
Real-Time Scheduling with
Hardware Data Structures

Gedare Bloom, Gabriel Parmer, Bhagirath Narahari, and Rahul Simha
Department of Computer Science, The George Washington University

Email: {gedare,gparmer,narahari,simha}@gwu.edu

Abstract—Two essential features of a real-time operating
system (RTOS) are time management and task scheduling.
Such features reduce software developers’ burden of design-
ing, implementing, and validating generic system infrastructure,
thus lowering costs and decreasing application time-to-market.
However, there is a cost that is often paid as system overhead
during the runtime. Hardware coprocessors that encapsulate
RTOS services can reduce system overheads and increase the
amount of CPU time available to applications.

Prior work in scheduling coprocessors have moved scheduling
and event processing of a RTOS into hardware. Our work
returns the control logic of scheduling coprocessors back to
software, and captures the data-centric logic as ahardware data
structure. Separating the control and data aspects of scheduling
coprocessors yields efficient yet flexible hardware support for
real-time systems. We demonstrate the flexibility of the hardware
data structure by implementing two classic periodic task sched-
ulers, the rate monotonic (RM) and earliest deadline first (EDF)
algorithms, and use the same structure for managing timers.

I. I NTRODUCTION

System overhead must be accounted properly when design-
ing a real-time system, or else task deadlines might be missed.
However, accounting for the overhead may lead developers
to discard sets of tasks that would otherwise meet their
deadlines. Despite the efforts of a real-time operating system
(RTOS) to have minimal and constant-time overheads, the
demand for high-resolution timing and scheduling by real-time
applications, such as video processing, leads to smaller OS
ticks and greater scheduling overheads [1].

Prior work has shown that migrating the scheduler to hard-
ware can lower the runtime overheads of admission control
[2] and dynamic-priority scheduling [3], [4]. In addition to
migrating scheduler services, others have proposed placing
timer tick and interrupt processing together with the scheduler
in a hardware coprocessor [1], [5], [6]. These hardware task
schedulers use some form of a hardware priority queue (PQ)
[7] to efficiently select the next schedulable task. Hardware
timer management uses delay counters that are updated on
each OS tick (now generated by an external interrupt from
either the hardware clock or the OS). Our work balances
the strengths of hardware with the flexibility of software by
retaining the efficient hardware PQ mechanism as ahardware
data structure(HWDS) and allowing software to control the
scheduling policy.

We compare our HWDS-based task scheduling with both
software- and hardware-only scheduling, in which the sched-
uler is fixed in software or hardware respectively. We have

implemented each of the three approaches in a cycle-accurate
simulator and evaluate them in terms of performance. Our
results show that the critical overhead of the scheduler and
time tick processing is captured by the HWDS, so that
our approach is around 60% as effective as hardware-only
scheduling coprocessors without sacrificing the flexibility of
software.

The contribution of this work is to introduce HWDSs
for improving the performance of real-time systems without
sacrificing flexibility. We demonstrate the flexibility of the
HWDS by re-using the same hardware for multiple purposes,
including runqueue processing for various scheduling polices
and timer queue processing.

II. H ARDWARE DATA STRUCTURES

Hardware support for real-time scheduling is a well-
established field, which we review in section V. The key
departure that our solution makes with respect to prior work
is to isolate the data-centric mechanisms of the hardware from
the policy-related hardware control logic. We refer to the
data-centric mechanism as a hardware data structure (HWDS),
which is related to the notion of data structure. Just as a data
structure encapsulates data and its access patterns, so toodoes
a HWDS. By extracting parallelism and performance in the
data-centric aspects of task scheduling algorithms, HWDSs
improve predictability and performance with respect to soft-
ware scheduling and improve both flexibility and hardware
costs with respect to hardware scheduling.

