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Increased access to space has led to an increase in the usage of commodity processors in radiation
environments. These processors are vulnerable to transient faults such as single event upsets that
may cause bit-flips in processor components. Caches in particular are vulnerable due to their
relatively large area, yet are often omitted from fault injection testing because many processors
do not provide direct access to cache contents and they are often not fully modeled by simulators.
The performance benefits of caches make disabling them undesirable, and the presence of error
correcting codes is insufficient to correct for increasingly common multiple bit upsets.

This work explores building a program’s cache profile by collecting cache usage information at an
instruction granularity via commonly available on-chip debugging interfaces. The profile provides a
tighter bound than cache utilization for cache vulnerability estimates (50% for several benchmarks).
This can be applied to reduce the number of fault injections required to characterize behavior by at
least two-thirds for the benchmarks we examine. The profile enables future work in hardware fault
injection for caches that avoids the biases of existing techniques.

CCS Concepts: ∙ Hardware → Transient errors and upsets; ∙ Computer systems orga-
nization → Embedded software; Reliability ; ∙ Software and its engineering → Software fault
tolerance.
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1 INTRODUCTION

The use of commodity processors in radiation environments raises issues with existing
radiation mitigation solutions and testing methodologies. Caches, in particular, play a large
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role in radiation behavior, yet are mostly neglected in current literature due in part to a
lack of hardware interfaces that allow direct manipulation of cache data. This work helps to
fill this gap by allowing cache behavior to be traced at an instruction granularity, which
allows cache vulnerability to be measured and enables new avenues of research.
Microprocessors are sensitive to electrical noise [1] and ionizing radiation [2] which may

result in transient faults. There are several ways that these faults may be expressed, with
one possibility being a bit-flip in which the electrical state of a component is altered enough
to change the interpretation of a bit from a 0 to a 1 or vice versa. Traditional solutions such
as shielding, duplication, or radiation hardening of the hardware have proven successful in
high-radiation environments [3, 4].
Robust hardware mitigation solutions may not be available for smaller systems with

stringent limits on budget, power, and volume, such as CubeSats [5] which are growing in
popularity [6]. In place of traditional solutions, CubeSats often rely on hardware watchdog
timers to detect a radiation-induced lock-up of their commodity processor [7]. Software-based
radiation mitigation techniques such as process-level redundancy [8] and code-level changes
such as those used by dOSEK [9] may be able to provide increased fault tolerance.
Testing and evaluating these software measures is difficult: effectiveness is dependent

upon the hardware’s radiation characteristics, hardware configuration, and the software
workload [10]. In-situ testing is often impractical when the intended environment is space,
and radiation testing is time consuming, difficult, and expensive [11]. An alternative is
hardware-based fault injection, which either requires a significant amount of instrumentation
or is limited to targeting interfaces made available by the hardware [12].

Fault injection may be performed on a simulated target. There is a large range of simulation
options that vary in how detailed the level of abstraction provided is, from flip-flop to source-
level models. In general, the lower the level the abstraction is, the more accurate the fault
injection will be [13]. The simulators are designed to be accurate to the level of abstraction
that they target, such as an instruction set architecture (ISA), but the implementation may
differ from the target hardware. In the case of caches, simulators may provide limited options
such as the number of levels, associativity, and size, whereas real caches with these same
attributes can differ due to features such as merge buffers, prefetching, and line-fill policies.
Simulators may also have fidelity issues with respect to cache reliability, as we explore in
Section 2.1.

Much of the research into fault injection assumes a fault model that excludes the memory
hierarchy [13–17]. These works cite the availability of protection measures such as Error
Correcting Codes (ECC) as justification. In Section 3 we present the case that the large
contribution caches make to a processor’s radiation cross section (a measure of the probability
that radiation will cause a fault) and the occurrence of multiple bit single word upsets casts
doubt on this assumption in the context of commodity hardware.

The cache profile tool we explore here collects information using the commonly available
JTAG interface, named after the Joint Test Action Group [18] that developed it. JTAG is
widely available and removes the need for special hardware or modifications. The software
under test is run on the target hardware, unmodified with few exceptions such as the addition
of assembly labels to mark the section that will be profiled.
This paper presents a cache profiling tool that enables users to gather utilization and

vulnerability data for programs. These metrics can then be used to predict how the program
will perform under radiation-induced faults and can reduce the number of fault injections
required for fault injection campaigns. The contributions of this paper are to:

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



Precise Cache Profiling for Studying Radiation Effects 3

∙ Introduce On-Chip Debugging (OCD) Cache Tracer, a tool for collecting cache usage
information at an instruction-level granularity.

∙ Examine benchmark cache profiles to show that cache data critical time [19] is a tighter
bound than cache utilization and could better predict cache vulnerability.

∙ Show that previous simulation results [19] that cache flushes can reduce cache vulnera-
bility hold for different benchmarks running on hardware.

∙ Demonstrate how the cache profile can reduce the required number of fault injections
in a theoretical campaign to characterize the behavior of the software under radiation-
induced cache faults.

These contributions represent the currently realized benefits of collecting cache information
with the ultimate goal of reducing the vulnerability of software running on commodity
processors in radiation environments. This tool helps reach that goal by allowing precise
cache usage information to be gathered directly on the target hardware, which informs
decisions about the use of cache settings and software workload. The information may be
applied in future work implementing fault injection tools that can inject single and multi-bit
faults while overcoming the bias issues of current debugger-based fault injection techniques
when targeting cache faults [20–22], described in Section 3.1.

2 RELATED WORK

There are several methods of evaluating how a system will behave when radiation-induced
faults such as a single event upset (SEU) occur, ranging from analytical to exposing the
system to radiation sources.
Rehman et al. [23] estimate the reliability of an embedded system by calculating an

“Instruction Vulnerability Index” for each instruction in an application. These values are
then composed into an application vulnerability index when combined with information
about the likelihood and frequency for each instruction to execute. The index depends on
accurate measurements of instruction vulnerability and an accurate model of the hardware
and software of the system. The evaluation of complex components such as caches would be
a difficult addition as the cache state depends on all previous memory instructions.
Software implemented fault injection (SWIFI) [24] covers a range of techniques that do

not require hardware modifications to inject faults. The host OS may be used to inject the
fault, or the source of the target program may be modified. These techniques are limited to
injecting faults at the interfaces made available at the software level targeted.

We divide the remaining methods into simulation and hardware-based techniques.

2.1 Simulation-Based Evaluation

Simulation-based approaches use a simulator in place of the target hardware to make it easier
to study different aspects of the system, including reliability. The simulator may provide
varying levels of abstraction, from a model based on a hardware description language to
higher levels of abstraction such as the ISA. These approaches are naturally limited to the
hardware simulated, and the accuracy of the results depends on how closely the hardware
model matches the target hardware.

These approaches typically execute a golden run first: the software is executed to completion
with output or the final system state recorded. Faults are injected in subsequent runs, and
the output or final state is compared to the golden run to detect faults. FAIL* [25] uses a
full system simulator such as Bochs or Gem5 and covers the entire fault space using pruning
methods and experiment parallelization to make the task tractable. The Dynamic Robust
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Single Event Upset Simulator (DrSEUs) [22] performs injections in a probabilistic fashion.
It is built on top of the Simics simulator and uses checkpointing to segment the run, inject
faults, and compare system state across runs. The hardware model may need to be extended
to add new components like a cache model, as the latest DrSEUs [26] work did to allow fault
injection into the cache at specified points in the execution. The cache model is simplified
with features such as cache optimizations omitted. The fault injection results obtained using
the cache model have not been compared to real radiation experiments or other injection
approaches, so it is difficult to verify how accurate it is.
Using a simulation-based approach introduces two concerns: availability and fidelity.

