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1. Introduction 
 
Our RMSE=0.86432 solution is a linear blend of over 100 results. Some of them are new 
to this year, whereas many others belong to the set that was reported a year ago in our 
2007 Progress Prize report [3]. This report is structured accordingly. In Section 2 we 
detail methods new to this year. In general, our view is that those newer methods deliver 
a superior performance compared to the methods we used a year ago. Throughout the 
description of the methods, we highlight the specific predictors that participated in the 
final blended solution. Nonetheless, the older methods still play a role in the blend, and 
thus in Section 3 we list those methods repeated from a year ago. Finally, we conclude 
with general thoughts in Section 4. 
 
 

2. New Methods 
 
The foundations of our progress during 2008 are laid out in the KDD 2008 paper [4]. The 
significant enhancement of the techniques reported in that paper is accounting for 
temporal effects in the data. In the following we briefly review the techniques described 
in the paper [4], while giving extra details on how those methods can address temporal 
effects, and some other variants that we tried. For a deeper treatment and general 
background, please refer to the original paper. We assume a good familiarity with our 
notation at [4] and with last year’s Progress Prize Report [3]. All methods described in 
this section are trained using standard stochastic gradient descent, which became a 
preferred framework for analyzing the Netflix dataset. This algorithm requires setting two 
constants – step size (aka, learning rate) and regularization coefficient (aka, weight 
decay). We derived the values of these constants manually, seeking to minimize RMSE 
on the Probe set. A description of the learning equations and proper constant settings are 
given in the original papers [4,5]. 
 
 

2.1 Factor models 
 
In the paper [4] we give a detailed description of three factor models. The first one is a 
simple SVD with biases model as in Eq. (12) of the paper: 

                                                 
2 All root mean squared error (RMSE) mentioned in this article are measured on the Netflix Quiz set. 
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This model is now widely used among Netflix competitors, as evident by Netflix Prize 
Forum posts, and is formally described by others [6, 7]. Hereinafter, we will refer to this 
model as “SVD”, in accordance with the terminology at [4]. 
 
The second model delivers a similar accuracy, while offering several practical 
advantages, as described in Eq. (13) of the paper: 
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As in [4], we will refer to this model as “Asymmetric-SVD”. Interestingly, it can be 
shown that this is a factorized neighborhood model in disguise [5]. Thus, this model 
bridges neighborhood and factor models. 
 
Finally, the more accurate factor model, to be named “SVD++”, is as described in Eq. 
(15) of [4]: 
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These models are learnt using stochastic gradient descent. The variable   is constant 

(mean rating in training data, e.g., 3.7  ). However, the user- and movie-biases ,u ib b , 

are usually learnt from the data to improve prediction accuracy. 
 

A single solution in our blend is based on the SVD++ model with 60 factors. In 
this case, user- and movie-biases were fixed as constants, which reduces 
prediction accuracy and is equivalent to running SVD++ on residuals of double-
centered data. This leads to RMSE=0.8966. 

 

 
Accounting for temporal effects 
 
We identify three strong temporal effects in the data: 
 

1. Movie biases – movies go in and out of popularity over time. Several events can 
cause a movie to become more or less favorable. This is manifested in our models 

by the fact that movie bias ib  is not a scalar but a function that changes over time.  

This effect is relatively easy to capture, because such changes span extended 
amounts of time. That is, we do not expect a movie likeability to hop on a daily 
basis, but rather to change over more extended periods. Further, we have 
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relatively many ratings per movie, what allows us to model these effects 
adequately.  

2. User biases – users change their baseline ratings over time. For example, a user 
who tended to rate an average movie “4 stars”, may now rate such a movie “3 

stars”. This means that in our models we would like to take the parameter ub as a 

function that changes over time. Such effects can stem from many reasons. For 
example, it is related to a natural drift in a user’s rating scale, to the fact that 
ratings are given in relevance to other ratings that were given recently and also to 
the fact that the identity of the rater within a household can change over time. 
Importantly, this effect is characterized with two properties that make it hard to be 
captured. First, we observe the effect even at the resolution of a single day, which 
is the finest resolution available within the Netflix data. In other words, the 
effective user bias on a day can be significantly different than the user bias on the 
day earlier or the day after. Second difficulty stems from the fact that users are 
usually associated with only a handful of ratings, especially when focusing on 
their ratings within a single day. 

