
Application-Kernel Collaboration Mechanisms for
Real-Time Cluster Server under Overloading

Yu Tang#, Rahul Simha#, Shuyu Chen*, Changqing Bu*, Guanghui Chang*

#Department of Computer Science, The George Washington University
Washington, DC 20052, U. S. A.

{yutang, simha}@gwu.edu
*School of Software Engineering, Chongqing University

Chongqing 400030, P.R. China
sychen@cqu.edu.cn

Abstract

 Cluster-based servers delivering timely responsive
service can shorten response latency and maximize
system throughput through multithreading. However,
under high workload, large volume of threads may
overload the kernel, leading to an inoperational system
“hold-out” status. Majority of overload control work
have been done at application level, but lack the
collaboration between application and kernel to
proactively respond to overloading. In this paper we
propose two application-kernel cooperative
mechanisms, of which the Flush-Out function recovers
system from overloading by filtering out certain amount
of events from kernel, and the Early-Drop mechanism
protects system from overloading by proactively
responding to load status. Experiments on a cluster
server indicate the proposed mechanisms improve
server’s responsiveness under high load condition by
substantially cutting the response time by 7~22% and
event drop rate to 10~21%. The application-kernel
mechanisms demonstrate its effectiveness in keeping
mission-critical servers in operational state and
delivering improved performance under high workload.

1. Introduction

 Cluster-based servers built by using commodity
processors and COTS high-speed networks have been
considered a technically efficient and cost-effective
computing platform for the applications operated in
critical environment to deliver highly available and
timely responsive service. These applications include
battlefield surveillance sensor networks [1, 2],
environmental monitoring systems [3, 4], and
infrastructure protection and health sensing systems [5],
in which the application server is demanded to support a
large volume of distributed sensor nodes with varied
performance requirements. Typically, the client’s
service requests (called events or messages) by its nature
can be categorized into two classes: real-time or non-

real-time. The real-time events come in with critical
timely constraints, and any delay in response to these
events may lead to unacceptable or even disastrous
consequences. One example is US Air Force’s Sensor-
to-Shooter tactics in precision strike, which requires the
targeting circle time to be less than 10 minutes [6]. The
events reading routine environmental data or monitoring
non-critical part of structures fall in the non-real-time
category, of which the performance goal is to maximize
server throughput so more sensor events gets processed.
 In order to meet the two-dimensional performance
goals imposed by two classes of events, the server tends
to be programmed in multithreading mode, so it can
benefit from concurrency and take advantage of multi-
core CPUs or multi-processor systems. A common
practice of multithreading is the thread pool model [7],
in which a limited number of threads forms a thread
pool and a thread is selected from the pool to service the
client request when it arrives. However, this approach is
not suitable for the applications bound to response
latency, since waiting for available thread in the pool
adds to response latency. In our application, a service
thread is spawn immediately and exclusively for each
event so that it can be serviced without any delay. Linux
uses a one-on-one thread approach [8], in which thread
is scheduled as a kernel task in kernel space. This raises
an issue that an extremely high volume of sensor events
may generate hundreds or thousands of threads in kernel
instantly, which can overload the kernel and lead to an
inoperational system “hold-out” status. Overloading
control and recovery has become a critical issue to the
application servers operating under high workload.
 Majority of overload control work has been done at
the application layer by implementing certain type of
request admission mechanism that only starts service
when load level is below server’s capacity [9, 10]. To
the real-time cluster server (RTCS) [11], this approach
adds complexity to server implementation and incurs
undesired application level buffering delay. Voigt et al.
[12] proposed a set of kernel-based overload control and
service differentiation mechanisms in which the

 1

mailto:sychen@cqu.edu.cn

acceptance of incoming requests is based on the
connection’s attributes or priorities, and the packets are
discarded if the allocated rate is exceeded. This
approach effectively regulates the rate and burst level of
connections, however, does not provide capability of
recovering the system if overloading ever happens. Also
the header parsing and classification is timely inefficient
to the applications bound to response delay.
 Based on above observations, we propose two
application-kernel mechanisms that target on
• providing a mechanism to recover the kernel from

the hold-out state when it is overloaded;
• provide a mechanism to proactively respond to

workload level and avoid kernel overloading;
• provide a tuning knob to allow the application to

select one performance metrics over another.
 The rest of paper is organized as follows: Section 2
describes the cluster server’s architecture and
multithreading model; Section 3 presents the design of
kernel Flush-Out and Early-Drop mechanisms; Section 4
conducts a series of kernel experiments and analyzes the
results. In Section 5 we summarize our findings in
experiments and the issues remained for future work.

