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Abstract 
 
     Cluster-based servers delivering timely responsive 
service can shorten response latency and maximize 
system throughput through multithreading. However, 
under high workload, large volume of threads may 
overload the kernel, leading to an inoperational system 
“hold-out” status. Majority of overload control work 
have been done at application level, but lack the 
collaboration between application and kernel to 
proactively respond to overloading.  In this paper we 
propose two application-kernel cooperative 
mechanisms, of which the Flush-Out function recovers 
system from overloading by filtering out certain amount 
of events from kernel, and the Early-Drop mechanism 
protects system from overloading by proactively 
responding to load status. Experiments on a cluster 
server indicate the proposed mechanisms improve 
server’s responsiveness under high load condition by 
substantially cutting the response time by 7~22% and 
event drop rate to 10~21%. The application-kernel 
mechanisms demonstrate its effectiveness in keeping 
mission-critical servers in operational state and 
delivering improved performance under high workload. 
 
1. Introduction 
 
     Cluster-based servers built by using commodity 
processors and COTS high-speed networks have been 
considered a technically efficient and cost-effective 
computing platform for the applications operated in 
critical environment to deliver highly available and 
timely responsive service. These applications include 
battlefield surveillance sensor networks [1, 2], 
environmental monitoring systems [3, 4], and 
infrastructure protection and health sensing systems [5], 
in which the application server is demanded to support a 
large volume of distributed sensor nodes with varied 
performance requirements. Typically, the client’s 
service requests (called events or messages) by its nature 
can be categorized into two classes: real-time or non-

real-time. The real-time events come in with critical 
timely constraints, and any delay in response to these 
events may lead to unacceptable or even disastrous 
consequences. One example is US Air Force’s Sensor-
to-Shooter tactics in precision strike, which requires the 
targeting circle time to be less than 10 minutes [6]. The 
events reading routine environmental data or monitoring 
non-critical part of structures fall in the non-real-time 
category, of which the performance goal is to maximize 
server throughput so more sensor events gets processed.  
     In order to meet the two-dimensional performance 
goals imposed by two classes of events, the server tends 
to be programmed in multithreading mode, so it can 
benefit from concurrency and take advantage of multi-
core CPUs or multi-processor systems. A common 
practice of multithreading is the thread pool model [7], 
in which a limited number of threads forms a thread 
pool and a thread is selected from the pool to service the 
client request when it arrives. However, this approach is 
not suitable for the applications bound to response 
latency, since waiting for available thread in the pool 
adds to response latency. In our application, a service 
thread is spawn immediately and exclusively for each 
event so that it can be serviced without any delay. Linux 
uses a one-on-one thread approach [8], in which thread 
is scheduled as a kernel task in kernel space. This raises 
an issue that an extremely high volume of sensor events 
may generate hundreds or thousands of threads in kernel 
instantly, which can overload the kernel and lead to an 
inoperational system “hold-out” status. Overloading 
control and recovery has become a critical issue to the 
application servers operating under high workload. 
     Majority of overload control work has been done at 
the application layer by implementing certain type of 
request admission mechanism that only starts service 
when load level is below server’s capacity [9, 10]. To 
the real-time cluster server (RTCS) [11], this approach 
adds complexity to server implementation and incurs 
undesired application level buffering delay. Voigt et al. 
[12] proposed a set of kernel-based overload control and 
service differentiation mechanisms in which the 
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acceptance of incoming requests is based on the 
connection’s attributes or priorities, and the packets are 
discarded if the allocated rate is exceeded. This 
approach effectively regulates the rate and burst level of 
connections, however, does not provide capability of 
recovering the system if overloading ever happens. Also 
the header parsing and classification is timely inefficient 
to the applications bound to response delay.  
     Based on above observations, we propose two 
application-kernel mechanisms that target on  
• providing a mechanism to recover the kernel from 

the hold-out state when it is overloaded; 
• provide a mechanism to proactively respond to 

workload level and avoid kernel overloading; 
• provide a tuning knob to allow the application to 

select one performance metrics over another. 
     The rest of paper is organized as follows: Section 2 
describes the cluster server’s architecture and 
multithreading model; Section 3 presents the design of 
kernel Flush-Out and Early-Drop mechanisms; Section 4 
conducts a series of kernel experiments and analyzes the 
results. In Section 5 we summarize our findings in 
experiments and the issues remained for future work. 
 