3. User preferences – users change their preferences over time. For example, a fan of 
the “psychological thrillers” genre may become a fan of “crime dramas” a year 
later. Similarly, humans change their perception on certain actors and directors.  
Part of this effect is also related to the fact that several people may rate within the 

same household. This effect is modeled by taking the user factors (the vector up )  

as a function that changes over time. Once again, we need to model those changes 
at the very fine level of a daily basis (after all, at each new session we may 
receive the ratings from a different person at the household), while facing the 
built-in scarcity of user ratings. In fact, these temporal effects are the hardest to 
capture, because preferences are not as pronounced as main effects (user-bias), 
but are split over many factors. 

 
Now, let us describe how those temporal effects were inserted into our models. We focus 
on the more accurate model, which is “SVD++”. The general framework is: 
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Here, we predict a rating at time (or, day) t. Notice that the relevant parameters are now 
structured as time-dependent functions, which are defined as described shortly. To 
increase accuracy, it is important that all parameters will be learnt from the data 
simultaneously. In other words, biases, movie-factors and user-factors are jointly learned 
from the data. 
As mentioned earlier, temporal effects of movie biases are easier to catch since we do not 
need the finest resolution there, and since there are many ratings associated with a single 
movie. Thus, an adequate decision would be to split the movie biases into time-based 
bins. We are using 30 bins, spanning all days in the dataset: from Dec 31, 1999 till Dec 
31, 2005, such that each bin corresponds to about 10 consecutive weeks of data. This 
effectively increases the number of parameters required for describing movies biases by a 
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factor of 30. Each day, t, is associated with an integer between 1 to 30 called Bin(t), such 
that:  

 , ( )( )i i Bin tb bt   

While binning the parameters works well on the movies, it is more of a challenge on the 
user side. On one hand, we would like a finer resolution for users to detect very short 
lived temporal effects. On the other hand, we do not expect having enough ratings per 
user to produce reliable estimates for isolated bins. Different function forms can be 
considered for modeling temporal user behavior. Their prediction accuracy is related to 
the number of involved parameters.  We concentrate on two simple extreme choices, as 
we have found that their sum, gave us almost as good results as we could get by other 

options that we tried. We start dealing with user biases ( ub ’s); user preferences ( up ’s) 

will be treated analogously.   
 
The first modeling choice is very concise in number of parameters, and requires adding 
only a single parameter per user bias. Let us first introduce some new notation. For each 
user u, let us denote the mean date of rating by tu. Now, if u rated a movie on day t, then 
the associated time deviation of this rating is defined as: 

  ( ) sign u uu t t t tdev t
     

We set the value of  by cross validation to 0.4. Then, for each user we center all those 

time deviations, and work with the centered variables ( )udev t . Notice that those variables 

are constants that are derived directly from the training data.  
 
Now, in order to define a time dependent bias, we introduce a single new parameter for 

each user called u and get our first definition of a time-dependent user-bias: 

 
(1) ( ) ( )u uu ut tb b dev    

 
This offers a simple linear model that does not require adding many new parameters, but 
at the same time is quite limited in its flexibility. Therefore, we also resort to another 
extreme, the most flexible model, where we assign a single parameter per user and day 
such that the user biases become:  

 
(2)

,( )u u ttb b  

This way, on each day a user bias is captured by an independent parameter. In the Netflix 

data, a user rates on 40 different days on average. Thus, working with  (2) ( )ub t  requires, 

on average, 40 parameters to describe each user bias (unlike (1) ( )ub t that required two 

parameters per user bias). In fact, (2) ( )ub t  is inadequate as a standalone for capturing the 

user bias, since it misses all sorts of signal that span more than a single day. Thus, in 
practice we add it to the other kind of time-dependent user bias, obtaining:  

 
(3) (1) (2)( ) ( ) ( )u u ub btbt t   
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The same way we treat user biases we can also treat each component of the user 

preferences  1 2( ) ( ), ( ), , ( )T

u u u ufp t p t p t p t  . Either as: 

 
(1) ( ) ( ) 1, ,uk ukuk ut t kp p de fv      

Or: 

 
(3 )

,
) (1( ) ( ) 1, ,uu k tk ukt t kp p fp     

Notice that for the Netflix data, taking the user factors as (3) ( )ukp t  requires, on average, 

about 42 parameters per component. This can lead to tremendous space requirements, and 
would render this particular variant less attractive under many real life situations. In fact, 
we came up with more concise models of almost the same accuracy. However, for the 
sake of the Netflix competition, the most elaborate description of user factors was found 
useful. It is interesting to comment that a simple regularized stochastic gradient descent 
algorithm was enough to avoid overfitting, and quite incredibly allowed us to fit many 
billions of parameters to the data. 
 
