12.12 Data Mining: An Introduction

e What is data mining?

— Def: Data mining is the process of extracting hidden patterns or
trends in large data sets for the purpose of prediction.

— The basic idea: comb through available data, looking for unusual
unobvious patterns and report them.

e Why is data mining important?

— Businesses are interested in exploiting knowledge about patterns.

— Standard statistical techniques (multivariate analysis) work only on
numeric data and with few variables.

e Examples of applications:

— Banking.

x Suppose a bank sifted through its archives and discovered the
following statistic:
“TT percent of loan defaults involved (1) a customer in the age
group 18-21, (2) a car loan for a red sportscar and (3) income
group $15,000-$20,000”.

*x The bank can use this pattern to avoid giving loans.

* Similarly, some unobvious patterns can indicate likely attributes
of a “good” customer.

* Today, many banks (e.g., Citibank, Signet) use information ex-
tracted by data mining algorithms.

845

— Sports.

* Suppose a basketball team (e.g., Chicago Bulls) sifted through
their records and discovered the following: “On 60 percent of
plays in which Scottie Pippen is defended by the opposing guard,
the Bulls eventually win the possession.”

« The coach can use this pattern to improve chances of winning.
« Today, several NBA teams use Advanced Scout, a data mining
package to produce such statistics.

— Retail industry.

x By sifting through customer purchase data, a grocery store dis-
covers that “40 percent of customers that buy wine also buy a
specialty cheese”.

« The store can use the information in marketing and display
strategies.

e Several types of data mining:

— Association rule mining: Find “rules” of the sort “77 percent of loan
defaults with attributes A,B,C also have attributes X and Y”.

— Clustering: Find groupings of data based on available attributes
based on the structure of the data, e.g., “90 percent of renters in the
Williamsburg area fall into either the 18-25 or 65-75 age groups”.

— Classification: Find natural groupings of data based on available at-
tributes that seek to predict an outcome. e.g. group bank customers
into three groups: (1) “most-likely to repay”; (2) “most-likely to de-
fault” and (3) “don’t know”.

— Other: finding patterns in sequences (Stock Market application),

deviation detection (Fraud detection application).

846

e Types of data sets:

— Most data sets are large relational tables, with many attributes, e.g.,
bank customers may collect 50-100 attributes on a loan application.

— Some data sets are unnormalized “basket” data, such as the list of
items checked out by each customer at a grocery store.

e Why data mining is an interesting problem:

— Typical data sets are very large with many attributes, e.g.,

« Census data: about 400 attributes per individual.
* Retail store data: millions of transactions, thousands of attribute
types.

— A naive approach of trying all possible rules causes a combinatorial
explosion, e.g,

* Consider a relation R(Aj, Ay, ..., A1go) where each attribute
value is boolean.

x Suppose we are interested in generating rules of the sort
AilAig R Aik — Alej2 R Ajm
e.g., of the 100 records with A3A4A7 true, 68 of them also have

AlAg true.
* Consider all possible combinations of A; A;, ... A;, — Aj A}, ... A;

m*

x For each such combination, scan relation R to count percentages.

847

12.13 Association Rule Mining: Introduction

e Consider data collected at a supermarket checkout counter:

— The system records customer purchases in a variable-size record (un-
normalized), e.g.

rosr=<kEggs, bread, pasta, milk, cheese, beer, soap>.

(Customer 257 bought eggs, bread etc).

— The system has thousands of such customer purchase-records each
day.

— An association rule seeks to answer questions like:
when pasta and pasta sauce are bought, what is the probability that
mushrooms are also purchased?

— In terms of available data, this question can be rephrased as:
among those records that contain both pasta and pasta sauce, how
many also contain mushrooms?

— Why is this question useful?
The answer (if high) can drive pricing and display strategies
= package discount for the combination of pasta and mushrooms.

— Suppose our data has 100,000 records, of which

x 30,000 records contain pasta and pasta sauce;
* 22,500 of these 30,000 records contain mushrooms.

Then, we have the association rule

{pasta, pasta sauce} — {mushrooms}
with

support = 22,500/100,000 = 0.225
confidence = 22500/30,000 = 0.75

848

— Intuition: 75 percent of the time when pasta and pasta sauce are
bought, mushrooms are also bought.

e Both support and confidence are important:

— Consider the rule
{Non-alcoholic beer} — {chips}.

— Suppose

confidence = 0.9
support = 0.001

— Thus, 90 percent of customers that buy non-alcoholic beer also buy
chips.
— But, this pattern occurs only in 0.1 percent of the data
= not an important rule.

e Def: an association rule X — Y, where X and Y are sets of attributes,
satisfies confidence level ¢ and support s if:

1. the actual confidence is at least ¢ and

2. the actual support is at least s.

e The association rule mining problem: given a confidence level ¢ and
a support level s, find all rules that satisfy ¢ and s.

849

12.14 Association Rule Mining: Problem
Formulation

e Notation:

— Let I ={I4,15,...,1,} be a set of items.

Think of I as {eggs,cheese,pasta,...} in the supermarket example.
(Set of all possible supermarket products).

— A subset of items X C [will sometimes be called an itemgroup.
— We will use letters like X and Y to denote itemgroups.

— Let R = {ry,r9,...,m,} be a set of unnormalized records (basket
data).

Here, r; is the set of items bought by customer i,
e.g. T957 ={pasta, pasta sauce, tomatoes, beef, soap}

Thus, Vi :r; C I.
— Def: a record r € R contains itemgroup X if X C r.
— Let R(X) ={r € R : r contains X}.

— For any itemgroup X, let a(X) = |R(X)|, the number of records
that contain X.

— For any itemgroup X, define the support of X to be

_ a(X)
— Define
FR) = (X €1+ 6(x) = S =).

(All the itemgroups satisfying support s).