Concerning availability, a simulator with related models may not exist for the target
hardware, be cost-prohibitive, or license restricted. This may be an issue for teams that are
using commodity hardware because they are often resource-constrained.
Several issues may impact the fidelity of simulator-based approaches. The first is a

compromise between accuracy and performance: in general, a lower level of abstraction
results in a more accurate simulation at the expense of performance. The result is that
simulators often approximate aspects of the target hardware and errors may persist even
after validated and tuning, as shown by Gutierrez et al. [27] for performance modeling. In a
comparison between simulation-based fault injection tools [28], the simulator used impacted
fault injection outcomes more than the target architecture. The complexity of simulations
and hardware models also introduces opportunities for programming and modeling errors to
impact results, which have misled researchers investigating performance [29] in the past.

We have decided to pursue an approach that directly uses the target hardware instead of
a simulator to partially address these concerns. JTAG is widely supported in commodity
hardware and is accessible by a variety of hardware devices and open source software such
as OpenOCD. Using the target hardware reduces the complexity of the system by removing
the need for a simulator and hardware model, reducing the opportunity for modeling
approximations and software errors to skew results. It eliminates the need to validate and
tune the hardware model to match the target hardware.
Fault injection may be performed on virtualized architectures such as LLVM. LLFI [14]

allows injections into LLVM’s intermediate representation; a language that retains high
level features such as function and variable names while incorporating assembly detail such
as addresses and registers. Injections at this level have been shown to accurately re-create
faults that cause silent data corruption at the cost of accuracy in representing crash causing
faults [17]. Recent LLVM-based work has explored the effects of multiple bit upsets [16] and
the propagation of data corruption [15]. Neither of these works considers the cache.

Asadi et al. [19] used SimpleScalar to simulate the cache behavior of SPEC benchmarks.
This was applied to testing if using cache flushes with set periods (10k, 100k, and 1 million
cycles) can decrease cache vulnerability using their metric for critical words. The first work
looked at the L1 caches; later work looked at the L2 cache [30]. Our cache profiling tool is
capable of providing the same critical word information, but on the target hardware without
any of the concerns associated with simulation-based approaches. We have confirmed that
Asadi’s work holds for a subset of MiBench running on hardware (discussed in Section 6.3).

2.2 Hardware-Based Evaluation

Field Programmable Gate Arrays (FPGA) may be used to synthesize a processor with
saboteurs that can inject faults [31]. This approach allows for accurate fault injection but
requires that the hardware description of the processor is available.
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The use of on-chip debugging (OCD) interfaces to inject faults was first explored using
platform-specific techniques such as BDM [32]. Later work focused on the more widely
supported JTAG standard, such as Portela-Garcia et al.[33] which injected faults into the
main memory and CPU registers. Faults are injected by using JTAG to halt the processor,
alter a register or memory value, and resume the execution. Heinig et al. [20] extended JTAG-
based injection to be instruction-aware: code sections and instruction types are targeted
using the program counter and decoded instruction. While fast and effective at testing the
system’s response to specific faults, instruction-aware injection does not accurately model
the likelihood of a fault being expressed, a limitation that the authors note.
Some previous work neglected the cache as a fault injection target because the JTAG

interface on most processors does not allow direct manipulation of data stored in the
cache. To approximate cache faults, faults may be injected into load statements. This leads
to bias issues, which Wulf et al. [21] attempted to remedy by distributing fault injections
uniformly over load instructions, which falls short of accurately simulating real cache behavior.
Their goal is to ensure better coverage of the realm of possible faults, not evaluate cache
vulnerability. No consideration is made for the actual cache state (a load that results in a
cache miss should not have a fault injected), nor is a uniform distribution of faults across
load instructions desirable for evaluating cache vulnerability.

The cache profiling tool presented here uses an on-chip debugger to track the cache state.
This paper focuses on the immediate utility of the cache profile; future work can use the
profile when selecting fault injection targets to avoid the bias issues covered in Section 3.1.
Most cache profiling tools are concerned with performance and seek to be statistically

representative of cache behavior. They are not concerned with accuracy at an instruction
granularity. For example, Cachegrind [34] (based on the Valgrind framework) uses a simplified
cache model with limited settings such as size and associativity. These profilers are intended
for performance tuning and are insufficient for evaluating cache vulnerability because they
are focused on cache utilization and hit-rate. Our approach tracks the critical time of data
in the cache [19]: the period from when data enters the cache until it is last utilized, during
which a cache fault will propagate beyond the cache. Data in the cache that is not read
before being overwritten will increase the cache utilization, but not the vulnerability (as the
data may experience a fault but will be overwritten before use).
More recent cache profiling tools such as Alleria [35] are capable of extracting memory

access traces. While the traces produced by some of these tools include physical addresses
and values, they do not track cache hits and misses, and would thus need to be used in
conjunction with a cache simulator to produce the same information our tool provides.

3 BACKGROUND

A number of commodity processors with caches have been used in space in recent years [36],
typically on low-cost missions in low Earth orbit. Among these processors, parity checks
are very common, especially for L1 caches. Error Correcting Codes, typically Single Error
Correction Double Error Detection, are also available, primarily for L2 caches.
The use of caches is significant in radiation environments because they can greatly alter

a processor’s radiation cross section. For example, radiation experiments with Zynq-7000
processors show that when caches are enabled, there is an order of magnitude increase in
the radiation cross section [37, 38].
Disabling caches may appear to be an effective way to mitigate this risk so long as the

associated performance degradation is acceptable. However, in some cases, this may increase
the chances of a fault occurring while a task is being performed: the reduction in radiation
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cross section is negated by the additional time needed to complete a task. Santini et al. [39]
demonstrated that for their matrix multiplication workload, disabling all caches reduced the
radiation cross section, but running with the L1 caches enabled resulted in a higher mean
workload between failures.

With caches enabled, hardware protection measures such as ECC and memory interleaving
can protect from some faults. ECC often implements Single Error Correction Double Error
Detection, in which a single bit flip in a memory word can be recovered from and two bit
flips will cause a hardware exception. Memory interleaving reduces the spatial locality of
cells that make up a logical word of memory, thus reducing the chances that a radiation
strike will impact multiple bits in the same word.

Despite these protections, multiple bit upsets (MBUs) in which multiple bits in the same
word are flipped have been observed in radiation experiments. Tambara et al. [38] report
that 16% of observed events in the static random-access memory (SRAM) used to configure
the Zynq-7000’s FPGA were MBUs, and Wirthlin et al. [40] show that at the highest
energy level tested, 8% of radiation events were MBUs with 3 or more bits impacted in the
configuration memory of a Kintex-7 FPGA (which uses bit interleaving). Hands et al. [41]
further demonstrate that ECC can be overwhelmed despite bit-interleaving in SRAM chips.
MBU rates will likely increase as the feature size of SRAM is reduced [42], and there is
evidence that MBUs may be under-represented in radiation studies that do not consider
different angles of incidence for particles [43]. The possible occurrence of 3-bit MBUs means
that cache faults should be considered when estimating the absolute fault rate of a processor
and workload in a radiation environment.
The intended environment for these processors is terrestrial, which has (thankfully) a

lower fluence of high energy particles than low Earth orbit. Hardware protection measures
have associated costs such as complexity, silicon space, and performance; manufacturers are
likely to implement only what is necessary for reliable operation on Earth.