We implemented the most elaborated time-dependent SVD++ model, which we 
henceforth dub “SVD++(3)”: 
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As stated earlier, all involved parameters (biases, user- and movie-factors) are learnt 
simultaneously, such that the model is trained directly on the raw data, without any kind 
of pre-processing; see [4]. Prediction accuracy slowly improves, with increasing number 
of factors, as shown in the following table: 

f – dimensionality 
of factor vectors 

RMSE 

20 0.8893 
50 0.8831 

100 0.8812 
200 0.8806 
500 0.8801 

1000 0.8798 
2000 0.8795 

Table 1. Accuracy of time dependent SVD++ model 
 
The solution included in the blend is based on 2000 factors yielding RMSE=0.8795.  
We also implemented “lighter” variants of time-dependent SVD++, which required 
far less parameters, such as:  
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Henceforth, we will name this model “SVD++(1)”. We applied it with 100 factors 
and got RMSE=0.8879 (not included in the final blend). Then, we took the residuals 
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of this model, and smoothed them by a movie-movie neighborhood model, as 
described in our ICDM'2007 paper [1] (or, KDD-Cup’2007 paper [2]). This 
neighborhood model is denoted as [kNN] in Sec. 3 (or in [3]). We used 30 
neighbors, and the RMSE of the result was 0.8842 (included in the final blend). We 
also included in the blend another related variant, where the inner product matrix 
was estimated over the residuals of an RBM, what lowered the RMSE to 0.8822. 

 
 

2.2 Neighborhood models 
 
We implemented various variants of the neighborhood model described in Sec. 3 of [4]. 
The basic model is based on Eq. (9) there: 

 

1 1

2 2
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ˆ | R( ) | ( ) | N( ) |ui u i uj uj ij ij

j u j u
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 

        

The result of RMSE=0.9002 was included in the final blend. 
 
Other variants of the model would use only a subset of the neighbors, and can be applied 
on residuals of other methods. The general formula based on Eq. (10) in [4] is: 

 

1 1

2 2

R ( ; ) N ( ; )

ˆ | R ( ; ) | ( ) | N ( ; ) | 
k k

k k
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j i u j i u
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Here, uib is the prediction for the rating by user u and movie i, as estimated by some other 

method, and k is the number of neighbors. We will refer to this model as “GlobalNgbr”. 
 

This way we applied the kNN model (with full set of neighbors; k=17,770), to 
residuals of SVD++ with 60 factors (and fixed biases). The result, with 
RMSE=0.8906 is included in the final blend.  
We also applied this method with k=2000 on residuals of global effects to obtain 
RMSE=0.9067 (also, within the blend).  
 

 
The previous prediction rule can be easily extended to address time-dependent user 
biases:  

 

1 1
(3) 2 2

R ( ; ) N ( ; )

ˆ ( ) | R ( ; ) | ( ) | N ( ; ) |(   )
k k
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Within the final blend, such a model (with k=35) was applied to residuals of a 
Restricted Boltzmann Machine (100 hidden units) to obtain an RMSE of 0.8893. 

 
 
Similarly, the basic model (which works on raw ratings) can be enhanced to account for 
time dependent user- and movie-biases: 
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Another slight improvement is obtained by decaying neighbors that were rated distantly 
in time, by adding another term to the prediction rule:  
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Here, ujt is the day in which user u rated item j, and ujt t is the number of days between 

the rating of item i and that of item j. The constant  was set to 0.5. 

 
The result of this neighborhood model, as included in the final blend, is of 
RMSE=0.8914. 

 
 
An alternative version of the neighborhood model used the Sigmoid function in order to 
aggregate the movie-movie weights, as follows:  

 
R ( ; ) N ( ; )

 ˆ ( ) 
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The function   1
( ) 1 exp( ) 0.5x x      maps x to (-0.5,0.5). The parameter  is learnt 

from the data together with all other parameters. 
 

Results of this method are inferior to those of the methods described in [4] and 
earlier in this subsection. Nonetheless, three related results are used within the 
final blend. First, we applied the method to residuals of global effects with 
k=17770 (full dense set of neighbors) to obtain RMSE=0.9200. When limiting the 
number of neighbors using k=200, the resulting RMSE increases to 0.9230. The 
last variant was applied to residuals of RBM (200 hidden units) to yield 
RMSE=0.8931. 

 
 

2.3 Integrated models 
 
As we explain in [4] (Sec. 5), one can achieve better prediction accuracy by combining 
the neighborhood and factor models. In particular, the neighborhood model described in 
the previous subsection allows a symmetric treatment, where neighborhood parameters 
and factor parameters are learnt simultaneously. The basic model follows Eq. (16) of [4]: 
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We will later refer to this model as “Integrated”. It can be enhanced to account for 
temporal effects, as we did with the factor models. We start with the more concise 
models, which require a modest addition of parameters to achieve:  
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The result of this model with f=750 and k=300, as included in the final blend, 
yields RMSE=0. 8827. 

