}$.
  * Note: both $e_4$ and $e_3$ go “up”.

- Example: Consider the sweep from $v_{[1]} = 5$ to $v_{[2]} = 3$.
  * $L_{[1]} = e_5, e_4$.

786
Here, we added $e_3, e_2$.

$e_3, e_2$ are incident to $v_{[2]}$.

Note: both $e_3$ and $e_2$ point "down".

Example: Consider the sweep from $v_{[2]} = 3$ to $v_{[3]} = 6$.

$L_{[2]} = e_5, e_4, e_3, e_2$.

$L_{[3]} = e_6, e_4, e_3, e_2$.

Here, we deleted $e_5$ and added $e_6$.

Note: $e_6$ points up, $e_5$ points down.

Thus, at each step in the sweep, one of three cases occur:

1. Both incident edges are above the vertex:

   $\Rightarrow$ delete $e, e'$ from current list.

2. Both incident edges are below the vertex:
⇒ add $e, e'$ to current list.

3. One edge is above and one is below:

⇒ delete $e$, add $e'$.
- Note: when edges are added, they have to be added at the right place (to maintain left-to-right order).

- **Complexity:**
  - At each step in the sweep, we need to find the right place in current list
    ⇒ $O(n)$ work at most (since list can have $O(n)$ elements).
  - Once we’ve found the right place, adding and deleting takes $O(1)$ time.
  - $n$ vertices in sweep
    ⇒ $O(n^2)$ overall.
  - Thus, using plane sweep speeds up preprocessing for the Slab Method from $O(n^2 \log n)$ to $O(n^2)$.
  - Note:
    * By using a height-balancing tree to represent the current list, the plane sweep can be done in $O(n \log n)$ time.
* Insertions and deletions cost $O(\log n)$ in a height-balanced tree.
* Examples of height-balanced trees: AVL trees, red-black trees, 2-3 trees.

- However, it does not help in the Slab Method, since $O(n^2)$ work is needed to build the slab arrays.
- Implementation using a height-balanced tree is more complex than implementation with a simple list.

• Some details:
  - How do we decide whether $e$ is left of $e'$?

```
 no relation between e and e'
 e is left of e'
 e is left of e'
 no relation between e and e'
```

- To decide the relation between two edges
  ⇒ compare the x-values of the points of intersection with sweep line.
- Note: intersection computation is $O(1)$.
- Handling horizontally collinear points is more complex:

In the example above:
  * Each collinear point is handled separately.
* Point $v_{11}$: delete $e_{10}$, add $e_{11}$.
* Point $v_8$: delete $e_8$.
* Point $v_7$: add $e_6$.
* Point $v_5$: add $e_5$.
* Point $v_4$: no action.
* Point $v_3$: add $e_2$.
* Observation: horizontal edges are ignored (they are not needed for the trapezoids).

- Plane sweeps and topological sorts.
  - Suppose we use the notation $(e_i, e_j)$ to denote $e_i$ is left-of $e_j$.
  - Note that the left-of relation is a partial order.

- Example: for the polygon above
  * In creating $L[1] = e_5, e_4$, the pair $(e_5, e_4)$ is added to the relation:
    ![Graph](image)
  * In creating $L[2] = e_5, e_4, e_3, e_2$, the pairs $(e_3, e_2)$ and $(e_4, e_3)$ are added to the relation:
    ![Graph](image)
  * In creating $L[3] = e_6, e_4, e_3, e_2$, the pair $(e_6, e_4)$ is added to the relation:
* In creating $L[4] = e_6, e_2$, nothing is added.
* In creating $L[5] = e_6, e_1$, the pair $(e_6, e_1)$ is added:
* In creating $L[6] = e_7, e_1$, the pair $(e_7, e_1)$ is added:

- The Directed Acyclic Graph (DAG) thus created can be processed in $O(n)$ time to create a topologically sorted list.
- How?
  1. Visit (any) leftmost node.
  2. Print the node and delete it from the DAG.
  3. If DAG is not empty, go to 1.
- The list is not unique.
- Property of list: if $e_i$ precedes $e_j$ in the list and a sweep line passes through both, then $e_i$ is left-of $e_j$.
- Topologically sorted lists are useful in other geometric algorithms.
– Note: it takes $O(n \log n)$ time to create a topologically sorted list
($O(\log n)$ per tree operation, $O(n)$ for topological sort).
12.6 The Trapezoid Tree

- Recall: the slab method takes up $O(n^2)$ space
  ⇒ too much for some applications.

- Example: $n = 10,000$
  ⇒ $n^2 = 10^{10}$
  ⇒ may not fit into memory.

- The trapezoid tree
  - uses $O(n \log n)$ space;
  - requires $O(n \log n)$ preprocessing time;
  - handles queries in time $O(\log n)$.

This is close to optimal:

- $O(n)$ space;
- $O(n \log n)$ preprocessing time;
- $O(\log n)$ per query.

However, creating a trapezoid tree is a bit complicated.

- Key ideas:
  - Consider the drawback of the slab method:
Long edges span several slabs.

- The slab decomposition is a flat one.
- The trapezoid tree uses a hierarchical decomposition:
  * The polygon is broken down into smaller and smaller trapezoids.
  * It avoids having the same edge show up in too many trapezoids.
- Example (to give the general idea):
  * First, the polygon is enclosed in an MBR:

* The MBR is itself a trapezoid - we will call this \( Z_0 \).
* Trapezoid $Z_0$ is partitioned via a horizontal line into two trapezoids, $Z_1$ and $Z_2$.
* The horizontal line goes through the median $y$-value in $Z_0$ 
  ⇒ vertex 3.

* Each sub-trapezoid is processed recursively.
* To process the upper trapezoid $Z_1$:
  • Look for edges that span the whole trapezoid.
  • Edges $e_7$ and $e_6$ span $Z_1$.
  • Use these edges to vertically partition $Z_1$ 
    ⇒ creates 3 sub-trapezoids: $Z_3, Z_4, Z_5$. 


* Now process each of $Z_3$, $Z_4$, $Z_5$ in turn.
* $Z_3$ is empty $\Rightarrow$ no further processing needed
  $\Rightarrow$ simply determine whether $Z_3$ is inside or outside $P$
  $\Rightarrow$ $Z_3$ is outside.
* $Z_4$ is empty $\Rightarrow$ no further processing needed
  $\Rightarrow$ simply determine whether $Z_3$ is inside or outside $P$.
  $\Rightarrow$ $Z_4$ is inside.
* $Z_5$ is not empty $\Rightarrow$ process it recursively.
* Note: the trapezoids are drawn slightly inside their actual boundaries for emphasis.
* Split $Z_5$ horizontally by passing a line through the y-value of its median point.
* This creates trapezoids $Z_6$ and $Z_7$.
* $Z_6$ is empty
  $\Rightarrow$ it is outside $P$.
* $Z_7$ is first vertically partitioned by all the edges that span $Z_7$ vertically.

* This results in trapezoids $Z_8, Z_9, Z_{10}$.
* \(Z_8\) is empty and outside.
* \(Z_9\) is empty and inside.
* \(Z_{10}\) is empty and outside.
* This completes the processing of the first upper trapezoid, \(Z_1\).
* The original lower trapezoid, \(Z_2\) remains to be processed.
* \(Z_2\) is spanned by edges \(e_7\) and \(e_2\)
  \(\Rightarrow\) \(Z_2\) is vertically partitioned into three trapezoids \(Z_{11}, Z_{12}, Z_{13}\).

* Of these, \(Z_{11}\) and \(Z_{13}\) are empty.
* \(Z_{11}\) is outside.
* \(Z_{13}\) is outside.
* \(Z_{12}\) is partitioned horizontally by its median y-value
  \(\Rightarrow\) upper trapezoid \(Z_{14}\), lower trapezoid \(Z_{15}\).
* $Z_{15}$ is empty and inside.
* $Z_{14}$ needs further processing.
* $Z_{14}$ is spanned by edges $e_5$ and $e_6$
  $\Rightarrow$ vertically partition into $Z_{16}, Z_{17}, Z_{18}$.

* $Z_{16}$ is empty and inside.
* $Z_{17}$ is empty and outside.
* $Z_{18}$ is horizontally partitioned
  $\Rightarrow$ upper trapezoid $Z_{19}$, lower trapezoid $Z_{20}$.

* $Z_{19}$ is empty and inside.
* $Z_{20}$ is spanned by edges $e_3$ and $e_4$
  $\Rightarrow$ vertically partition into $Z_{21}, Z_{22}$ and $Z_{23}$.
- What good is it to decompose a polygon into a trapezoid hierarchy?
- A decomposition is useful if it helps with searching
  ⇒ try to represent decomposition in a tree.
- First, let’s consider a straightforward “containment” tree:
  * Initially, \(Z_0\) was decomposed into \(Z_1\) and \(Z_2\)
    ⇒ create a root \(Z_0\) with children \(Z_1\) and \(Z_2\):

* \(Z_1\) is partitioned (vertically) into \(Z_3, Z_4, Z_5\):
* We could continue in this fashion until the whole tree is built.
* Unfortunately, this approach does not bound the degree of a tree node, for example:

In this case, the trapezoid shown decomposes into too many “child” trapezoids
⇒ a node can have $O(n)$ children in the tree
⇒ cannot provide $O(\log n)$ search time.
- The solution is to limit the degree of each node, e.g., at most two  
  ⇒ binary tree.
- To handle cases like the above one, simply create a balanced tree:

![Balanced Tree Diagram]

- Once a tree has been created, how are queries processed?
  * The coordinates of a query point are used to navigate down the tree.
  * The leaf level contains empty trapezoids.
  * Each trapezoid is either inside or outside the polygon.
  * The status of a query point is the status of the leaf-trapezoid it lies in.
– Note:
* Some trapezoids were partitioned vertically; others horizontally.
* Consider a horizontal partition:

* To decide which subtree
  ⇒ compare y-value of point with y-value of partition line
  ⇒ use y-value of vertex 3.
* Next, consider a vertical partition:

* To decide which subtree, see if point lies on left or right of edge segment.
• Implementation: key ideas

  – Recall:

    * The polygon is hierarchically subdivided into trapezoids.
    * A division is either horizontal (using a median y-value) or vertical (using a spanning edge).
    * If more than one edge spans a trapezoid, a balanced subtree needs to be constructed.
    * The initial trapezoid is the MBR.
    * The initial trapezoid is the root of the tree.

  – We will write a recursive function

    \[
    \text{root} := \text{Make-Trapezoid-Subtree}\ (Z_0)
    \]

    such that the tree is obtained using the initial trapezoid \( Z_0 \).

    \[
    \begin{array}{c}
    Z_0 \quad H \\
    \text{left subtree} \quad \text{right subtree}
    \end{array}
    \]

  – This function will create the left and right subtrees recursively.

  – Data needed for each trapezoid Z (to process it):

    * Z’s boundary:

      \[
      \begin{align*}
      Z.\text{top} & \quad \text{top parallel line of } Z \\
      Z.\text{bottom} & \quad \text{bottom parallel line of } Z \\
      Z.\text{leftedge} & \quad \text{the polygon edge that forms } Z’s \text{ left edge} \\
      Z.\text{rightedge} & \quad \text{the polygon edge that forms } Z’s \text{ right edge}
      \end{align*}
      \]

    * \( Z.n \) – The number of polygon points in \( Z \).

    * \( Z.v[1], \ldots, Z.v[Z.n] \) – the polygon points in \( Z \).

    * \( Z.\text{edgelist} \) – polygon edges that pass through the interior of \( Z \), topologically sorted.
Version 1.0 of Make-Trapezoid-Subtree:

Make-Trapezoid-Subtree (Z)
if Z is empty
    – create a leaf node
    – check containment in P
    – return leaf node pointer
endif

// Otherwise, proceed with partition
Find median vertex in Z
Create upper and lower trapezoids Z_U and Z_L
// Process edges in Z’s edge list
for each edge e = (a, b) in Z.edgelist
    // Test e with respect to Z_U:
    if a or b is in Z_U
        insert in Z_U’s vertex list
    endif
    // Create new trapezoid recursively
    // Treat e as right edge of trapezoid Z
    // Create Z’s edgelist and vertex list
    endif
    // Test e with respect to Z_L:
    // Similar to above
endfor

Note:

– Trapezoids in for-loop are created left to right.
– By scanning the edges left to right, we will have the edge list for each trapezoid by the time the trapezoid’s right edge is scanned.
    ⇒ this is why we keep the edges in a topologically sorted list.
Consider the for-loop:

- When the tree node for \( \tilde{Z} \) is created, what is done with it?
- If several edges span \( Z_U \), we will end up with a \textit{collection} of (independent) subtrees in the for-loop.
- These subtrees have to be placed in a \textit{balanced} tree
  \( \Rightarrow \) balancing mechanism needed.
- Balancing must be done \textit{after} the for-loop.

* More about balancing:
  - Consider an example:

* Here, trapezoid \( Z \) has been horizontally partitioned into \( Z_U \) and \( Z_L \). (Only \( Z_U \) is shown).
* \( Z_U \) has edges \( e_{32} \) and \( e_2 \) for left and right sides.
* Edges \( e_{27}, e_{19}, e_7 \) and \( e_3 \) are spanning edges.
* The spanning edges create 5 subtrapezoids.
* These trapezoids are placed in a balanced tree.
* For example, the balanced tree could turn out to have \( e_{19} \) as root:

```
 e_{19} V
 / \ \
 e_{27} V e_{7} V
```

* This would become a subtree of \( Z \):

```
 Z H
 / \ \
 e_{19} V e_{27} V e_{7} V
```

* Note that \( Z_U \) is only a transient trapezoid (not actually appearing in the tree).