850

— Def: A rule X — Y is an assoctation rule satisfying support s and
confidence c if

1. X and Y are itemgroups (i.e., X,Y C I).

2. X and Y are disjoint (i.e., X NY = 10).

3. At least s fraction of records contain both X and Y, i.e.,
a(XUY)

4. Of those records containing X, at least ¢ fraction contain Y, i.e.,

a(XUY)
alX) —

C.

e Example: I = {milk, eggs, pasta, pasta sauce, cheese}
R is given by:

ry = <milk, eggs>

ro = <milk, eggs>

r3 = <milk, eggs, cheese>

ry = <milk, pasta, cheese>

rs = <eggs, pasta sauce, cheese>

r¢ = <pasta, pasta sauce>

r; = <pasta, pasta sauce, cheese>

rg = <pasta, pasta sauce, cheese>

rg = <milk, eggs, pasta, pasta sauce, cheese>
rip = <milk, pasta, pasta sauce, cheese>

— Consider X={eggs, pasta sauce}. Then,

R(X) = {rs 1o}

a(X) = 2
B(X) = 130:0.2

851

— Consider X={milk, eggs}.

R(X) — {rla ro, T3, ’I"g}

a(X) = 4
B(X) = 11‘0:0.4

— Consider X={milk,eggs} and Y={eggs}
= not a valid rule since X NY # (.

— X — Y is a potential association rule where X={milk} and
Y ={eggs,pasta,cheese}.

— Consider X={milk,eggs} and Y'={cheese}. Then

|R|] = 10
a(X) = 4
a(XUY) = 2
2
BXUY) = 0= 0.2

Hence

support = B(XUY) = 7| = 10" 0.2
XUY 2
confidence = % = 1 = 0.5

Thus, X — Y with support 0.2 and confidence 0.5.

852

— Suppose s = 0.3. Since |R| = 10, we want all itemgroups that
appear in at least 3 records, i.e.,

a(X)

> 0.3}

Here, Fy3(R) ={ {milk}, {eggs}, {pasta}, {pasta sauce}, {cheese},
{milk,eggs}, {pasta, pasta sauce}, {milk,pasta}, {milk,cheese},
{pasta,cheese}, {pasta,pasta sauce,cheese}, {milk,eggs,cheese},
{milk,pasta,cheese} }.

e Def: A rule X — Y is a I-RHS rule if |Y| = 1.
(Right-hand side has only one item).

e Typical restriction on problem: find all 1-RHS association rules (satis-
fying given s and c).

Examples of 1-RHS rules from above:

{milk} — {eggs}
{eggs} — {milk}
{pasta} — {cheese}
{pasta,cheese} — {milk}
{milk,eggs} — {cheese}

Note that
{milk} — {eggs,cheese}

is a rule but not a 1-RHS rule.

853

e An observation:

— Suppose we have computed (X)) (support) for each possible item-
group X.

— Consider a rule X — Y. Then,

BXUY) a(XUY)/[R|
B(X) a(X)/|R|
a(XUY)
a(X)
= confidence of rule X — Y

— Thus, given only support numbers for itemgroups, we can compute
rule confidences.

— Also, for a rule X — Y to meet the required support s, we must
have (X UY) > s
= X UY € F(R).

— Note that S(X UY) > s = B(X) > s.
= X, X UY € Fy(R).
= The association rule mining problem reduces to finding itemgroups
with large enough support, i.e., computing F;(R).

— Thus, for the remainder we will focus on simply identifying Fy(R),
the set of itemgroups with large enough support.

Typically, we will want to output each itemgroup and its actual
support.

854

12.15 Two Naive Algorithms

e Algorithm: NAIVE-1 (R, I, s)

— Generate all possible itemgroups and initialize a counter for each.

Note: All possible itemgroups = 27 = all possible subsets of I.
— Scan R once and count support for each itemgroup.

— Output those itemgroups satisfying s.
e Analysis of NAIVE-1:

— How many possible itemgroups with I = {I,...,I,,}?
= [2| = 2l = 2m
— If m is large (say, m > 100), 2™ is too big for main memory.
— Also, if |Fs(R)| is small, we waste time updating counts for item-
groups not in Fy(R).
e Algorithm: NAIVE-2 (R, I, s)

— while not over do

x Generate a new itemgroup.

x Scan R to obtain support.

x if support > s, retain itemgroup.
— endwhile
— Output all itemgroups retained.

e Analysis of NAIVE-2:

— Too many scans of the data.

855

e Key observation: X ¢ F,(R) = X UY ¢ F,(R) for any Y.
(If itemgroup X does not satisfy s, neither will any extension of X such
as X UY)

Example: if {milk} occurs in only 0.1 fraction of records, then
{milk,eggs} occurs in no more than 0.1 fraction of records.

This observation is used in better algorithms.
e We will use the following example for illustration:

I = {A B,C,D,E}
rn = <AB>

ro = <A, B>

r3 = <A B E>
ry. = <ACFE>
rs = <B,D,E>
re = <C,D>

rr = <C,D,E >
rs = <C,D,E>
rg = <A B,C,D,E>
ro = <ACD,E>

856

12.16 Algorithm Record-Derived-Itemgroups

e Key ideas:

— Consider the itemgroup ABD and the item E. If ABD has poor
support then so does ABDFE, the extension of ABD to FE.

Thus, B(ABD) < s = B(ABDE) < s.

— We will assume the items are lexicographically ordered.
Thus, we will extend AC'F to ACFG but not ACDF.
(Because ACDF will be considered when ACD is extended).

— The support for a tentative extension can be estimated using inde-
pendence:

~

B(ABDE) = 5(ABD)S(E).
For example, if S(ABD) = 0.4 (40 percent of R) and B(E) = 0.6 is

known from previous iterations, then

~

B(ABDE) = 0.4 x 0.6 = 0.24.

Of course, independence may turn out to be a poor approximation.
— The algorithm makes multiple scans of data. In each scan:

* Counts are maintained for various itemgroups.