 
In order to further improve accuracy, we employ a more elaborated temporal model for 
the user biases:  
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Once again, we use a limited neighborhood size (k=300), as neighborhood models better 
complement factor models when they are well localized. Prediction accuracy very slowly 
improves when increasing the dimensionality of the factor model, as shown in the 
following table:  

f  RMSE 
200 0.8789 
500 0. 8787 
750 0. 8786 

1000 0. 8785 
1500 0. 8784 

Table 2. Accuracy of an integrated model 
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The result with f=1500 (RMSE=0. 8784) is included in the final blend. 
We also tried to integrate the neighborhood model with other factor models. Two 
related results are in the final blend. First, we added the neighborhood model 
(k=300) to an Asymmetric-SVD model (f=60), with no temporal effects. The 
achieved RMSE was 0.8959. Second, we added the neighborhood model (k=300) 
to an RBM with Gaussian visible units and 256 hidden units. The resulting RMSE 
was 0.8943 (once again, temporal effects were not addressed here). 

 
 
We should note that we have not tried (yet) the supposedly most powerful integrated 
model, which addresses full temporal effects also for user preferences, by replacing 

(1) ( )up t with (3) ( )up t , as follows:  
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2.3 Other methods 
 
There are two additional developments during the last year, with a very modest 
contribution to the final blend. 
 
2.3.1 Shrinking towards recent actions 
 
A possible way for accounting for temporal effects is by overweighting the more recent 
user actions. Indeed, this is inferior compared to the more principled approach described 
earlier, which could provide a full modeling of how user behavior is changing over time. 
Nonetheless, when holding prediction sets that have been previously computed without 
accounting for temporal effects, a simple correction as described below is effective. 
 

In the following we assume that we want to correct ûir , which is the predicted rating for 

user u on item i at day t (= uit ). We would like to shrink ûir towards the average rating of u 

on day t. The rationale here is that the single day effect is among the strongest temporal 
effects in the data. To this end we compute several magnitudes related to the actions of 
user u on day t: 

 utn - the number of ratings u gave on day t 

 utr  - the mean rating of u at day t 

 utV - the variance of u’s ratings at day t 
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This allows us to compute a confidence coefficient, related to how u tended to 
concentrate his/her rating on day t: 

 exp( )ut ut utc n V     

Accordingly, we shrink our estimate towards utr  controlled by the confidence coefficient, 

so that the corrected prediction is: 

 ûi ut ut

ut

r

c

rc

  


 

The participating constants were determined by cross validation to be: 8, 11   . 

 
 

We used this correction with a single solution in the final blend. First, we combined 
two solutions. The first one is 50 neighbors kNN on 100-unit RBM with RMSE 
0.8888 (see predictor #40 in last year’s Progress Prize Report [3]). Second result is 
by the SVD++(1) model with f=200 that yields RMSE=0.8870. In order to combine 
the models, we split the predictions into 15 bins based on their support and compute 
a separate linear combination within each bin; see [3]. Such a combination leads to 
an RMSE of 0.8794. Finally we correct for a single day effect to achieve 
RMSE=0.8788. 

 
 
A stronger correction accounts for periods longer than a single day, and also tries to 
characterize the recent user behavior on similar movies. To this end we compute pairwise 

similarities between all movies, denoted by ijs , which are defined as the square of the 

Pearson correlation coefficient among the ratings of the two respective movies. Now, we 
weight the influence between movie i and all other movies rated by u. Those weights 
reflect both the similarity between the movies and the time proximity between the 
corresponding rating events, as follows: 

  expu

ij ij ui ujw s t t     

Here, we are using  =0.2. Then we compute the following three magnitudes: 

 
rated

u

ij

u

ui

j

n w   

 rated

rated

u

ij uj

u j

u

ij
u

ui

j

r

r

w

w






  

 
 

 

2

2rated

rated

u

ij uj

u j

u

ij

ui i

u

u

j

w r

V r
w


 



 

 
As done previously, we use the weighted support and variance to compute a confidence 
coefficient: 

 exp( )ut ui uic n V     
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Here, we use 5  . This way, the corrected score is:  

 
ˆ

1
ui ui ui

uic

rcr  


 

 
We used this correction with three solutions in the final blend, as follows:  
1. Post-process predictor #83 in last year’s Progress Prize Report [3] to lower the 

RMSE from 0.9057 to 0.9037. 
2. We applied 30 neighbors kNN on residuals of NSVD2 (200 factors) to obtain 

RMSE=0.8948. Then, by correcting the score the RMSE decreased to 0.8924. 
3. We used a variant of the previously described neighborhood model, with mild 

temporal biases, as follows:  

 

1 1
(1) 2 2

R ( ) N( )

ˆ | R( ) | ( ) | N() ( ) ) )( ( |ui u i uj uj ij ij
j u j u

r b b u r b wt t ut c
 

 

        

The resulting RMSE of 0.8964 was improved to 0.8935 by applying the 
correction. 