* Another way to think about it:

```
 Z H
 / \ \
 e_{19} V Z_U H
```

- Now, the trapezoids \( Z_1, \ldots, Z_5 \) are recursively created in the for-loop
  \( \Rightarrow Z_1 \) (could be a huge tree) is created before \( Z_3 \).
- But, balancing needs to be done later – after the for-loop.
- What to do:
  * Create a list of subtrees (one for $Z_1$, one for $Z_2$ etc) while inside the for-loop.
  * Use list as input to a balancing algorithm outside the for-loop.
- Note that some tree nodes are “edge” (vertical) nodes.
- Thus, list should contain these edges.
- We will create a *balance-list* inside the for-loop:
  * A balance-list is a (linked) list of items.
  * Each item is either a spanning edge or a trapezoid tree node.
- Example (above):

```
trapezoid node
 Z1

edge node
e27

trapezoid node
 Z2

edge node
e19

trapezoid node
 Z3

edge node
e7

trapezoid node
 Z4

edge node
e3

trapezoid node
 Z5

edge node
e2
```

- Version 2.0 of Make-Trapezoid-Subtree:

**Make-Trapezoid-Subtree ($Z$)**

if $Z$ is empty
  - create a leaf node
  - check containment in $P$
  - return leaf node pointer
endif

// Otherwise, proceed with partition
Find median vertex in $Z$
Create upper and lower trapezoids $Z_U$ and $Z_L$
Create a left-balance-list and right-balance-list
// Process edges in $Z$’s edge list
for each edge $e = (a, b)$ in $Z$.edgelist
// Test e with respect to $Z_U$:
if $a$ or $n$ is in $Z_U$
  insert in $Z_U$’s vertex list
if $e$ spans $Z_U$
  // Create new trapezoid recursively
  – Treat $e$ as right edge of trapezoid $\tilde{Z}$
  – Left edge of $\tilde{Z}$ := current_left_edge
  – temp_node := MAKE-TRAPEZOID-SUBTREE ($\tilde{Z}$)
  – add temp_node to left-balance-list
  – Make an edge node out of $e$ and add to left-balance-list
  – current_leftedge := $e$
endif
// Test $e$ with respect to $Z_L$:
  // Similar to above, except use right-balance-list
endfor
// Now create root of subtree and balance the two lists
Create root of subtree $R$
$R$.leftchild := BALANCE (left-balance-list)
$R$.rightchild assn BALANCE (right-balance-list)
return $R$

• Details: should points on the boundary of a trapezoid $Z$ be included in $Z$’s vertex list?

Convention:
  – Do not consider points on top and bottom sides of trapezoid.
- Do consider points on left and right sides.

• Details: Creating the initial trapezoid $Z_0$

- Create MBR.
- Some MBR edges are not in $P$.
- Assume $P$’s edges are $e_1, \ldots, e_n$.
- Create special codes for
  * left boundary edge
  * right boundary edge
  These will be needed in trapezoids.
- Only need $y$-values of top and bottom edges of MBR.
- To create $Z_0$’s edgelist
  $\Rightarrow$ use plane-sweep to topologically sort edges in $P$.

• Details: what does a tree node contain?

Suppose Znode is a tree node.

- Znode.leaf – A boolean indicating whether Znode is a leaf.
- Znode.vertical – is this a vertical or horizontal partition?
- Znode.ymedian – if horizontal, we need the $y$-value of the horizontal partition.
- Znode.edge – if vertical, we need the spanning edge.
- Znode.leftchild – pointer to left subtree.
- Znode.rightchild – pointer to right subtree.

• Details: balancing a balance-list

- Recall: a balance-list is a (linked) list of tree nodes.
- Each node is either the root to a subtree or a spanning edge, alternating in the list.
- Let’s use the notation: \( Z_1e_1Z_2e_2\ldots Z_ke_k \).
- We need to create a balanced tree out of this list.
- Note: each \( Z_i \) is a subtree (itself containing trapezoids etc). Thus, it is better to think of the list as:

\[
\begin{array}{c}
Z_1 \quad e_1 \quad Z_2 \quad e_2 \quad Z_3 \quad e_3 \quad Z_k \quad e_k
\end{array}
\]

- Observe: subtrees can be of different sizes
  \( \Rightarrow \) must take sizes of subtrees into account while balancing.

- Define:

\[
Z\text{.node\_weight} = \begin{cases} 
1, & \text{if } Z \text{ was horizontally partitioned} \\
1, & \text{if } Z \text{ is a leaf trapezoid} \\
0, & \text{otherwise}
\end{cases}
\]

\[
Z\text{.weight} = Z\text{.node\_weight} + Z\text{.leftchild\_weight} + Z\text{.rightchild\_weight}.
\]

Informally: \( Z \)'s weight is the number of leaf trapezoids plus the number of non-edge nodes in the subtree with \( Z \) as root.

- In balancing, we create a weight-balanced tree.
- To create the tree from the list \( Z_1e_1\ldots Z_ke_k \):
* Find the smallest $m$ such that

$$\sum_{i=1}^{m} \text{weight}(Z_i) > \frac{1}{2} \sum_{i=1}^{k} \text{weight}(Z_i)$$

* Create a tree rooted at $e_{m-1}$ (a vertical node):

```
 e_{m-1}
 /\ /
 / \ / \
 balance (Z_1 e_1, \ldots, Z_{m-1} e_{m-1}) e_m
 / \ / /
 / \ / \ \
 Z_m balance (Z_{m+1} e_{m+1}, \ldots, Z_k e_k)
```

[recursive call]

* Note: several special cases exist for bottoming out of the recursion.

- Pseudocode:

```
Algorithm: MAKE-TRAPEZOID-TREE (P)

Input: polygon P.
Output: root of trapezoid tree
1. $R := \text{COMPUTE-MBR} (P)$;
2. $Z.\text{top} := R.\text{topright}.y$;
3. $Z.\text{bottom} := R.\text{bottomleft}.y$
4. $Z.\text{leftedge} := \text{LEFTMOST-EDGE-OF-MBR}$;
5. $Z.\text{rightedge} := \text{RIGHTMOST-EDGE-OF-MBR}$;
6. $Z.\text{edgelist} := \text{TOPOLOGICAL-SORT} (P)$;
7. Add $Z.\text{rightedge}$ to $Z.\text{edgelist}$;
8. $Z.\text{v} := \text{NONBOUNDARY-VERTICES} (P,Z)$;
9. root := MAKE-TRAPEZOID-SUBTREE (Z);
10. return root;
```
Algorithm: Make-Trapezoid-Subtree \((Z)\)

**Input:** Trapezoid \(Z\).

**Output:** Root of subtree containing \(Z\) and its subtrapezoids.

1. \(R := Z\)'s parameters (top, bottom etc);
2. if \(Z.n = 0\) // Empty trapezoid \(\Rightarrow\) recursion ends
3. \(R\).weight := 1;
4. \(R\).leaf := true;
5. \(R\).inside := Check-Inside \((Z)\);
6. return \(R\);
7. endif
   // Otherwise, create horizontal cut
8. ymedian := Median-Vertex-YValue \((Z)\);
9. Initialize trapezoids and balance-lists;
10. for each edge \(e = (a, b)\) in \(Z\).edgelist
    // Check top trapezoid
11. if \(a\) above ymedian add \(a\) to \(Z_U\);
12. if \(b\) above ymedian add \(b\) to \(Z_U\);
13. if \(e\) spans \(Z_U\)
14. \(Z_U\).leftedge := current_leftedge;
15. \(Z_U\).rightedge := \(e\);
16. Add \(e\) to \(Z_U\).edgelist;
17. \(r := Make-Trapezoid-Subtree \((Z_U)\);
18. Add \(r\) to left-balance-list;
19. Add \(e\) to left-balance-list;
20. current_leftedge := \(e\);
21. Reset \(Z_U\);
22. endif
   // Check bottom trapezoid \(Z_L\). Similar to above – omitted
23. endfor
24. \(R\).leaf := false;
25. \(R\).leftchild := Balance (left-balance-list);
26. \(R\).rightchild := Balance (right-balance-list);
27. \(R\).weight := 1 + \(R\).leftchild→weight + \(R\).rightchild→weight;
28. return \(R\);
• Most other functions are straightforward. Only \texttt{BALANCE()} is a little complex:

  - \texttt{BALANCE} can be written recursively.
  - Several special cases for ending recursion have to be considered:

    1. Balance list is empty
       \(\Rightarrow\) return null pointer.

    2. Balance list is a single trapezoid \(Z\)
       \(\Rightarrow\) create a leaf node and return it.

    3. Balance list: \(Z_1e_1\)
       \(\Rightarrow\) return

       \[
       \begin{array}{c}
       e_1 \\
       Z_1 \\
       \text{null}
       \end{array}
       \]

    4. Balance list: \(Z_1e_1Z_2e_2\)
       \(\Rightarrow\) return

       \[
       \begin{array}{c}
       e_1 \\
       Z_1 \\
       e_2 \\
       Z_2 \\
       \text{null}
       \end{array}
       \]

    5. Balance list: \(Z_1e_1Z_2e_2Z_3\)
       \(\Rightarrow\) return

       \[
       \begin{array}{c}
       e_1 \\
       Z_1 \\
       e_2 \\
       Z_2 \\
       Z_3
       \end{array}
       \]

    6. Remaining cases use recursion:

      (a) Balance list: \(Z_1e_1 \ldots Z_{m-1}e_{m-1}Z_m e_m \ldots Z_k e_k\)
      \(\Rightarrow\) return

      \[
      \begin{array}{c}
      e_{m-1} \\
      \text{balance } (Z_1e_1, \ldots, Z_{m-1}e_{m-1}) \\
      \end{array}
      \]

      \[
      \begin{array}{c}
      e_m \\
      Z_m \\
      \text{balance } (Z_{m+1} e_{m+1}, \ldots, Z_k e_k)
      \end{array}
      \]

      [recursive call]
(b) Balance list: $Z_m e_m \ldots Z_k e_k$ ($m$ turns out to be 1)

\[ \Rightarrow \text{return} \]

\[
\begin{array}{c}
Z_m \\
\text{balance (}} Z_{m+1} e_{m+1}, \ldots, Z_k e_k \text{)} \\
\end{array}
\]

[recursive call]

(c) Balance list: $Z_1 e_1 \ldots Z_m e_m$ ($m$ turns out to be $k$)

\[ \Rightarrow \text{return} \]

\[
\begin{array}{c}
\text{balance (}} Z_1 e_1, \ldots, Z_{m-1} e_{m-1} \text{)} \\
Z_m \\
\end{array}
\]

[recursive call]

- Why does it all work?

To show that query time is $O(\log n)$, it is sufficient to show that any path from root to leaf in the tree is of length at most $O(\log n)$.

Consider the path from the root to any leaf node.

- How many horizontal-partition nodes can we encounter along the way?
  * The first H-node encountered cuts the number of points by half (approximately).
  * This (half) set is further cut in half by the next H-node... etc.
  * You can successively partition at most $\lceil \log n \rceil$ times.

- What about vertical nodes?
- Note that a single edge can be revisited many times on the path:

- How many times can a single edge be revisited?
  ⇒ worst-case, as many times as it is cut horizontally
  ⇒ at most \( \lceil \log n \rceil \) times.

- How many different edges can we visit?
  * Every time we visit an edge, we go into either the left or right
    space partitioned by the edge.
  * This partitioning (with \( n \) edges can occur at most \( O(\log n) \) times
    by the balancing mechanism.
  * Since balancing can result in an error by \( \pm 1 \), it’s at most \( 2\lceil \log n \rceil \).

- Some of these edges could be revisited \( (O(\log n) \) visits per edge)
  ⇒ \( O(\log^2 n) \) overall?

- No! The total number of revisits cannot exceed the number of hori- 
  zontal cuts
  ⇒ \( [\log n] \) revisits overall.

- Thus, path length \( \leq 4[\log n] \)

Thus, we’ve shown that

- Query time is \( O(\log n) \).
- Storage is \( O(n \log n) \).
What about preprocessing time?

- $O(n \log n)$ for the topological sort.

- If we ignore the for-loop in MAKE-TRAPEZOID-SUBTREE, only $O(1)$ work is done per node creation
  \[ \Rightarrow O(n \log n) \] work overall.

- Consider the total work done over all executions of the for-loop:
  * It is bounded by the number of edge-fragments created.
  * $O(1)$ work per edge-fragment.
  * But an edge is fragmented at most $\lceil \log n \rceil$ times.
  * Therefore, $n$ edges are fragmented at most $n \lceil \log n \rceil$ times
    \[ \Rightarrow O(n \log n) \] work overall.

Thus, preprocessing is $O(n \log n)$. 
12.7 Point Location: Summary

- Summary of methods covered:
  - *Ray-Crossings Method*:
    * $O(n)$ per query.
    * $O(n)$ storage (only for polygon).
    * No preprocessing.
    * Ideal for single-shot query.
  - *2D-Hashing*:
    * $O(1)$ per query (average, with uniform assumption), $O(n)$ worst-case.
    * $O(n)$ storage (average, with uniform assumption), $O(n^2)$ worst-case.
    * $O(n\sqrt{n})$ preprocessing (average, with uniform assumption), $O(n^2)$ worst-case.
    * Easy to implement, practical.
  - *Slab-Method*:
    * $O(\log n)$ per query.
    * $O(n^2)$ preprocessing.
    * $O(n^2)$ storage.
    * Easy to implement.
    * Too much storage required for large $n$.
  - *Trapezoid Method*:
    * $O(\log n)$ per query.
    * $O(n \log n)$ preprocessing.
    * $O(n \log n)$ storage.
* Implementation more complex.
* Good worst-case efficiency.

