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Abstract

Software security has become a prominent area of re-
search in recent years, with research efforts spanning a wide
range of topics. Among these are techniques such as those
in this paper that are in the general area of languages, com-
pilers and architecture aimed at increasing the security of
computing systems. This paper describes a compiler tech-
nique that performs risk-analysis on source code and gen-
erates an encrypted executable that both provides security
but yet reduces overhead by selectively encrypting low-risk
portions with less overhead. Regions of the code that are
more vulnerable receive a higher degree of encryption. Ex-
perimental results for this technique, which we call Region-
Based Security, using a collection of benchmarks show that
execution overhead is reduced considerably by using this
approach.

1 Introduction

Attackers exploit software vulnerabilities caused by pro-
gramming errors, and system or programming language
flaws. Since the worst of these exploits occur during the
operation of the system, it is crucial to verify the integrity
of executing software at the time of execution. Sophisti-
cated attackers are able to tamper with hardware in order
to alter execution during runtime. Many software and com-
bined software-hardware approaches have been proposed to
detect these attacks [4, 1, 3, 5]. CODESSEAL is one such
tool. It is an approach that combines static and dynamic
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verification methods with compiler techniques and a proces-
sor supplemented with a secure hardware component in the
form of an FPGA (Field Programmable Gate Array). This
combination of compiler-instrumented executables and ac-
companying hardware-support has been shown to provide
a secure execution environment for fully encrypted execu-
tion [11]. The tool incorporates techniques to prevent code
tampering, code understanding, and several types of replay,
data and structural attacks.

Several code security approaches like tamper resistant
packaging, copyright notices, guards, code obfuscation,
register encoding [4, 1, 3, 8, 12], focus on providing so-
lutions for a specific type of vulnerability and are sus-
ceptible to code tampering and code injection by sophis-
ticated attackers. These approaches suggest applying the
techniques to the entire system. As the entire system may
not be vulnerable to attacks, it is possible to extract effi-
ciency by concentrating high-overhead encryption on those
components more vulnerable than others. We instrument a
compiler with Region-Based Security (RBS), in which ba-
sic blocks are assessed for their risk level and correspond-
ingly secure using different mechanisms. We integrate RBS
into the CODESSEAL suite of tools to provide an exper-
imental platform in which to evaluate this approach. With
this mechanism, CODESSEAL breaks the code into regions
of different vulnerabilities and applies different techniques
such as instruction hashing, instruction and data encryption,
or control flow protection The results presented in this pa-
per show considerable decrease in overhead over applying
security mechanisms equally on the entire system.

Finally, we also point out that our approach brings to-



gether two diverse strands of research in the software pro-
tection area. The first strand consists of static risk-analyzing
tools such as FlawFinder, MOPS or ITS4[2, 6, 4, 13, 14].
The second consists of a variety of compiler and compiler-
hardware approaches, such as [3, 1, 5, 11] that instrument
code with checksums or encrypts code for fully-encrypted
execution. By using the results of a static analyzer and re-
fining the results to apply to the basic blocks of executable
code generated by a compiler, a compiler-hardware soft-
ware protection mechanism can carefully target the appli-
cation of security mechanism to help manage the tradeoffs
between security and performance.

This paper is organized to present the CODESSEAL ar-
chitecture in Section 2, which is the framework on which
RBS is implemented. The presentation is self-contained.
The key ideas and implementation details are presented in
Section 3. Section 4 gives the results and Section 5 con-
cludes the paper with details of future work.

2 CODESSEAL

CODESSEAL (COmpiler DEvelopment Suite for SE-
cure AppLications) is an infrastructure focused on joint
compiler/hardware techniques for fully encrypted execu-
tion, in which the program and data are always in en-
crypted form in memory. Encrypted execution is preferred
for highly-secure applications in which guarantees against
both disruption and loss of intellectual property are de-
sired. However, as is well-known now, simply encrypted
execution (keeping instructions and data in encrypted form)
alone does not prevent all forms of attack. Several types
of replay, data and structural attacks, such as control-flow
attacks, are known. These attacks have been termed En-
crypted Executable and Data (EED) attacks [11]. EED at-
tacks exploit structure vulnerabilities in encrypted instruc-
tion streams and data that can be uncovered by direct ma-
nipulation of hardware (such as address bus manipulation)
in a well-equipped laboratory. To help detect such attacks,
the CODESSEAL approach makes use of a combination of
compiler-directed encryption and supporting hardware that
maintains and checks structural information as well as data
integrity.