 
 
2.3.2 Blending multiple solutions 
 
Our basic scheme for blending multiple predictors is based on a linear regression model 
as described in [3]. Also, occasionally we blend two predictors by partitioning the ratings 
into 15 bins based on user- and movie-support, to allow a separate linear combination 
within each bin [3].  This year we added new methods for blending predictors, to which 
we turn now. 
 

Assume that we have a series of s predictors:  ( ) ( )

,
, 1, ,k k

ui
u i

r r k s   . We would like to 

combine the s predictors into a blended predictor r̂ . Taking a simple linear combination 
turns into solving a regression problem seeking optimal values of the coefficients 

(1) ( ), , sa a , which will minimize the Probe RMSE of ( ) ( )

1

ˆ
s

k k

k

r a r


  . However, such an 

approach will assign a single, global weight to each predictor, without differentiating 
between the abilities of certain predictors to better model certain users or movies. Thus, 
we suggest introducing more coefficients: for each predictor k and movie i, we introduce 

the coefficient ( )k

ib . Likewise, for predictor k and user u, we introduce the coefficient ( )k

uc . 

Now, the combination of the s predictors is defined through: 

  ( ) ( ) ( ) ( )

1

ˆ
s

k k k k

ui i u ui

k

r a b c r


     

We train the model over the Probe set. The parameters are regularized, and globally 
optimal solution of the associated least squares problem can be obtained using a least 

squares solver. We used stochastic gradient descent (learning rate= 62 10 , weight 

decay= 310 ) for the training. 
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Within the final blend, this scheme was used once. We combined two of last 
year’s predictors. One was NNMF (60 factors) with adaptive user factors 
(RMSE=0.8973). The other was an RBM (100 hidden units; RMSE=0.9087). The 
combined predictor has an RMSE of 0.8871. 

 
 
An issue with the above combination scheme is that it requires a separate set of 
parameters for each user, while in the Probe set (which is the training set in this context), 
there are very few ratings per user, making learning those parameters unreliable. In order 
to avoid this, we need to borrow information across users. One way to achieve this is by 
assuming that the user support (number of associated ratings in the full data set) 
determines the relative success of a single predictor on a user. Thus, we refrain from 
directly parameterizing users, but refer to them through their support. As for the movies, 
we have more information on them in the Probe data, so we still use a separate parameter 
per movie. Though, in order to borrow information across movies, we additionally 
address movies through their support. 

Let un be the number of ratings associated with user u in the training data. We perform a 

log-transformation setting logu um n . Finally, we center the resulting values, working 

withum . We follow the same procedure for movies: Let in be the number of ratings 

associated with movie i in the training data. We use a log-transformation 

setting logi im n . Finally, we center the resulting values, working withim . The 

combination of the s predictors is defined as:  

 
  ( ) ( ) ( ) ( ) ( )

1

ˆ
s

k k k k k

ui i i u ui

k

r a b c m d m r


        

 
The values of the parameters are learnt by stochastic gradient descent with weight decay 
on the Probe data.  

 
This blending technique is used twice within the final blend: 
1. We generate an RMSE=0.8771 predictor by combining four basic predictors: 

(i) SimuFctr (60 factors; RMSE=0.9003), (ii) RBM (100 hidden units; 
RMSE=0.9087), (iii) 50 neighbors kNN on 100-unit RBM (RMSE=0.8888), 
(iv) SVD++(1) (f=200; RMSE=0.8870). 

2. We generate an RMSE=0.8855 predictor by combining five basic predictors, 
which were trained without including the Probe set in the training data even 
when generating the Quiz results: (i)  SVD++(3) (f=50; RMSE=0.8930), (ii) 
NNMF (60 factors; RMSE=0.9186), (iii) Integrated (f=100, k=300), (iv) RBM 
(100 hidden units; RMSE=0.9166), (v) GlobalNgbr (k=500; RMSE=0.9125). 
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3. Older Methods 
 
Besides using the newer techniques described in the previous section, our solution also 
includes the following predictors that are based on techniques in the 2007-Progress Prize 
report [3]. In general, we believe that most of those techniques are inferior to the newly 
developed ones when considering both accuracy and efficiency. 
 