« At the end of each scan, itemgroups with low support are dis-
carded.

x As each record is encountered, the items within it are used to
create new potential itemgroups.

« If the estimated support is high, additional extensions are con-
sidered.

x If the estimated support is low, an itemgroup is placed in a
Next_Frontier set (to be re-examined at the end of the pass).

857

— Generally, if an itemgroup was mistakenly placed in the Next_Frontier
set (support underestimated), it’s count will actually be high, and
therefore is considered for extension later.

— If an itemgroup was mistakenly extended too much (support over-
estimated), it will be discarded at the end of the scan.
— Example: consider the itemgroup A, B and the record {A, B, D, E, F'}.

x Itemgroup AB can be extended to create the following potential
itemgroups: ABD, ABE, ABF, ABDE, ABDF, ABEF and
ABDEF.

* Suppose it turns out

B(ABD) > s
B(ABE) < s
B(ABF) > s
Then,
- ABD can be extended to the next size (ABDE or ABDF)
lexicographically.

- ABE is not extended (and placed in Next_Frontier).

- ABF cannot be extended because the record has nothing
beyond F'.

- Since ABD got extended to ABDFE, we consider expanding
ABDE to ABDEF (if the estimated support is good).

— Why are low-estimate itemgroups kept around in Next_Frontier?
= need to compute counts in case estimate was bad
= they may still satisfy s.

e Pseudocode:

— Note: A first pass is done separately to initialize counts for the
1-item itemgroups.

— Assume that the set of items is [= {I1,..., [, }.

858

Algorithm: RECORD-DERIVED-ITEMSETS (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.
1. Large := 0
// First pass
Vk: «a[li] := 0 // Initialize counts
for j ;= 1to |R|do
for £ := 1tomdo
if Ik € rj
a[[k] = a[[k] + 1;
for k .= 1tom
BIL] = alLil/|R];
if B[I] > s
Large := Large U {[;};
endfor;
// All other passes.
12. Frontier := [I; // Keep Frontier sorted by size.
13. while Frontier # ()

© 00N otk W

_ =
™)

4. H = 0
15. for j := 1to |R| // Scan data.
16. for each itemgroup X € Frontier
17. if X € record r;
18. G := COMPUTE-EXTENSIONS (X, I, r);
19. for each Y € G
20. ifYeH
21. Y .count := Y.count + 1;
22. else
23. H = HU{Y}
24. Y.count := 1;
25. endif;
26. endfor;
27. endfor;
28. endfor;
.. continued

859

Algorithm: RECORD-DERIVED-ITEMSETS ... continued

29.
30.
31.

32

33.
34.
35.

// Identify itemgroups that satisfy s.
for each Y € H
if Y.count/|R| > s
Large := Large U {Y'};
. // Set next frontier to be considered for extension
Frontier := Next_Frontier N Large;
endwhile;
return Large;

860

Algorithm:

20. until No

CoMPUTE-EXTENSIONS (X, I, r)

Output: Extensions of X.
1. k := |X]|;
2. G = {X};
3. repeat
4 No_change := true;

// Compute extensions for size k.
5. for each Y € G’ such that |Y| =k

Input: an itemgroup X, the set of items I, record r.

Next_Frontier := Next_Frontier U Y;

19. k =k +1;

_change or k = m;

21. return G := G'UNext_Frontier;

// Suppose Y = I; I;, ... 1.
6. for! .= jp+1tom
7. if I; € record r
8. Z = Y U{[};

// See if Z is worth the trouble.

0. 812 == AIY]+ AL
10. if B[Z] > s
11. G = G'U{Y};
12. No_change := false;
13. else
14.
15. endif;
16. endif;
17. endfor;
18. endfor;

e Example: s = 0.3

— First pass: a(A) =6, a(B) =5, a(C)

861

B(A) = 0.6, B(B) = 0.5, B(C) =0.6, 5(D) = 0.6, B(F) =0.7.
Frontier = {A, B,C, D, E'}
— Second pass:
1. When 1 =< A, B > is scanned:

* The only possible extension is AB (BA is not considered
because it is not a lexicographic extension).

« BAB) = B(A)B(B) = 0.3
= AB.count := 1.
« H={AB}.
2. When ry =< A, B > is scanned:
% Only extension possible is AB.
x AB.count = 2, H = {AB}.
3. When r3 =< A, B, E > is scanned:
* Extensions (with support):
G = {AB(0.3), AE(0.42), BE(0.35), ABFE(0.21)}.
*x AB.count=3, BE.count=1, ABFE.count=1.
x H={AB,AE, BE, ABE}.
* Next_Frontier={ABE?} (it’s estimate was not high enough).
4. When ry =< A,C, E > is scanned:
x G ={AC(0.36), AE(0.42), ACFE(0.252), CE(0.42)}.
* Counts: AB(3),AC(1),AE(2),ABE(1),ACE(1),BE(1),CE(1).
* Next_Frontier={ ABE, ACE}.
5. When r; =< B, D, > is scanned:
x G ={BD(0.3), BDE(0.21),
BE(0.35), DE(0.42)}.
* Counts: AB(3), AC(1),AE(2), ABE(1),ACE(1), BD(1), BE(2),
BDE(1),CE(1), DE(1).
* Next_Frontier={ABE, ACE,ADE, BDFE}.
6. When r¢ =< C, D > is scanned:

862

* G={CD(0.36)}.
* Counts: AB(3), AC(1),AE(2), ABE(1),ACE(1),BD(1), BE(2),
BDE(1),CD(1),CE(1),DE(1).
* Next_Frontier={ABE, ACE,ADE, BDE}. (Unchanged).
7. When r; =< C, D, E > is scanned:
* G ={CD(0.36),CFE(0.42),CDE(0.252), DE(0.42)}.
* Counts: AB(3),AC(1),AE(2),ABE(1), ACE(1),BD(1),
BE(2),BDE(1),CD(2),CE(2),CDE(1),DE(2)}.
* Next_Frontier={ABE, ACE,ADE, BDE,CDE}.
8. When rg =< C, D, E > is scanned:
x G ={CD(0.36),CFE(0.42),CDE(0.252), DE(0.42)}.
* Counts: AB(3), AC(1), AE(2),ABE(1), ACE(1),BD(1), BE(2),
BDE(1),CD(3),CE(3),CDE(2),DE(3)}.