2.1 Architecture

The CODESSEAL framework has two main compo-
nents: (1) static verification and (2) dynamic verification.
Static integrity and control flow information are embed-
ded into the executable during compilation. The security
module is responsible for applying the security techniques
such as encryption, hashing. The static verification module
checks the overall integrity of the executable and signature
[10]. Upon success, the executable is launched and each

block is dynamically verified in the supporting hardware,
in this case reconfigurable logic (FPGA) that is itself pro-
grammed to provide this support. The dynamic verification
module is responsible for preventing run-time attacks on the
program. The dynamic verification module has two func-
tions: (1) check that code and data blocks have not been
modified at run-time by an attacker and (2) assert legal con-
trol flow in the program. Any changes made to the control
flow graph of the program is considered equivalent to code
tampering, following which the program is halted.

The CODESSEAL hardware architecture is shown in the
Figure 1. One advantage of using an FPGA is that the se-
curity mechanisms and cryptographic algorithms can be re-
programmed as they change, or even customized to each ap-
plication. The FPGA is placed between the main memory
and the cache that is closest to the main memory (either L1
or L2, depending on the system)(Figure 2). The instructions
and data are loaded into the FPGA in blocks. Decryption
and other security-related checks such as control flow ver-
ification are performed in the FPGA. Thus, the decrypted
code and data are visible only inside the chip, thereby de-
feating an attacker who sniffs the address/data lines between
processor and memory.

2.2 Security Techniques

CODESSEAL provides several security mechanisms to
protect against EED attacks. These mechanisms include in-
struction and data encryption, instruction hashing, control
flow protection using hardware stack, all of which protect
the system from the sophisticated attackers who have ac-
cess to the hardware of the system. CODESSEAL starts by
fully encrypting each executable at compile time with the
assumption that decryption will be performed by the FPGA
at runtime. CODESSEAL also assumes that keys are loaded
into the FPGA securely, either once in a secure location or
at runtime using a secure load of the FPGA’s configuration.
The compiler also generates a hash for each code block. As
pointed out in [11], the hash maintains code integrity and
encryption protects against loss of intellectual property. In-
struction and data block hashes (using SHA-1, for example)
are maintained inside the FPGA or with the basic blocks
and verified each time a new block is loaded. If the com-
puted hash does not match the stored hash, the processor is
halted. However, neither technique prevents structural (con-
trol flow) attacks.

The control-flow verification is provided using hardware
stack. A replica of hardware stack is implemented in the
FPGA which stores the return address of each function call.
On each function return, the return address is compared
with the top of the stack. This assures that the function
is returning to the correct position in the control flow. By
using additional hardware to verify the program at runtime,
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adding additional code to the executable can be avoided and
thus preventing code analysis attacks.

Encryption is also performed on the data to protect the
system from attacks such as buffer overflow and data ma-
nipulation. In this mechanism, the data stored in the mem-
ory is always encrypted and signed. This makes it harder for
the attacker to change the data to alter the execution. When-
ever data is written back to the memory, the FPGA encrypts
and sends back the data to the memory. When a data block
is read from the memory, the FPGA decrypts and compares
the hash of the block. If the block doesn’t match its hash,
the execution will be halted.

Thus, CODESSEAL provides data and instruction en-
cryption, instruction hashing and control flow protection
security mechanisms which focus on protecting different
kinds of vulnerabilities. However, these techniques carry
a significant overhead. Some of the overhead can be miti-
gated using hardware techniques such as pipelining and by
using a large cache in the FPGA. Even so, there is still some
overhead incurred when blocks are decrypted for the first
time, or whenever blocks are re-loaded. The purpose of this
paper is to explore a software approach to lower this over-
head, using compiler-directed region-based security.