- Other methods:
  - Triangulation-Tree Method:
    * Triangulate polygon (can be done in time $O(n)$).
    * Use coarse triangulations higher up the tree.
    * $O(n \log n)$ preprocessing.
    * $O(\log n)$ per query.
    * $O(n)$ storage.
      $\Rightarrow$ optimal!
    * Much more complex to implement than Trapezoid Method. (Triangulation is difficult to implement).
  - Persistent-Tree Method:
    * Also optimal.
    * Complex implementation.

- Current research:
  - Data structures for point location that allow insertion and deletion of edges and points.
  - Practical, easy-to-implement and efficient algorithms.
12.8 The Set Diameter Problem

- Query: given a collection of points \( S = \{s_1, \ldots, s_n\} \), find two that are farthest apart.

- Example:

Here, \( s_5 \) and \( s_8 \) are farthest apart.

- Note: the problem has only a single-shot form.

- All-pairs Method:
  - Enumerate all possible pairs of points.
  - For each pair compute distance between points.
  - Pick pair with the largest distance
    \( \Rightarrow \) diameter.
  - Complexity: \( \binom{n}{2} = O(n^2) \).

- Convex-Hull Method:
  - Compute convex hull of \( S \) in time \( O(n \log n) \).
  - Compute diameter of Hull(\( S \)) in time \( O(n) \).
  \( \Rightarrow O(n \log n) \) overall.

Next, we will consider the details of each of the above computations.
12.9 Convex Hull: Introduction

- What is the *convex hull* of a set of points $S$?
  \[ \Rightarrow \text{the smallest (in perimeter) convex polygon that encloses } S. \]

- Example:

- Equivalent definitions:
  
  - The set of all convex combinations of points in $S$.
    \[ \Rightarrow \text{If } S = \{s_1, \ldots, s_n\}, \text{ then for real numbers } \alpha_i \geq 0 \text{ that satisfy } \]
    \[ \sum_i \alpha_i = 1, \text{ the convex combination } \sum_i \alpha_i s_i \text{ is a point.} \]
  
  - The intersection of all half-spaces than contain $S$.

- Computing the convex hull: the *Gift-Wrapping Method*:
  
  - Suppose the given points are nails on a board.
  
  - Wrap a string around
    \[ \Rightarrow \text{you get the convex hull.} \]
  
  - How to wrap?
    
    * Start with a point on the hull:
      \[ \Rightarrow \text{Pick the lowest point. If there are several, pick the rightmost lowest point.} \]
* Wrap the string around counter-clockwise
  ⇒ make left turns with each bend in the string.
* To decide next point where string turns:
  · For each point: compute angle required to turn to the point
    (left-turn).
  · Pick the point that requires the least turning angle.
* At each step we compute $O(n)$ angles. There are at most $O(n)$
  steps
  ⇒ $O(n^2)$ computation.

- Example:
  * Pick start: rightmost lowest point, $s_6$.

* Compute angles to all other points from lowest line:

* The least angle is the angle to $s_5$
  ⇒ $s_5$ is the next point
  ⇒ $(s_6, s_5)$ is a hull edge.
* Compute angles to all other points from edge $(s_6, s_5)$:
* The least angle (counter-clockwise) is the angle to \( s_1 \)
  \( \Rightarrow \) \( s_1 \) is the next point
  \( \Rightarrow (s_5, s_1) \) is the next hull edge.
* ... continue until the start point is reached:
12.10 Convex Hull: Graham’s Scan

- Key ideas:
  - Find any point $q$ (not necessarily in $S$) that is internal to Hull($S$).
  - Make $q$ the origin and sort $s_1, \ldots, s_n$ by angle (using polar coordinates).
  - Find a hull point and label it $r_1$.
  - Label the points $r_1, \ldots, r_n$ in counter-clockwise sort order.
  - Example:

- Next, consider groups of 3 consecutive points, $r_{i-1}, r_i, r_{i+1}$.
- If angle $r_{i-1}r_ir_{i+1}$ is a right-turn then $r_i$ is internal to the hull, e.g.,

- By successively scanning groups of points, get rid of points internal to hull.
• Details: find the internal point (origin)

  – The centroid of any three non-collinear points must be internal to the hull (since it’s internal to the hull of the 3 points).

  – To find 3 non-collinear points in $S$:
    * Pick any two points $a$ and $b$.
    * Scan remaining points.
    * For each point scanned, check if it’s collinear with $(a, b)$.
    * If all points are collinear with $(a, b)$, then $S$ is a line (degenerate case).
    * Otherwise, we will find a 3rd point $c$ that’s not collinear with $a$ and $b$.
    * Note: this takes $O(n)$ time.

  – Compute centroid of the three points: $a = \frac{1}{3}(a + b + c)$.

• Details: sorting the points in $S$ by angle

  – One approach:
    * Translate coordinates so that $q$ is the origin.
    * Compute angles for each point using $\tan^{-1}$. 
\[
\tan \alpha = \frac{y}{x}
\]

* Sort points by angle.

  - A better approach:
    * Translate coordinates so that \( q \) is the origin.
    * Observation: for sorting, we don’t really need to \emph{compute} angles; we only need to \emph{compare} them.
    * Comparison criterion:

      Angle \( \beta \) is greater than angle \( \alpha \) if \( b \) is \emph{left-of} line segment \( (q, a) \).

  * Details: removal of some radially collinear points:
    - Among radially collinear points, retain only the outermost:
Here, we retain only $a$ (for hull computation).

- Details: finding at least one hull point
  - Find lowest point in $S$ (point with least $y$-value).
  - If there are several such points, pick rightmost
    $\Rightarrow$ rightmost lowest point.
  - Label this point $r_1$.
  - Label remaining points in counter-clockwise sort order.

- Details: computing the hull
  - Create a doubly-linked list of points in sort-order $r_1, \ldots, r_n$ such that:
    * Next$(r_i) = r_{i+1}$.
    * Prev$(r_i) = r_{i-1}$. 
– Note: Next(r_n) = r_1 and Prev(r_1) = r_n.
– Note: if r_i gets deleted from the list, then
  * Next(r_{i-1}) = r_{i+1}.
  * Prev(r_{i+1}) = r_{i-1}.
– Scan groups of 3 points, deleting “right-turn points”:

  Current := r_1;
  while Next(Current) ≠ r_1
    a := Next(Current);
    b := Next(a);
    if (Current, a, b) is a left turn
      Current := a;
    else
      Delete a;
      if Current ≠ r_1 // We don’t want to go past r_1
        Current := Prev(Current);
    endif
  endwhile

– After execution, the list has the hull vertices in counter-clockwise order.

Note: r_1 cannot be deleted because it is a hull point.

• Example:

  – Suppose we have found internal point q and labeled the the points in counter-clockwise sort-order:
- Initial list: $r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9$.

- Step 1:
  
  * Current = $r_1$.
  * $r_1, r_2, r_3$ is a left turn.
    \[ \Rightarrow \text{advance Current.} \]
  * Current := $r_2$.
  * List: $r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9$.

- Step 2:
  
  * Current = $r_2$.
  * $r_2, r_3, r_4$ is a right turn.
    \[ \Rightarrow \text{delete } r_3. \]
  * Current := $r_1$.
  * List: $r_1, r_2, r_4, r_5, r_6, r_7, r_8, r_9$.

- Step 3:
* Current = \( r_1 \).
* \( r_1, r_2, r_4 \) is a left turn.
  \( \Rightarrow \) advance Current.
* Current := \( r_2 \).
* List: \( r_1, r_2, r_4, r_5, r_6, r_7, r_8, r_9 \).
– Step 4:

* Current = 𝑟₂.
* 𝑟₂, 𝑟₄, 𝑟₅ is a left turn.
  ⇒ advance Current.
* Current := 𝑟₄.
* List: 𝑟₁, 𝑟₂, 𝑟₄, 𝑟₅, 𝑟₆, 𝑟₇, 𝑟₈, 𝑟₉.

– Step 5:

* Current = 𝑟₄.
* 𝑟₄, 𝑟₅, 𝑟₆ is a left turn.
  ⇒ advance Current.
* Current := 𝑟₅.
* List: 𝑟₁, 𝑟₂, 𝑟₄, 𝑟₅, 𝑟₆, 𝑟₇, 𝑟₈, 𝑟₉.

– Step 6:

* Current = 𝑟₅.
* 𝑟₅, 𝑟₆, 𝑟₇ is a right turn.
  ⇒ delete 𝑟₆.
* Current := 𝑟₄.
* List: 𝑟₁, 𝑟₂, 𝑟₄, 𝑟₅, 𝑟₇, 𝑟₈, 𝑟₉.
- Step 7:
  * Current = $r_4$.
  * $r_4, r_5, r_7$ is a right turn.
    $\Rightarrow$ delete $r_5$.
  * Current := $r_2$.
  * List: $r_1, r_2, r_4, r_7, r_8, r_9$.

- Step 8:
  * Current = $r_2$.
  * $r_2, r_4, r_7$ is a left turn.
    $\Rightarrow$ advance Current
  * Current := $r_4$.
  * List: $r_1, r_2, r_4, r_7, r_8, r_9$.

- Step 9:
  * Current = $r_4$.
  * $r_4, r_7, r_8$ is a left turn.
    $\Rightarrow$ advance Current
  * Current := $r_7$.
  * List: $r_1, r_2, r_4, r_7, r_8, r_9$.  

834
- Step 10:

* Current = $r_7$.
* $r_7, r_8, r_9$ is a left turn.
  $\Rightarrow$ advance Current
* Current := $r_8$.
* List: $r_1, r_2, r_4, r_7, r_8, r_9$.

- Step 11:

* Current = $r_8$.
* $r_8, r_9, r_1$ is a left turn.
  $\Rightarrow$ stop.
* List: $r_1, r_2, r_4, r_7, r_8, r_9$. 
• Complexity of scan:
  – At most $n$ deletes.
  – At most $n$ advances of Current.
  – $O(1)$ work for checking left or right turn.
    $\Rightarrow O(n)$ for scan.

• Overall complexity of Graham’s scan:
  – $O(n)$ for finding internal point $q$.
  – $O(n \log n)$ for sorting by angle.
  – $O(n)$ for scan.
    $\Rightarrow O(n \log n)$ overall.

• Note: it can be shown that $O(n \log n)$ is a lower bound
  $\Rightarrow$ Graham’s scan is optimal.

• Note: Graham’s scan does not generalize to 3D. Other fast algorithms,
  such as Quickhull (divide and conquer), do generalize.
12.11 Diameter of a Convex Polygon

- Definition: $L$ is a support line of polygon $P$ if $L$ passes through a vertex of $P$ but not its interior.

Example:

Points $a$ and $b$ of a polygon $P$ are called antipodal if there exist parallel support lines through $a$ and $b$

Example:
Here $a$ and $b$ are antipodal, but $a$ and $c$ are not.

- Observation: the diameter of $P$ is the largest distance among antipodal pairs.

  Intuition: think of calipers.

- Some definitions:
  - Consider some vertex $b \in P$ with incident edges $(a,b)$ and $(b,c)$.
  - Draw infinite lines through edges $(a,b)$ and $(b,c)$.
  - Call these lines the $ab$ and $bc$ lines respectively.
  - Define $\alpha(b)$:
    * The vertex farthest away from the $ab$ line (perpendicular distance).
    * If there are several such vertices, pick the one first encountered in a counter-clockwise walk from $b$.
  - Define $\delta(b)$:
    * The vertex farthest away from the $bc$ line (perpendicular distance).
    * If there are several such vertices, pick the one first encountered in a clockwise walk from $b$. 
- Define $E(b)$ as the set of all vertices encountered in a walk from $\alpha(b)$ to $\delta(b)$ (endpoints included).

- Observation: for each point $s \in E(b)$, $b$ and $s$ are antipodal.
  Why?

- Consider rotating the $ab$ line counter-clockwise about the point $b$ towards the $bc$ line.

- All intermediate positions in this rotation cannot be support lines through $b$.

- Thus, any support line through a point $d$ before $\alpha(b)$ cannot have a parallel support line through $b$.

- A similar argument holds for $\delta(b)$.
– Finally, any support line of a point \( e \in E(b) \), has a parallel support line through \( b \):

\[
\delta(b) \quad \alpha(b)
\]

- Another observation: \( \alpha(c) \geq \alpha(b) \), i.e., for the next point past \( b \) (i.e., \( c \)), the start of \( E(c) \) occurs past the start of \( E(b) \).
- Another observation: in finding \( \alpha(b) \)
  
  - we scan vertices in counter-clockwise order;
  - the distances increase monotonically, and then decrease monotonically
    \( \Rightarrow \) we stop before the first decrease occurs.

- Note: this property is due to convexity.

- An \( O(n) \) algorithm to generate all antipodal pairs:
  
  - Start with any vertex \( v_1 \) and find \( \alpha(v_1), \delta(v_1) \).
    \( \Rightarrow O(n) \) worst-case.
  - Scan \( E(v_1) \) as it’s being created (and check distances).
  - Find antipodal range \( E(v_i) \) for successive points \( v_i \).
    * We only need search past \( \alpha(v_{i-1}) \) to look for \( \alpha(v_i) \).
    * We only need search past \( \delta(v_{i-1}) \) to look for \( \delta(v_i) \).
    \( \Rightarrow \) only one scan needed
    \( \Rightarrow O(n) \) time.
  - While creating antipodal pairs, record maximum distance.
• Details: Finding the farthest vertex from a line:
  
  – One approach: use standard coordinate geometry to compute distance of a point from a line

![Diagram](image)

Pick vertex with largest distance.

– Better approach:

  * We only need to compare distances, rather than compute them.
  * Distances can be compared by comparing areas:

![Diagram](image)

* Since area = \( \frac{1}{2} \) base \( \times \) height and base = \( ab \), an area comparison is really a height comparison.
• Define $\delta'(b)$:
  
  - The vertex farthest away from the $bc$ line.
  
  - If there are several, pick the one first encountered in a counterclockwise direction.