Continuing, the large itemgroups turn out to be:
Large = {A,B,C,D,E,AB,AC,AE,ACE, BE,CD,CE,CDE, DE}.

— Third pass:

* Here, the size 3 itemgroups are {ACE,CDE}.

They were expected-small but turned out to have enough sup-
port.

* These can’t be expanded (they end in E)
= we’re done.

— Final result:

A B,C,D,E,AB, AC, AE, ACE, BE,CD,CE,CDE, DE.

863

12.17 Algorithm Pass-Derived-Itemgroups

e In the previous algorithm, the following problem arises:

— Suppose a record has items < A, B,C, D, E, F > and suppose that
{AC, AD,CD,CE} are in the current Frontier.

— Potential extensions include {ACF, ADF,CDF,CEF}.

— If all of them have small expectations, we’re still going to maintain
counts for them
= the algorithm wastes time counting useless itemgroups.

— We will try to minimize this problem in the next algorithm.
e Key ideas in Algorithm PASS-DERIVED-ITEMGROUPS:

— In pass k only itemgroups of size k are considered.

— At the end of pass k— 1, we will have counts for the large itemgroups
of size k — 1
= we know Lj_1={large itemgroups of size k — 1}.
— Before starting pass k, we compute all possible itemgroups of size k.

— Example:

% Suppose in pass k = 5 we generate ACDFEF has a potential
itemgroup.

* We consider all possible (k — 1)-size subgroups, such as ACEF
and ADEF.

« If any of these subgroups is not in L;_1, we can reject ACDEF
immediately.

— Another idea used is to generate potential groups in an intelligent
way (exploiting lexicographic order):

* Suppose k =5 and Ly = {ABCD,ABCFE, BCDE, BCEF}.

864

x The naive way to generate size-5 itemgroups would be to consider
all possible extensions of the above four itemgroups.

« Note instead, that the itemgroup ABCDE will be large only if
ABCD and ABCE are already large,
i.e., only if both ABC'D and ABCFE are in Ly.
= we will allow ABCDE to be generated only from ABCD and
ABCE.

« In general, we will generate X1 Xy ... X 1 X from X1 Xo. .. X 0 X 1
and X1 Xy ... X, 0X}.
x Interestingly, this “combining” can be stated as a join:
- Note that Li_1 is a collection of size-(k — 1) itemgroups.

- Suppose that each itemgroup is considered a tuple in a re-
lation called Lj_q, where the i-th attribute in a tuple is the
t-th item in the itemgroup.

- Example (k = 5): the tuple for ABCE will be the tuple
<A B,C,E >.

- Suppose the attribute names are itemy,..., itemy_1.

- The join statement is:

select p.itemy,...,p.itemy_ 1, q.itemy_;
from L,_,asp, Ly_1 asq
where p.item; = g.item;

and p.itemy_ 5 = ¢q.itemy_»
and p.item;_; < g.itemy_;

— One additional observation:

x Consider £ = 6 and suppose the join resulted in ABCDEF'.

* We now need to look at all possible subgroups (of size k — 1) of
ABCDEF.

x How many possible subgroups are there?
= at most 6 (drop one letter at a time for each size 5 string).

e Pseudocode:

865

Algorithm: PASs-DERIVED-ITEMGROUPS (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.
// First pass
1. Vk: a[ly] := 0 // Initialize counts
2. forj := 1to |R|do
3. for £ ;= 1tomdo
4 if I €r;
5 afly] = ofly] + 1;
// L[1] := BuiLD-SET (0);

6. fork := ltom

7. if a[l]/|R| > s

8. Ly = LU {]k}, // ADD-SET (L[l],]k),
// All other passes.

9. k := 2

10. while Ly_; # 0 // SET-NoT-EmpTY (L[1]);

11. C := COMPUTE-JOIN (Lj_1, Ly_1);

12. // C := BUILD-SET (COMPUTE-JOIN (Lj_1, Lx—1));
13. for each itemgroup X = I;, ... I;, € C' // Winnowing

14. [=1, over := false;
15. while [< k — 2 and not over
16. if Y = Ij1 R Ijj71ljl+1 . [jk ¢ Li_4 // NoT-IN-SET (L[k — 1], Y)
17. C = C—{Y}; // REMOVE-ELEMENT (C,Y)
18. over := true;
19. else
20. [= 1+1;
21. endif;
22. endwhile;
23. endfor;
.. continued

866

Algorithm: PASS-DERIVED-ITEMGROUPS ... continued

24. fori := 1to R do // Check counts

25. for each k-sized itemgroup X € r; do
26. if X € C' // SET-MEMBER-OF (X, C)
27. X.count := X.count + 1;

28. endfor;

29. endfor;

30. L = {X € C: X.count> s};

31. // Use BUILD-SET and ADD-SET here.
32. k = k+1;

33. endwhile;

34. return Up>qLy;

NOTE:

— The join computation is not shown.

— Some set operations are shown mathematically, with comments in-
dicating the kinds of set-manipulation functions needed.

e Example: (same example as before with s = 0.3)
— First pass: a(A) =6, a(B) =5, o(C) =6, a(D) =6, a(E) =T.
L, := {A,B,C,D,E).
— Second pass (k = 2):
* The (L1, L1)-join gives C = {AB, AC,AD,BC,BD,BE,CD,CE, DE}.