2. Server multithreading model

 The Real-Time Cluster Server (RTCS) system [11]
consists of a pool of computing nodes (PC or
workstation) interconnected through high-speed LAN
such as Gigabit Ethernet [14]. Configured with the NAT

(Network Address Translation) configuration, the cluster
server has a front-end node as the access point to
external sensor network. The distributed remote sensors
exchange messages (events) with the cluster server via
the front-end node. Within the cluster, the arriving
events are dispatched to backend nodes for service under
certain cluster scheduling schemes. At each backend
node, there is an application server running to service
the sensor events.
 The backend application server implements three
functional threads to perform the tasks, i.e., the
Read_Evt thread, the Sche_Evt thread, and the service
thread, shown in Figure 1. The Read_Evt thread reads
the events off the network interface and classifies them
into two events queues. At the other end of the queues,
the Sche_Evt thread selects an event out of the queues
under the Queue Length Proportional (QLP) algorithm
[13], and spawns a service thread to serve the event.
 The application server can execute above steps in
two different modes, i.e. the sequential mode or the
multithreaded mode. Under sequential mode, the server
services the event in a one-by-one style, in which the
Sche_Evt thread will not start a new service thread until
the previous one is completed. Under multithreaded
mode, rather than wait for previous service thread
returns, the Sche_Evt thread keeps fetching events from
the queue and immediately starting a new thread for the
event. Under such a mode, the server can service
multiple events simultaneously by having multiple
service threads concurrently running in the kernel.

 RT queue

Figure 1. Threads of backend server

3. Application-Kernel collaboration

 In our approach, two kernel mechanisms, namely
Early-Drop and Flush-Out, are implemented to address
the kernel overloading issue. The Early-Drop
mechanism is used to dismiss sensor events early in
kernel space before handed up to the upper application.
The Flush-Out function works as a rescue operation to
recover the system from hold-out status by filtering out
certain amount of event tasks.

3.1 Kernel Early-Drop

 The Early-Drop mechanism consists of two parts:
application control and kernel drop action. The
application control simply uses the number of active
kernel tasks (retrieved by system call get_nr_running())
as the yardstick to measure kernel’s load status, and
starts/stops kernel drop action by setting/unsetting an
EARLY_DROP flag, alternatively. The drop action is
performed by the kernel scheduler, which keeps check

read events
Sche_Evt thread Read_Evt thread

NRT queue

send reply message
Service thread

 2

the EARLY_DROP flag. If finds the flag set to TRUE,
the scheduler makes a call to the socket module to dump
the arriving event packets rather than copy them to
upper layer for processing; if FALSE, it stops the
dropping action and returns to normal operation.
 Both [9] and [12] mentioned the useless TCP packet
retransmission issue caused by dropping TCP
connections in the transport layer. To deal with this
issue and avoid interruption to upper application, we add
a switch to the UNIX system call read() to change the
data copying sequence between the kernel and
application layer. The normal read() calls a kernel
function sys_read() to load the event data into the

application’s buffer for further processing, shown as the
blue path in Figure 2. In our solution, a new kernel
function rt_sys_read() is added to kernel and let read()
call this new function rather than original sys_read(),
shown as the red path in Figure 2. Within the new
rt_sys_read() call, it always checks the EARLY_DROP
flag first, and decides whether to proceed to original
sys_read() call to copy the events to application buffer,
or to dump the events by returning an empty buffer.
Since this change is implemented post to the reassembly
of the TCP packets in the transport layer, it would not
trigger undesired TCP retransmission caused by the
improperly dropping of SYN packets in transport layer.

Figure 2. Early-Drop call sequence

3.2 Kernel Flush-Out

 When pulled into “hold-out” state due to kernel
overloading, the system shall be capable of recovering
by flushing out certain amount of events from kernel
space, or more accurately, flushing out kernel tasks
mapped to certain class of events. Linux provides
system calls to kill a running process or thread, yet two
issues make this approach inappropriate or inefficient to
delivering timely responsive service.
 First, our operation requires remove kernel tasks by
the sensor event attributes such as sensor ID or priority
level, but Linux killing calls use process ID or thread
handle as the arguments. Thus the application has to
maintain a look-up table to map the event attributes to
the process ID or thread handle, which is very
inefficient. Second, even the process ID or thread handle
are sorted out, the application is still not aware of the
status of the process or thread in kernel until it makes
extra calls to retrieve process/thread state. Trying to kill
a zombie process or thread is not only a waste of
resource, but may lead to unpredicted behavior as well.
Apparently, embedding Flush-Out function to kernel

would be more efficient, and relieves the application
from the process/thread mapping and look-up overhead.
 In Linux kernel, each thread is treated as a regular
task identified by a structure task_struct, and scheduled
by the kernel scheduler. In order to identify the kernel
tasks by the event’s attributes, we add two new fields,
sensor_tag and event_mark, to this task structure:
struct task_struct {

…….
int sensor_tag;
int event_mark;
…….