Our work focuses on preemptive priority-driven scheduling
with the rate monotonic (RM) and earliest deadline first (EDF)
algorithms for tasks that are independent and periodic (no ape-
riodic or sporadic tasks) on a single processor, the CPU. Both
the RM and EDF algorithms are straightforward to implement
in software and have simple schedulability tests. Replacing
the ready queue structure of either algorithm with a hardware
priority queue (PQ) yields a scheduler that has constant-time
operations for adding and removing tasks.Deadline folding[8]
with modular arithmetic solves the problem of finite deadline
values.

A. Hardware Priority Queues

A priority queue is an abstract data structure with insert,
extract, and read first (peek) operations.Any data structure that
sorts its elements can implement a PQ, for example heaps and
self-balancing binary search trees both implement a PQ with



logarithmic-time insertion and extraction, with a constant-time
cost to read the highest priority element. Hardware PQs are
hardware implementations of the PQ data structure.

III. E XPERIMENTAL SETUP

To evaluate the effectiveness of HWDS for scheduling,
we implemented the RM and EDF scheduling algorithms
as software-only schedulers, software schedulers supported
by HWDSs, and hardware-only schedulers. We implemented
the software schedulers in RTEMS [9] and implemented the
hardware support for scheduling in the cycle-accurate Opal
processor simulator, a module for the Simics simulator from
the GEMS [10] simulation suite. All of our experiments are run
with Simics and the GEMS’ Opal simulator, without using the
Ruby memory model. We also used Cacti 4.1 [11] to estimate
the delay and power dissipation of our HWDSs.

A. RTEMS

The Real-Time Executive for Multiprocessing Systems, or
RTEMS, is an open source real-time operating system. We
extended RTEMS to support our experiments. So that RTEMS
will run on GEMS, we added support for the SPARC-V9
family of processors, in particular the UltraSPARC-III pro-
cessor model for Simics’ Serengeti target. We also added an
EDF scheduler to RTEMS, and re-wrote the existing scheduler
to better isolate the following data structures from the task
management logic.

The timer chain is a doubly-linked list of zero or more
nodes for managing task timers. A task can add a timer with
an event to the timer chain and provide a timeout, measured
in OS ticks, at which point the timer will “fire” the event. The
timer chain is a sorted linked list withO(n) insert, butO(1)
removal and efficient updates.

The ready queue(or ready chains) is used by the scheduler
to manage the set of ready tasks and assign the highest priority
task to the CPU. The ready queue is implemented as a 256-
element array of FIFO lists. Each list represents a priority
level, with the zero level as the highest priority. Tasks with
equal priorities are placed on the same FIFO list. The highest
priority task is the head of the first non-empty FIFO from
the beginning of the ready queue. This structure is efficiently
indexed by maintaining a bit map to index non-empty FIFOs.

Periodic tasks are implemented in applications by register-
ing a task-specific timer to track the task’s period. A task
becomes periodic by creating a timer and executing a loop that
starts by setting its timer to the current tick plus its period.
We extended the interface for creating periodic tasks so that
periodic tasks can be created and scheduled according to the
EDF algorithm, which required an extra call-out to update the
deadline of a task when a job is released.

Our EDF implementation is straightforward. We replaced
the ready queue with a red-black tree that sorts tasks by
deadline values. We chose a self-balancing binary search tree
over a heap so that duplicate deadlines are detected easily.The
ready queue also maintains a linked list which holds all of the

ready tasks, including those with duplicate deadlines, which
simplifies the search tree implementation.

We use RTEMS with the SPARC-V9 port on the Simics
Serengeti target at the 150 MHz CPU frequency, which can
provide about 3 MB to an application for stack and heap data.
The MMU on the platform cannot be disabled, and RTEMS
relies on the firmware to manage the MMU and some of the
other system traps. The clock driver relies on the tick register,
which is advanced after every instruction by Simics.