2. Server multithreading model 
 
     The Real-Time Cluster Server (RTCS) system [11] 
consists of a pool of computing nodes (PC or 
workstation) interconnected through high-speed LAN 
such as Gigabit Ethernet [14]. Configured with the NAT 

(Network Address Translation) configuration, the cluster 
server has a front-end node as the access point to 
external sensor network. The distributed remote sensors 
exchange messages (events) with the cluster server via 
the front-end node. Within the cluster, the arriving 
events are dispatched to backend nodes for service under 
certain cluster scheduling schemes. At each backend 
node, there is an application server running to service 
the sensor events.  
     The backend application server implements three 
functional threads to perform the tasks, i.e., the 
Read_Evt thread, the Sche_Evt thread, and the service 
thread, shown in Figure 1. The Read_Evt thread reads 
the events off the network interface and classifies them 
into two events queues. At the other end of the queues, 
the Sche_Evt thread selects an event out of the queues 
under the Queue Length Proportional (QLP) algorithm 
[13], and spawns a service thread to serve the event.  
     The application server can execute above steps in 
two different modes, i.e. the sequential mode or the 
multithreaded mode. Under sequential mode, the server 
services the event in a one-by-one style, in which the 
Sche_Evt thread will not start a new service thread until 
the previous one is completed. Under multithreaded 
mode, rather than wait for previous service thread 
returns, the Sche_Evt thread keeps fetching events from 
the queue and immediately starting a new thread for the 
event. Under such a mode, the server can service 
multiple events simultaneously by having multiple 
service threads concurrently running in the kernel. 

 
 RT queue 

 

 

 

 

 

Figure 1. Threads of backend server 

 
3. Application-Kernel collaboration 
 
     In our approach, two kernel mechanisms, namely 
Early-Drop and Flush-Out, are implemented to address 
the kernel overloading issue. The Early-Drop 
mechanism is used to dismiss sensor events early in 
kernel space before handed up to the upper application. 
The Flush-Out function works as a rescue operation to 
recover the system from hold-out status by filtering out 
certain amount of event tasks.  

3.1 Kernel Early-Drop 
 
     The Early-Drop mechanism consists of two parts:  
application control and kernel drop action. The 
application control simply uses the number of active 
kernel tasks (retrieved by system call get_nr_running()) 
as the yardstick to measure kernel’s load status, and 
starts/stops kernel drop action by setting/unsetting an 
EARLY_DROP flag, alternatively. The drop action is 
performed by the kernel scheduler, which keeps check 
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the EARLY_DROP flag. If finds the flag set to TRUE, 
the scheduler makes a call to the socket module to dump 
the arriving event packets rather than copy them to 
upper layer for processing; if FALSE, it stops the 
dropping action and returns to normal operation.  
     Both [9] and [12] mentioned the useless TCP packet 
retransmission issue caused by dropping TCP 
connections in the transport layer. To deal with this 
issue and avoid interruption to upper application, we add 
a switch to the UNIX system call read() to change the 
data copying sequence between the kernel and 
application layer. The normal read() calls a kernel 
function sys_read() to load the event data into the 

application’s buffer for further processing, shown as the 
blue path in Figure 2. In our solution, a new kernel 
function rt_sys_read() is added to kernel and let read() 
call  this new function rather than original sys_read(), 
shown as the red path in Figure 2. Within the new 
rt_sys_read() call, it always checks the EARLY_DROP 
flag first, and decides whether to proceed to  original 
sys_read() call to copy the events to application buffer, 
or to dump the events by returning an empty buffer. 
Since this change is implemented post to the reassembly 
of the TCP packets in the transport layer, it would not 
trigger undesired TCP retransmission caused by the 
improperly dropping of SYN packets in transport layer. 