• Note:
  
  - the distance of $\delta(b)$ from the $bc$ line is the same as the distance of $\delta'(b)$
    
    $\Rightarrow$ we don’t have to search past $\delta'(b)$ in generating antipodal distances.
  
  - $\delta'(b) = \alpha(c)$
    
    $\Rightarrow$ start search for $E(c)$ where $E(b)$ ended.

• Summary of set diameter computation:
  
  - Find convex hull of given set $S$
    
    $\Rightarrow O(n \log n)$ time.
  
  - Generate antipodal pairs and check distances
    
    $\Rightarrow O(n)$ time.

$\Rightarrow O(n \log n)$ time overall.
• Recall: the *All-Pairs Method* took $O(n^2)$.
12.12 Data Mining: An Introduction

- What is data mining?
  - **Def:** Data mining is the process of extracting hidden patterns or trends in large data sets for the purpose of prediction.
  - The basic idea: comb through available data, looking for unusual unobvious patterns and report them.

- Why is data mining important?
  - Businesses are interested in exploiting knowledge about patterns.
  - Standard statistical techniques (multivariate analysis) work only on numeric data and with few variables.

- Examples of applications:
  - **Banking.**
    - Suppose a bank sifted through its archives and discovered the following statistic:
      “77 percent of loan defaults involved (1) a customer in the age group 18-21, (2) a car loan for a red sportscar and (3) income group $15,000-$20,000”.
    - The bank can use this pattern to avoid giving loans.
    - Similarly, some unobvious patterns can indicate likely attributes of a “good” customer.
    - Today, many banks (e.g., Citibank, Signet) use information extracted by data mining algorithms.
- **Sports.**
  * Suppose a basketball team (e.g., Chicago Bulls) sifted through their records and discovered the following: “On 60 percent of plays in which Scottie Pippen is defended by the opposing guard, the Bulls eventually win the possession.”
  * The coach can use this pattern to improve chances of winning.
  * Today, several NBA teams use Advanced Scout, a data mining package to produce such statistics.

- **Retail industry.**
  * By sifting through customer purchase data, a grocery store discovers that “40 percent of customers that buy wine also buy a specialty cheese”.
  * The store can use the information in marketing and display strategies.

- Several types of data mining:
  - **Association rule mining:** Find “rules” of the sort “77 percent of loan defaults with attributes A,B,C also have attributes X and Y”.
  - **Clustering:** Find groupings of data based on available attributes based on the structure of the data, e.g., “90 percent of renters in the Williamsburg area fall into either the 18-25 or 65-75 age groups”.
  - **Classification:** Find natural groupings of data based on available attributes that seek to predict an outcome, e.g. group bank customers into three groups: (1) “most-likely to repay”; (2) “most-likely to default” and (3) “don’t know”.
  - **Other:** finding patterns in sequences (Stock Market application), deviation detection (Fraud detection application).
• Types of data sets:
  – Most data sets are large relational tables, with many attributes, e.g.,
    bank customers may collect 50-100 attributes on a loan application.
  – Some data sets are unnormalized “basket” data, such as the list of
    items checked out by each customer at a grocery store.

• Why data mining is an interesting problem:
  – Typical data sets are very large with many attributes, e.g.,
    * Census data: about 400 attributes per individual.
    * Retail store data: millions of transactions, thousands of attribute
      types.
  – A naive approach of trying all possible rules causes a combinatorial
    explosion, e.g.,
    * Consider a relation $R(A_1, A_2, \ldots, A_{100})$ where each attribute
      value is boolean.
    * Suppose we are interested in generating rules of the sort
      $A_{i_1}A_{i_2} \ldots A_{i_k} \rightarrow A_{j_1}A_{j_2} \ldots A_{j_m}$
      e.g., of the 100 records with $A_3A_4A_7$ true, 68 of them also have
      $A_1A_8$ true.
    * Consider all possible combinations of $A_{i_1}A_{i_2} \ldots A_{i_k} \rightarrow A_{j_1}A_{j_2} \ldots A_{j_m}$.
    * For each such combination, scan relation $R$ to count percentages.
12.13 Association Rule Mining: Introduction

- Consider data collected at a supermarket checkout counter:
  - The system records customer purchases in a variable-size record (un-normalized), e.g.
    \[ r_{257} = \langle \text{Eggs, bread, pasta, milk, cheese, beer, soap} \rangle. \]
    (Customer 257 bought eggs, bread etc).
  - The system has thousands of such customer purchase-records each day.
  - An association rule seeks to answer questions like:
    when pasta and \textit{pasta sauce} are bought, what is the probability that \textit{mushrooms} are also purchased?
  - In terms of available data, this question can be rephrased as:
    among those records that contain both \textit{pasta} and \textit{pasta sauce}, how many also contain \textit{mushrooms}?
  - Why is this question useful?
    The answer (if high) can drive pricing and display strategies
    \[ \Rightarrow \] package discount for the combination of \textit{pasta} and \textit{mushrooms}.
  - Suppose our data has 100,000 records, of which
    * 30,000 records contain \textit{pasta} and \textit{pasta sauce};
    * 22,500 of these 30,000 records contain \textit{mushrooms}.
  Then, we have the association rule
  \[ \{ \text{pasta, pasta sauce} \} \rightarrow \{ \text{mushrooms} \} \]
  with
  \[
  \begin{align*}
  \text{support} & = \frac{22,500}{100,000} = 0.225 \\
  \text{confidence} & = \frac{22,500}{30,000} = 0.75
  \end{align*}
  \]
– Intuition: 75 percent of the time when pasta and pasta sauce are bought, mushrooms are also bought.

• Both support and confidence are important:
  – Consider the rule
    \[ \{\text{Non-alcoholic beer}\} \rightarrow \{\text{chips}\}. \]
  – Suppose
    \[
    \begin{align*}
    \text{confidence} & = 0.9 \\
    \text{support} & = 0.001 
    \end{align*}
    \]
  – Thus, 90 percent of customers that buy non-alcoholic beer also buy chips.
  – But, this pattern occurs only in 0.1 percent of the data
    \[ \Rightarrow \text{not an important rule}. \]

• Def: an association rule \( X \rightarrow Y \), where \( X \) and \( Y \) are sets of attributes, satisfies confidence level \( c \) and support \( s \) if:
  1. the actual confidence is at least \( c \) and
  2. the actual support is at least \( s \).

• The association rule mining problem: given a confidence level \( c \) and a support level \( s \), find all rules that satisfy \( c \) and \( s \).
12.14 Association Rule Mining: Problem Formulation

- Notation:
  - Let $I = \{I_1, I_2, \ldots, I_m\}$ be a set of items.
    
    Think of $I$ as \{eggs, cheese, pasta,\ldots\} in the supermarket example.
    
    (Set of all possible supermarket products).
  - A subset of items $X \subseteq I$ will sometimes be called an itemgroup.
  - We will use letters like $X$ and $Y$ to denote itemgroups.
  - Let $R = \{r_1, r_2, \ldots, r_n\}$ be a set of unnormalized records (basket data).
    
    Here, $r_i$ is the set of items bought by customer $i$.
    
    e.g. $r_{257} = \{\text{pasta, pasta sauce, tomatoes, beef, soap}\}$
    
    Thus, $\forall i : r_i \subseteq I$.
  - Def: a record $r \in R$ contains itemgroup $X$ if $X \subseteq r$.
  - Let $R(X) = \{r \in R : r \text{ contains } X\}$.
  - For any itemgroup $X$, let $\alpha(X) = |R(X)|$, the number of records that contain $X$.
  - For any itemgroup $X$, define the support of $X$ to be
    
    $\beta(X) = \frac{\alpha(X)}{|R|}$.
  - Define
    
    $F_s(R) = \{X \subseteq I : \beta(X) = \frac{\alpha(X)}{|R|} \geq s\}$.
    
    (All the itemgroups satisfying support $s$).
Def: A rule \( X \rightarrow Y \) is an association rule satisfying support \( s \) and confidence \( c \) if

1. \( X \) and \( Y \) are itemgroups (i.e., \( X, Y \subseteq I \)).
2. \( X \) and \( Y \) are disjoint (i.e., \( X \cap Y = \emptyset \)).
3. At least \( s \) fraction of records contain both \( X \) and \( Y \), i.e.,
   \[
   \beta(X \cup Y) = \frac{\alpha(X \cup Y)}{|R|} \geq s.
   \]
4. Of those records containing \( X \), at least \( c \) fraction contain \( Y \), i.e.,
   \[
   \frac{\alpha(X \cup Y)}{\alpha(X)} \geq c.
   \]

- Example: \( I = \{ \text{milk, eggs, pasta, pasta sauce, cheese} \} \)

\( R \) is given by:

\[
\begin{align*}
  r_1 &= <\text{milk, eggs}> \\
  r_2 &= <\text{milk, eggs}> \\
  r_3 &= <\text{milk, eggs, cheese}> \\
  r_4 &= <\text{milk, pasta, cheese}> \\
  r_5 &= <\text{eggs, pasta sauce, cheese}> \\
  r_6 &= <\text{pasta, pasta sauce}> \\
  r_7 &= <\text{pasta, pasta sauce, cheese}> \\
  r_8 &= <\text{pasta, pasta sauce, cheese}> \\
  r_9 &= <\text{milk, eggs, pasta, pasta sauce, cheese}> \\
  r_{10} &= <\text{milk, pasta, pasta sauce, cheese}>
\end{align*}
\]

- Consider \( X = \{ \text{eggs, pasta sauce} \} \). Then,

\[
\begin{align*}
  R(X) &= \{ r_5, r_9 \} \\
  \alpha(X) &= 2 \\
  \beta(X) &= \frac{2}{10} = 0.2
\end{align*}
\]
- Consider $X=\{\text{milk, eggs}\}$.

\[
R(X) = \{r_1, r_2, r_3, r_9\},
\alpha(X) = 4
\]
\[
\beta(X) = \frac{4}{10} = 0.4
\]

- Consider $X=\{\text{milk, eggs}\}$ and $Y=\{\text{eggs}\}$

\[\Rightarrow \text{not a valid rule since } X \cap Y \neq \emptyset.\]

- $X \rightarrow Y$ is a potential association rule where $X=\{\text{milk}\}$ and 

$Y=\{\text{eggs, pasta, cheese}\}$.

- Consider $X=\{\text{milk, eggs}\}$ and $Y=\{\text{cheese}\}$. Then

\[
|R| = 10
\]
\[
\alpha(X) = 4
\]
\[
\alpha(X \cup Y) = 2
\]
\[
\beta(X \cup Y) = \frac{2}{10} = 0.2
\]

Hence

\[
\text{support} = \beta(X \cup Y) = \frac{\alpha(X \cup Y)}{|R|} = \frac{2}{10} = 0.2
\]
\[
\text{confidence} = \frac{\alpha(X \cup Y)}{\alpha(X)} = \frac{2}{4} = 0.5
\]

Thus, $X \rightarrow Y$ with support 0.2 and confidence 0.5.
- Suppose \( s = 0.3 \). Since \( |R| = 10 \), we want all itemgroups that appear in at least 3 records, i.e.,

\[
F_{0.3}(R) = \{ X \subseteq I : \beta(X) = \frac{\alpha(X)}{|R|} \geq 0.3 \}.
\]

Here, \( F_{0.3}(R) = \{ \{\text{milk}\}, \{\text{eggs}\}, \{\text{pasta}\}, \{\text{pasta sauce}\}, \{\text{cheese}\}, \{\text{milk,eggs}\}, \{\text{pasta, pasta sauce}\}, \{\text{milk,pasta}\}, \{\text{milk,cheese}\}, \{\text{pasta,cheese}\}, \{\text{pasta,pasta sauce,cheese}\}, \{\text{milk,eggs,cheese}\}, \{\text{milk,pasta,cheese}\} \} \).

- **Def:** A rule \( X \rightarrow Y \) is a 1-RHS rule if \( |Y| = 1 \). (Right-hand side has only one item).

- Typical restriction on problem: find all 1-RHS association rules (satisfying given \( s \) and \( c \)).

Examples of 1-RHS rules from above:

\[
\begin{align*}
\{\text{milk}\} & \rightarrow \{\text{eggs}\} \\
\{\text{eggs}\} & \rightarrow \{\text{milk}\} \\
\{\text{pasta}\} & \rightarrow \{\text{cheese}\} \\
\{\text{pasta,cheese}\} & \rightarrow \{\text{milk}\} \\
\{\text{milk,eggs}\} & \rightarrow \{\text{cheese}\}
\end{align*}
\]

Note that

\[
\{\text{milk}\} \rightarrow \{\text{eggs,cheese}\}
\]

is a rule but not a 1-RHS rule.
• An observation:
  
  – Suppose we have computed \( \beta(X) \) (support) for each possible itemgroup \( X \).
  
  – Consider a rule \( X \rightarrow Y \). Then,

    \[
    \frac{\beta(X \cup Y)}{\beta(X)} = \frac{\alpha(X \cup Y)/|R|}{\alpha(X)/|R|}
    \]

    \[
    = \frac{\alpha(X \cup Y)}{\alpha(X)}
    \]

    \[
    = \text{confidence of rule } X \rightarrow Y
    \]

  – Thus, given only support numbers for itemgroups, we can compute rule confidences.

  – Also, for a rule \( X \rightarrow Y \) to meet the required support \( s \), we must have \( \beta(X \cup Y) \geq s \)
    
    \[
    \Rightarrow X \cup Y \in F_s(R).
    \]

  – Note that \( \beta(X \cup Y) \geq s \Rightarrow \beta(X) \geq s \)
    
    \[
    \Rightarrow X, X \cup Y \in F_s(R).
    \]

    \[
    \Rightarrow \text{The association rule mining problem reduces to finding itemgroups with large enough support, i.e., computing } F_s(R).
    \]

  – Thus, for the remainder we will focus on simply identifying \( F_s(R) \), the set of itemgroups with large enough support.