B. Task Set Generation

We generate pseudo-random task sets to exercise our
scheduler implementations using distributions inspired by
Baker [12]. A set ofn tasks is created by choosing integer
task periodspi uniformly from [1, 50]. Task utilizationsui

are then chosen uniformly from[0.001, 1), implicitly selecting
task execution timesei. After all n tasks have been assigned a
utilization, eachui is normalized so that

∑
n

i=0
ui = U , where

U is some target utilization value. This method of generating
tasks provides a variety of task sets while being able to control
the number of tasks and the task set utilization.

We developed a basic test application for all of our ex-
periments. The test application supports a variable numberof
independent, periodic tasks with aui and pi. Each task also
knows the maximum of all thepi, P = MAXn

k=1
(pk). Each

periodic task’s workload is a CPU-bound busy loop that counts
the number of instructions executed in the loop. The busy loop
approximates the number of instructions in a microsecond
in an inner loop, and an outer loop counts the number of
microseconds of execution to reachui in the task’spi. The
busy loop consumes CPU time proportional toui, neglecting
cache, interrupt, and exception events. Each taskti executes
its periodic loop until it completes2 ∗ P/pi periods, so that
the task with the largest period executes exactly twice, andthe
test runs for no longer than3 ∗ (P − 1).

We do not include task creation, initialization, or deletion
in our measurements. These operations often are not on the
critical path and do not make much use of the ready queue or
timer chain structures, so we chose to avoid including them in
our experiments. We also try to limit the effects of exceptions
and interrupts.

C. Hardware Data Structures for Scheduling

We implemented the hardware support for scheduling by
modifying Opal and RTEMS. New “magic” instructions trig-
ger the hardware, with different instructions to identify the
operations of enqueue, extract, and read (first) for the hardware
PQ. We use the software implementation to simulate the func-
tionality of the hardware PQ, and use the magic instructions
to properly account for the resources consumed during the
hardware execution.

Because Opal does not control the SPARC’s tick register,
which is used to track time in RTEMS, the hardware operations
consume the same amount of perceived time as the software;
a welcome side-effect is that the hardware-supported tests



execute similar instruction counts and mixes as the software-
only tests, making test runs between the software and hardware
scheduling consistent.

We model the hardware PQ as a cache, so that we can use
freely available tools to obtain reasonable estimates for delay
and power costs at a given technology node size. We used
Cacti 4.1 [11] to estimate the delay and energy use of enqueue,
extract, and read operations on a hardware PQ. For the enqueue
and extract operations, we use a fully associative 1KB cache
with an 8 byte cache line at the 0.8µm technology feature
size. This is the feature size used by Opal for Wattch power
modeling. The 8 byte cache line is sufficient to hold a pointer
to a task control block, and the cache tag can hold the priority
value. The fully associative cache is a good substitute for the
enqueue and extract operations, which cause comparisons at
every node in the PQ. The access times and energy for the
enqueue and extract operations are 9.2 ns (2 cycles) and 20.29
nJ. Because the PQ can return the highest priority element
without using any global wires, the read operation is similar to
accessing a direct mapped cache. The same cache parameters
are applied but with a direct mapping. The read operation has
an access time of 4.74 ns (1 cycle) and uses 0.7 nJ.

All hardware operations were simulated and accounted to
a specific HWDS, with separate counters for each operation
on the timer chain and ready queue. Each distinct access of
a HWDS increments a counter for that structure and for the
operation. These counters are used to add the cycle delays and
to estimate the dynamic power dissipation of the HWDS. We
do not estimate the static power of the hardware PQ.

D. Hardware-only Scheduler

We also simulate a hardware scheduler by encapsulating
all of the processing that the system does for the OS clock
tick. All explicit accesses of the timer chain, ready queue,and
scheduling subsystem, except for yields and dispatches, are
subsumed by the hardware scheduler. The hardware scheduler
does not capture all task state management, in particular calls
made by tasks that modify their state, for example sleeping.