This paper is primarily concerned with evaluating the contribution of the workload’s cache
usage to radiation behavior. We assume that backing memory has sufficient protection, as
more robust protections may be used because latency and space requirements are more
relaxed than for on-chip memory.

3.1 Bias in OCD-Based Fault Injection

Caches present some challenges to OCD-based techniques due to the limited access granted
by interfaces such as JTAG. Without direct access to the cache, it is difficult to determine
the cache state at the selected time of injection. This tool alleviates these issues by accurately
tracking the cache state throughout a program’s execution.

Previous OCD-based injection techniques have focused on injecting faults into processor
registers. The injection itself is straightforward: JTAG allows you to halt the processor,
read a register value, write an altered value back to the register, and resume execution.
For example, a transient fault that impacts the arithmetic logic unit may be simulated by
altering the result as stored in a CPU register. A transient fault that impacts a data bus
may be simulated by altering the register storing the data before a send or after a receive.
Some transient faults may result in persistent errors. For example, a flipped bit in a

configuration register may render a device unusable until reset. If these configuration registers
are accessible by the JTAG interface, then these faults can be injected as well. Persistent
errors that are caused by faults in components not accessible by JTAG, however, are more
difficult to simulate.
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Caches are typically not directly accessible to the JTAG interface outside of a handful of
configuration options. This difficulty is dealt with by altering the data with the simulated
fault after it is placed in a register by a load instruction. Injecting a single fault into a CPU
register does not always accurately reflect the vulnerability of a cache. Cache faults may
persist for an extended amount of time and impact multiple instructions. This is because
caches by their nature store data for an uncertain amount of time and may be read many
times before being updated.

The halt, inject, resume strategy used by prior JTAG-based injection work [20] has another
potential flaw: it may bias the fault injection to target certain data depending on how targets
are selected. Previous implementations would select a random time to inject the fault to
simulate the random nature of radiation-induced faults. The fault is injected at that time,
or the next occurrence of an instruction of interest (in the case of caches, load instructions).
For a cache, this will bias injections to data that is loaded often or loaded first, whereas the
vulnerability of data in the cache is dependent upon how long the data is resident.

Figure 1 demonstrates two possible issues when injecting simulated cache faults. In
example 𝐴, line 10 is a load instruction that is preceded by several non-load instructions
and immediately followed by another load instruction. The first load instruction is more
likely to be the first load executed after the processor is halted, and will thus have a
disproportionately large number of faults injected. This may be incorrect behavior: if line
10 loaded data from backing memory while the data used in line 11 was resident in the
cache, then the bias is the opposite of what is desired. Example 𝐵 relates to lines 12 and
13 which both load data from the same address. If this data is resident in the cache and a
simulated fault is injected prior to line 12 executing, then both load instructions need to
be modified to correctly simulate the fault. Tracking the cache state is vital to accurately
simulating faults: the corrupted data may be overwritten by store operations before being
read, evicted due to collisions, or remain in the cache for extended periods with many reads.
Wulf [21] partially addresses these issues; faults are distributed in a uniform fashion

amongst load instructions, and faults will be injected on all following loads from the same
address for a configurable number of cycles to simulate data persistence in the cache. This
ensures that all instructions may have faults injected during a fault injection campaign;
however, it potentially injects faults in situations that should not have a fault injected. For
example, a load instruction that results in a cache miss should not have faults injected: the
data in the cache was replaced by data from the backing memory. Corrupted data in the
cache may be benign if it is evicted (without being written back to backing memory) or
overwritten by a store instruction.

Our approach avoids these artificial biases and could be used to improve the accuracy of
simulated cache faults. We track the cache accesses of a program so that we can determine
the cache state at any point in the execution. This allows us to select the instructions to
inject faults into by starting conceptually with the cache itself: selecting a cache set in which
the fault is to be simulated and working forward to the eventual effects (or lack thereof) in
execution. We believe this design best emulates real-world scenarios where radiation strikes
a random location in the cache.
By working from the cache forward, we can avoid artificial biases as well as account for

benign faults. A fault can be rendered benign at the cache level in several ways: the fault
may be overwritten before it is read, it may have occurred in an invalid line, or the data
may be evicted due to cache pressure. Accounting for benign faults is essential to accurately
measure the effectiveness of software mitigation techniques because increasing the ratio of
benign faults to expressed errors is a viable mitigation strategy.
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B
A

Execution Trace

...

07 add r2 r3 r3

08 add r2 r2 r4

09 sub r2 r2 r5

10 ldr r1 0x00

11 ldr r2 0x01

12 ldr r3 0x02

13 ldr r4 0x02

14 ldr r5 0x03

...

Cache

Data

0x00 0xDEADBEEF

0x01 0xDEADBEEF

0x02 0xDEADBEEF

0x03 0xDEADBEEF

Address

Fig. 1. This simplified program and cache diagram illustrates potential bias in injecting faults via JTAG.
A: injection on the next load after the selected injection time will result in a disproportionate number
of faults injected on line 10 compared to line 11. B: Lines 12 and 13 both read from the same address,
an effect that is ignored without considering the cache state.

4 DESIGN

This section describes the design of OCD Cache Tracer and the factors that influenced that
design. OCD Cache Tracer collects fine-grained cache usage information that allows us to
understand how programs use the cache and how programs may react to cache faults.
Caches store data for an indeterminate amount of time. Data that is corrupted in the

cache, such as by a radiation-induced upset, may not propagate beyond the cache depending
on the state of the cache: the corrupted data may be invalid, or overwritten or evicted before
use. For this reason, the cache usage information must include how and when data enters
and leaves the cache. This allows us to determine the critical time of data in the cache.

Gathering the data needed to measure the critical time is subject to commercial constraints.
Projects that use commodity hardware may have chosen that hardware in part due to the
lower cost of it compared to radiation-hardened processors. Our solution should be as
low-cost and widely available as the commodity hardware we are targeting. This makes using
the target hardware preferable to simulation-based solutions. Using the target hardware
directly has the added benefit of being as close as possible to the flight configuration which
is important because radiation behavior depends on both hardware and software [10]. It
allows the users to abide by the best practice of “Fly as you test, test as you fly,” [44] and
alleviates the need to show that the tested system is functionally similar to the final product.
For these reasons, we have decided to use the target hardware itself through an OCD

interface which is commonly available on commodity hardware. This interface allows direct
access to some hardware components such as CPU registers and can also be used to control
the execution of the processor (such as halting it to allow inspection). This is all done in a
manner that is largely transparent to the software running on the processor. Using an OCD
interface allows our tool to view the execution trace of a program on the target hardware
with almost no modifications to the software under test.

Figure 2 shows a high-level view of our design: OCD Cache Tracer steps through the
execution of a program on the target hardware using an OCD interface. The target program’s
execution is stepped through one instruction at a time. Cache effects of each instruction are
observed and added to a database to allow for easy processing. For every load and store

instruction, the following are recorded:

∙ The current cycle count of the program
∙ For load instructions, whether it resulted in a hit or miss
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Cache Tracer

While (running):

  read current instr.

  determine cache effects

  update cache state

  advance trace

Post-Processing

Cache Access DB

Cycle Instr. Result

100 ldr Miss
128 str Update
150 ldr Hit
... ... ...

Target Hardware

Execution Trace

...
08 add r2 r2 r4
09 sub r2 r2 r5
10 ldr r1 0x00
11 ldr r2 0x01

...