% Since each 1-size subset of each of these is in Li, the winnowing
does not remove anything from C.

x After a scan, the counts obtained are:

C = {AB(4), AC(3), AD(2), BC(1), BD(2), BE(3),CD(5), CE(5), DE(5)}

867

* Those with high enough count (3 or more) are retained:
L « {AB, AC, AE, BE,CD,CE, DE}

— Third pass (k = 3):
* The (Ls, Ly)-join gives C = {ABC,ABE, ACE,CDE}, e.g.,

2nd part of join condition:
B<C

AB AC — ABC

joined result
first part of join condition:
A=A

2nd part of join condition:
B<E

{
AB AE ~—™ ABE

/T joined result

first part of join condition:
A=A

x Winnowing:
- For ABC, we need to check whether BC' € Ly

= not in Ly
= discard ABC'.

- For ABE, we need to check whether BE € Ly
= BFE € Ly
= retain ABFE.

- Continuing, we find that ABE, ACE,CDE are retained.

x After a scan, the counts are:
ABE(2),ACE(3),CDE(4).
* Those with high enough count (3 or more) are retained:

Ls = {ACE,CDE}.

868

— Fourth pass (k = 4):
* The (Ls, L3)-join is empty.

— Final result:

A B,C,D,E,AB, AC,AE, BE,CD,CE, DE, ACE,CDE.

869

12.18 Using Hashtrees: The Apriori Algorithm

e Recall that in the k-th pass of PASS-DERIVED-ITEMGROUPS:

— A set of size-k itemgroups is computed via a join.
— The set is pruned using the size-(k — 1) itemgroups.

— A scan is made to generate the count for each itemgroup.

e A run-time profile of the previous algorithm shows that a lot of time is
spent in generating counts:

— For each record, we need to figure out which counts should be up-
dated.

— Example:

« Suppose C = {ABC, ABD, ABE, ACE, BOE, BDE,CDE?}.

* Consider a record < A, B, D, E, F' >.
Which of the above itemgroups occur in the record?

* One way of checking: Record Subset method

1. generate all possible size-3 itemgroups in the record:
ABD,ABE,ABF, ADE, ADF,AEF, BDE, BDF, BEF, DEF
(10 itemgroups).

2. For each such itemgroup, check whether it is in C.

x For a record with n items and size-k itemgroups: (Z)

= very large for even moderate sizes (e.g.,n = 20,k = 10).
* Another approach: Itemgroup Scan method
1. Scan each itemgroup in C.

2. Test whether each itemgroup is in the given record.
= will be slow if number of itemgroups is large.

870

e Using a trie in the Record Subset method:

— To test whether whether ABC' is in C', one approach is to test the
string ABC' against each itemgroup in C.

— A faster approach is to use a suitable data structure, such as a trie.

— Example: suppose C = {ABD,ACD,ACE, BDFE}

root of trie

RN

— However, if the number of items is large (.e.g, 10°), the trie could

search path
for ACE

be very wide
= may not fit in memory.

— To reduce branching factor, some paths can be coalesced:

. root of trie

search path
for DX...

This is the basic idea used in the hashtree.

871

e Hashtrees: key ideas

— Recall: in pass k, C is a list of size-k itemgroups.
— In pass k, a fresh hashtree is constructed for size-k itemgroups.

— The list of itemgroups is stored in an array, e.g.

typedef struct itemgroup_type {
char *itemgroup; // The actual itemgroup
int count; // The count, initially set to zero
} itemgroup_type;
itemgroup_type *itemgroup_array;
// Later
itemgroup_array[i] .count ++; // Incrementing the count

— The hashtree is like a B+-tree in some ways:

x The tree stores pointers to the actual data.

* In this case, the correct index into the itemgroup_array is
stored.

x The hashtree has internal and leaf nodes.
« Internal nodes are used for navigation.

* Leaf nodes contain pointers (offsets) to the itemgroup array.
— The hashtree is also different in many ways:

x The leaf nodes are not linked.

x The search is not in-order: which branch to take depends on a
hashing function.

872

e FExample:
— Consider a hashtree with branching factor = 4.
(Typically, branching factor is higher).

— Suppose we want to check whether the itemgroup ACF is in the
itemgroup array:

Input: ACF
root
h(A) =1
[interior
node
h('C’) =3
h(CF)=0 leaf node

\ pointer to array

* Apply the hashing function to A at the first level, to C' at the
next level and F' at the third level.

* Once at the leaf, search for F' in the leaf and follow the pointer
to the array.

overflow leaf node

« Note: the depth of the hashtree is always the itemgroup size
= we will always stop at the leaf level with the last item.

e [nsertion:

— First insert the itemgroup in the itemgroup array, and note the array
offset (pointer).
— Then find the appropriate leaf by doing a regular search.

— Insert in sorted order in the leaf, along with pointer to the itemgroup
array.

— If leaf is full, extend by adding an overflow leaf node.

873

e Checking which subsets are in a record:

— In a search, we are given a record (e.g., < A,C, F,G, H >) and we
want to know which itemgroups are in the record
= need to increment their counters.

— One approach:

x Generate all possible size-k itemgroups of the record.

* For each such itemgroup, traverse the hashtree and see if it exists
in the itemgroup array.

x For every itemgroup that is found, increment the counter.
— Recursive approach:
« Rather than generate all possible size-k itemgroups, a simple
recursive method can be used.
* Observation: each subtree of the root is a size-(k — 1) hashtree.
* Thus, to check all itemgroups beginning with A:
- Hash A = say, we get the ‘1’ branch.
- The remainder of the record is < C, F, G, H >.

- Now apply the function recursively to the ‘1’ subtree with
record < C, F,G, H >.

*x Now, size-3 itemgroups in the record < A, C, F, G, H > can start
with any one of the items A, C or F.

* Thus, we do hash-search at the root for each of these (and the
reminder of the record).