Typically, we will want to output each itemgroup and its actual support.
12.15 Two Naive Algorithms

- **Algorithm**: \textsc{Naive-1} \((R, I, s)\)
  
  - Generate all possible itemgroups and initialize a counter for each.
  
  Note: All possible itemgroups = \(2^I = \) all possible subsets of \(I\).
  
  - Scan \(R\) once and count support for each itemgroup.
  
  - Output those itemgroups satisfying \(s\).

- **Analysis of \textsc{Naive-1}**:
  
  - How many possible itemgroups with \(I = \{I_1, \ldots, I_m\}\)?
    \[|2^I| = 2^{|I|} = 2^m\]
  
  - If \(m\) is large (say, \(m > 100\)), \(2^m\) is too big for main memory.
  
  - Also, if \(|F_s(R)|\) is small, we waste time updating counts for itemgroups not in \(F_s(R)\).

- **Algorithm**: \textsc{Naive-2} \((R, I, s)\)
  
  - \textbf{while} not over \textbf{do}
    * Generate a new itemgroup.
    * Scan \(R\) to obtain support.
    * \textbf{if} support \(\geq s\), retain itemgroup.
  
  - \textbf{endwhile}
  
  - Output all itemgroups retained.

- **Analysis of \textsc{Naive-2}**:
  
  - Too many scans of the data.
• **Key observation:** $X \notin F_s(R) \Rightarrow X \cup Y \notin F_s(R)$ for any $Y$.

(If itemgroup $X$ does not satisfy $s$, neither will any extension of $X$ such as $X \cup Y$)

Example: if $\{\text{milk}\}$ occurs in only 0.1 fraction of records, then $\{\text{milk, eggs}\}$ occurs in no more than 0.1 fraction of records.

This observation is used in better algorithms.

• We will use the following example for illustration:

\[
I = \{A, B, C, D, E\} \\
r_1 = < A, B > \\
r_2 = < A, B > \\
r_3 = < A, B, E > \\
r_4 = < A, C, E > \\
r_5 = < B, D, E > \\
r_6 = < C, D > \\
r_7 = < C, D, E > \\
r_8 = < C, D, E > \\
r_9 = < A, B, C, D, E > \\
r_{10} = < A, C, D, E >
\]
12.16 Algorithm Record-Derived-Itemgroups

- Key ideas:
  - Consider the itemgroup \( ABD \) and the item \( E \). If \( ABD \) has poor support then so does \( ABDE \), the extension of \( ABD \) to \( E \).
    Thus, \( \beta(ABD) < s \Rightarrow \beta(ABDE) < s \).
  - We will assume the items are lexicographically ordered.
    Thus, we will extend \( ACF \) to \( ACFG \) but not \( ACDF \).
    (Because \( ACDF \) will be considered when \( ACD \) is extended).
  - The support for a tentative extension can be estimated using independence:
    \[
    \hat{\beta}(ABDE) = \beta(ABD)\beta(E).
    \]
    For example, if \( \beta(ABD) = 0.4 \) (40 percent of \( R \)) and \( \beta(E) = 0.6 \) is known from previous iterations, then
    \[
    \hat{\beta}(ABDE) = 0.4 \times 0.6 = 0.24.
    \]
    Of course, independence may turn out to be a poor approximation.
  - The algorithm makes multiple scans of data. In each scan:
    * Counts are maintained for various itemgroups.
    * At the end of each scan, itemgroups with low support are discarded.
    * As each record is encountered, the items within it are used to create new potential itemgroups.
    * If the estimated support is high, additional extensions are considered.
    * If the estimated support is low, an itemgroup is placed in a Next-Frontier set (to be re-examined at the end of the pass).
- Generally, if an itemgroup was mistakenly placed in the Next_Frontier set (support underestimated), it's count will actually be high, and therefore is considered for extension later.

- If an itemgroup was mistakenly extended too much (support overestimated), it will be discarded at the end of the scan.

- Example: consider the itemgroup $A, B$ and the record $\{A, B, D, E, F\}$.
  * Itemgroup $AB$ can be extended to create the following potential itemgroups: $ABD, ABE, ABF, ABDE, ABDF, ABEF$ and $ABDEF$.
  * Suppose it turns out
    \[
    \hat{\beta}(ABD) \geq s \\
    \hat{\beta}(ABE) < s \\
    \hat{\beta}(ABF) \geq s
    \]

  Then,
  - $ABD$ can be extended to the next size ($ABDE$ or $ABDF$) lexicographically.
  - $ABE$ is not extended (and placed in Next_Frontier).
  - $ABF$ cannot be extended because the record has nothing beyond $F$.
  - Since $ABD$ got extended to $ABDE$, we consider expanding $ABDE$ to $ABDEF$ (if the estimated support is good).

- Why are low-estimate itemgroups kept around in Next_Frontier?
  $\Rightarrow$ need to compute counts in case estimate was bad
  $\Rightarrow$ they may still satisfy $s$.

- Pseudocode:
  - Note: A first pass is done separately to initialize counts for the 1-item itemgroups.
  - Assume that the set of items is $I = \{I_1, \ldots, I_m\}$.
Algorithm: RECORD-DERIVED-ITEMSETS \((R, I, s)\)

**Input:** Set of records \(R\), set of items \(I\), support \(s\).

**Output:** Collection of itemgroups with large enough support.

1. \(\text{Large} := \emptyset;\)
   
   // First pass
2. \(\forall k : \alpha[I_k] := 0 // Initialize counts\)
3. \(\text{for } j := 1 \text{ to } |R| \text{ do}\)
4. \(\text{for } k := 1 \text{ to } m \text{ do}\)
5. \(\text{if } I_k \in r_j\)
6. \(\alpha[I_k] := \alpha[I_k] + 1;\)
7. \(\text{for } k := 1 \text{ to } m\)
8. \(\beta[I_k] := \alpha[I_k]/|R|;\)
9. \(\text{if } \beta[I_k] \geq s\)
10. \(\text{Large} := \text{Large} \cup \{I_k\};\)
11. \(\text{endfor};\)
   
   // All other passes.
12. \(\text{Frontier} := I; // Keep Frontier sorted by size.\)
13. \(\text{while } \text{Frontier} \neq \emptyset\)
14. \(H := \emptyset;\)
15. \(\text{for } j := 1 \text{ to } |R| // Scan data.\)
16. \(\text{for each itemgroup } X \in \text{Frontier}\)
17. \(\text{if } X \in \text{record } r_j\)
18. \(G := \text{COMPUTE-EXTENSIONS } (X, I, r);\)
19. \(\text{for each } Y \in G\)
20. \(\text{if } Y \in H\)
21. \(Y.\text{count} := Y.\text{count} + 1;\)
22. \(\text{else}\)
23. \(H := H \cup \{Y\};\)
24. \(Y.\text{count} := 1;\)
25. \(\text{endif};\)
26. \(\text{endfor};\)
27. \(\text{endfor};\)
28. \(\text{endfor};\)

... continued
Algorithm: RECORD-DERIVED-ITEMSETS ... continued

    // Identify itemgroups that satisfy s.
29. for each $Y \in H$
30.    if $Y$.count$/|R| \geq s$
31.        Large := Large $\cup \{Y\}$;
32.    // Set next frontier to be considered for extension
33.     Frontier := Next_Frontier $\cap$ Large;
34. endwhile;
35. return Large;
Algorithm: \texttt{COMPUTE-EXTENSIONS} \((X, I, r)\)

\textbf{Input}: an itemgroup \(X\), the set of items \(I\), record \(r\).
\textbf{Output}: Extensions of \(X\).
1. \(k := |X|;\)
2. \(G' := \{X\};\)
3. repeat
   4. \(\text{No\_change} := \text{true};\)
      
      // Compute extensions for size \(k\).
   5. for each \(Y \in G'\) such that \(|Y| = k\)
      
      // Suppose \(Y = I_{j_1}I_{j_2} \ldots I_{j_k}\).
   6. for \(l := j_k + 1\) to \(m\)
   7. if \(I_l \in \text{record } r\)
   8. \(Z := Y \cup \{I_l\};\)
      
      // See if \(Z\) is worth the trouble.
   9. \(\hat{\beta}[Z] := \hat{\beta}[Y] \ast \beta[I_l];\)
   10. if \(\hat{\beta}[Z] \geq s\)
   11. \(G' := G' \cup \{Y\};\)
   12. \(\text{No\_change} := \text{false};\)
   13. else
   14. \(\text{Next\_Frontier} := \text{Next\_Frontier} \cup Y;\)
   15. endif;
   16. endif;
   17. endfor;
18. endfor;
19. \(k := k + 1;\)
20. until \(\text{No\_change or } k = m;\)
21. return \(G := G' \cup \text{Next\_Frontier};\)

\begin{itemize}
  \item Example: \(s = 0.3\)
    \begin{itemize}
      \item First pass: \(\alpha(A) = 6, \alpha(B) = 5, \alpha(C) = 6, \alpha(D) = 6, \alpha(E) = 7.\)
    \end{itemize}
\end{itemize}
\[
\beta(A) = 0.6, \beta(B) = 0.5, \beta(C) = 0.6, \beta(D) = 0.6, \beta(E) = 0.7.
\]
Frontier = \{A, B, C, D, E\}

- **Second pass:**
  1. When \(r_1 = \langle A, B \rangle\) is scanned:
     * The only possible extension is \(AB\) (\(BA\) is not considered because it is not a lexicographic extension).
     * \(\hat{\beta}(AB) = \hat{\beta}(A)\hat{\beta}(B) = 0.3\).
       \[\Rightarrow AB.\text{count} := 1.\]
     * \(H = \{AB\}\).
  2. When \(r_2 = \langle A, B \rangle\) is scanned:
     * Only extension possible is \(AB\).
     * \(AB.\text{count} = 2, H = \{AB\}\).
  3. When \(r_3 = \langle A, B, E \rangle\) is scanned:
     * Extensions (with support):
       \[G = \{AB(0.3), AE(0.42), BE(0.35), ABE(0.21)\}\]
     * \(AB.\text{count} = 3, BE.\text{count} = 1, ABE.\text{count} = 1\).
     * \(H = \{AB, AE, BE, ABE\}\).
     * Next_Frontier = \{ABE\} (it’s estimate was not high enough).
  4. When \(r_4 = \langle A, C, E \rangle\) is scanned:
     * \(G = \{AC(0.36), AE(0.42), ACE(0.252), CE(0.42)\}\).
     * Counts: \(AB(3), AC(1), AE(2), ABE(1), ACE(1), BE(1), CE(1)\).
     * Next_Frontier = \{ABE, ACE\}.
  5. When \(r_5 = \langle B, D, E \rangle\) is scanned:
     * \(G = \{BD(0.3), BDE(0.21), BE(0.35), DE(0.42)\}\).
     * Counts: \(AB(3), AC(1), AE(2), ABE(1), ACE(1), BD(1), BE(2), BDE(1), CE(1), DE(1)\).
     * Next_Frontier = \{ABE, ACE, ADE, BDE\}.
  6. When \(r_6 = \langle C, D \rangle\) is scanned:
* $G = \{CD(0.36)\}$.
* Counts: $AB(3), AC(1), AE(2), ABE(1), ACE(1), BD(1), BE(2), BDE(1), CD(1), CE(1), DE(1)$.
* Next_Frontier = $\{ABE, ACE, ADE, BDE\}$. (Unchanged).

7. When $r_7 = <C, D, E>$ is scanned:
* $G = \{CD(0.36), CE(0.42), CDE(0.252), DE(0.42)\}$.
* Counts: $AB(3), AC(1), AE(2), ABE(1), ACE(1), BD(1), BE(2), BDE(1), CD(2), CE(2), CDE(1), DE(2)\}$.
* Next_Frontier = $\{ABE, ACE, ADE, BDE, CDE\}$.

8. When $r_8 = <C, D, E>$ is scanned:
* $G = \{CD(0.36), CE(0.42), CDE(0.252), DE(0.42)\}$.

Continuing, the large itemgroups turn out to be:

Large = $\{A, B, C, D, E, AB, AC, AE, ACE, BE, CD, CE, CDE, DE\}$.

- Third pass:
  * Here, the size 3 itemgroups are $\{ACE, CDE\}$.
    They were expected-small but turned out to have enough support.
  * These can’t be expanded (they end in $E$)
    $\Rightarrow$ we’re done.

- Final result:

  $A, B, C, D, E, AB, AC, AE, ACE, BE, CD, CE, CDE, DE$. 

863
12.17 Algorithm Pass-Derived-Itemgroups

- In the previous algorithm, the following problem arises:
  - Suppose a record has items $< A, B, C, D, E, F >$ and suppose that
    $\{AC, AD, CD, CE\}$ are in the current Frontier.
  - Potential extensions include $\{ACF, ADF, CDF, CEF\}$.
  - If all of them have small expectations, we're still going to maintain
counts for them
    $\Rightarrow$ the algorithm wastes time counting useless itemgroups.
  - We will try to minimize this problem in the next algorithm.