IV. EXPERIMENTS AND RESULTS

We conducted a series of experiments to evaluate HWDSs
in the context of real-time systems. The effect of HWDSs
on overall system performance is measured by observing the
change in CPU cycles when running the basic test described
above with varying numbers of tasks and utilizations per task
set. We measured performance speedup for software schedul-
ing, HWDS-supported scheduling, and hardware scheduling
for both RM and EDF scheduling. In this paper, performance
speedup is computed as the difference in cycles consumed
between software scheduling and HWDS scheduling, divided
by the total number of cycles used to complete the test.
Additional measurements are taken to evaluate the energy cost
of the HWDS, which is the energy use of HWDS divided by
the total processor power dissipation.

A. Performance of Hardware Data Structures

We measured the performance speedup from using HWDSs
by generating task sets of sizen in 20, 40, 60, and 80. We
normalized the utilizations of tasks to a task set utilization U
of 0.2, 0.4, 0.6, and 0.8. 10 task sets of each combination ofn
andU were generated, for a total of 160 task sets in all. Each
task set is a copy of the basic test, with pseudo-random periods
and utilizations. We ran the same task sets with the software
scheduler, the software scheduler augmented with HWDSs,
and the hardware scheduler.

Figure 1 shows the performance speedup of using hardware
PQs for replacing the software-based timer chain and ready
queue for the RM and EDF schedulers. The results are grouped
according to the target task utilizationU , with each bar an
average of the 10 tasks for the particularn and U . The first
four bars are forU = 0.4, the next four areU = 0.6, then
U = 0.8, and finallyU = 1.0. Error bars show the standard
deviation.

Fig. 1. Performance improvement of the hardware data structure(HWDS)
based RM and EDF schedulers over software-only scheduling.Improvements
come from replacing both the timer chain and ready queue with a hardware
priority queue.

Part of the motivation for HWDSs is that they provide
similar performance benefits to a hardware-based scheduler
while being generic, flexible, and applicable to many different
algorithms. Figure 2 shows initial results for how well the
HWDSs perform with respect to our approximation of a hard-
ware scheduler. We only add the delay of accessing the HWDS
to the hardware scheduler and assume other operations are not
on any critical paths. Also, we ignore possible communication
latencies, which can be significant for off-chip coprocessor-
based hardware schedulers. Thus our comparison is at least
fair, and at worst biased in favor of the hardware scheduler.

Across all of the tests, the gap between the HWDS approach
and the hardware scheduler sits between 0.3% and 3.8% of
overall processor performance speedup. This is a modest gap
when one considers the conservative estimates we use for the
performance costs of the hardware scheduler.



Fig. 2. Performance speedup of the HWDS as compared to the speedup of
the hardware-only RM and EDF schedulers over software-onlyscheduling.
Performance penalties for accessing the HWDSs and the hardware schedulers
are assumed to be identical, which is unlikely the case.

V. RELATED WORK

Hardware support for scheduling has been an area of interest
in the queuing hardware of packet-switched networks. Moon
et al. [7] compare four approaches to hardware PQs for high-
speed networks and introduce an approach that melds two
of the previous solutions. Kim and Shin [8] describe an
architecture for EDF scheduling for ATM switch networks,
which is also applicable to task scheduling and introduces
deadline folding.

For real-time task scheduling systems a number of hardware
scheduling coprocessors have been proposed. The first use of
hardware scheduling of which we are aware is in the Spring
Scheduling Coprocessor (SSCoP) [2]. SSCoP is primarily
used to generate a schedule for a set of tasks and to ensure
that the schedule is feasible under the system’s real-time
constraints. Saez et al. [3] put EDF and slack stealing with task
state management in hardware. Hildebrandt et al. [4] propose
enhanced least-laxity-first scheduling. Kuacharoen et al.[1]
implement a configurable hardware scheduler that manages
sleeping tasks and the task table. Kohout et al. [5] propose
the Real-Time Task Manager (RTM), which is a processor
extension that implements task management in hardware,
including fixed priority scheduling, timer management, and
event management. Zong [6] implements EDF scheduling and
task state management in hardware forµC/OS.