* In the case of starting with F', the only possibility is to hash G
at the next level, then H at the third level.

874

Input: FGH
r=<F,G,H>

h(F)=0

h (G) =2

h (H) =3

875

* But if we start with C' at the root:
- At the next level we have < F,G, H >.

- Both F' and G are hashed separately because we have three

possible size-2 itemgroups: F'G, FH and GH.
= the first items are F’ and G.

Input: CFGH r=<C,F,G,H>

h(G)=2 h(H)=3

e Pseudocode:

The algorithm has been called the Apriori Algorithm in the literature
(because “checking for low-support subgroups” is done prior to a scan).

876

Algorithm: APRIORI (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.

© 00N ootk W

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

// First pass
Vk: «a[li] := 0 // Initialize counts
for j := 1to |R| do
for £ := 1tomdo
if Ik € rj
ally] = a[ly] + 1;
h := HASHTREE-CREATE (1) // Size = 1.
for k := 1tom
if of1,)/|R) > s
HASHTREE-INSERT ([});
// All other passes.
k = 2,
while HASHTREE-NoOT-EMPTY (h)
C' := COMPUTE-JOIN (Lg_1, Ly_1);
h' := HASHTREE-CREATE (k);
for each itemgroup X =I;, ... I;, € C' // Winnowing
[= 1; valid := true;
while [< k£ — 2 and valid
[]Y =1 ... 1 L, ...I.
if not HASHTREE-RECURSIVE-SEARCH (h,Y)
valid := false;
else
[== 1+4+1;
endif;
endwhile;
if valid // All subgroups checked out
HASHTREE-INSERT (R, X);
endfor;
.. continued

877

Algorithm: APRIORI ... continued

27. HASHTREE-DESTROY (h);

28. h := h/;
29. fori := 1to |R|do
30. HASHTREE-UPDATE-COUNTS (h, r;, k);

// Remove all itemgroups with low counts.
31. for each itemgroup X € h do // X is in array
32. if X.count < s
33. HASHTREE-REMOVE-ITEMGROUP (h, X);
34. k = k+1;
35. endwhile;
36. return Ug>qLyg;

Algorithm: HASHTREE-UPDATE-COUNTS (h, T, k)

Input: hashtree id h, record r, size k.
Output: Counts are updated.
// Suppose r =< I, I;,,..., I >.
1. forp := 1tol—k
2. HASHTREE-RECURSIVE-UPDATE (7, p, k, h.root);
3. return;

878

Algorithm: HASHTREE-RECURSIVE-UPDATE (7, p, k, node)

Input: record r, offset p, size k, hashtree node.
Output: Counts are updated.
// Suppose r =< I, I;,, ..., I; >.

1. if node.leaf = true // Bottom out of recursion.
2. if I; € node
3. follow pointer to itemgroup array and increment count;

// Note: count should be incremented only once
// for each record.

4 return;

5 endif;

6. endif;

7. ¢ := hashfunction ([});

8. mnode2 := node.child[c];

9. forq .= p+1tol—k

10. HASHTREE-RECURSIVE-UPDATE (7, ¢, k — 1, node2);

11. return;

879

Algorithm: HASHTREE-RECURSIVE-SEARCH (node, Y1)

Input: hashtree node, itemgroup Y, offset .
Output: true if itemgroup is in tree, false otherwise.
[/ Assume Y =I; ... ;.
1. if node.leaf = true
2 if I;, € node
3 return pointer to location in itemgroup array;
4 else
5. return NULL; // false
6. else
7 ¢ := hashfunction ([});
8 node2 := node.child[c];
9. return HASHTREE-RECURSIVE-SEARCH (node2, Y, i+ 1);
10. endif;

880

12.19 On-Line Analytical Processing (OLAP):
Introduction

e On-Line Analytical Processing (OLAP) is the term used for a class of
aggregate queries.

e Consider an airline (McValue Airlines) with the following data

SALES (YEAR, CONTINENT, FLT_TYPE, REVENUE).
where the FLT_TYPE is given by

FLT_TYPE DESCRIPTION

1 Short-domestic
2 Long-domestic
3 International

and where the data in SALES is: (revenue in millions)

SALES YEAR CONTINENT FLT.TYPE REVENUE

1997 Europe 1 125
1997 Europe 2 50
1997 Europe 3 225
1997 Asia 1 25
1997 Asia 2 75
1997 Asia 3 100
1997 N.America 1 325
1997 N.America 2 450
1997 N.America 3 75
1998 Europe 1 110
1998 Europe 2 40
1998 Europe 3 200
1998 Asia 1 20
1998 Asia 2 130
1998 Asia 3 50
1998 N.America 1 460
1998 N.America 2 170
1998 N.America 3 30

881

Note: number of tuples =2 YEARs x 3 CONTINENTS x 3 FLT_TYPEs
= 18.

e Typical queries:

— What is the total 1997 revenue?
— Qutput the total revenue in each continent year-by-year.
— What is the total 1997 revenue for International flights?

— What is the total revenue on European domestic (long and short)
flights across all years?

— What is the maximum revenue in any European flight category in
any year?

NOTE:

— All the queries involve aggregate functions (sum and max above).

— The queries involve aggregates across various subsets of the at-
tributes.

The answers:

— What is the total 1997 revenue?
= $1,450 million.

— Output the total revenue in each continent year-by-year.

1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

— What is the total 1997 revenue for International flights?
= $400 million.

— What is the total revenue on European domestic (long and short)
flights across all years?
= $325 million.