}
where sensor_tag is the sensor ID or geographical
location identifier and event_mark is the priority level
associated with this event. In our design, these two
attributes have the following value ranges:
event_mark int 1 – 10
(1: lowest; 10: highest)
sensor_tag int 1 – 32768
 These two event attributes are generated by sensor
nodes and embedded in the event messages, and
eventually carried down to the kernel. Two new system
calls, sys_set_mark() and sys_get_mark(), are added to
allow the application server to get/set these two

User Space

Kernel Space

read ()

sys_read ()

read ()

rt_sys_read ()

normal call sequence Early-Drop call sequence

EARLY_DROP = FALSE EARLY_DROP = TRUE

discard event data

 3

http://fxr.watson.org/fxr/ident?v=linux-2.6.9;i=task_struct

attributes at the time the service thread is created. We
also provide a system call sys_remove_event to signal
the kernel scheduler to start or stop the flush-out action.
 At the application layer, we add two more functional
threads, Watch_ART and Flush_Out, to work together
with already existing Read_Evt and Serv_Evt threads to
support the flush-out function. The Watch_ART thread
keeps watching the system performance by periodically
polling and calculating performance metrics, and, if
finds the system performance drop below the accepted
mark, it signals the Flush_Out thread to start the
flushing action.

4. Kernel experiments

 In this section a series of experiments are performed

.1 Experiment configuration

 The kernel experiments are performed on a cluster

 regular

periment, the events are sent on a data block

sponse Time: defined as the round trip time of

 ave
i

T t i N
=

= ∑ (1)

where trt(i) is the round trip time of the i-th event in the

e number of events or

 (2)

to assess the effectiveness of the Flush-Out and Early-
Drop mechanisms.

4

system consists of 10 backend nodes and one front-end
with an NAT configuration. There are 40 sensor
processes running on the boxes separate from the cluster
server. The sensor events are formatted byte strings with
a fixed length, which carry the information such as
sensor ID, IP address, event type, sending time, etc. The
two classes of events, i.e. the real-time (RT) events and
non-real-time (NRT) events, are sent in 1:1 ratio. The
experiments are conducted on Intel Pentium 4 PCs
running RedHat Linux O/S with 2.6.10 kernel.
 Two configurations are tested: one with a
kernel and one with a mechanism-enhanced kernel.
Other test parameters for the two configurations are the
same. Both configurations are tested against the Load
Balance (LB) and the Distributed Scheduling (DS)
schemes [11] to evaluate the mechanisms’ performance
under different type of scheduling schemes. The tests
are performed against a service time rage of 0.2 – 0.8
seconds.
 In the ex
base, in which each block consists of 100 events. We
use following metrics to evaluate the performance of the
system:
Event Re
an event from the sensor to the cluster server and back
to the sensor, and calculated as

N
rt rt

1
[()] /

block and N is the size of block.
Overall Throughput: defined as th
bits of event data that are serviced by the server per time
unit, and calculated by

where _first sentt is the time the first event of the block is

sent out and t the last event of the block is
received. L is the length (in bits) of the event message.

_last received

 In addition to average response time and overall
throughput, we also use the event drop rate as a
performance measurement under high workload. For
each sensor event, a timeout is setup and, if the
corresponding reply message is not received prior to the
timeout, this event is designated as dropped, even
though it may eventually come back. The event drop
rate is defined as

/drop dropR N N= (3)

where is the total number of dropped events in a
block and N is the block size.

dropN

 Under such a definition, we shall notice there are two
kinds of droppings: dropping at the server due to service
unavailability (service dropping), and the events
designated as dropped at the receiving end due to
timeout (delay dropping).