In contrast to the related work, our approach implements
only the PQ mechanism in hardware and allows RTOS soft-
ware to control the scheduling policy. Our approach is flexible
and generic like software while remaining fast like hardware.

VI. CONCLUSION AND FUTURE WORK

As a hybrid approach, hardware data structures provide the
flexibility of software and the performance of hardware. Initial
results are encouraging, showing that HWDS capture at least
50% of the performance benefits of scheduling coprocessors.

We are pursuing multiple directions with this work. First,
we focused on overall performance so far, but we are also
interested in how HWDS affects the latency of OS services
and thus schedulability. Second, our model of the HWDS and
hardware schedulers suffers from software artifacts such as
exceptions and cache misses, which we plan to reduce. Third,
a HWDS affects the system’s memory usage. We are investi-
gating how a HWDS changes the cache behavior of memory-
bound applications. Fourth, our method for generating test
applications is based on prior work in schedulability and may
not be appropriate for our uses; we are interested in generating
test applications that can be used to reliably evaluate HWDS
in the context of real-time scheduling.

ACKNOWLEDGMENT

This work is supported in part by NSF grant CNS-0934725
and AFOSR grant FA9550-09-1-0194. The authors thank
Guru Venkataramani and Veronica Bloom for their insightful
suggestions.

REFERENCES

[1] P. Kuacharoen, M. A. Shalan, and V. J. M. III, “A configurable
hardware scheduler for Real-Time systems,”In Proceedings of
the International Conference on Engineering of Reconfigurable
Systems and Algorithms, pp. 96—101, 2003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.585

[2] W. Burleson, J. Ko, D. Niehaus, K. Ramamritham, J. A. Stankovic,
G. Wallace, and C. Weems, “The spring scheduling coprocessor:
a scheduling accelerator,”IEEE Trans. Very Large Scale Integr.
Syst., vol. 7, no. 1, pp. 38–47, 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=297731.297736

[3] S. Saez, J. Vila, A. Crespo, and A. Garcia, “A hardware scheduler for
complex real-time systems,” inIndustrial Electronics, 1999. ISIE ’99.
Proceedings of the IEEE International Symposium on, vol. 1, 1999, pp.
43–48 vol.1.

[4] J. Hildebrandt, F. Golatowski, and D. Timmermann, “Scheduling co-
processor for enhanced Least-Laxity-First scheduling in hard Real-
Time systems,” inReal-Time Systems, Euromicro Conference on. Los
Alamitos, CA, USA: IEEE Computer Society, 1999, p. 0208.

[5] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support forreal-
time operating systems,” inProceedings of the 1st IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis. Newport Beach, CA, USA: ACM, 2003, pp. 45–51. [Online].
Available: http://portal.acm.org/citation.cfm?id=944645.944656

[6] L. Zong, “Nanoprocessors: Configurable hardware accelerators for em-
bedded systems,” Master’s Thesis, 2003.

[7] S. Moon, K. Shin, and J. Rexford, “Scalable hardware priority queue
architectures for high-speed packet switches,” inReal-Time Technology
and Applications Symposium, 1997. Proceedings., Third IEEE, 1997, pp.
203–212.

[8] B. K. Kim and K. Shin, “Scalable hardware earliest-deadline-first sched-
uler for ATM switching networks,” inReal-Time Systems Symposium,
IEEE International. Los Alamitos, CA, USA: IEEE Computer Society,
1997, p. 210.

[9] “RTEMS: Real-Time executive for multiprocessor systems.”
http://www.rtems.com/. [Online]. Available: http://www.rtems.com/

[10] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset,”SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 92–99, 2005. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1105734.1105747

[11] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” HP Laboratores
Palo Alto, Tech. Report HPL-2006-86, 2006.

[12] T. P. Baker, “A comparison of global and partitioned EDF schedulability
tests for multiprocessors,” Florida State University, Tech. Rep. TR-
051101, 2005.