882

— What is the maximum revenue in any European flight category in
any year?
= $225 million (International).

e Computing the queries in SQL:

— What is the total 1997 revenue?

select S.YEAR, sum(S.REVENUE)
from SALES S

where S.-YEAR = 1997

group by S.YEAR

— QOutput the total revenue in each continent year-by-year.

select S.YEAR, S.CONTINENT, sum(S.REVENUE)
from SALES S

group by S.YEAR, S.CONTINENT

order by S.CONTINENT

— What is the total 1997 revenue for International flights?

select S.FLT_TYPE, sum(S.REVENUE)
from SALES S

where S.-YEAR=1997 and S.FLT_TYPE=3
group by S.FLT_TYPE

What is the cost of computation?
— Consider the query “Output the total revenue in each continent
year-by-year.”
*x Need to sort data by continent and year.

x After sort, aggregates can be computed in a single scan.

— If data was sorted by (CONTINENT, YEAR), then it must be re-
sorted for aggregates on (FLT_TYPE).

— Generally, if the data is already sorted according to the desired
output, one scan is required.

— Otherwise, a sort is also needed.

883

12.20 OLAP: The CUBE View

e Most OLAP applications consider data with m + 1 attributes in which
m attributes are “parameter” attributes and the (m + 1)-st attribute is

the “aggregate” attribute.
E.g., in
SALES (YEAR, CONTINENT, FLT_.TYPE, REVENUE)

— REVENUE is the aggregate attribute.
(Sums are computed over REVENUE values.)

— YEAR, CONTINENT and FLT_TYPE are parameter attributes.

— Thus, there are 3 parameter attributes
= we call this a 3D aggregate problem.

— For m parameter attributes, it’s an m-dimensional aggregate prob-
lem.

In general, the data will be a relation R(A;1, ..., Ay, F') where

— Ay, ..., A, are the parameter attributes.

— F is the aggregate attribute.
The subcube with attributes A4;, ... A;, will be denoted by S(4;, ... A4;,).

884

e [t is often convenient to view a 3D problem using a cube:
(Although strictly a cuboid, the term cube is used).

Original data

\ Europe
Q CONTINENT Asia \\ ‘ / / Europe

Europe 750
400 \ N.America \ \/ / .

\ R / A
\ Asia g 90 \ \ / / 350 400 s1a
1510 75 ™ 425 TN ~J 400]] N.America
\T 205~ * 2\ //1998 " 200 }10
T...| 785> 150 <1997 YEAR | 200 —1 .=
N.America \ 620\ FLT_TYPE 3 / 660| .-
1 \ 105 | 850 /<\A 2D subcube
, \ /

1065 3
915 o ¥ w 1210 | TA 1D subcube
/ 680 1450] 7000

Only one of 1997
these is stored @@

680

T 2660
grand total

For m-dimensional data, there are several subcubes for each dimension
k < m.

885

12.21 OLAP: Repeated Queries

e Typically, a manager or accountant sits at a terminal and queries on
several attribute subsets repeatedly
= multiple views required quickly.

If queries are generated via SQL statements
= could take a long time.

e Prior computation and storage of subcubes:

— It is better to materialize each subcube and store it.
— For example, the (YEAR,CONTINENT) subcube is computed as:
1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200

1997 N.America 850
1998 N.America 660

— Storage options:
1. Store each possible subcube separately:

* Store the subcube S(YEAR, CONTINENT) in a relation S1
(YEAR, CONTINENT).

* Store the subcube S(YEAR, FLT_TYPE) in relation S2
(YEAR, FLT_TYPE).

* Store the subcube S(CONTINENT, FLT_TYPE) in relation
S3 (CONTINENT, FLT_TYPE).

* Store the subcude S(YEAR) in relation S4 (YEAR).

* ...etc.

2. Store each subcube within the original relation using null values.
For example, the subcube S(YEAR, CONTINENT) is

886

1997 Europe 400
1998 Europe 3950
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

These tuples would be extended with null’s and added to the
original data:

SALES YEAR CONTINENT FLT.-TYPE REVENUE

1997 Europe 1 125
1997 Europe 2 50
1997 Europe 3 225
1997 Asia 1 25
1997 Asia 2 75
1997 Asia 3 100
1997 N.America 1 325
1997 N.America 2 450
1997 N.America 3 75
1998 Europe 1 110
1998 Europe 2 40
1998 Europe 3 200
1998 Asia 1 20
1998 Asia 2 130
1998 Asia 3 50
1998 N.America 1 460
1998 N.America 2 170
1998 N.America 3 30
1997 Europe null 400
1998 Europe null 350
1997 Asia null 200
1998 Asia null 200
1997 N.America null 850
1998 N.America null 660

NOTE: since null already has a use, the use of the keyword all
has been proposed.

e An observation:

— The tuples for the subcube S(YEAR, CONTINENT) repeat the
strings “1997” and “1998”

887

= a waste of space.

— The only real information is the collection of aggregates:

1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

Therefore, it is more efficient to directly store the subcubes using
an internal representation of a matrix:
= called the multidimensional approach.

e Problems with large dimensions:

— A 20-dimensional data set has 220 subsets of attributes
= 220 possible subcubes.

— Many subcubes are of high dimension
= need to store high-dimensional matrices.

888

12.22 The Multidimensional Approach:
Hash-Based Computation

e Some useful observations:

Computing sizes of subcubes:

— Consider the subcube S(YEAR, CONTINENT).

How many entries in the subcube?
2 YEAR’s, 3 CONTINENT’s
= 6 entries

— In general, for relation R(A;, ..., A,,) let
n(A;) = # values of attribute A; present.
Then, the size of subcube A4; A;,... A

ip 1S

SiZG(Ail c. Azk) = n(A“)n(Ah) c. n(Alk) = jli[l n(Alj)

— We have made an implicit assumption: all possible combinations of
values exist as tuples in the data
= the full-cube assumption. E.g., if 1997 exists as a YEAR and

Europe exists as a CONTINENT then < 1997, Europe > will exist
in some tuple.