3 Region Based Security

We propose Region-Based Security, a compiler-driven
approach that combines risk-analysis and selective protec-
tion to help reduce the overhead in encrypted execution plat-
forms. The key idea is that each block of code may be as-
sessed for its vulnerability, following which protection is
applied selectively. For example, variable declarations and
mathematical operations are reportedly not as susceptible
as control or data instructions. Hence, it makes sense to ac-
cord these more susceptible instructions a higher degree of
protection. We contrast this new approach with the stan-
dard encrypted-execution approach of protecting the entire
executable.

3.1 Risk Analysis

We add a risk analysis module to the compiler. This
module is responsible for assessing the risk inherent in each
block of code. Note that our paper does not focus on novel
risk analysis techniques; we assume that any risk-analysis
module can be used. Several static risk analyzers are in
use today, some of which have been commercially success-
ful. After analyzing the vulnerabilities, the module assigns
different risks to different instructions. It maintains a list
of known vulnerable functions and based on the risks pre-
sented by the functions, each is associated with a different
risk level.

The proposed RBS mechanism uses four different risk
levels: ‘Low’, ‘High’, ‘Undecided’ and ‘Neutral’. In this
scheme, risk levels ‘High’ and ‘Low’ are assigned to in-
structions based on how static-analzyers rate the functions
these instructions were compiled from. The ‘Neutral’ risk
level is assigned to instructions such as declarations and
mathematical operations which do not pose much of a threat
based on known attacks. The risk level ‘Undecided’ is as-
signed to any instruction for which risk level cannot be de-
termined by the risk analysis alogrithm.

As mentioned, static analysis of source code is per-
formed to find the vulnerabilities. The Risk Analyzer mod-
ule identifies vulnerabilities, for example, in library func-
tions such as strcpy(), memcepy(), or sprintf(). This module
is inserted after the parser module of the compiler (Figure
1). During the analysis of the parse tree, if the module finds
a tree node which uses one of these known vulnerable func-
tions, the module finds the risk level associated with this
function and assigns the tree node with the risk level. This
modified parse tree with the risk levels is passed on to the
semantic analyzer. The semantic analyzer module gener-
ates an Intermediate Representation (IR) with the associated
risks. This IR is sent to the code optimizer module which
generates the optimized IR with corresponding risk levels.
Then, the assembler takes in the optimized IR with the risks
and produces a file with the risks associated with each as-
sembly instruction. This file is passed to the CODESSEAL
framework for assigning regions with risks. Note that all the
instructions in a function are assigned a risk level no higher
than the risk level assigned to the function. We point out
that several other types of vulnerable patterns are presented
in[9,7, 13, 14,2, 6]. These ideas can easily be incorporated
in our approach as alternative types of risk analysis.

3.2 Region Risk Allocator

The Region Risk Allocator module is responsible for
breaking the code into different regions and assigning
risks to these regions based on the instruction-level risk
values identified earlier. This module is placed in the
CODESSEAL framework (Figure 1) at the beginning of the
tool chain, so that the regions can be assigned with the risks.
Then the framework can decide which security technique is
best suited to protect against the risk presented by the re-
gion. A mapping between risk level and the security mech-
anism is made, enabling the framework to choose the tech-
niques based on the risk levels. The security module applies
these techniques and embeds the risk level in to the region
so that the static and the dynamic verification modules can
check the validity of the region based on the risk level em-
bedded there.

The regions in RBS are the basic blocks generated by the
backend of the compiler. The region risk allocator conser-



vatively assigns each basic block with the highest risk level
of the instructions in that block. After each basic block has
a risk level assigned, the security module applies the secu-
rity mechanism corresponding to the risk level. It also em-
beds the risk level in the basic block so that the static and
dynamic verification modules can extract the risk level and
validate the basic block.

4 Results
4.1 Experimental Setup

We now describe our experimental setup. We used the
SimpleScalar 3.0 architecture simulator configured for the
ARM Processor (ARM1020E core, 400 MHz). The gcc
V3.3 ARM cross compiler was used for static compilation
of the benchmarks. The FPGA chosen was modeled after
the Virtex-II XC2V800 (200 MHz, 3 MB memory). 32 byte
caches were used that run write-through and LRU Replace-
ment policies. The main memory parameters were: 100
Mhz, with 24 processor cycles delay for first time access
and 4 cycles for subsequent accesses. Branch prediction in
SimpleScalar was turned off and the FPGA was called on
every instruction or data cache miss.