 

           

Figure 2. Early-Drop call sequence 

3.2 Kernel Flush-Out 
 
     When pulled into “hold-out” state due to kernel 
overloading, the system shall be capable of recovering 
by flushing out certain amount of events from kernel 
space, or more accurately, flushing out kernel tasks 
mapped to certain class of events. Linux provides 
system calls to kill a running process or thread, yet two 
issues make this approach inappropriate or inefficient to 
delivering timely responsive service.  
     First, our operation requires remove kernel tasks by 
the sensor event attributes such as sensor ID or priority 
level, but Linux killing calls use process ID or thread 
handle as the arguments. Thus the application has to 
maintain a look-up table to map the event attributes to 
the process ID or thread handle, which is very 
inefficient. Second, even the process ID or thread handle 
are sorted out, the application is still not aware of the 
status of the process or thread in kernel until it makes 
extra calls to retrieve process/thread state. Trying to kill 
a zombie process or thread is not only a waste of 
resource, but may lead to unpredicted behavior as well. 
Apparently, embedding Flush-Out function to kernel 

would be more efficient, and relieves the application 
from the process/thread mapping and look-up overhead.  
     In Linux kernel, each thread is treated as a regular 
task identified by a structure task_struct, and scheduled 
by the kernel scheduler. In order to identify the kernel 
tasks by the event’s attributes, we add two new fields, 
sensor_tag and event_mark, to this task structure: 
struct task_struct  {  

……. 
int   sensor_tag; 
int   event_mark; 
……. 

} 
where sensor_tag is the sensor ID or geographical 
location identifier and event_mark is the priority level 
associated with this event. In our design, these two 
attributes have the following value ranges: 
event_mark int 1 – 10        
(1: lowest; 10: highest) 
sensor_tag int 1 – 32768 
     These two event attributes are generated by sensor 
nodes and embedded in the event messages, and 
eventually carried down to the kernel. Two new system 
calls, sys_set_mark() and sys_get_mark(), are added to  
allow the application server to get/set these two 

User Space 

Kernel Space 

read ( ) 

sys_read ( ) 

read ( ) 

rt_sys_read ( ) 

normal call sequence Early-Drop call sequence 

EARLY_DROP = FALSE EARLY_DROP = TRUE 

discard event data 
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attributes at the time the service thread is created. We 
also provide a system call sys_remove_event to signal 
the kernel scheduler to start or stop the flush-out action.    
     At the application layer, we add two more functional 
threads, Watch_ART and Flush_Out, to work together 
with already existing Read_Evt and Serv_Evt threads to 
support the flush-out function. The Watch_ART thread 
keeps watching the system performance by periodically 
polling and calculating performance metrics, and, if 
finds the system performance drop below the accepted 
mark, it signals the Flush_Out thread to start the 
flushing action. 
 
4. Kernel experiments 

   In this section a series of experiments are performed 

.1 Experiment configuration 

   The kernel experiments are performed on a cluster 

 regular 

periment, the events are sent on a data block 

sponse Time: defined as the round trip time of 
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where trt(i) is the round trip time of the i-th event in the 
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to assess the effectiveness of the Flush-Out and Early-
Drop mechanisms. 
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system consists of 10 backend nodes and one front-end 
with an NAT configuration. There are 40 sensor 
processes running on the boxes separate from the cluster 
server. The sensor events are formatted byte strings with 
a fixed length, which carry the information such as 
sensor ID, IP address, event type, sending time, etc. The 
two classes of events, i.e. the real-time (RT) events and 
non-real-time (NRT) events, are sent in 1:1 ratio. The 
experiments are conducted on Intel Pentium 4 PCs 
running RedHat Linux O/S with 2.6.10 kernel.  
     Two configurations are tested: one with a
kernel and one with a mechanism-enhanced kernel. 
Other test parameters for the two configurations are the 
same. Both configurations are tested against the Load 
Balance (LB) and the Distributed Scheduling (DS) 
schemes [11] to evaluate the mechanisms’ performance 
under different type of scheduling schemes. The tests 
are performed against a service time rage of 0.2 – 0.8 
seconds. 
     In the ex
base, in which each block consists of 100 events. We 
use following metrics to evaluate the performance of the 
system: 
Event Re
an event from the sensor to the cluster server and back 
to the sensor, and calculated as 

N
rt rt 

1
[ ( )] /

block and N is the size of block.  
Overall Throughput: defined as th
bits of event data that are serviced by the server per time 
unit, and calculated by  

                            

 
where _first sentt  is the time the first event of the block is 

sent out and  t  the last event of the block is 
received. L is the length (in bits) of the event message. 

