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The goal of these notes is to describe the key ideas in two approaches to
text retrival:

• Probabilistic relevance – the idea of identifying relevant documents
by the “probability that a document is relevant to a query”.

• Latent Semantic Indexing – the idea of treating documents as vectors
and “finding the closest vector” to a query vector.

For a quick and dirty overview of basic linear algebra see [5] – but you’d
be better off following that up with Strang’s outstanding linear algebra
textbook [6]. The presentation of these ideas follows that of the Information
Retrieval textbook of Manning et al [3].

1 Probabilistic Relevance

• Define the following:

– There are m terms in the universe.

– d = a document

– Represent d by vector d = (d1, . . . , dm) where di = 1 if term i is
in the document.

– q = a query

– Represent the query as a vector q = (q1, . . . , qm) where qi = 1 if
term i is in the query.

– R = R(d, q) = relevance of a document d to query q.

– In the binary relevance model: R = 1 or R = 0.

• We will be interested in the conditional probability

P [R = 1|d,q]

which asks “given a document d and query q, what is the probability
that the relevance is 1?”
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• From Bayes’ rule:

P [R = 1|d,q] =
P [d|R = 1,q] P [R = 1|q]

P [d|q]

• At first, these terms on the right look strange and hard to evaluate,
but we’ll make some simplifying assumptions.

• The first one is: we’ll assume P [R = 1|q] is independent of docu-
ments.

⇒this is merely some guess about how often the system returns relevant
queries

• To help in canceling out terms, we’ll also compute

P [R = 0|d,q] =
P [d|R = 0,q] P [R = 0|q]

P [d|q]

• Define the relevance ratio

ρ =
P [R = 1|d,q]

P [R = 0|d,q]

Thus, the higher ρ is, the “better” the match between the document
and the query.

What’s nice about this definition is that it’ll let us get rid of the
common denominator P [d|q].

• Substituting from the Bayes’ rule expansion,

ρ =
P [d|R = 1,q] P [R = 1|q]

P [d|R = 0,q] P [R = 0|q]

• Now for the next simplifying assumption: the ratio

P [R = 1|q]

P [R = 0|q]

does not involve the document and can be assumed to be some fixed
“system” constant.

⇒We can estimate this offline and use the estimate .

Accordingly, let’s call this constant α and write

ρ = α
P [d|R = 1,q]

P [d|R = 0,q]
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• The next assumption will involve independence: we will write

P [d|R = 1,q] =
m∏

i=1

P [di|R = 1,q]

which assumes that the terms occur independently in documents.

This is patently not true, but we’ll hope that the resulting search is
nonetheless effective.

• Thus, after these assumptions

ρ = α
m∏

i=1

P [di|R = 1,q]

P [di|R = 0,q]

• The next trick is going to separate the product terms by di = 1 and
di = 0 so that

ρ = α
m∏

i:xi=1

P [di = 1|R = 1,q]

P [di = 1|R = 0,q]

m∏
i:xi=0

P [di = 0|R = 1,q]

P [di = 0|R = 0,q]

• Define, for shorthand

– pi = P [di = 1|R = 1,q].

– ui = P [di = 1|R = 0,q].

Then,

– P [di = 0|R = 1,q] = 1− pi.

– P [di = 0|R = 0,q] = 1− ui.

• The next simplifying assumption: for terms that do not occur in the
query, assume that they are equally likely to occur in relevant vs.
non-relevant documents.

⇒if qi = 0 then pi = ui .

• Accordingly, we’ll separate out the terms where qi = 1 vs. qi = 0:

ρ = α
∏

i:xi=1,qi=1

pi

ui

∏
i:xi=0,qi=1

1− pi

1− ui

∏
i:xi=1,qi=0

pi

ui

∏
i:xi=0,qi=0

1− pi

1− ui

= α
∏

i:xi=1,qi=1

pi

ui

∏
i:xi=0,qi=1

1− pi

1− ui
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• Consider for a moment the product

∏
i:qi=1

1− pi

1− ui

We’ll expand this as

∏
i:xi=1,qi=1

1− pi

1− ui

∏
i:xi=0,qi=1

1− pi

1− ui

Thus, isolating the second term on one side:

∏
i:xi=0,qi=1

1− pi

1− ui

=
∏

i:xi=1,qi=1

1− ui

1− pi

∏
i:qi=1

1− pi

1− ui

The right-hand-side is in the earlier expression for ρ. We’ll substitute
the left-hand-side into that expression:

ρ = α
∏

i:xi=1,qi=1

pi

ui

∏
i:xi=0,qi=1

1− pi

1− ui

= α
∏

i:xi=1,qi=1

pi

ui

∏
i:xi=1,qi=1

1− ui

1− pi

∏
i:qi=1

1− pi

1− ui

= α
∏

i:xi=1,qi=1

pi(1− ui)

ui(1− pi)

∏
i:qi=1

1− pi

1− ui

• Examine the last term. This is again independent of document and
is a “system constant” that we’ll roll into α.

Thus,

ρ = α
∏

i:xi=1,qi=1

pi(1− ui)

ui(1− pi)

• The only remaining thing is to estimate pi and ui.