Encryption was performed using an implementation of
the AES algorithm that operates on 128-bit blocks with 40
processor cycles delay per block. We used an implementa-
tion of SHA-1 hashing that takes 164 processor cycles for
the hash calculation and two cycles for hash comparison.
The hashes are stored in each block or in the FPGA. The
FPGA performs hash verification as each block loads. The
risk levels are stored in the basic block and the mapping
table is stored in the FPGA. Following an L1 cache miss,
when a block is brought in, the block’s hash verification is
performed. This involves three steps: (1) the hash of the
block is calculated, (2) the corresponding block’s hash is
fetched from either the FPGA memory or from basic block
itself, and (3) the two hashes are compared.

The experiments used a database of functions and their
risk levels. The table 2 gives the risk level and the cor-
responding security mechanism used. All the three ap-
proaches assign Instruction Encryption and Hashing for
‘Low’ risk basic blocks; and Instruction Encyrption, Hash-
ing and Control Flow protection using hardware stack for
the basic blocks with risk level ‘High’. ‘Neutral’ basic
blocks in the three approaches are not assigned any secu-
rity mechanism because they are considered harmless. The
risk level ‘Undecided’ in the first approach is conservatively
assigned all the security mechanism: Instruction and Data
Encryption, Instruction and Data Hashing and Control Flow
Protection etc. In the second and third approaches, the ‘Un-
decided’ basic blocks are assigned the same security mech-
anism as ‘Low’ and ‘High’ risk level respectively.

The benchmark suites used in the experiment are DIS
and Media. All the benchmarks are run through the
CODESSEAL framework with Region Based Security en-
abled. The table 1 gives the number of regions (basic
blocks) executed for each different risk level. The table
shows the penalties when running different schemes. The
figure 3 presents the effectiveness of RBS in decreasing the
number of basic blocks that need security. The comparisons
are made against a baseline with no protection. A discus-
sion of these results is presented in the next section.

4.2 Analysis

The results presented in the paper evaluate the efficiency
of the Region Based Scheme on two metrics: the num-
ber of basic blocks that need protection and the execution
penalty (overhead). A decrease in the number of blocks
needing protection will decrease the execution time, power
consumption and memory usage of the embedded system.
The figure 3 gives the decrease in number of basic blocks
that are vulnerable. The RBS mechanism decreases vulner-
able blocks by 11% to 24 %. The decrease is due to the
recognition of some basic blocks as no-threat regions i.e.
these regions do not pose any threat and hence can be safely
assumed to require no protection.

The table 1 shows the efficiency of the RBS scheme in
identifying the different threat regions. Based on the vulner-
ability of functions and their risk levels, every instruction in
the program is assigned a risk level. When the program is
divided into basic blocks, the maximum risk of the instruc-
tion in the region becomes the region’s risk level. In all the
benchmarks, a considerable number of basic blocks have
risk level ‘Neutral’. These pose no threat. There is also a
considerable number of basic blocks with risk level ‘High’.
Most of the functions the benchmarks use, such as file op-
erations and IO operations, are all assigned the risk level
‘High’ and hence the large number. The ‘Undecided’ re-
gions also share a major part of the basic blocks. Since the
system cannot assess the vulnerabilities of these regions,
three different approaches have been chosen. As the risk
level is uncertain, one approach conservatively chooses all
the security mechanisms in order to protect against all at-
tacks. Second approach chooses the same security mecha-
nism as the ‘Low’ risk level in an assumption that *Unde-
cided’ risk level may not be need more protection than the
low risk level basic blocks. This assumption may be unreal-
istic and hence a third approach is designed that assigns the
same security mechanism as the "High’ risk level assuming
that ‘Undecided’ blocks are as vulnerable as the ‘High’ risk
level basic blocks. The table 2 presents a sample mapping
between risk levels and security mechanisms. Approach I
assign all the schemes to ‘Undecided’ risk level, Approach
IT employs the ‘Low’ security mechanism and Approach I11
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Unique Basic Number of Basic Blocks with Risks
Benchmark Blocks Executed | Undecided | Neutral | Low | High
Bitcount 1451 431 105 0 915
Crc 1190 485 65 2 638
Dijkstra 1381 467 68 2 844
FFT 1700 454 411 1 835
Patricia 2270 454 164 5 1647
SHA 1238 517 71 4 646
String Search 899 410 78 0 411
Susan 1464 448 277 15 723
Field 1481 480 104 0 897
Pointer 1464 497 129 0 838
Transitive Closure | 1359 487 109 0 763
Update 1389 483 106 0 800