Fig. 2. The high-level design of OCD Cache Tracer has three primary components: a database to store
cache accesses, the Cache Tracer program which coordinates the data collection, and the execution
trace of the program on the target hardware. The primary loop of Cache Tracer is to read the current
instruction of the execution, determine how that line interacts with the cache, store the results in the
cache access database, and advance the execution to the next line.

X

Start tag

Data reads from block

C
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c
h

e
 

S
e
ts

 /
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s

Cycle in Cycle last used Cycle out End Tag

Fig. 3. The cache profile’s view of critical data in the cache. The cycle in is recorded when data enters
the cache (either via a store or load miss), and all subsequent load instructions are recorded. The last
time the data is read is marked as cycle last used ; the data is no longer critical after this point. The
label cycle out marks when the data is evicted or overwritten by a store.

∙ The instruction address from the Program Counter
∙ The instruction, both raw and decoded
∙ The target destination or source address for the data

A database is preferable for tracking the cache accesses at an instruction granularity due
to the large number of memory accesses made by even small programs. This database will
contain every cache access the program makes but is not in a convenient form.

4.1 Cache Profile

The cache profile is an updated version of the cache access database that adds tables to track
valid data throughout the program’s execution. From the cache profile, we can determine
the state of the cache at any point in the program’s execution, which allows us to reason
about possible impacts of cache faults.
Figure 3 is a graphical representation of the cache profile for a simplified example. The

y-axis shows two cache sets broken into ways (four each); the x-axis shows the time in CPU
cycles. Valid blocks in the cache are represented by rectangles, with critical time for the
block denoted in red. Individual accesses to the data are marked with ticks. Data enters the
cache (becomes valid) on a missed load or a store, which is marked as “cycle in.” Subsequent
accesses (load hits) are tracked, the last of which is marked as “cycle last used,” after which
the data is no longer critical. Finally, “cycle out” denotes when the data leaves the cache,
from either cache eviction or the data being overwritten by a store.
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The table of valid data blocks is added to the cache access database using Algorithm 1.
The input is the list of instructions that affect cache state and related data that is collected
by stepping the execution of the target program. Each entry tracks the cache line (set and
way), cycle in, cycle last used, and cycle out. CreateNewBlock uses the round-robin scheme
for selecting the cache way. A table of cache accesses is also created to link each instruction
to the valid cache block that it reads from.

The cache profile tables may then be examined to calculate cache metrics for the program
such as the proportion of critical data (as this work examines), or to enable accurate fault
injections. To inject a fault in the cache block at a specific time, such as the “X” in Figure 3,
all following instructions that access the corrupted data can be easily retrieved. In our
example, there would be four instructions: one for each tick mark to the right of the “X,”
including the one corresponding to cycle last used.
Our approach allows the target bit and time for a fault to be selected randomly, which

prevents the bias issues of previous approaches (Section 3.1). For example, injecting on the
next load after the injection time ignores if that load accessed cache and biases injections
based on the preceding questions (example A in Figure 1). Our approach handles injecting a
fault into multiple load instructions that access corrupted data (example B in Figure 1).

Data: Table of instructions that access cache
Result: Table of valid data blocks
foreach instruction do

/* Instructions are ordered chronologically by cycle */

set, tag, cycle = RetrieveCacheAccess(instruction);

/* Returns None or a block for the set/tag which is not closed */

currentBlock = FindExistingBlock(set, tag, cycle);

if store instruction then
if currentBlock then

/* Close the existing block, data was overwritten by store */

CloseBlock(currentBlock, cycle);

end

/* Create a new block, store writes to cache */

CreateNewBlock(set, tag, cycle);

else
/* load instruction */

if currentBlock then
/* Load hit: add access to block, data read from the cache */

UpdateBlock(currentBlock, set, tag, cycle);

else
/* Load miss: create a new block, data loaded from memory */

CreateNewBlock(set, tag, cycle);

end

end

end
Algorithm 1: Build the cache profile from the table of instructions generated by the cache
tracer.
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4.2 Assumptions

This work requires several assumptions to be made. The program under test executes
deterministically, is single-threaded, and interrupts are disabled. Deterministic execution is
necessary for the generated cache profile to give accurate information about future executions,
and is a common assumption in fault injection tools [25, 26]. While some OCD-based tools can
likely handle non-deterministic execution, they suffer from the issues discussed in Section 3.1
when simulating cache faults.

The cache profile is generated by stepping the target processor; we assume that this
execution is equivalent to normal operation with respect to cache behavior (examined in
Section 6.1). Stepping the processor causes the processor to enter the debug state after each
instruction is executed. We collect the instruction and counter information used for the
cache profile while in the debug state and then resume execution for the next instruction.
Entering the debug state causes the instruction pipeline to be flushed, and the completion
of memory operations may be confirmed with the Debug Status and Control Register.

As a consequence of flushing the instruction pipeline, we are unable to observe the effects
of pipeline stages individually. Fine-grained timing information is lost and we view the
instruction as atomic. This abstraction is unlikely to impact the results when measuring the
life of cache data over an entire program. Instruction execution is performed in-order, and
we are unable to account for the effects of speculative execution.

The cache must also be configured to be write-through: a store writes to backing memory
and cache at the same time. This prevents data from sitting in the cache before being written
to backing memory and reduces the critical time for data as data corrupted during this
time by an SEU may propagate into an error. Write-back caches may be supported in the
future assuming that the write to backing memory occurs upon data eviction caused by an
instruction we observe.
OCD Cache Tracer requires a mechanism to differentiate read-hits from read-misses at

an instruction granularity (we choose to use performance counters; see Section 5). This
allows us to observe the cache effects of each instruction to populate the cache profile. One
could forgo this step by using a conceptual cache model for this information and using the
cache tracer only to record cache-related instructions. For example, load instructions are
recorded, but not whether the load resulted in a hit or miss. The validity of the results
will be dependent upon the accuracy of the cache model. Our first experiment (Section 6.1)
examines the differences between a conceptual model and the target hardware.

5 IMPLEMENTATION

The goal of OCD Cache Tracer is to give us a clear picture of what is happening in the cache.
Given the limited visibility into the cache state, we build this picture by observing cache
behavior during a golden run of the target program. Conceptually this is straight-forward:
the program is executed one instruction at a time, and the instruction and hardware state is
examined to see if it loads data from or stores data to memory. The instructions that access
memory are stored in a database for later use. OCD Cache Tracer is open source.1

Unfortunately, collecting cache data directly from the target hardware is not trivial. The
OCD interface we use, JTAG, is flexible and hardware vendors may choose what processor
components to make accessible to it. Components such as configuration registers, hardware
counters, and the core registers of the CPU are commonly accessible, but the cache is rarely

1https://github.com/jcmarsh/OCD Cache Tracer
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Host Computer Target Hardware

JTAG Device

DrSEUs

OpenOCD

Cache Tracer

Cache Access 

Database

Serial Port
Program Source
...
asm("start_tag:");
...
asm("end_tag:");
...
printf("serial output\n");
printf("end signal\n");
... Core

Flash

Cache

Fig. 4. An overview of the primary components needed for running OCD Cache Tracer. The host
computer runs DrSEUs which uses OpenOCD/JTAG to load the test program and controls execution.
DrSEUs records and monitors the test program output through a serial port. OCD Cache Tracer is
integrated with DrSEUs and creates a database of cache accesses by stepping the test program’s execution
and monitoring cache accesses through OpenOCD/JTAG.

accessible to debugging interfaces. Instead, the data must be gathered indirectly. This section
details the implementation of OCD Cache Tracer and how these difficulties were overcome.
Figure 4 shows a high-level view of how OCD Cache Tracer operates. The three green

rectangles represent the required pieces of hardware: a host machine, a JTAG device, and a
device under test (DUT). The host machine runs the software components of OCD Cache
Tracer. The two primary components are DrSEUs which coordinates the hardware and Cache
Tracer, and Cache Tracer itself which collects the cache usage data. Both components use
OpenOCD to communicate with the DUT. Cache Tracer is described further in Section 5.1.