4.2 Flush-Out experiment

 In this test the events are sent with priority levels
(RT: 1-20; NRT: 0). When the flush-out action is
triggered, the events with priority levels < 6 are filtered
out. Figure 3 shows the RT event’s average response
time against varied event service times, and Figure 4
shows the overall throughput results. We have observed
that, under both scheduling schemes, the RT response
time and overall throughput numbers are very close for
the two configurations.
 It appears that the flush-out function does not quite
help the system responsiveness and throughput, since,
under the overloading situations, the available spots in
kernel task queues by flushing action are immediately
filled up by arriving events. However, the RT event drop
rate shows a substantial difference between the kernels
with or without flush-out function, shown in Figure 5.
Under the LB scheme, the flush-out enhanced kernel
subdues the RT drop rate to 3.4%~11.95%, compared to
24.15%~45.40% of regular kernel. Under DS scheme, it
is shredded from 24.75%~31% to 7.25%~13.70%,
which is an impressive improvement to the system’s
serviceability. We also observed the system’s response
to input device (keyboard or mouse) is significantly
improved.
 With an improved drop rate, much more events get
serviced and go through the heavily loaded kernel. The
flush-out function achieves this by greatly cutting the
delay dropping in a small cost of service dropping. The
cause for no big lift in overall throughput is that the
increasing number of get-through high priority events is
offset by that of dropped low priority events.

_ _*) /()last received first sentL t t−(Th N=

 4

0
10
20
30
40
50
60
70
80
90

100
110
120

0.2 0.4 0.6 0.8

Event Service Time (sec)

R
T

Av
e.

 R
es

. T
im

e
(s

ec
) Heavy Load

Flush-out

0
10
20
30
40
50
60
70
80
90

100
110

0.2 0.4 0.6 0.8

Event Service Time (sec)

R
T

Av
e.

 R
es

. T
im

e
(s

ec
)

Heavy Load

Flush-out

 LB Scheme DS Scheme

Figure 3. RT Event Response Time

0

5

10

15

20

25

30

35

40

0.2 0.4 0.6 0.8
Event Service Time (sec)

O
ve

ra
ll T

hr
ou

gh
pu

t (
Kb

ps
) Heavy Load

Flush-out

0

5

10

15

20

25

30

35

40

45

0.2 0.4 0.6 0.8

Event Service Time (sec)

O
ve

ra
ll T

hr
ou

gh
pu

t (
Kb

ps
)

Heavy Load
Flush-out

 LB Scheme DS Scheme

Figure 4. Overall Throughput

28.35%

11.95%

24.15%

39.75%

45.40%

3.40%7.05%

7.75%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

0.2 0.4 0.6 0.8

Event Service Time (sec)

R
T

Ev
en

t D
ro

p
R

at
e

Heavy Load
Flush-out

24.75%

31.00%
32.45%

11.70%

7.25%

30.90%

7.70%

13.70%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0.2 0.4 0.6 0.8

Event Service Time (sec)

R
T

Ev
en

t D
ro

p
R

at
e

Heavy Load
Flush-out

 LB Scheme DS Scheme

Figure 5. RT Event Drop Rate

 5

4.3 Early-Drop experiment

 The experiment is performed against three
configurations. The base configuration is built on top of
a regular Linux kernel without early-drop mechanism.
The kernel configuration implements the drop action in
kernel space (Layer 4 implementation), and the
application configuration implements the drop action in
application layer (Layer 7 implementation). These three
configurations allow us to not only assess the kernel
with or without early-drop mechanism, but also to
compare the impact of implementing this mechanism in
kernel layer or in application layer. In this experiment,
the kernel load status is measured by the instant number
of active threads in kernel, which can be retrieved by the
system call get_nr_running(). A threshold
RTCS_NR_THRESHOLD is set to determine when to
trigger the early-drop operations. In the tests, the
threshold values of 120, 150, and 180 are used. A lower
threshold value means the system is more sensitive to
kernel overloading and tends to drop events earlier
while a higher value indicates the system is more
tolerable to overloading.

4.3.1 Early-Drop vs. non-Early-Drop

 The results of enhanced kernel and regular kernel are
shown in Figure 6, in which the early-drop mechanism
shows a significant impact to RT event response time