- Key ideas in Algorithm Pass-Derived-Itemgroups:
  - In pass $k$ only itemgroups of size $k$ are considered.
  - At the end of pass $k - 1$, we will have counts for the large itemgroups
    of size $k - 1$
    $\Rightarrow$ we know $L_{k-1} = \{\text{large itemgroups of size } k - 1\}$.
  - Before starting pass $k$, we compute all possible itemgroups of size $k$.
  - Example:
    - Suppose in pass $k = 5$ we generate $ACDEF$ has a potential
      itemgroup.
    - We consider all possible $(k - 1)$-size subgroups, such as $ACEF$
      and $ADEF$.
    - If any of these subgroups is not in $L_{k-1}$, we can reject $ACDEF$
      immediately.
  - Another idea used is to generate potential groups in an intelligent
    way (exploiting lexicographic order):
    - Suppose $k = 5$ and $L_4 = \{ABCD, ABCE, BCDE, BCEF\}$. 
* The naive way to generate size-5 itemgroups would be to consider all possible extensions of the above four itemgroups.
* Note instead, that the itemgroup \( ABCDE \) will be large only if \( ABCD \) and \( ABCE \) are already large, i.e., only if both \( ABCD \) and \( ABCE \) are in \( L_4 \).
  \( \Rightarrow \) we will allow \( ABCDE \) to be generated only from \( ABCD \) and \( ABCE \).
* In general, we will generate \( X_1 X_2 \ldots X_{k-1} X_k \) from \( X_1 X_2 \ldots X_{k-2} X_{k-1} \) and \( X_1 X_2 \ldots X_{k-2} X_k \).
* Interestingly, this “combining” can be stated as a join:
  * Note that \( L_{k-1} \) is a collection of size-\((k-1)\) itemgroups.
  * Suppose that each itemgroup is considered a tuple in a relation called \( L_{k-1} \), where the \( i \)-th attribute in a tuple is the \( i \)-th item in the itemgroup.
  * Example \((k = 5)\): the tuple for \( ABCE \) will be the tuple \(< A, B, C, E >\).
  * Suppose the attribute names are \( \text{item}_1, \ldots, \text{item}_{k-1} \).
  * The join statement is:

    \[
    \text{select } p.\text{item}_1, \ldots, p.\text{item}_{k-1}, q.\text{item}_{k-1}
    
    \text{from } L_{k-1} \text{ as } p, L_{k-1} \text{ as } q
    
    \text{where } p.\text{item}_1 = q.\text{item}_1
    
    \ldots
    
    \text{and } p.\text{item}_{k-2} = q.\text{item}_{k-2}
    
    \text{and } p.\text{item}_{k-1} < q.\text{item}_{k-1}
    \]

  – One additional observation:
    * Consider \( k = 6 \) and suppose the join resulted in \( ABCDEF \).
    * We now need to look at all possible subgroups (of size \( k-1 \)) of \( ABCDEF \).
    * How many possible subgroups are there?
      \( \Rightarrow \) at most 6 (drop one letter at a time for each size 5 string).

  * Pseudocode:
**Algorithm:** PASS-DERIVED-ITEMGROUPS \((R, I, s)\)

**Input:** Set of records \(R\), set of items \(I\), support \(s\).

**Output:** Collection of itemgroups with large enough support.

```plaintext
// First pass
1. \(\forall k: \alpha[I_k] := 0\) // Initialize counts
2. for \(j := 1\) to \(|R|\) do
3. for \(k := 1\) to \(m\) do
4. if \(I_k \in r_j\)
5. \(\alpha[I_k] := \alpha[I_k] + 1;\)
7. for \(k := 1\) to \(m\)
8. if \(\alpha[I_k]/|R| \geq s\)
9. \(L_1 := L_1 \cup \{I_k\}; /\!\!/ ADD-SET (L[1], I_k);\)
10. \(/\!\!/ All\ other\ passes.\)
11. \(k := 2;\)
12. while \(L_{k-1} \neq \emptyset\) // SET-NOT-EMPTY (\(L[1]\));
13. \(C := COMPUTE-JOIN (L_{k-1}, L_{k-1});\)
14. \(/\!\!/ C := BUILD-SET (COMPUTE-JOIN (L_{k-1}, L_{k-1}));\)
15. for each itemgroup \(X = I_{j_1} \ldots I_{j_k} \in C\) // Winning
16. \(l := 1;\) over := false;
17. while \(l \leq k - 2\) and not over
18. if \(Y = I_{j_1} \ldots I_{j_{l-1}} I_{j_{l+1}} \ldots I_{j_k} \notin L_{k-1}\) // NOT-IN-SET (\(L[k-1], Y\)
19. \(C := C - \{Y\}; /\!\!/ REMOVE-ELEMENT (C, Y)\)
20. over := true;
21. else
22. \(l := l + 1;\)
23. endif;
24. endwhile;
25. endfor;
... continued
```
Algorithm: PASS-DERIVED-ITEMGROUPS ... continued

24. for $i := 1$ to $R$ do // Check counts
25. \hfill for each $k$-sized itemgroup $X \in r_i$ do
26. \hfill \hfill if $X \in C$ // SET-MEMBER-OF $(X, C)$
27. \hfill \hfill \hfill $X$.count := $X$.count + 1;
28. \hfill endfor;
29. endfor;
30. $L_k := \{X \in C : X$.count $\geq s\}$;
31. // Use BUILD-SET and ADD-SET here.
32. $k := k + 1$;
33. endwhile;
34. return $\bigcup_{k \geq 1} L_k$;

NOTE:

- The join computation is not shown.
- Some set operations are shown mathematically, with comments indicating the kinds of set-manipulation functions needed.

• Example: (same example as before with $s = 0.3$)

- First pass: $\alpha(A) = 6, \alpha(B) = 5, \alpha(C) = 6, \alpha(D) = 6, \alpha(E) = 7.$
  $L_1 := \{A, B, C, D, E\}.$
- Second pass ($k = 2$):
  * The $(L_1, L_1)$-join gives $C = \{AB, AC, AD, BC, BD, BE, CD, CE, DE\}.$
  * Since each 1-size subset of each of these is in $L_1$, the winnowing does not remove anything from $C$.
  * After a scan, the counts obtained are:

  \[ C = \{AB(4), AC(3), AD(2), BC(1), BD(2), BE(3), CD(5), CE(5), DE(5)\}. \]
* Those with high enough count (3 or more) are retained:

\[ L_2 \leftarrow \{ AB, AC, AE, BE, CD, CE, DE \} \]

- Third pass \((k = 3)\):
  * The \((L_2, L_2)\)-join gives \(C = \{ ABC, ABE, ACE, CDE \}\), e.g.,

```
2nd part of join condition:
B < C

A B A C ───────> A B C

first part of join condition:
A=A

2nd part of join condition:
B < E

A B A E ───────> A B E

first part of join condition:
A=A
```

* **Winnowing:**

  - For \(ABC\), we need to check whether \(BC \in L_2\)
    \[ \Rightarrow \text{not in } L_2 \]
    \[ \Rightarrow \text{discard } ABC. \]
  
  - For \(ABE\), we need to check whether \(BE \in L_2\)
    \[ \Rightarrow BE \in L_2 \]
    \[ \Rightarrow \text{retain } ABE. \]
  
  - Continuing, we find that \(ABE, ACE, CDE\) are retained.

* After a scan, the counts are:

\[ ABE(2), ACE(3), CDE(4). \]

* Those with high enough count (3 or more) are retained:

\[ L_3 = \{ ACE, CDE \}. \]
– Fourth pass ($k = 4$):

  * The ($L_3, L_3$)-join is empty.

– Final result:

$$A, B, C, D, E, AB, AC, AE, BE, CD, CE, DE, ACE, CDE.$$
12.18 Using Hashtrees: The Apriori Algorithm

- Recall that in the \( k \)-th pass of **Pass-Derived-Itemgroups**:
  - A set of size-\( k \) itemgroups is computed via a join.
  - The set is pruned using the size-(\( k - 1 \)) itemgroups.
  - A scan is made to generate the count for each itemgroup.

- A run-time profile of the previous algorithm shows that a lot of time is spent in generating counts:
  - For each record, we need to figure out which counts should be updated.
  - Example:
    * Suppose \( C = \{ABC, ABD, ABE, ACE, BCE, BDE, CDE\} \).
    * Consider a record \(<A, B, D, E, F>\).
      Which of the above itemgroups occur in the record?
    * One way of checking: **Record Subset method**
      1. generate all possible size-3 itemgroups in the record:
         \( ABD, ABE, ABF, ADE, ADF, AEF, BDE, BDF, BEF, DEF \) (10 itemgroups).
      2. For each such itemgroup, check whether it is in \( C \).

    * For a record with \( n \) items and size-\( k \) itemgroups: \( \binom{n}{k} \).
      \( \Rightarrow \) very large for even moderate sizes (e.g., \( n = 20, k = 10 \)).

    * Another approach: **Itemgroup Scan method**
      1. Scan each itemgroup in \( C \).
      2. Test whether each itemgroup is in the given record.
      \( \Rightarrow \) will be slow if number of itemgroups is large.
• Using a trie in the Record Subset method:
  
  – To test whether whether $ABC$ is in $C$, one approach is to test the string $ABC$ against each itemgroup in $C$.
  
  – A faster approach is to use a suitable data structure, such as a trie.
  
  – Example: suppose $C = \{ABD, ACD, ACE, BDE\}$

![Trie Diagram]

  – However, if the number of items is large (e.g., $10^5$), the trie could be very wide
    ⇒ may not fit in memory.
  
  – To reduce branching factor, some paths can be coalesced:

![Coalesced Trie Diagram]

This is the basic idea used in the hashtrie.
• Hashtrees: key ideas

  – Recall: in pass $k$, $C$ is a list of size-$k$ itemgroups.
  – In pass $k$, a fresh hashtree is constructed for size-$k$ itemgroups.
  – The list of itemgroups is stored in an array, e.g.

    
    ```c
 typedef struct itemgroup_type {
 char *itemgroup; // The actual itemgroup
 int count; // The count, initially set to zero
 } itemgroup_type;

 itemgroup_type *itemgroup_array;
 ...
 // Later
 itemgroup_array[i].count ++; // Incrementing the count
    ```

  – The hashtree is like a B+-tree in some ways:
    * The tree stores pointers to the actual data.
    * In this case, the correct index into the `itemgroup_array` is stored.
    * The hashtree has `internal` and `leaf` nodes.
    * Internal nodes are used for navigation.
    * Leaf nodes contain pointers (offsets) to the itemgroup array.

  – The hashtree is also different in many ways:
    * The leaf nodes are not linked.
    * The search is not in-order: which branch to take depends on a hashing function.
Example:

- Consider a hashtree with branching factor $= 4$.
  (Typically, branching factor is higher).
- Suppose we want to check whether the itemgroup $ACF$ is in the itemgroup array:

\[\text{Input: ACF}\]

* Apply the hashing function to $A$ at the first level, to $C$ at the next level and $F$ at the third level.
* Once at the leaf, search for $F$ in the leaf and follow the pointer to the array.
* Note: the depth of the hashtree is always the itemgroup size
  \(\Rightarrow\) we will always stop at the leaf level with the last item.

Insertion:

- First insert the itemgroup in the itemgroup array, and note the array offset (pointer).
- Then find the appropriate leaf by doing a regular search.
- Insert in sorted order in the leaf, along with pointer to the itemgroup array.
- If leaf is full, extend by adding an overflow leaf node.
• Checking which subsets are in a record:

  – In a search, we are given a record (e.g., \( < A, C, F, G, H > \)) and we want to know which itemgroups are in the record
    \( \Rightarrow \) need to increment their counters.

  – One approach:
    * Generate all possible size-\( k \) itemgroups of the record.
    * For each such itemgroup, traverse the hash tree and see if it exists in the itemgroup array.
    * For every itemgroup that is found, increment the counter.

  – Recursive approach:
    * Rather than generate all possible size-\( k \) itemgroups, a simple recursive method can be used.
    * Observation: each subtree of the root is a size-(\( k - 1 \)) hash tree.
    * Thus, to check all itemgroups beginning with \( A \):
      - Hash \( A \) \( \Rightarrow \) say, we get the ‘1’ branch.
      - The remainder of the record is \( < C, F, G, H > \).
      - Now apply the function recursively to the ‘1’ subtree with record \( < C, F, G, H > \).
    * Now, size-3 itemgroups in the record \( < A, C, F, G, H > \) can start with any one of the items \( A, C \) or \( F \).
    * Thus, we do hash-search at the root for each of these (and the reminder of the record).
    * In the case of starting with \( F \), the only possibility is to hash \( G \) at the next level, then \( H \) at the third level.
Input: FGH

h (F) = 0

h (G) = 2

h (H) = 3
* But if we start with $C$ at the root:
  
  - At the next level we have $< F, G, H >$.
  
  - Both $F$ and $G$ are hashed separately because we have three possible size-2 itemgroups: $FG$, $FH$ and $GH$.
  
  $\Rightarrow$ the first items are $F$ and $G$.

- **Pseudocode:**
  
  The algorithm has been called the Apriori Algorithm in the literature (because “checking for low-support subgroups” is done prior to a scan).
Algorithm: APRIORI (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.