DrSEUs [22] is a fault injection framework that can coordinate and record fault injection
campaigns via JTAG. It configures the target hardware, loads the test program, and records
serial output from the test program. DrSEUs uses Cache Tracer during the setup phase for
a fault injection campaign, and we plan to extend the fault injection capabilities to use the
cache profile information.
DrSEUs was originally designed to work with simulated targets or physical targets that

are running an operating system (Linux and VxWorks are supported) through a Secure Shell
session. We modified DrSEUs to be able to work with targets that are running baremetal
applications. Modifications involved adding functionality to DrSEUs to save the output from
the DUT through a serial connection and extending the DUT reset functionality for our
embedded device. DrSEUs typically searches for an output file on the DUT after detecting a
terminal prompt denoting that the application under test had finished executing. Instead,
we generate the output file on the local machine using an intermediary C program to read a
stream of data from the serial port connected to the DUT. This prevents DrSEUs’ python
script from potentially dropping data if the serial buffer overflows. Resets and programming
of the embedded device are done through the Xilinx System Debugger. DrSEUs is open
source and our modifications are available.2

DrSEUs handles the loading of the test program onto the DUT and requires the user to
make a few changes to the source code. Assembly labels must be added to mark the start
and end of the code section which will be observed by Cache Tracer. A codeword must be
printed to the serial port to signal to DrSEUs when the program ends, allowing DrSEUs to
detect timeouts during fault injections.

2https://github.com/CHREC/drseus and https://github.com/jcmarsh/drseus
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OpenOCD [45] enables communication with the JTAG device. The host machine connects
to OpenOCD via its telnet interface. OpenOCD supports a wide range of devices from
single-board computers to dedicated devices such as the Digilent HS2. We chose the Digilent
HS2 because it operates faster than single-board computers such as the Beaglebone Black
and Raspberry Pi 3 which we used for initial development. The JTAG device interfaces with
the DUT through a 6 pin connector to pause, resume and query it for register information.

5.1 Cache Tracer

Cache Tracer builds a cache profile by recording every memory access and its impacts on
the cache in a MySQL database. The profile can then be used to analyze cache usage or
select instructions to target when simulating faults in the cache. To collect this information,
Cache Tracer needs to be able to collect information about instructions that cause changes
in the cache state as well as the current cycle count.
The instruction and counter information are collected during the golden run using the

step command to halt execution after each line of the program is executed. This process
is time-consuming, taking approximately one minute per ten thousand CPU cycles under
normal execution, but only needs to be run once per target program and configuration. To
speed up the golden run, we add start and end labels to the source code. The labels allow
the user to target specific parts of the execution. For example, system initialization and a
period of normal operation may be skipped to allow the caches to warm up.

Information about the current instruction is provided by the JTAG interface. The program
counter register is directly accessible, and the instruction can be read by reading the memory
at the address stored in the program counter.

The instruction is decoded into a human-readable format by OpenOCD. This step is not
necessary, but greatly eases development and debugging work. Cache Tracer uses a simple
interpreter to select whether the instruction can be discarded because it does not impact the
cache (such as an add between two registers) or if further queries are needed to determine
the target address of the instruction.
Determining the target address is complicated by the large number of addressing modes

provided by ARM and multiple instructions that access memory. The address often uses a
base addresses stored in a register along with an offset. For example, when the instruction LDR

r2, [r11, #-0x8] is reached, the interpreter will have to identify that r2 is the destination
register, the base address is in register r11, and an offset of -0x8 should be applied. Cache
Tracer then needs to read register r11 and calculate the source address correctly.

The ARM ISA has several other instructions and features that complicate Cache Tracer’s
implementation:

∙ STM/LDM: Store and load data to/from multiple registers
∙ STC/LDC: Store and load data to/from the registers of a co-processor such as the
floating-point unit

∙ PLD: Pre-Load Data hints that may or may not cause cache accesses
∙ PUSH/POP: pseudo instructions for STMDB sp! and LDMIA sp!

∙ Conditional Execution: many instructions can be made conditional depending on flags
set by the result of the last comparison performed

∙ Multiple word lengths: many instructions have variations for multiple data sizes (8, 16,
32, or 64 bits)

Loads and stores to and from multiple registers are accounted for in the database with
an entry for each register. The memory access for co-processor instructions is recorded
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and accounted for. Both of these features will require additional modifications when fault
injection is implemented but are feasible. The hardware counters are used to reveal if the
PLD instructions are executed. PUSH and POP instructions are directly translated. We deal
with conditional execution by checking the flag register as necessary and acting accordingly.
We did not observe instructions with word lengths other than 32 bits in the benchmarks we
tested, so have not yet implemented support for these instruction variations. Loading data
from backing memory did not require changes as the cache line as a whole is fetched.
Cache Tracer needs to be able to determine whether a piece of data is resident in the

cache when a load operation is performed in order to determine the current state of the
cache. This can later be used to validate that the cache model is true to the actual hardware
behavior. It is also necessary to be able to start an injection campaign midway through
a program’s execution: we can determine if data was resident in the cache even if Cache
Tracer did not observe the instruction that caused the data to be resident.

Cache Tracer uses the Performance Monitor Unit (PMU) and hardware counters to
determine data residency when a load instruction executes; i.e. does it result in a cache hit
or a miss? The Zynq-7000’s L2 Cache Controller (L2C-310) provides two counters for the
L2 cache, and the PMU provides 6 counters that can trigger on events for the L1 and L2
caches. Of these counters, we found that the L2 Cache Controller counters for L2 access and
L2 hit were sufficient to determine if an instruction resulted in a hit or a miss. However,
these counters register each event multiple times when the processor is stepped. One of the
PMU counter activates for memory accesses to the L1 data cache or higher, which doesn’t
allow us to discriminate between L2 hits and misses, but has nearly a 1-to-1 relationship
with the number of instructions that access the cache (it is complicated by instructions such
as LDM that may cause multiple accesses).
The cycle count is retrieved from the PMU which provides a counter with single-cycle

granularity. Our original implementation used this counter set to determine how long an
instruction takes to execute. From the execution time, we reasoned, one could determine
if the instruction resulted in a cache hit or miss. However, stepping the processor one
instruction at a time causes the pipeline to be flushed. This results in each instruction taking
a minimum of 14 cycles, which is long enough to mask L1 hits. The cycle timing approach
may work well for less heavily pipelined processors with more simplistic memory hierarchies.
We decided to use L2 counters instead of the cycle counter to differentiate cache hits and
misses so that we will be able to target L1 caches in the future.

Our implementation targets the 32-bit ARMv7-A ISA but should be applicable to other
ISAs with modifications. Since we are tracking memory accesses, load/store architectures
will be easier to adapt, as will simpler ISAs. A new instruction interpreter will be needed,
as well as a way to discriminate between cache hits and misses at the cache-level being
examined.