and drop rate, but little on the throughput. The number
shows, compared to regular kernel, the mechanism
enhanced kernel cuts the RT response time by
22%~32% with threshold=120, 13%~19% with
threshold=150, and 3%~7% with threshold=180. The
RT event drop rate is also impressively dropped to
16~35% for threshold= 120, 9~21% for threshold=150,
and 5~7% for threshold=180, compared to regular
kernel’s 25~33% range. This demonstrates the
mechanism can effectively improve system’s
responsiveness by proactively reacting to overloading
situation and avoiding kernel jamming.
 It is also noticed that the lower threshold value
achieves better response time results in the cost of
higher drop rates. For instance, the threshold=120 cuts
the response time by 22~32%, but with a drop rate of
12%~35%, compared to Threshold=180’s 5%~8% drop
rate. Higher threshold values tend to buffer more tasks
in kernel, which lead to a lower drop rate and make it
more tolerable to high workload. We also compare the
results for two groups of events, one with a shorter
service time (0.2 sec) and the other with a higher service
time (0.6 sec), and list in Table 1. It is observed that
both groups yield a decent reduction in response time
but the shorter event group gives a much better drop
rate. This may indicate the early-drop mechanism works
better with short service time events since, under same
load level, more of the shorter events get serviced.

0
10
20
30
40
50
60
70
80
90

100
110

0.2 0.4 0.6 0.8
Service Time (sec)

R
T

Av
e.

 R
es

. T
im

e
(s

ec
)

non-early-drop
early-drop-120
early-drop-150
early-drop-180

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%

0.2 0.4 0.6 0.8

Service Time (sec)

R
T

D
ro

p
R

at
e

non-early-drop
early-drop-120
early-drop-150
early-drop-180

 RT Response Time RT Event Drop Rate

Figure 6. Early-Drop vs. non-Early-Drop

Table 1 Shorter Service Time vs. Longer Service Time (Threshold = 120)

event service time
(sec)

RT response time
reduction percentage

RT drop rate

0.2 24.73% 12.50%

0.6 30.36% 35.70%

 6

4.3.2 Kernel approach vs. application approach

 Beside the comparison between the Early-Drop
enhanced and regular kernels, we like to probe the
difference between the implementations in kernel layer
and in application layer. In this test, the two
configurations implements same early-drop actions but
differ in where the function is placed. We tested the two
approaches against two threshold values 120 and 180,
with 120 for the system sensitive to overloading and 180
for the system more tolerable to high workload.
 The response time results are displayed in Figure 7,
which shows the two approaches give very close
numbers in response time. The throughput data give the
same results. However, the drop rate results in Figure 8

clearly shows the kernel approach outperforms the
application approach in all categories except one group
(service time = 0.2 sec with threshold = 180). The kernel
approach works particularly well with the shorter events
(service time = 0.2 or 0.6 sec) in an overloading-
sensitive system (Threshold = 120) with a drop rate
range 12.50~24.20%, compared to application
approach’s 23.8~34.4%. The application approach
yields slightly better response time result by dropping
more events under high load conditions, while the kernel
approach gets more events through the heavily loaded
kernel by saving the cost in context copying between the
kernel and application layers and taking advantage of
kernel’s fine-grained task scheduling scheme.

0

10

20

30

40

50

60

70

80

0.2 0.4 0.6 0.8
Service Time (sec)

R
T

Av
e.

 R
es

. T
im

e

kernel-version
application-version

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8
Service Time (sec)

R
T

Av
e.

 R
es

. T
im

e

kernel-version
application-version

 Threshold = 120 Threshold = 180

Figure 7. Response Time: Kernel Approach vs. Application Approach

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0.2 0.4 0.6 0.8
Service Time (sec)

R
T

D
ro

p
R

at
e

kernel-version
application-version

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

0.2 0.4 0.6 0.8
Service Time (sec)

R
T

D
ro

p
R

at
e

kernel-version
application-version

 Threshold = 120 Threshold = 180

Figure 8. Drop Rate: Kernel Approach vs. Application Approach

 7

5. Conclusions

 The research presented in this paper is targeting on a
cluster-based server running under multithreaded mode
in which, corresponding to each service request carried
by an sensor event, the server directly creates a service
thread to serve the event and turns the control of threads
to the O/S kernel. The objective of our work is to
mitigate the risk of kernel overloading caused by
extremely high volume of threads by implementing two
application-kernel collaborative mechanisms to
proactively respond to load level, which either prevents
system from overloading or recovers it if overloading
ever happens. Our approach is different from most of
the application layer admission control work in
embedding the overloading control mechanisms to O/S
kernel and focusing on system timely responsiveness
under overloading conditions. Embedding these
mechanisms in kernel also greatly eases the
development of server applications and makes
overloading protection more efficient.
 The experiment results demonstrate that the Flush-
Out mechanism can effectively recover the system from
hold-out state and substantially reduce the event drop
rate by filtering out certain amount of events from
kernel when overloading happens. The mechanism
achieves this by getting more events through the
jammed kernel, leading to a much lower delay drop rate,
however, in the cost of a bit higher service drop rate.
The kernel Early-Drop mechanism protects the system
from sliding into overloading state by proactively
responding to high workload with kernel dropping
actions. It also provides the server application a
performance tuning knob to choose a shorter response
time over a lower drop rate, or vice versa. The
comparison between kernel approach and application
approach reveals that the kernel approach outperforms
the application counterpart in most categories,
particularly for the events with short service times.
 The application-kernel collaboration functions
presented in this paper lift the system’s sustainability
and serviceability, and improve its timely
responsiveness under overloading conditions, which is
essential to the applications operating in critical
environment. The threshold values used in the Early-
Drop mechanism to control the kernel dropping action
are trivial, and need further investigation to find its best
range. The event service time is an important indicator
of the event type, and, in the experiments, we only
tested the mechanisms against the service time span of
0.2 - 0.8 seconds. A further test against the range 0.01 -
0.1 second for the very shorter service time events
remains to be completed in future.