• Recall that ui = P [di = 1|R = 0,q].

– Given irrelevance (R = 0), what are the chances that a partic-
ular term appears in the document (di = 1)?

– If we have a large document collection, there is no apriori reason
to believe that terms prefer certain documents relevant to the
query.
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– Accordingly, a reasonable assumption is

ui ≈
# doc’s in which term i occurs

# doc’s

– This can be estimated offline for every term i.

• This leaves pi = P [di = 1|R = 1,q].

– This asks: if you know a document is relevant to a query, what
are the chances that term i played a role in the relevance?

– This boils down to identifying the key terms in a document.

• There are many heuristics for estimating pi:

– Use frequency of occurence of term i.

– Use some offline queries or query history to estimate pi.

– Build a model based on small samples.

• Once we are able to compute ρ for any document, we simply return
a ranked list of documents, sorted in decreasing order of ρ.

• History:

– The probabilistic-relevance model was first proposed by Maron
and Kuhn in 1960 [4].

– Since then it has been refined by several people.

– One of the most popular refinements has been the Okapi-BM25
algorithm developed by Robertson and colleagues [2].

2 Latent Semantic Indexing

• Let’s start by reviewing the vector space model:

– Suppose there are m terms.

– Each document dk can be written as a vector dk = (dk,1, . . . , dk,m).

– In the binary model dk,i = 1 or 0 depending on whether the i-th
term is in the document or not.

– One can use real numbers that reflect “importance” of the i-th
term to the document.
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– For example, it’s common to combine the term’s occurence-
count in the document vs. the term’s occurence in the whole
document set, e.g.,

dk,i =
# occurences of term i in dk

β# occurences of term i in all documents

where β is needed because the other denominator term can be
quite large.

– Here, the idea is, if a term occurs in too many documents, it’s
not going to be useful in discriminating between them.

– Similarly, the query is also a vector of this kind: q = (q1, . . . , qm).

• The cosine distance between a query and the k-th document is:

R(q,dk) =
qdk

|q||dk|

– Notice that R is always between 0 and 1 (assuming positive
vector components).

– The closer to 1, the smaller the angle
⇒the more relevant the document

– Thus, one can easily rank documents by their R value.

• Two problems with cosine products:

– For a large number of terms (e.g., 100,000 words), a single dot-
product can take time.

– Most of the dot-product computations are zero.

– The vector-space approach does not take synonyms into ac-
count.

• The Latent Semantic Approach [1] is an attempt to solve both prob-
lems with one technique.

• To start with, let’s define the m × n term-document matrix A as a
matrix with the documents as columns:

– m rows, one per term.

– n columns, one per document.
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– The k-th column is the document vector dk.

– Thus, Aij = the “importance” of term i in document j.

• Note:

– The columns are very long (m = 100, 000 or more).

– The matrix is quite sparse.

• Suppose there was a way to reduce the length of each document
vector:

– Suppose we could reduce dk’s length to 100, and that this was
all non-zero (i.e., useful content).

– Then, dot-products would take less time and be useful.

– There are many techniques for dimension-reduction.

– For example: use the 100 most important rows of A.
⇒But this means selecting 100 terms only .

– Ideally, we’d like to combine terms in some way to “squish” the
matrix down into a smaller space.

– This raises the problem of also “squishing” the query.

The Singular Value Decomposition (SVD) offers one solution to this
dimension reduction.

• The SVD takes an m×n matrix A and a number k and creates three
matrices:

– An m× k matrix Uk.

– A k × k matrix Σk.

– An n× k matrix Vk

These matrices can be multiplied as follows to give a matrix Ak:

Ak = UkΣkVk
T

• The idea is to approximate A using Ak with small k, e.g., k = 100.

– Notice, however that Ak is m× n, the same size as A.

– The savings will come when we handle queries.
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• What is known about this approximation and whether it’s possible?

– It is known that Ak has rank k.
⇒k LI columns (or rows) .

– It is known that Ak is the “best” rank-k approximation to A.
⇒This is with the so-called Frobenius norm .

• How does one get this matrix Ak?

– The SVD theorem states that any matrix A can be decomposed
as

A = UΣVT

where the columns of U are the eigenvectors of AAT, the columns
of V are the eigenvectors of ATA, and Σ is a diagonal matrix.

– Σ = diag(σ1, . . . , σr, σr+1, . . . , σn) are the so-called singular val-
ues or “importance weights”.

⇒Some of these will be small or zero, and can be ignored .

– If σr+1 = σr+2 = . . . = σn = 0 then

A = UrΣrVr
T

That is, those parts of the matrices can be thrown away.

– Now, one can pick k < r so that we get an even smaller decom-
position.

• Of the resulting compressed version, the columns of Vk are the “com-
pressed” documents.

⇒These are size-k vectors in a different space of “coalesced documents”

• A query q needs to be reduced in dimension (to size k) as well.

– Define
q′ = qUkΣk

−1

– This produces a “reduced” document that can be compared to
the reduced columns of Vk.

– The documents are then returned in order of cosine-closeness.
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