5.2 Limitations

Our work is limited by the black-box nature of many cache implementations and what is
visible to the JTAG interface. Examining cache behavior is further complicated by the range
of configuration options available.

The data collected during the golden run is limited in several respects:

∙ There is no knowledge of cache state that results from instructions outside of the start
and end labels
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∙ Cache residency is determined using hardware counters while executing the program
in a non-standard way (stepping)

∙ The counters do not inform us as to how data arrived at or departed from the cache

We make several choices to match the cache settings of our target hardware (L2C-310
L2 cache controller as implemented by Zynq-7000 processors) and simplify cache operation.
Altering these choices for different hardware configurations may require improvements to our
implementation. We do not deal with cache flushes or locked cache lines within the labeled
section of the test program. Only the L2 cache is enabled, and that cache is set to write-
allocate (a store that results in a write-miss will cause a line-fill), writes to backing memory
are on a per word basis (as opposed to per cache line), and performance enhancements such
as prefetching are disabled. We recommend that the hardware configuration tested with this
tool is used as the flight configuration (“fly as you test”).

Updating our implementation to accommodate more complex behavior is straight-forward
when the effects of the behavior are observable during processor stepping and is not disrupted
by entering debug mode. Behavior that we can not observe may be accounted for by
introducing a cache model. For example, we could model the prefetching of sequential data
and update our cache access database accordingly.

5.3 Use with Multi-core Processors

The limitations and assumptions (in Section 4.2) at first appear too restrictive for the
techniques here to apply to many embedded processors available today, which often have
multiple cores and several levels of cache available. For example, a processor may have four
cores with per-core L1 data and instruction caches and a unified, shared L2 cache. Configuring
commodity processors with a single core and only the L2 cache enabled, as this work examines,
may still achieve higher performance per watt than radiation-hardened processors due to
the large disparities between the technologies. To realize further performance gains, this
work can take advantage of multiple processor cores and cache levels.

Extending this work to incorporate L1 caches, individually or with the L2 cache, is possible
so long as read-misses and read-hits can be detected (including which cache the data is
resident in). This may increase the execution time of the golden run if more hardware
counters are queried after each memory operation. However, in a 2-level cache hierarchy, it
should be possible to infer L1 read hits using only the currently used L2 Cache Controller
counters: a memory access that results in an L1 read hit will not result in an L2 access.
Modifications will also be required to the cache profile database and scripts used to analyze
the cache metrics, but we anticipate that these will be straight forward.
The addition of multiple processor cores complicates the matter, in part because the L2

cache is often shared by all of the cores. Our cache tracer is only capable of tracing one
single-threaded program at a time and is unable to account for the effects of data shared
between threads on the cache state or the non-determinism introduced by multi-threaded
programs (a common limitation in this domain).

The work, however, can still be applied to systems that are running multiple programs so
long as they are not using shared data. The programs may be examined in isolation with
the tools presented here, and the results will be valid due to the hardware provided memory
isolation between programs. The primary cache effect of running the programs together will
be increased cache pressure as more of the cache is utilized with more programs running.
Work by Santini et al. [37] has shown that increasing cache evictions reduces the occurrence
of faults, which is to be expected: data is vulnerable in the cache for less time. The reduced
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Table 1. Benchmarks and inputs used for tests

Benchmark Code Source Inputs

Matrix Mult Quinn 16 12 by 12 multiplications
LZO miniLZO 64KB Kepler Data

Basicmath MiBench auto Small with 1200 Cubic eqs.
Bitcount MiBench auto 3000 iterations
QSort MiBench auto 1000 words
Susan MiBench auto Edge detection on 76x35 pgm

ADPCM MiBench tele 64KB pcm
CRC32 MiBench tele 128KB pcm
FFT MiBench tele 4096 max size, 4 waves
GSM MiBench tele Encode 8 au frames to gsm

critical time means that the results obtained from isolated cache traces will be the worst-case
scenario: the amount of actual critical data will likely be less than that measured by our
tool. A worst-case measure is valuable because it can be used to inform decisions about the
reliability of the system.

6 EXPERIMENTS

To exercise our system, we selected ten benchmark programs. Eight are the telecom and
automotive benchmarks from MiBench [46]: Basicmath, Bitcount, Quicksort, Susan, ADPCM,
CRC, FFT, and GSM. We selected MiBench because it has been widely adopted in the
embedded community, the code is ready to compile, and standard inputs are provided. The
other two benchmarks, LZO and Matrix Multiplication, were selected because they were
used by Santini et al. [37] to perform one of the more in-depth studies on the Zybo-7000.
Unfortunately, Santini did not release the source code or inputs used, so we selected publicly
available implementations: Lempel-Ziv-Oberhumer compression (LZO) from miniLZO [47],
and Matrix Multiplication from Quinn et al. [48]. Quinn has proposed a set of uniform
benchmarks for use in radiation testing, but no single set of benchmarks have been widely
adopted in the radiation testing community.
We reduced the inputs for each benchmark to shorten the golden run execution time to

approximately 500 minutes. The parameters are shown in Table 1. In addition to shortening
the inputs used, we modified the benchmarks as follows (all modifications and inputs are
available3):

∙ Add platform-specific code for running baremetal on a Zynq-7000
∙ Mark the start and end of the benchmark’s primary work with assembly tags to track
cache accesses

∙ Flush the cache before the primary work starts
∙ Modify cache configuration and disable the L1 caches
∙ Bundle input data with the executable
∙ Remove all print statements from the tracked region to shorten the run time
∙ Print a keyword to indicate to DrSEUs that the benchmark is complete

3https://github.com/jcmarsh/mibench zybo, https://github.com/jcmarsh/OCD Cache Tracer/tree/master/

jtag eval/apps/lzo, and https://github.com/jcmarsh/benchmark codes/tree/zybo
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The DUT is a Digilent Zybo [49] which has a Zynq-7000 [50] system on a chip. We are
running our tests on a single core of the dual-core ARM Cortex-A9 processor and do not use
the FPGA. The ARM cores have separate L1 instruction and data caches with a size of 32KB
and parity support. The L1 caches do not support write-through. The L2 cache is shared, has
512KB of data, supports parity, and supports write-through. For our experiments, we use
the L2 cache with write-through enabled. We chose the Zynq-7000 as the target chip because
it has undergone several radiation tests and is currently in use in low Earth orbit [51].

6.1 Experiment 1: Hardware vs. Cache Model

This experiment is designed to build confidence that stepping the processor is equivalent
to normal execution and that hardware counters and cache operate as expected. From the
cache documentation, we have built a model of how we expect the cache to operate based
on size, replacement policy, and other cache features. The cache model is only used for
comparison: our tool gathers all required information from the hardware. Ideally, the cache
model would perfectly match the observed behavior of the hardware.
We examine each memory access from the golden run and attempt to guess using our

model whether or not the data in question was resident in the cache. We do this by comparing
the guess to the recorded cache counter values. Any difference between the two should reveal
inaccuracies with our understanding of how the cache and hardware counters work.