_last received

     In addition to average response time and overall 
throughput, we also use the event drop rate as a 
performance measurement under high workload. For 
each sensor event, a timeout is setup and, if the 
corresponding reply message is not received prior to the 
timeout, this event is designated as dropped, even 
though it may eventually come back. The event drop 
rate is defined as 

/drop dropR N N=     (3) 

where  is the total number of dropped events in a 
block and N is the block size. 

dropN

     Under such a definition, we shall notice there are two 
kinds of droppings: dropping at the server due to service 
unavailability (service dropping), and the events 
designated as dropped at the receiving end due to 
timeout (delay dropping). 
 
4.2 Flush-Out experiment 
 
     In this test the events are sent with priority levels 
(RT: 1-20; NRT: 0). When the flush-out action is 
triggered, the events with priority levels < 6 are filtered 
out. Figure 3 shows the RT event’s average response 
time against varied event service times, and Figure 4 
shows the overall throughput results. We have observed 
that, under both scheduling schemes, the RT response 
time and overall throughput numbers are very close for 
the two configurations. 
     It appears that the flush-out function does not quite 
help the system responsiveness and throughput, since, 
under the overloading situations, the available spots in 
kernel task queues by flushing action are immediately 
filled up by arriving events. However, the RT event drop 
rate shows a substantial difference between the kernels 
with or without flush-out function, shown in Figure 5. 
Under the LB scheme, the flush-out enhanced kernel 
subdues the RT drop rate to 3.4%~11.95%, compared to 
24.15%~45.40% of regular kernel. Under DS scheme, it 
is shredded from 24.75%~31% to 7.25%~13.70%, 
which is an impressive improvement to the system’s 
serviceability. We also observed the system’s response 
to input device (keyboard or mouse) is significantly 
improved. 
     With an improved drop rate, much more events get 
serviced and go through the heavily loaded kernel. The 
flush-out function achieves this by greatly cutting the 
delay dropping in a small cost of service dropping. The 
cause for no big lift in overall throughput is that the 
increasing number of get-through high priority events is 
offset by that of dropped low priority events. 

_ _* ) /( )last received first sentL t t−(Th N=
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Figure 3. RT Event Response Time  
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Figure 4. Overall Throughput 
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Figure 5. RT Event Drop Rate 
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4.3 Early-Drop experiment
 
     The experiment is performed against three 
configurations. The base configuration is built on top of 
a regular Linux kernel without early-drop mechanism. 
The kernel configuration implements the drop action in 
kernel space (Layer 4 implementation), and the 
application configuration implements the drop action in 
application layer (Layer 7 implementation). These three 
configurations allow us to not only assess the kernel 
with or without early-drop mechanism, but also to 
compare the impact of implementing this mechanism in 
kernel layer or in application layer. In this experiment, 
the kernel load status is measured by the instant number 
of active threads in kernel, which can be retrieved by the 
system call get_nr_running(). A threshold 
RTCS_NR_THRESHOLD is set to determine when to 
trigger the early-drop operations. In the tests, the 
threshold values of 120, 150, and 180 are used. A lower 
threshold value means the system is more sensitive to 
kernel overloading and tends to drop events earlier 
while a higher value indicates the system is more 
tolerable to overloading.  
 
4.3.1 Early-Drop vs. non-Early-Drop 
 
     The results of enhanced kernel and regular kernel are 
shown in Figure 6, in which the early-drop mechanism 
shows a significant impact to RT event response time 

and drop rate, but little on the throughput. The number 
shows, compared to regular kernel, the mechanism 
enhanced kernel cuts the RT response time by 
22%~32% with threshold=120, 13%~19% with 
threshold=150, and 3%~7% with threshold=180. The 
RT event drop rate is also impressively dropped to 
16~35% for threshold= 120, 9~21% for threshold=150, 
and 5~7% for threshold=180, compared to regular 
kernel’s 25~33% range. This demonstrates the 
mechanism can effectively improve system’s 
responsiveness by proactively reacting to overloading 
situation and avoiding kernel jamming.  
     It is also noticed that the lower threshold value 
achieves better response time results in the cost of 
higher drop rates. For instance, the threshold=120 cuts 
the response time by 22~32%, but with a drop rate of 
12%~35%, compared to Threshold=180’s 5%~8% drop 
rate. Higher threshold values tend to buffer more tasks 
in kernel, which lead to a lower drop rate and make it 
more tolerable to high workload. We also compare the 
results for two groups of events, one with a shorter 
service time (0.2 sec) and the other with a higher service 
time (0.6 sec), and list in Table 1. It is observed that 
both groups yield a decent reduction in response time 
but the shorter event group gives a much better drop 
rate. This may indicate the early-drop mechanism works 
better with short service time events since, under same 
load level, more of the shorter events get serviced. 
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Figure 6. Early-Drop vs. non-Early-Drop 