Asymmetric factor models 
 
1. rmse=0. 9286 

SIGMOID2 with k=40 
2. rmse=0. 9383 

NSVD2 with k=40 
3. rmse=0.9236 

NSVD1 with k=200 
4. rmse=0.9259, 

NSVD1 with k=150 
5. rmse=0. 9260 

NSVD1 with k=40 
6. rmse=0. 9225 

SIGMOID1 with k=100 
 
Regression models  
 
7. rmse=0. 9223 

BIN-SVD3 based on 40 vectors 
8. rmse=0.9212 

PCA based on top 50 PCs  
9. rmse=0.9241 

PCA based on top 40 PCs  
10. rmse=0.9335    

BIN-SVD-USER based on 256 vectors 
11. rmse=0.9290 

BIN-SVD3-USER based on 65 vectors 
12. rmse=0. 9437 

BIN-SVD-USER based on 196  vectors 
13. rmse=0. 9610 

BIN-SVD-USER based on 100 vectors, but here we regressed residuals of double 
centering rather than the usual residuals of global effects 

14. rmse=0. 9414 
BIN-SVD3-USER based on 40 vectors 

15. rmse=0. 9067 
20 neighbors Corr-kNN on residuals of BIN-SVD-USER (60 vectors) 

16. rmse=0.9030 
50 neighbors kNN on residuals of BIN-SVD-USER (100 vectors) 
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17. rmse=0.9269, 
PCA-USER, based on top 40 PCs 

18. rmse=0.9302, 
STRESS with 40 coordinates per movie 

 
Restricted Boltzmann Machines with Gaussian visible units  
 
19. rmse=0.9052 

800 hidden units 
20. rmse=0.9044 

400 hidden units 
21. rmse=0.9056 

256 hidden units 
22. rmse=0.9429 

100 hidden units, applied on raw data (no normalization/centering) 
23. rmse=0.9074 

100 hidden units, on residuals of full global effects 
24. rmse=0.9267 

256 hidden units, without conditional RBM, on residuals of full global effects 
 
Restricted Boltzmann Machines 
 
We use conditional RBMs as described in [5]. 
25. rmse=0.9029 

256-unit RBM 
26. rmse=0.9029 

200-unit RBM 
27. rmse=0.9087 

100-unit RBM 
28. rmse=0.9093 

100-unit RBM (learning rate= .15 decaying by 0.9 each iteration) 
 
Using RBM as a pre-processor: 
29. rmse=0.8960 

Postprocessing residuals of 100-unit RBM with factorization 
30. rmse=0.8905 

50 neighbors kNN on 200-unit RBM 
31. rmse=0.8904 

40 neighbors kNN on 150-unit RBM 
 
 
Matrix factorization 
32. rmse=0. 8992 

IncFctr (80 factors), adaptive user factors by [MseSim] 
33. rmse=0. 9070 

[Corr-kNN] applied to residuals of SimuFctr (40 factors) 
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34. rmse=0. 9050 
SimuFctr (40 factors), adaptive user factors with sij=MSE(i,j)-12 

35. rmse=0.9026 
Cor-kNN on residuals of NNMF (60 factors) 

36. rmse=0.8963 
NNMF (90 factors), adaptive user factors by [MseSim] 

37. rmse=0.8986 
NNMF (90 factors), adaptive user factors by naive [SuppSim] (where xij=ni

.nj/n) 
38. rmse=0.9807 

NNMF (90 factors), adaptive user factors by sij=MSE(i,j)-12 
39. rmse=0.8970 

NNMF (90 factors), adaptive user factors by [SuppSim] 
40. rmse=1.1561 

NNMF (128 factors), adaptive user factors by [MseSim], but adaptive user factors 
where computed with Lasso regularization, rather than Ridge regularization  

41. rmse=0.9039 
NNMF (128 factors) 

42. rmse=0.8955, 
NNMF (128 factors), adaptive user factors by [MseSim] 

43. rmse=0.9072 
NNMF (60 factors) 

44. rmse=0.9018 
NNMF (40 factors, adaptive user factors by [EditSim] 

45. rmse=0.9426 
LassoNNMF (30 factors) 

46. rmse=0.9327 
LassoNNMF (30 factors), adaptive user factors by [SuppSim] 

47. rmse=0.8998 
Start with SimuFctr 60 factors, then a single GaussFctr iterations on movie side 
followed by many GaussFctr iterations on user side 

48. rmse=0.9070 
Start with NNMF 90 factors, followed by many GaussFctr iterations on user side 

49. rmse=0.9098 
Start with SimuFctr 40 factors, followed by many GaussFctr iterations on user side 

 
 
Neighborhood-based model (k-NN) 
 
Some k-NN results were already mentioned. Here, we report the rest. 
 