// First pass
1. ∀k : α[I_k] := 0 // Initialize counts
2. for j := 1 to |R| do
3.   for k := 1 to m do
4.     if I_k ∈ r_j
5.       α[I_k] := α[I_k] + 1;
6.     h := HashTree-CREATE (1) // Size = 1.
7.   for k := 1 to m
8.     if α[I_k]/|R| ≥ s
9.       HashTree-INSERT (I_k);
// All other passes.
10. k := 2;
11. while HashTree-Not-Empty (h)
12.   C := Compute-Join (L_{k-1}, L_{k-1});
13.   h' := HashTree-CREATE (k);
14.   for each itemgroup X = I_{j_1}...I_{j_k} ∈ C // Winnowing
15.     l := 1; valid := true;
16.     while l ≤ k - 2 and valid
17.       // Y = I_{j_1}...I_{j_{l-1}}I_{j_{l+1}}...I_{j_k}
18.       if not HashTree-Recursive-Search (h, Y)
19.         valid := false;
20.       else
21.         l := l + 1;
22.     endif;
23. endwhile;
24.   if valid // All subgroups checked out
25.     HashTree-INSERT (h', X);
26.   endfor;
   ... continued
Algorithm: APRIORI ... continued

27. Hashtree-Destroy \((h)\);
28. \(h := h'\);
29. for \(i := 1\) to \(|R|\) do
30. \hspace{1em} Hashtree-Update-Counts \((h, r_i, k)\);
    \hspace{1em} // Remove all itemgroups with low counts.
31. for each itemgroup \(X \in h\) do // \(X\) is in array
32. \hspace{1em} if \(X\text{.count} < s\)
33. \hspace{1em} \hspace{1em} Hashtree-Remove-Itemgroup \((h, X)\);
34. \hspace{1em} \hspace{1em} \(k := k + 1\);
35. \hspace{1em} endwhile;
36. return \(\cup_{k \geq 1} L_k\);

Algorithm: Hashtree-Update-Counts \((h, r, k)\)

Input: hashtree id \(h\), record \(r\), size \(k\).
Output: Counts are updated.
    // Suppose \(r = \langle I_{j_1}, I_{j_2}, \ldots, I_{j_l} \rangle\).
1. for \(p := 1\) to \(l - k\)
2. \hspace{1em} Hashtree-Recursive-Update \((r, p, k, h\text{.root})\);
3. return;
Algorithm: **HasTree-Recursive-Update** \((r, p, k, \text{node})\)

**Input:** record \(r\), offset \(p\), size \(k\), hashtree node.

**Output:** Counts are updated.

1. \(\text{if node.leaf} = \text{true} \) // Bottom out of recursion.
2. \(\text{if } I_p \in \text{node}\)
3. \(\text{follow pointer to itemgroup array and increment count;} \)
   \(\text{// Note: count should be incremented only once} \)
   \(\text{// for each record.} \)
4. \(\text{return;}\)
5. \(\text{endif;}\)
6. \(\text{endif;}\)
7. \(c := \text{hashfunction} (I_p);\)
8. \(\text{node2} := \text{node.child}[c];\)
9. \(\text{for } q := p + 1 \text{ to } l - k\)
10. \(\text{HasTree-Recursive-Update} (r, q, k - 1, \text{node2});\)
11. \(\text{return;}\)
Algorithm: \hspace{0.5em} \texttt{Hashtree-Recursive-Search} (node, Y, i)

\textbf{Input}: hashtree node, itemgroup $Y$, offset $i$.
\textbf{Output}: true if itemgroup is in tree, false otherwise.

```c
// Assume $Y = I_{j_1} \ldots I_{j_k}$.
1. if node.leaf = true
2. \hspace{0.5em} if $I_{j_k} \in$ node
3. \hspace{2em} return pointer to location in itemgroup array;
4. \hspace{0.5em} else
5. \hspace{2em} return NULL; // false
6. else
7. \hspace{0.5em} c := hashfunction (I_{j_i});
8. \hspace{1em} node2 := node.child[c];
9. return \texttt{Hashtree-Recursive-Search} (node2, Y, $i + 1$);
10. endif;
```
12.19 On-Line Analytical Processing (OLAP): Introduction

- On-Line Analytical Processing (OLAP) is the term used for a class of *aggregate* queries.
- Consider an airline (McValue Airlines) with the following data

SALES (YEAR, CONTINENT, FLT_TYPE, REVENUE).

where the FLT_TYPE is given by

<table>
<thead>
<tr>
<th>FLT_TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short-domestic</td>
</tr>
<tr>
<td>2</td>
<td>Long-domestic</td>
</tr>
<tr>
<td>3</td>
<td>International</td>
</tr>
</tbody>
</table>

and where the data in SALES is: (revenue in millions)

<table>
<thead>
<tr>
<th>SALES</th>
<th>YEAR</th>
<th>CONTINENT</th>
<th>FLT_TYPE</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Europe</td>
<td>1</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>1997</td>
<td>Europe</td>
<td>2</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1997</td>
<td>Europe</td>
<td>3</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>1</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>2</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>3</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>1</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>2</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>3</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>1</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>2</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>3</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>1</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>2</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>3</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>1</td>
<td></td>
<td>460</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>2</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
Note: number of tuples = 2 YEARs × 3 CONTINENTS × 3 FLT_TYPEs = 18.

- Typical queries:
  - What is the total 1997 revenue?
  - Output the total revenue in each continent year-by-year.
  - What is the total 1997 revenue for International flights?
  - What is the total revenue on European domestic (long and short) flights across all years?
  - What is the maximum revenue in any European flight category in any year?

NOTE:

- All the queries involve aggregate functions (\texttt{sum} and \texttt{max} above).
- The queries involve aggregates across various subsets of the attributes.

The answers:

- What is the total 1997 revenue?
  \[ \Rightarrow \$1,450 \text{ million.} \]

- Output the total revenue in each continent year-by-year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Continent</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Europe</td>
<td>400</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>350</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>200</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>200</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>850</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>660</td>
</tr>
</tbody>
</table>

- What is the total 1997 revenue for International flights?
  \[ \Rightarrow \$400 \text{ million.} \]

- What is the total revenue on European domestic (long and short) flights across all years?
  \[ \Rightarrow \$325 \text{ million.} \]
– What is the maximum revenue in any European flight category in any year?
  \[ \Rightarrow \text{\$225 million (International)}. \]

• Computing the queries in SQL:

  – What is the total 1997 revenue?
    
    ```sql
 select S.YEAR, sum(S.REVENUE)
 from SALES S
 where S.YEAR = 1997
 group by S.YEAR
    ```

  – Output the total revenue in each continent year-by-year.
    
    ```sql
 select S.YEAR, S.CONTINENT, sum(S.REVENUE)
 from SALES S
 group by S.YEAR, S.CONTINENT
 order by S.CONTINENT
    ```

  – What is the total 1997 revenue for International flights?
    
    ```sql
 select S.FLT_TYPE, sum(S.REVENUE)
 from SALES S
 where S.YEAR=1997 and S.FLT_TYPE=3
 group by S.FLT_TYPE
    ```

What is the cost of computation?

– Consider the query “Output the total revenue in each continent year-by-year.”

  * Need to sort data by continent and year.
  * After sort, aggregates can be computed in a single scan.

– If data was sorted by (CONTINENT, YEAR), then it must be re-sorted for aggregates on (FLT_TYPE).

– Generally, if the data is already sorted according to the desired output, one scan is required.

– Otherwise, a sort is also needed.
Most OLAP applications consider data with $m + 1$ attributes in which $m$ attributes are “parameter” attributes and the $(m + 1)$-st attribute is the “aggregate” attribute.

E.g., in

\[
\text{SALES (YEAR, CONTINENT, FLT\_TYPE, REVENUE)}
\]

- REVENUE is the aggregate attribute.
  (Sums are computed over REVENUE values.)
- YEAR, CONTINENT and FLT\_TYPE are parameter attributes.
- Thus, there are 3 parameter attributes
  \[\Rightarrow\text{we call this a 3D aggregate problem.}\]
- For $m$ parameter attributes, it’s an $m$-dimensional aggregate problem.

In general, the data will be a relation $R(A_1, \ldots, A_m, F)$ where

- $A_1, \ldots, A_m$ are the parameter attributes.
- $F$ is the aggregate attribute.

The subcube with attributes $A_{i_1} \ldots A_{i_k}$ will be denoted by $S(A_{i_1} \ldots A_{i_k})$. 
• It is often convenient to view a 3D problem using a cube: (Although strictly a cuboid, the term cube is used).

For $m$-dimensional data, there are several subcubes for each dimension $k < m$. 

885
12.21 OLAP: Repeated Queries

- Typically, a manager or accountant sits at a terminal and queries on several attribute subsets repeatedly
  ⇒ multiple views required quickly.

If queries are generated via SQL statements
⇒ could take a long time.

- Prior computation and storage of subcubes:
  - It is better to materialize each subcube and store it.
  - For example, the \((\text{YEAR, CONTINENT})\) subcube is computed as:

\[
\begin{array}{|c|c|}
\hline
\text{Year} & \text{Value} \\
\hline
1997 & \text{Europe} \quad 400 \\
1998 & \text{Europe} \quad 350 \\
1997 & \text{Asia} \quad 200 \\
1998 & \text{Asia} \quad 200 \\
1997 & \text{N.America} \quad 850 \\
1998 & \text{N.America} \quad 660 \\
\hline
\end{array}
\]

- Storage options:
  1. Store each possible subcube separately:
     * Store the subcube \(S(\text{YEAR, CONTINENT})\) in a relation \(S_1\) \((\text{YEAR, CONTINENT})\).
     * Store the subcube \(S(\text{YEAR, FLT\_TYPE})\) in relation \(S_2\) \((\text{YEAR, FLT\_TYPE})\).
     * Store the subcube \(S(\text{CONTINENT, FLT\_TYPE})\) in relation \(S_3\) \((\text{CONTINENT, FLT\_TYPE})\).
     * Store the subcube \(S(\text{YEAR})\) in relation \(S_4\) \((\text{YEAR})\).
     * ...etc.
  2. Store each subcube within the original relation using \textbf{null} values.
    For example, the subcube \(S(\text{YEAR, CONTINENT})\) is
These tuples would be extended with null’s and added to the original data:

<table>
<thead>
<tr>
<th>SALES</th>
<th>YEAR</th>
<th>CONTINENT</th>
<th>FLT_TYPE</th>
<th>REVENUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Europe</td>
<td>1</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>1997</td>
<td>Europe</td>
<td>2</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1997</td>
<td>Europe</td>
<td>3</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>1</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>2</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>3</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>1</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>2</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>3</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>1</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>2</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>3</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>1</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>2</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>3</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>1</td>
<td></td>
<td>460</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>2</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>3</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1997</td>
<td>Europe</td>
<td>null</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>null</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>null</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>null</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>null</td>
<td></td>
<td>850</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>null</td>
<td></td>
<td>660</td>
</tr>
</tbody>
</table>

NOTE: since null already has a use, the use of the keyword all has been proposed.

- An observation:
  - The tuples for the subcube $S$(YEAR, CONTINENT) repeat the strings “1997” and “1998”
⇒ a waste of space.

- The only real information is the collection of aggregates:

<table>
<thead>
<tr>
<th>Year</th>
<th>Region</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Europe</td>
<td>400</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
<td>350</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
<td>200</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
<td>200</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
<td>850</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
<td>660</td>
</tr>
</tbody>
</table>

Therefore, it is more efficient to directly store the subcubes using an internal representation of a matrix:
⇒ called the *multidimensional approach*.

- Problems with large dimensions:
  - A 20-dimensional data set has $2^{20}$ subsets of attributes
    ⇒ $2^{20}$ possible subcubes.
  - Many subcubes are of high dimension
    ⇒ need to store high-dimensional matrices.
12.22 The Multidimensional Approach: Hash-Based Computation

- Some useful observations:

  Computing sizes of subcubes:

  - Consider the subcube $S$(YEAR, CONTINENT).

    How many entries in the subcube?
    2 YEAR’s, 3 CONTINENT’s
    ⇒ 6 entries

  - In general, for relation $R(A_1, \ldots, A_m)$ let

    $n(A_i) = \# \text{ values of attribute } A_i \text{ present.}$

    Then, the size of subcube $A_{i_1} A_{i_2} \ldots A_{i_k}$ is

    $\text{size}(A_{i_1} \ldots A_{i_k}) = n(A_{i_1}) n(A_{i_2}) \ldots n(A_{i_k}) = \prod_{j=1}^{k} n(A_{i_j}).$ 

  - We have made an implicit assumption: all possible combinations of values exist as tuples in the data
    ⇒ the full-cube assumption. E.g., if 1997 exists as a YEAR and Europe exists as a CONTINENT then $< 1997, \text{Europe} >$ will exist in some tuple.

Example:

  - Consider the relation $R(A_1, A_2, A_3, F)$ with

    $n(A_1) = 4$
    $n(A_2) = 50$
    $n(A_3) = 1000$
Thus, there are $4 \times 50 \times 1000 = 200,000$ tuples.

- Which subcubes need to be computed?
  * The subcube $S(A_1 A_2 A_3)$ is the given data.
  * The three 2-dimensional subcubes $S(A_1 A_2), S(A_1 A_3)$ and $S(A_2 A_3)$.
  * The four 1-dimensional subcubes $S(A_1), S(A_2), S(A_3)$ and $S(A_4)$.

- Suppose 1000 integers fit into a block.
- Sizes:

  \[
  \begin{align*}
  \text{size}(A_1 A_2 A_3) &= 200,000 \text{ values} = 200 \text{ blocks} \\
  \text{size}(A_1 A_2) &= 200 \text{ values} = 1 \text{ block} \\
  \text{size}(A_1 A_3) &= 4000 \text{ values} = 4 \text{ blocks} \\
  \text{size}(A_2 A_3) &= 50,000 \text{ values} = 50 \text{ blocks} \\
  \text{size}(A_1) &= 4 \text{ values} = 1 \text{ block} \\
  \text{size}(A_2) &= 500 \text{ values} = 1 \text{ block} \\
  \text{size}(A_3) &= 1000 \text{ values} = 1 \text{ block}
  \end{align*}
  \]

- Computing each subcube via hashing:
  - Scan original file.
  - Hash tuples into hash table containing sums;
  - Update appropriate sum for each tuple scanned.

For the above data:
\[ \Rightarrow 6 \text{ scans of data} \]
\[ \Rightarrow 6 \text{ scans of 200,000 tuples.} \]

Observe:

- Once the subcube $S(A_1 A_2)$ is computed, $S(A_1)$ can be computed from a scan of $S(A_1 A_2)$
  \[ \Rightarrow \text{only one block needs to be scanned.} \]
• The hash table:
  – Consider computing the subcube $A_1 A_3$.
  – There are 4000 values of $A_1 A_3$
    ⇒ need a sum for each of these 4000 values.
  – Create a hashtable with 4000 such sums.
  – Scan data and hash each tuple to discover which sum to update.