Table 2 shows the cache behavior of the benchmarks compared to the expected behavior.
“Hit” indicates that a hit was expected by our model and reported by the cache counters.
“Miss” indicates that the model and counters were in agreement that the instruction resulted
in a miss. “Anomalous Hit” indicates that the cache counters reported that there was a hit,
but our cache model predicted a miss. The caches were flushed immediately prior to the
assembly label that marks the start of the profiled section; when no flush was performed, we
observe an increase in Anomalous Hits because the instructions that loaded the relevant
data occurred before the profiler began tracking. “Anomalous Miss” indicates that the
cache counters reported that there was a miss, but our cache model predicted a hit. “PLD”
indicates that there was a PreLoad Data instruction which did not load the data specified.
The vast majority of the PLD instructions encountered resulted in no action being taken
according to the cache counters.
Overall, we observed that our cache model matches the target hardware behavior very

well, which indicates that the cache operates as expected when stepping the processor. For
four benchmarks every memory access is properly accounted as either a Hit or Miss, and
less than 0.1% of Basicmath, Bitcount, Susan, FFT, and GSM are incorrectly categorized.
The only outlier is LZO with 1% of accesses incorrectly categorized. The cache metrics
will be measured based on the actual cache behavior (from the hardware counters); these
results tell us that these behave largely as expected. In this case, following the observed
hardware behavior is the conservative choice: the data from the anomalous hits are assumed
to have entered the cache before measurements began, resulting in a slightly higher amount
of critical data.
The Anomalous Hits in the LZO benchmark appear to be the result of prefetching the

next cache line when reading data from sequential addresses. The first read from a new
cache line is expected to be a miss (as there are no previous recorded accesses) but is instead
reported as a Hit by the cache counters. This behavior was unexpected: the anomalous hits
occurred even though we configured the cache with optimizations, including prefetching,
disabled. This discrepancy between our cache model and the hardware counters requires
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Table 2. Memory accesses of each benchmark divided into cache Hits, Misses, PreLoad Data (PLD)
instructions, Hits that our model predicted should be Misses (Anom. Hit), and Misses that our model
predicted should be Hits (Anom. Misses)

Benchmark Hit Miss PLD Anom. Hit Anom. Miss

Matrix Mult 349167 2 0 0 0
LZO 193357 61 0 1989 0

Basicmath 67617 26 179 29 0
Bitcount 51013 12 0 2 0
QSort 220346 4001 0 0 0
Susan 267912 105 0 5 0

ADPCM 112639 2054 0 0 0
CRC32 258015 4130 0 0 0
FFT 155546 1035 1021 13 0
GSM 315677 77 367 1 0

further investigation, and it demonstrates the difficulties with understanding hardware
behavior even with simplified settings.
We did not observe any cache evictions. Given the large size of the L2 cache and the

relatively low cache usage of the benchmarks, this was to be expected.

6.2 Experiment 2: Measuring Critical Data in Cache

We can measure different cache usage metrics from the cache profiles generated in the
previous experiment. One metric is cache utilization: how much of the cache has valid data
in it at a given point in time? Perhaps more interesting to us is the amount of data in the
cache that is valid and will be used again. In other words, what is the cumulative critical
time of the data in the cache? We refer to these metrics by the state of the data: resident
and critical.

Cache utilization is a bound on cache vulnerability for the data section of the cache: only
faults that occur in valid cache lines have a chance of propagating in the future. Critical
data is a subset of utilization, as the data must be valid and used in the future, and
serves as a tighter bound on the contribution caches make to a processor’s radiation cross
section. Having a tighter bound will allow for designers to better understand the radiation
characteristics of their workload before performing a fault injection campaign (Section 7
explores how this information may be used to reduce the time required for a campaign). For
this information to be beneficial, there will have to be programs for which the proportion of
critical data is significantly less than resident data.
Experimental results have shown a correlation between utilization and radiation cross

section [37]. For critical data to be more predictive of radiation sensitivity than resident
data, these metrics will have to diverge for some programs.

Table 3 shows the percentage of cache lines that are resident, critical, and dormant critical
data throughout each benchmark’s run. Dormant critical data is examined in the next
experiment. Figure 5 shows these numbers as proportions of the resident data to better
visualize the relationships between the metrics.

We can see that the proportion of critical data to resident ranges from almost 0% for
benchmarks like Basicmath, ADPCM, and CRC32 to about 50% for QSort and Susan
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Table 3. Percent of cache data that are resident, critical (will be read again), or dormant critical (read
again after 10K cycles)

Benchmark % Resident % Critical % Dormant Critical

Matrix Mult 1.114 0.190 0.118
LZO 23.525 9.804 6.118

Basicmath 4.171 0.252 0.170
Bitcount 0.056 0.046 0.016
QSort 19.790 9.852 9.814
Susan 2.952 1.573 1.505

ADPCM 7.852 0.033 0.005
CRC32 12.648 0.206 0.035
FFT 11.527 3.438 3.388
GSM 0.771 0.319 0.271

Fig. 5. Critical and dormant critical data shown as a proportion of total resident data (height is scaled
proportionally; width is scaled to show subset relationship)

(Bitcount reaches 80%, but uses very little cache data). This spread of ranges shows that
the proportion of critical data may be significantly less than the proportion of resident data.
For these benchmarks, critical data is often a much tighter bound on cache vulnerability
than resident data. The two metrics are also differentiated, so one of them may be a better
predictor of cache vulnerability. We are inclined to believe that critical data is the better
predictor based on the fact that only critical data can propagate faults, but verifying this
and the magnitude to which they differ will require further testing.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



20 James Marshall, Robert Gifford, Gedare Bloom, Gabriel Parmer, and Rahul Simha

6.3 Experiment 3: Effect of Flushes on Critical Data

Asadi et al. [19] explored using cache flushes as a mechanism for decreasing error propagation
using the SimpleScalar simulator and SPEC2000 benchmarks. The cache flushes reduce the
critical time of data in the cache by forcing more reads from backing memory. They observed
that flushing the cache reduced the vulnerability of the cache by approximately 10 times
while causing less than a 10% reduction in the instructions per cycle.

Data that is read often will soon be brought back into the cache negating the benefits of
this approach, but data that is read after significant time gaps will have a reduced critical
time. We call data that is resident in the cache but will not be accessed for at least ten
thousand cycles dormant critical. Ten thousand cycles was selected because that is the lowest
value of times between cache flushes tested by Asadi. Dormant critical data is a subset of
critical data, which is a subset of resident data.

We are interested in seeing if the amount of dormant critical data is consistently a large
proportion of the critical data. This would confirm that Asadi’s cache flush mechanism will
indeed reduce cache vulnerability.

The data shows that a significant amount of critical data is dormant: if data is to be used
again (and thus a fault may propagate), it is very likely to not be used within the next 10k
cycles. Dormant critical data is a significant proportion of critical data for most benchmarks,
especially those such as QSort which have a high ratio of critical to resident data. This
lends evidence to the generality of Asadi’s results [19] showing that cache flushes reduce
vulnerability by using a real hardware target instead of a simulator and a different set of
benchmarks. A flushing mechanism could be implemented using ARM’s “clean and invalidate”
instructions, and further investigation is needed concerning the associated performance costs.
Flushing the data reduces the vulnerability by removing dormant critical data from the
cache.

7 CASE STUDY: REDUCING FAULT INJECTIONS

This case study demonstrates how we can reduce the number of fault injections required to
characterize a system’s cache vulnerability using an application’s critical data measurement.
This can save teams significant amounts of time in future fault injection campaigns.

The purpose of a fault injection campaign is to determine the probability that a fault
(e.g., a bit-flip) will result in a failure of the system (e.g., corrupted data). Using brute-force
to determine this probability is impractical because the number of possible faults grows
exponentially as the bits in the system and runtime increase. Instead, a reduced number of
injections are performed to provide an estimate with a specific confidence and error margin.
Leveugle et al. [52] explored how to apply statistical methods to calculate how many

fault injections need to be performed. Their technique makes the number of required fault
injections tractable and is not sensitive to increases in the number of fault locations once it
has become significantly large (as any non-trivial system will). The number of fault injections
is dependent on an estimate for the probability that a fault results in a failure: it is this
estimate that our tool can refine.