50. rmse=0.9309 

50 neighbors Fctr-kNN on residuals of full global effects. Weights based on 10 
factors computed on binary matrix 

51. rmse=0.9037 
75 neighbors Slow-kNN on residuals of SimuFctr (50 factors) 
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52. rmse=0. 8953 
30 neighbors kNN on residuals of NNMF (180 factors) 

53. rmse=0. 9105 
50 neighbors kNN on residuals of all global effects except the last 4 

54. rmse=0.9496 
25 neighbors kNN on raw scores (no normalization) 

55. rmse=0.8979 
60 neighbors kNN on residuals of NNMF (60 factors) 

56. rmse=0.9215 
50 neighbors Bin-kNN on residuals of full global effects, neighbor selection by 
[CorrSim]  

57. rmse=0.9097 
25 neighbors Fctr-kNN on residuals of NNMF (60 factors). Weights based on 10 
NNMF factors 

58. rmse=0.9290 
50 neighbors Fctr-kNN on raw scores. Weights based on 10 factors computed on 
binary matrix 

59. rmse=0.9097 

100 neighbors User-kNN on residuals of NNMF (60 factors) 
60. rmse=0.9112 

100 neighbors User-kNN on residuals of SimuFctr (50 factors) 
61. rmse=0. 9248 

30 neighbors User-MSE-kNN on residuals of full global effects 
62. rmse=0.9170 

Corr-kNN on residuals of full global effects  
63. rmse=0.9079 

Corr-kNN on residuals of IncFctr (80 factors), 
64. rmse=0.9237 

MSE-kNN on residuals of full global effects 
65. rmse=0.9085 

Supp-kNN on residuals of SimuFctr (50 factors).  
66. rmse=0.9110 

Supp-kNN on residuals of IncFctr (80 factors) 
67. rmse=0.9440 

Supp-kNN on residuals of full global effects. Here, we used the more naïve 
similarities where xij=ni*nj/n 

68. rmse=0.9335 
Supp-kNN on residuals of full global effects  

 
 
Combinations: 
Each of the following results is based on mixing two individual results. Before mixing we 
split the user-movie pairs into 15 bins based on their support. For each bin we compute 
unique combination coefficients based on regression involving the Probe set.  
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69. rmse=0.8876 
Combination of [3]’s #36 with <NNMF (60 factors) adaptive user factors by 
MseSim> 

70. rmse=0.8977 
Combination of #59 with #55  

71. rmse=0.8906 
Combination of [3]’s #45 with [3]’s #73 

72. rmse=0.9078 
Combination of #62 with <User-kNN on raw scores> 

73. rmse=0.8967 
Combination of  [3]’s #45 with [3]’s #50 

74. rmse=0.8957 
Combination of  [3]’s #45 with with <NNMF (60 factors) adaptive user factors by 
MseSim> 

75. rmse=0.9017 
Combination of #53 with <User-kNN on residuals of all global effects except last 4> 

76. rmse=0.8937 
Combination of  [3]’s #45 with #54 

77. rmse=0.8904 
Combination of  [3]’s #45 with <30 neighbors kNN on residuals of SimuFctr (50 
factors)>  

 
Imputation of Qualifying predictions: 
We had predictions for the Qualifying set with RMSE of 0.8836. Then, we inserted the 
Qualifying set into the training set, while setting unknown scores to the RMSE= 0.8836 
predictions. We tried some of our methods on this enhanced training set:    
 
78.  rmse=0.8952 

 MSE-kNN on residuals of SimuFctr (20 factors) 
79. rmse=0.9057 

 SimuFctr (50 factors) 
80. rmse=0.9056 

 SimuFctr (20 factors), Probe set is excluded from training set 
81. rmse=0.9093 

IncFctr (40 factors), adaptive user factors by [SuppSim]. Probe set is excluded from 
training set 

82. rmse=0.9005 
 MSE-kNN on residuals of IncFctr (40 factors) 

83. rmse=0.9082 
50 neighbors kNN on residuals of global effects 

 
Specials: 
 
84. rmse=1.1263 

Take binary matrix (rated=1, not-rated=0), and estimate it by 40 factors.  Using these 
factors, construct predictions for the Probe and Qualifying set and center the 
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predictions for each set. Consequently, using the probe set we learn how to regress 
centered true ratings on these predictions, and do the same on the Qualifying set.  

 

5. Discussion 
 
During the two years of analyzing the Netflix data, we have learnt several interesting 
lessons, which apparently are not reflected well in the prior literature. In the following we 
briefly discuss some of them. 
 