 

Table 1 Shorter Service Time vs. Longer Service Time (Threshold = 120) 

event service time 
(sec) 

RT response time 
reduction percentage 

RT drop rate 
 

0.2 24.73% 12.50% 

0.6 30.36% 35.70% 
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4.3.2 Kernel approach vs. application approach 
 
     Beside the comparison between the Early-Drop 
enhanced and regular kernels, we like to probe the 
difference between the implementations in kernel layer 
and in application layer. In this test, the two 
configurations implements same early-drop actions but 
differ in where the function is placed. We tested the two 
approaches against two threshold values 120 and 180, 
with 120 for the system sensitive to overloading and 180 
for the system more tolerable to high workload. 
     The response time results are displayed in Figure 7, 
which shows the two approaches give very close 
numbers in response time. The throughput data give the 
same results. However, the drop rate results in Figure 8 

clearly shows the kernel approach outperforms the 
application approach in all categories except one group 
(service time = 0.2 sec with threshold = 180). The kernel 
approach works particularly well with the shorter events 
(service time = 0.2 or 0.6 sec) in an overloading-
sensitive system (Threshold = 120) with a drop rate 
range 12.50~24.20%, compared to application 
approach’s 23.8~34.4%. The application approach 
yields slightly better response time result by dropping 
more events under high load conditions, while the kernel 
approach gets more events through the heavily loaded 
kernel by saving the cost in context copying between the 
kernel and application layers and taking advantage of 
kernel’s fine-grained task scheduling scheme. 
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Figure 7. Response Time: Kernel Approach vs. Application Approach 
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5. Conclusions 
 
     The research presented in this paper is targeting on a 
cluster-based server running under multithreaded mode 
in which, corresponding to each service request carried 
by an sensor event, the server directly creates a service 
thread to serve the event and turns the control of threads 
to the O/S kernel. The objective of our work is to 
mitigate the risk of kernel overloading caused by 
extremely high volume of threads by implementing two 
application-kernel collaborative mechanisms to 
proactively respond to load level, which either prevents 
system from overloading or recovers it if overloading 
ever happens. Our approach is different from most of 
the application layer admission control work in 
embedding the overloading control mechanisms to O/S 
kernel and focusing on system timely responsiveness 
under overloading conditions. Embedding these 
mechanisms in kernel also greatly eases the 
development of server applications and makes 
overloading protection more efficient.  
     The experiment results demonstrate that the Flush-
Out mechanism can effectively recover the system from 
hold-out state and substantially reduce the event drop 
rate by filtering out certain amount of events from 
kernel when overloading happens. The mechanism 
achieves this by getting more events through the 
jammed kernel, leading to a much lower delay drop rate, 
however, in the cost of a bit higher service drop rate. 
The kernel Early-Drop mechanism protects the system 
from sliding into overloading state by proactively 
responding to high workload with kernel dropping 
actions. It also provides the server application a 
performance tuning knob to choose a shorter response 
time over a lower drop rate, or vice versa. The 
comparison between kernel approach and application 
approach reveals that the kernel approach outperforms 
the application counterpart in most categories, 
particularly for the events with short service times. 
     The application-kernel collaboration functions 
presented in this paper lift the system’s sustainability 
and serviceability, and improve its timely 
responsiveness under overloading conditions, which is 
essential to the applications operating in critical 
environment. The threshold values used in the Early-
Drop mechanism to control the kernel dropping action 
are trivial, and need further investigation to find its best 
range. The event service time is an important indicator 
of the event type, and, in the experiments, we only 
tested the mechanisms against the service time span of 
0.2 - 0.8 seconds. A further test against the range 0.01 -
0.1 second for the very shorter service time events 
remains to be completed in future. 
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