𝑛 =
𝑁

1 + 𝑒2 ×
𝑁 − 1

𝑡2 × 𝑝× (1− 𝑝)

(1)

Equation 1 from Leveugle et al. outputs 𝑛; the number of fault injections required to give
an accurate measure of the actual probability that a fault will become a failure (𝑝). The
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Table 4. The number of fault injections required to estimate 𝑝 with a confidence of 99% and an error
margin of 1% with different values of 𝑝. 𝑝 is set to 0.5, resident proportion, and critical proportion (from
Table 3).

Benchmark 𝑝 = 0.5 𝑝 = Resident 𝑝 = Critical

Matrix Mult 16587 731 126
LZO 16587 11936 5867

Basicmath 16587 2652 167
Bitcount 16587 37 30
QSort 16587 10532 5893
Susan 16587 1901 1027

ADPCM 16587 4801 22
CRC32 16587 7330 136
FFT 16587 6766 2202
GSM 16587 507 211

formula requires the user to provide an initial guess for what 𝑝 is (𝑝). 𝑁 is the number of
possible faults, in our case every bit of the data section of the L2 cache multiplied by the
number of cycles the program executes. 𝑡 is the standard deviations of the mean for the
desired confidence level: 𝑡 = 1.96 corresponds to 95% confidence, 𝑡 = 2.58 corresponds to
99% confidence. The margin of error is 𝑒: after running 𝑛 fault injections the reported result
will be within ±𝑒 from the actual value with the given confidence.

The worst-case scenario is that 𝑝 is 0.5: there is an equal probability that a fault will
become a failure as not. Thus, without prior knowledge of 𝑝, 𝑝 should be set to 0.5 which
maximizes the number of fault injections that will be executed. Intuitively, this can be
framed as: it is more difficult to determine if a coin is fair than if it is biased.
OCD Cache Tracer places limits on the possible values of 𝑝 which lets us select a value

for 𝑝 that results in significantly fewer fault injections being required. The limits are derived
from the critical data measurement, with the assumption that only faults in cache data that
will be used again can become a failure. For example, if 20% of the cache data is critical,
then 𝑝 may range from 0 (no faults in the critical section become failures) to 0.2 (every fault
in the critical section of the cache results in a failure).
We must conservatively select 𝑝 with 0.5 representing the worst-case scenario. From the

limits set by the amount of critical data, we select the value closest to 0.5 to ensure that
enough fault injections will be run to yield accurate results. For example, if the cache profile
shows that 80% of the cache is critical, then we select a 𝑝 of 0.5 since that results in the
most fault injections being performed.

Cache utilization is at most 24% for the benchmarks and input data we have tested. This
is in part due to the limited input sizes we can use because the cache profiling takes a long
time. Critical cache data was less than half of the utilization for all benchmarks with any
significant cache usage. If this trend holds for programs with higher utilization, then our
technique will still offer improvements.
Refining the initial estimate for 𝑝 allows us to achieve equivalent results for estimating

𝑝 via a fault injection campaign with significantly fewer fault injections. This is beneficial
because each fault injection may take a significant amount of time (for example, DrSEUs
using Simics takes about five minutes per injection [26]).
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Fig. 6. The number of fault injections required (as calculated by equation 1) as 𝑝 changes. Without
prior knowledge of the benchmark, 𝑝 is set to 0.5. This chart shows that the number of fault injections
may be reduced when 𝑝 is set based on the critical data measurement from the cache profile.

Table 4 shows the number of fault injections required to achieve 99% confidence with an
error margin of 1%. The number of injections given three values of 𝑝 is shown: 0.5 (required
if nothing about 𝑝 is known), based on the cache utilization, and based on the critical cache
data (see Table 3). The injections when setting 𝑝 to 0.5 are constant because the fault space
is so large that the different run times of the benchmarks have no appreciable effect.
In all cases, the reduction in the number of required fault injections to estimate 𝑝 is

significant. The worst-case reduction, setting 𝑝 to the proportion of resident data for LZO,
results in a 28% reduction in the number of faults injected. Using the proportion of critical
data (which is a subset of resident data), results in a worst-case reduction of 64% for QSort.
For some benchmarks, the reduction was extreme due to the proportion of critical data
being less than the selected error margin.
The improvement shown will still be realized if the confidence and error margins are

changed. Figure 6 illustrates this with two lines representing the number of required fault
injections on the y-axis and the value of 𝑝 based on the critical data measurement on the
x-axis. Both lines used the same parameters as we did for our benchmarks, except the dashed
line has a confidence of 95% instead of 99%. Using a confidence of 95% requires fewer fault
injections, but refining the estimate for 𝑝 is still beneficial. The number of required fault
injections is constant from 0.5 to 1 as the 𝑝 must be conservatively set to 0.5 for critical
data greater than 0.5, as discussed earlier.
We can use OCD Cache Tracer to significantly reduce the number of required fault

injections as calculated by this method by determining the limits for the probability that a
fault will result in a failure. For the benchmarks examined in Section 6, the reduction in
fault injections is at least 2/3. This represents potentially days less time required for a fault
injection campaign due to the large number of fault injections and the time required for a
single fault injection.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



Precise Cache Profiling for Studying Radiation Effects 23

These results are applicable to many fault injection tools. For example, the cache profile
tool could be implemented for a simulation-based fault injector to reduce the number of
fault injections required.

8 FUTURE WORK

Our profiling tool may be applied to specific domains to investigate how they utilize
data. For example, a wide range of fault vulnerability has been observed between different
configurations of neural networks [53], with the use of buffers relating to an increase in
failures in time. Our work could support specialized hardware if a JTAG interface is provided.
A high amount of critical data indicates possible vulnerability to faults; we intend to

implement a JTAG-based fault injector that uses the cache profile to accurately simulate
cache faults. This will allow us to observe how faults propagate into failures and will provide
insights into software-based mitigation techniques.
An important avenue of future work is to explore how this tool and fault injection tools

can effectively target multi-threaded applications executing on multi-core architectures.
The challenges are significant, but the work is necessary to fully take advantage of the
performance of modern processors.

Finally, OCD Cache Tracer may be used to validate that cache models, such as those used
by simulators, match the hardware that they are modeling. The outputs of the cache model
may be compared to hardware behavior observed by our tool.

9 CONCLUSIONS

This work presents a tool that collects cache usage information at an instruction granularity
and demonstrates the benefits of the information. We have evaluated the tool using a set of
ten benchmarks to compare the expected and actual behavior of the L2 cache of a Zynq-7000.
The information collected about critical data (cache data that is resident and will be used
again) has yielded three results:

∙ Critical data is a 50% tighter bound on cache vulnerability than cache utilization for
several benchmarks, and may make for a more accurate predictor of cache vulnerability
(Section 6.2).

∙ Confirmation of prior research that cache flushes can decrease cache vulnerability
(Section 6.3).

∙ The cache profile may be used to decrease the number of required fault injections (by
at least 2/3 for the benchmarks examined) to determine fault behavior (Section 7).

The cache profile may be used to correctly target instructions when using OCD-based
fault injection techniques. This is an improvement upon previous techniques that introduce
artificial biases when simulating cache faults.
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