Collaborative filtering methods address the sparse set of rating values. However, much 
accuracy is obtained by also looking at other features of the data. First is the information 
on which movies each user chose to rate, regardless of specific rating value (“the binary 
view”). This played a decisive role in our 2007 solution, and reflects the fact that the 
movies to be rated are selected deliberately by the user, and are not a random sample.  
Second important feature, which played a very significant role in our progress through 
2008, is accounting for temporal effects and realizing that parameters describing the data 
are not static but dynamic functions. At the same time, we should mention that not all 
data features were found to be useful. For example, we tried to benefit from an extensive 
set of attributes describing each of the movies in the dataset.  Those attributes certainly 
carry a significant signal and can explain some of the user behavior. However, we 
concluded that they could not help at all for improving the accuracy of well tuned 
collaborative filtering models. 
 
Beyond selecting which features of the data to model, working with well designed 
models is also important. It seems that models based on matrix-factorization were found 
to be most accurate (and thus popular), as evident by recent publications and discussions 
on the Netflix Prize forum. We definitely agree to that, and would like to add that those 
matrix-factorization models also offer the important flexibility needed for modeling 
temporal effects and the binary view. Nonetheless, neighborhood models, which have 
been dominating most of the collaborative filtering literature, are still expected to be 
popular due to their practical characteristics - being able to handle new users/ratings 
without re-training and offering direct explanations to the recommendations. During our 
work we have found that the known heuristic-based neighborhood methods can be 
replaced with more profound methods (as those in Sec 2.2), which deliver much 
improved accuracy while retaining the useful properties of general neighborhood 
methods. 
 
We were quite surprised by how many parameters can be added to a single model, while 
still improving prediction accuracy on the test set. In the chart below each curve 
corresponds to a matrix-factorization model, with an increasing number of parameters. It 
is evident that accuracy improves as we add more parameters to a single model, or as we 
move to models richer in parameters. Notice that accuracy improves even when fitting 
over 10 billion parameters to the dataset, which is somewhat surprising considering that 
the dataset contains just 100 million ratings. This indicates a complex multifaceted nature 
of user-movie interaction. We should remark that it is possible to build more memory 
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efficient models that achieve almost the same accuracy as the most complex models, but 
this is beyond the scope of this document.  

 
Figure 1. Matrix factorization models – error vs. #parameters. The plot shows how 
the accuracy of each of five individual factor models improves by increasing the 
number of involved parameters (which is equivalent to increasing the 
dimensionality of the factor model, denoted by numbers on the charts). In addition, 
the more complex factor models, whose descriptions involve more distinct sets of 
parameters, are the more accurate ones.  

 
Finally, using increasingly complex models is only one way of improving accuracy. An 
apparently easier way to achieve better accuracy is by blending multiple simpler models. 
The chart in Fig. 2 shows how the accuracy of our final solution improves with increasing 
the number of blended predictors. As expected, the first few predictors have a decisive 
contribution to improving accuracy, while the rest have a marginal contribution. A lesson 
here is that having lots of models is useful for the incremental results needed to win 
competitions, but practically, excellent systems can be built with just a few well-selected 
models. 
 
 
 
 
 

(1) 

(2) 

(3) 



20 
 

 
Figure 2. The plot above shows RMSE as a function of the number of methods 
used. By blending five predictors one can achieve RMSE=0.8699.  As more 
predictors are added accuracy slowly improves, till reaching RMSE=0.8643 with 
100 predictors. 
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Appendix A. Combining with BigChaos 
 
We combined our solution with the one produced by the BigChaos team in order to 
further improve accuracy.  The combined solution, of RMSE=0.8616, is a linear 
combination of 207 predictor sets.  Each predictor set was centered to have mean zero 
before the combination and an estimate of the Quiz set mean was added back after the 
combination.  Any final predictions outside the range [1, 5] were clipped.  The predictor 
sets include 100 BigChaos predictors, including neural net blends (see accompanying 
progress report document); 84 predictors described in the 2007 progress report (listed in 
Section 3 of this document), and 23 predictors described in Section 2 of this document.   
 
Coefficients for the linear combination were computed via an approximate linear 
regression on the Quiz set.  We utilize the fact that a linear regression requires knowing 
only sufficient statistics that can be estimated from RMSEs of the Quiz predictors and 
other known quantities.  Due to the large number of blended predictors, many of which 
are close to collinear, some of the estimated coefficients are very unstable without 
regularization.  Consequently, we used ridge regression, with ridge parameter (or, 
“regularization constant”) equaling 0.001.  Computation is done by a standard least 
squares solver library (LAPACK). 
 