Table 1. Number of Unique Basic Blocks executed for each risk level

Security Mechanism
Risk Level | ApproachI Approach II Approach III
Undecided | All Schemes Encryption and Hashing | Encryption and Hashing
Control Flow Protection
Neutral - - -
Low Encryption and Hashing | Encryption and Hashing | Encryption and Hashing
High Encryption and Hashing, | Encryption and Hashing, | Encryption and Hashing,
Control Flow Protection | Control Flow Protection | Control Flow Protection

Table 2. Mapping between risk levels and security mechanisms




Benchmark Entire System | ApproachI | Approach Il | Approach III
Bitcount 1.62 1.50 1.02 1.49
Crc 12.00 11.34 6.45 11.34
Dijkstra 17.59 6.52 0.71 0.88
FFT 24.73 8.84 2.35 3.46
Patricia 13.86 6.38 3.67 4.59
SHA 0.31 0.27 0.17 0.24
String Search 10.78 7.25 3.89 4.66
Susan 4.79 2.09 0.97 0.99
Field 1.08 0.61 0.27 0.41
Pointer 24.3 9.75 1.57 2.39
Transitive Closure | 432.12 154.94 0.12 0.14
Update 31.65 14.33 3.82 5.33

Table 3. Execution Penalties of three approaches over baseline.

employs the ‘High’ security mechanism for the ‘Undecided’
risk level. These ‘Undecided’ instructions are generated by
the loader module of the compiler, on which the system
does not have control. In the future, the loader will be mod-
ified to assign risk levels to any instruction that it generates.
This would decrease the number of regions with risk level
‘Undecided’ and could further decrease the overhead.

The table 3 presents the results of the three approaches
presented in the table 2. In the ’Entire System’ approach,
the entire system is protected by all schemes implemented
in CODESSEAL. The penalities are calculated over the
baseline execution without any security protection. Apply-
ing protection to entire system has the highest overhead.
The results indicate that applying all the schemes for the
‘Undecided’ risk level (Approach I) has a high overhead
over the other two approaches. Approach I employs all the
security mechanism for the ‘Undecided’ risk level and this
increases the overhead. An unusual penalty increase can
be seen in the transtive closure benchmark. The reason is
due to the application of data encryption and data hashing
mechanism on the large amount of data used by this bench-
mark. This increase is not seen in the other approaches
as they don’t use data security mechanisms. Hence, the
overhead can be controlled by changing the security mech-
anisms. Approach II has lower overhead than Approach
III, as the security mechanism applied for ‘Undecided’ risk
level in Approach II produces lower overhead but also pro-
vides lower protection. A considerable amount of decrease
in overhead can be seen when RBS scheme is adopted in the
three approaches. The RBS schemes decreases the overhead
considerably when compared to applying all the schemes
and at the same time providing the same level of secu-
rity. Different approaches produce different overheads; this
gives the desingner a choice - if one wants to decrease the
overhead, one can weaken the security and vice versa.

The results presented in the paper show that RBS is ef-
fective as an approach, and because it is complementary to
the actual security mechanisms, can be implemented as an
independent compiler module. An RBS optimization also
leads to lower power consumption and memory usage, both
valuable resources in embedded systems.

5 Conclusion and Future Work

Region Based Security (RBS) is a compiler-level tool for
encrypted execution plaforms that allows careful tradeoff
of security and performance. The approach uses the out-
put of well-known risk-assessing static analysis methods to
selectively apply a suite of security techniques that match
risk-level with the strength of the security technique. We
incorporated RBS into the CODESSEAL framework and
used benchmarks to evaluate the effectiveness of RBS. Ex-
perimental results show a considerable decrease in over-
head. Future research work will focus on incorporating
a wider variety of risk analysis, incorporating assessments
from multiple static analysis tools.
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