Example:
  – Suppose we are computing the subcube $S(\text{YEAR, CONTINENT})$.
  – We will need a sum for each possible combination of \text{YEAR} and \text{CONTINENT}:

<table>
<thead>
<tr>
<th>Year</th>
<th>Continent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Europe</td>
</tr>
<tr>
<td>1998</td>
<td>Europe</td>
</tr>
<tr>
<td>1997</td>
<td>Asia</td>
</tr>
<tr>
<td>1998</td>
<td>Asia</td>
</tr>
<tr>
<td>1997</td>
<td>N.America</td>
</tr>
<tr>
<td>1998</td>
<td>N.America</td>
</tr>
</tbody>
</table>

  In this case, we need 6 sums (the size of the subcube).
  – In practice, the size of the subcube can be large
    ⇒ many counters will be needed.
  – As we scan the actual data, we need to add the revenue in a tuple to the appropriate counter.
  – A simple scan or binary search can be used, but hashing is very efficient.
  – If each sum is in a different bucket, a single access is needed for an update.

• Example:
  Consider the relation $R(A_1, A_2, A_3, A_4, F)$ with

  $n(A_1) = 4$
  $n(A_2) = 50$
\[ n(A_3) = 1000 \]
\[ n(A_4) = 200 \]

The subcubes are:
- 4-dim: \( A_1A_2A_3A_4 \).
- 3-dim: \( A_1A_2A_3, A_1A_2A_4, A_1A_3A_4, A_2A_3A_4 \).
- 2-dim: \( A_1A_2, A_1A_3, A_1A_4, A_2A_3, A_2A_4, A_3A_4 \).
- 1-dim: \( A_1, A_2, A_3, A_4 \).

Sizes:

\[
\begin{align*}
\text{size}(A_1A_2A_3A_4) &= 4 \times 10^7 \text{ values} = 40,000 \text{ blocks} \\
\text{size}(A_1A_2A_3) &= 200,000 \text{ values} = 200 \text{ blocks} \\
\text{size}(A_1A_2A_4) &= 40,000 \text{ values} = 40 \text{ blocks} \\
\text{size}(A_1A_3A_4) &= 800,000 \text{ values} = 800 \text{ blocks} \\
\text{size}(A_2A_3A_4) &= 10^7 \text{ values} = 10,000 \text{ blocks} \\
\text{size}(A_1A_2) &= 200 \text{ values} = 1 \text{ block} \\
\text{size}(A_1A_3) &= 4000 \text{ values} = 4 \text{ blocks} \\
\text{size}(A_1A_4) &= 800 \text{ values} = 1 \text{ block} \\
\text{size}(A_2A_3) &= 50,000 \text{ values} = 50 \text{ blocks} \\
\text{size}(A_2A_4) &= 10,000 \text{ values} = 10 \text{ blocks} \\
\text{size}(A_3A_4) &= 200,000 \text{ values} = 200 \text{ blocks}
\end{align*}
\]

(Sizes of the 1-dim cubes not shown).

Construct a tree:

- Step 1: Place the subcube \( A_1A_2A_3A_4 \) at the root:
Step 2: No choice of parent for 3-dim subcubes $A_1A_2A_3$, $A_1A_2A_4$, $A_1A_3A_4$, $A_2A_3A_4$.

Step 3: For subcube $A_1A_2$ pick smallest parent
\[ \Rightarrow 40 \text{ blocks of } A_1A_2A_4. \]

Step 4: For subcube $A_1A_3$ pick smallest parent
\[ \Rightarrow 200 \text{ blocks of } A_1A_2A_3. \]
- Step 5: For subcube $A_1A_4$ pick smallest parent
  $\Rightarrow$ 40 blocks of $A_1A_2A_4$.

- ... continuing, we get the final tree:
Suppose memory size is 500 blocks. Several subtrees can be computed in parallel:
12.23 Hierarchies on Attributes: Roll-up and Drill-down

• What is a hierarchy on an attribute?
  – Consider the attribute DATE in
    SALES (DATE, CONTINENT, FLT_TYPE, REVENUE).
  – There is a natural division of dates by YEAR and MONTH.
  – YEAR and MONTH form a hierarchical division:

    YEAR
    \( \begin{array}{c}
    \text{MONTH} \quad \text{JAN} \quad \text{FEB} \quad \ldots \quad \text{DEC} \\
    \end{array} \)   \( \begin{array}{c}
    \text{JAN} \quad \text{FEB} \quad \ldots \quad \text{DEC} \\
    \end{array} \)

• Why is this important?
  – Queries often use hierarchies.
  – Example:
    * A user requests aggregate revenue by the subcube (YEAR, CONTINENT).
    * Then, if that’s interesting, the user wants to look at a breakdown month-by-month
      \( \Rightarrow \) a subcube addressed by (MONTH, CONTINENT).
    * This is an example of drilling down a hierarchy.
  – Example:
    * A user requests aggregate revenue by (DATE, FLT_TYPE).
    * Then, a broader picture can be obtained by requesting the summary (MONTH, FLT_TYPE)
      \( \Rightarrow \) a subcube addressed by (MONTH, CONTINENT).
* This is an example of rolling up a hierarchy.

- Both drill-down and roll-up are useful OLAP operations.
Chapter 13

Summary

Course Notes on Database Systems
13.1 CS 780: A Summary

• What did we learn in this course?

Concepts:

– What is a database? How is it different from a simple file system?
  ⇒ File system does not provide recovery, concurrency, fast querying etc.

– Data Models.
  ⇒ The Relational Model (tables), constraints.

– Relational databases: relational algebra.
  ⇒ $\sigma$, $\Pi$, $\bowtie$ etc.

– Relational databases: SQL.
  ⇒ select statement, create table, update etc.

– Example: Oracle.
  ⇒ Structure of Oracle, using SQLPlus for SQL queries.

– Database programming in Oracle.
  ⇒ Using the C-library (OCI) and embedded SQL.

– Physical implementation: file structures.
  ⇒ Heapfiles, hashfiles, sorted files, disk I/O.

– B-trees and B+-trees
  ⇒ Insertion, search and deletion.

– Hashing
  ⇒ Extendible hashing, linear hashing.

– Sorting
  ⇒ Binary merge-sort, polyphase merge-sort, snowplow method.

– Query processing
  ⇒ Developing a query plan, evaluating different plans.
- Database design: normalization
  ⇒ Theory of Functional Dependencies (FD’s), normal forms: 2NF, 3NF, BCNF
- Recovery
  ⇒ Shadow paging, Log-based recovery, redo’s and undo’s.
- Concurrency
  ⇒ Problems with concurrent execution, serializability, locking, deadlock.
- Spatial databases
  ⇒ Introduction, issues, types of queries.
- Spatial indices
  ⇒ Rtrees, Peano curves, grid files.
- Spatial query processing
  ⇒ point location, convex hulls, intersections.

• Advanced topics we have not covered:

  - Database systems (of interest to dbase system developers):
    * Details of implementing a transaction manager
      ⇒ Including code for locking, recovery, buffer management.
    * Advanced query processing
      ⇒ Query plan enumeration, transformation heuristics.
    * Disk subsystem implementation
      ⇒ Disk I/O, partitions and extents, directory management.
    * Parallel databases
      ⇒ parallel algorithms for implementing relational operators.
    * Distributed databases
      ⇒ Concurrency control and recovery in a distributed system.

  - Database theory:
    * Proofs for results on functional dependencies and normal forms.
    * Higher normal forms.
    * Detailed algorithms for decomposition and minimal covers.
* Logic databases, deductive databases.

– Applications development:
  * Generating reports.
  * Oracle Report, combining forms and report.
  * Client-server application development, web-based interfaces.
  * ODBC and standard interfaces to other database systems.
  * JDBC and Java-related interfaces.

– Text processing and document retrieval:
  * String and pattern search algorithms
    ⇒ string search, approximate search, regular expression search.
  * Indices for text data, keyword-searching.
  * Organizing document databases
    ⇒ indices, clustering, thesaurus construction.
  * Data compression
    ⇒ Huffman coding, Liv-Zempel algorithm.

– Other data models:
  * Network and hierarchical models.
  * Object-oriented databases, persistent objects.
  * Object-relational databases.

– Non-traditional databases:
  * Image and multimedia databases.
    ⇒ Storage and retrieval of image, audio and video data.
  * Scientific databases
    ⇒ Databases for CAD, astronomy, DNA and medical applications.
  * Temporal databases
    ⇒ history-related queries.

– New business applications:
  * Data mining.
  * Online Analytical Processing (OLAP) and multidimensional databases.
13.2 Object-Oriented and Object-Relational Databases

- The development of OO (Object-Oriented) and OR (Object-Relational) databases is motivated by:
  - Supporting new data types: image, spatial and multimedia data.
  - Providing applications developers with mechanisms to define their own data types, their own operators.
  - Allowing for efficient implementation of the above.
  - Integrating a dbase-like file system (with recovery and concurrency) into a high-level programming language (like C++).
  - Providing applications programmers with powerful OO features (inheritance, encapsulation).

- Consider supporting image data:
  - We want to allow users to store and retrieve images in a variety of formats (GIF, Postscript, Xbitmap, JPEG, etc).
  - We want to allow some kinds of querying, e.g., to determine if two images are of approximately equal intensity.
  - Currently, most commercial systems have a data type for binary (raw bits) data.
  - Thus, an image can be stored as follows:

    ```sql
 create table IMAGE_TABLE (bit IMAGE, varchar NAME, char(3) TYPE, number CODE);
    ```

  - Now, a C program can be written (as a client) to retrieve images and work with them (e.g., to compute mean intensity etc).
- Unfortunately, this “compute-at-the-client” design causes lots of data to move back and forth between client and server memory:

- Thus, a query that searches through the whole database of images will cause a lot of data transfer
  ⇒ better to have all the work done at the server.

- Some database systems provide SQL-like functions to support non-traditional data.
  * These are usually very limited (e.g., only very few data types).
  * Also, there is no programmer flexibility in defining new types and functions.

- Object-Oriented Databases.
  OODB vendors take the view that:

  - Object-oriented programming is here to stay (e.g., C++, Smalltalk, Java).

  - Objects are the natural way to treat all types of data.

  - If database models can’t handle objects, then it’s time to change database software.

- There are three schools of thought on this matter:
- **Pure OO:**
  * Forget the concerns of dbase folks and instead simply design persistence into a programming language, e.g., persistent C++.
  * What does persistence mean? All objects that are written into are stored in an object repository and can be retrieved later.
  * Dbase vendors then can use a persistent language to develop dbase-specific libraries for applications programmers.
  * Do not provide a database server.

- **OODB:**
  * Since pure-OO folks don’t really care about dbase concerns (such as recovery and concurrency), design a dbase-specific object repository.
  * Provide an interface via an object-oriented language but provide a full-fledged database server.
  * Allow applications programmers to program assuming persistent objects.
  * Handle recovery and concurrency (and efficient memory management).
  * Provide a library for SQL programmers (parser, interpreter, query optimizer etc).

- **Object-Relational:**
  * Relational systems aren’t broken – let’s instead amend them to handle newer data types.
  * Allow programmers to define new data types and functions that manipulate the data types.
  * The system then loads programmer-defined functions into the server (incorporating it as server code) to handle the new types.

- **Object-Oriented Databases (OODB):**
  - In a typical implementation, an application programmer will define an object using an Object Definition Language, e.g.,
object definition my_object {
    private data:
        int size; // For a size×size image
        real image[100][100];
    methods:
        int get_size ()
        set_size (int val);
        real** get_image ()
        set_image (real** I);
    }

    − The programmer then compiles this using a special compiler for the language.

    − The compiler produces C++ output (in a .h file) that looks like the above:

    class my_object {
        private:
            int size;
            float image[100][100]
        public:
            int get_size ();
            void set_size (int);
            float ** get_image ();
            void set_image (float** I);
    }

    − Then, the programmer is expected to write code for the functions in the class.

    − Finally, the system compiles the code for use when the object is manipulated.

    − An applications programmer then defines the object using an encapsulation (usually via templates in C++):
encap<my_object> A;
A.set_size (5);  // Not allowed (won’t work)

The trick is to define the encapsulation so that it returns a pointer (usually a \texttt{const} pointer in C++). Then, an applications programmer cannot modify the data
⇒ must go via a member function of the encapsulation instead
⇒ server has control over modification.

– Since updates go via the OO-system, the data remains at the server, allowing for recovery and concurrency control.

– Example: The SHORE (Scalable Heterogeneous Object REpository) System, developed at the University of Wisconsin, Madison.

• The \textit{Object-Relational} approach:

– The programmer is allowed to create types and new functions.

– Creating a type:

  * Suppose we want to create an image type called \texttt{image}.
  * First, create the image type in C:

    typedef struct image {
      int size;
      float image[100][100];
    } image;

  * Then, create two C functions that handle I/O for this new data type:

    image* image_in (char *data)
    {
      // Code to take in raw data and put it in the struct
    }

    char* image_out (image* I)
{  
    // Code to take in an image and put out char data, e.g.
}

and compile them.

* Now, tell the database what you’ve done:

```sql
CREATE FUNCTION image_in (char*)
 RETURNS image
 AS '/usr/mom3/joe/780/image.o'
 LANGUAGE 'C';

CREATE FUNCTION image_out (image)
 RETURNS char*
 AS '/usr/mom3/joe/780/image.o'
 LANGUAGE 'C';
```

* Next, create the type in the database:

```sql
CREATE TYPE image (
 size = 10002,
 input = image_in,
 output = image_out);
```

* Finally, create manipulation functions and declare them.

* After all of this is done, an applications programmer can use the new data type in a query:

```sql
SELECT name
FROM image_file
WHERE approx_equal (image_file.image, :test_image);
```

- Example: Postgres95 (University of California, Berkeley), Illustra (part of Informix), Oracle 8.