Example:

— Consider the relation R(Aq, Ay, As, ') with

n(As) = 1000

889

Thus, there are 4 x 50 x 1000 = 200, 000 tuples.
— Which subcubes need to be computed?
* The subcube S(A;AyAs3) is the given data.
* The three 2-dimensional subcubes S(A;Ay), S(A1A3) and S(AA3).
* The four 1-dimensional subcubes S(A4;), S(As), S(As) and
S(Ay).
— Suppose 1000 integers fit into a block.

— Sizes:

size(A1A2As) = 200,000 values = 200 blocks
size(A1A2) = 200 values = 1 block
size(A;As) = 4000 values = 4 blocks
size(AsA3) = 50,000 values = 50 blocks

) = 4 values = 1 block

) = 500 values = 1 block

)

= 1000 values = 1 block

size(Ay
size(As

size(As

e Computing each subcube via hashing:

— Scan original file.

— Hash tuples into hash table containing sums;

— Update appropriate sum for each tuple scanned.
For the above data:

= 6 scans of data
= 6 scans of 200,000 tuples.

Observe:

— Once the subcube S(A;A3) is computed, S(A;) can be computed
from a scan of S(A;As)
= only one block needs to be scanned.

890

e The hash table:

— Consider computing the subcube A;As.

— There are 4000 values of A;As
= need a sum for each of these 4000 values.

— Create a hashtable with 4000 such sums.

— Scan data and hash each tuple to discover which sum to update.
Example:

— Suppose we are computing the subcube S(YEAR, CONTINENT).

— We will need a sum for each possible combination of YEAR and
CONTINENT:

1997 Europe
1998 Europe
1997 Asia

1998 Asia

1997 N.America
1998 N.America

In this case, we need 6 sums (the size of the subcube).

— In practice, the size of the subcube can be large
= many counters will be needed.

— As we scan the actual data, we need to add the revenue in a tuple
to the appropriate counter.

— A simple scan or binary search can be used, but hashing is very
efficient.

— If each sum is in a different bucket, a single access is needed for an

update.
e Example:
Consider the relation R(Aj, Ay, As, Ay, F') with
’I’L(AQ) = 50

1000
= 200

The subcubes are:

— 4-dim: A;AsA3A,.
— 3-dim: A;AyAs, A1AAy, A1A3Ay, AjAsAy.
— 2-dim: A Ay, A1As, A1Ay, AgAs, AsAy, AsAy.
— 1-dim: A;, Ay, A3, Ay
Sizes:
size(A1 A A3Ay) = 4 x 107 values = 40,000 blocks
size(A1A2As) = 200,000 values = 200 blocks
size(A1A2A4) = 40,000 values = 40 blocks
size(A1A3As) = 800,000 values = 800 blocks
size(AyA3Ay) = 107 values = 10,000 blocks
size(A1A2) = 200 values = 1 block
size(A1As) = 4000 values = 4 blocks
size(A1A4) = 800 values = 1 block
size(AsA3) = 50,000 values = 50 blocks
size(AsA4) = 10,000 values = 10 blocks
size(A3A4) = 200,000 values = 200 blocks

(Sizes of the 1-dim cubes not shown).

Construct a tree:

— Step 1: Place the subcube A; A3 A3A4 at the root:

892

40,000 blocks —+=— sijze of subcube

root ——————» Al A2 A3 A4

— Step 2: No choice of parent for 3-dim subcubes A;AsAs, A1AxAy,
A1A3Ay, AsA3A,.

40,000 blocks -+— sjze of subcube

root —————— Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

— Step 3: For subcube A;A; pick smallest parent
= 40 blocks of A;AsA,.

40,000 blocks -+— sjze of subcube

root ——————» Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

/1

Al A2

— Step 4: For subcube A;Aj pick smallest parent
= 200 blocks of A;AsAs.

893

root —>

200

40,000 blo

cks -+— sjze of subcube

Al A2 A3 A4

=7 N\

10,000

Al A2 A3

Al A2 A4

Al A3 A4

A2 A3 A4

« /

Al A3

/1

Al A2

— Step 5: For subcube A A4 pick smallest parent
= 40 blocks of A1A5A,.

root —m>

40,000 blo

cks -+— gjze of subcube

Al A2 A3 A4

=7 -

 /

Al A3

200 10,000
Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4
AN
Al A2 || Al A4

— ... continuing, we get the final tree:

894

40,000 blocks -+— gsjze of subcube

root —————» Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

N NS e

A1 A3 || A2 A3 AlLA2 || A1A4 || A2ZA4 || ASA4

Ve A\

A3 A4

Suppose memory size is 500 blocks. Several subtrees can be computed
in parallel:

40,000 blocks size of subcube

root ————— Al A2 A3 A4

200 4 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 QAZ A3 A4
4 / 50\ / /1 \ 1 0
A1 A3 || A2 A3 ALA2 [ATA4 || A2A4 || A3 A4
/7T

A3 Al A2 Ad Less than 500 blocks
in each group

895

12.23 Hierarchies on Attributes: Roll-up and
Drill-down

e What is a hierarchy on an attribute?

— Consider the attribute DATE in
SALES (DATE, CONTINENT, FLT_TYPE, REVENUE).

— There is a natural division of dates by YEAR and MONTH.
— YEAR and MONTH form a hierarchical division:

YEAR 1997 1998

MONTH JAN FEB ... DEC JAN FEB ... DEC
e Why is this important?

— Queries often use hierarchies.
— Example:

* A user requests aggregate revenue by the subcube (YEAR, CON-
TINENT).

« Then, if that’s interesting, the user wants to look at a breakdown
month-by-month
= a subcube addressed by (MONTH, CONTINENT).

x This is an example of drilling down a hierarchy.
— Example:
* A user requests aggregate revenue by (DATE, FLT TYPE).

x Then, a broader picture can be obtained by requesting the sum-
mary (MONTH, FLT _TYPE)

= a subcube addressed by (MONTH, CONTINENT).

896

x This is an example of rolling up a hierarchy.

e Both drill-down and roll-up are useful OLAP operations.

897