6. References

[1] J. Nemeroff, L. Garcia, D. Hampel, S. DiPierro,
“Communications for Network-Centric Operations: Creating
the Information Force”. IEEE, Volume 1, 2001 Page(s): 336 –
341.
[2] J.B. Willis, M.J. Davis, “Distributed Sensor Networks on
the Future Battlefield”, Operations Research Center Technical
Report, United States Military Academy West Point, May
2000.
[3] S. N. Simic, S. Sastry, “Distributed Environmental
Monitoring Using Random Sensor Networks”, Proceedings of
Workshop on Information Processing in Sensor Networks,
Palo Alto, CA, April 2003.
[4] A. Mainwarning, D. Cukker, J. Polastre, R. Szewczyk, and
J. Anderson, “Wireless Sensor Networks for Habitat
monitoring”, Proceedings of 1 ACM International Workshop
on Wireless Sensor Networks and Applications, pp.88 – 97,
ACM Press, 2002.

st

[5] J. P. Lynch, “Overview of Wireless Sensors for Real-Time
Health Monitoring of Civil Structures”, Proc. 4th International
Workshop on Structural Control and Monitoring, New York
City, US, June 10 -11, 2004.
[6] J. T. Correll, “From Sensor to Shooter”, Air Force
Magazine Online, Journal of Air Force Association, Vol. 85,
No. 2, February 2002.
[7] Sun Microsystems, “Multithreading in the Solaris
Environment: A Technical White Paper”,
http://www.sun.com/software/whitepapers/solaris9/multithread
.pdf
[8] V. Shukala, “Linux threading models compared:
LinuxThreads and NPTL, IBM develoerWorks”,
http://www.ibm.com/developerworks/linux/library/l-
threading.html
[9] R. Iyer, V. Tewari, K. Kant, “Overload Control
Mechanisms for Web Servers”, Workshop on Performance
and QoS of Next Generation Networks, Nagoya, Japan, Nov.
2000.
[10] X. Chen, H. Chen, P. Mohapatra, “An Admission Control
Scheme for Predictable Server Response Time for Web
Accesses”, Proceedings of 10th World Wide Web Conference,
Hong Kong, May 2001.
[11] Y. Tang, S. Chen, R. Simha, “Scheduling Scheme and
Performance Assessment for Timely Responsive Service on
Cluster Server”, Proceedings. of IEEE CCGrid 2005, Cardiff,
UK, May 9 - 12, 2005.
[12] T. Voigt, R. Tewari, D. Freimuth, A. Mehra, “Kernel
Mechanisms for Service Differentiation in Overloaded Web
Servers”, Proceedings of 2001 USENIX Annual Technical
Conference, Boston, June 2001.
[13] R. Tang and R. Simha, “A Delay Differentiation
Approach to Real-Time Scheduling on Cluster-Based
Multimedia Servers”, Proc. ICT 2002, Beijing, China, June
2002.
[14] Intel, “Gigabit Technology and Solutions”,
http://www.intel.com/network/connectivity/resources/doc_libr
ary/white_papers/gigabit_ethernet/gigabit_ethernet.pdf

 8

http://www.sun.com/software/whitepapers/solaris9/multithread.pdf
http://www.sun.com/software/whitepapers/solaris9/multithread.pdf
http://www.ibm.com/developerworks/linux/library/l-threading.html
http://www.ibm.com/developerworks/linux/library/l-threading.html
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_ethernet.pdf
http://www.intel.com/network/connectivity/resources/doc_library/white_papers/gigabit_ethernet/gigabit_ethernet.pdf

