
	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

Balancing	Symbolic	and	Computational	Thinking:	
Reinforcing	Engineering	Math	Via	Programming	

Rahul	Simha	
Department	of	Computer	Science	
The	George	Washington	University	

Washington	DC	20052	
simha @ gwu.edu

	
Abstract	
This	position	paper	will	describe	an	approach	that	uses	programming	to	teaching	core	
concepts	in	mathematics	useful	to	engineering,	such	as	calculus,	probability,	and	linear	
algebra.	The	approach	is	based	on	the	premise	that	programming	is	a	different	and	
often	effective	way	to	learn,	both	as	a	form	of	active	learning	in	class	as	well	as	a	
platform	for	encouraging	explorative	thinking	via	tinkering	with	code.	Because	the	
representation	of	quantitative	concepts	in	code	is	markedly	different,	students	get	to	
see	very	concretely	many	of	the	details	that	are	often	hidden	in	the	symbolic	approach.	
Combining	the	two	modes,	symbolic	and	computational,	and	balancing	them	is	the	
central	goal	of	our	approach.		The	paper	and	accompanying	ASEE	talk	will	describe	
various	topics	in	continuous	mathematics	(calculus,	probability,	linear	algebra)	taught	
with	the	combined	symbolic-computational	approach,	including	lessons	learned	and	
resources	available	for	others.	
	
1.0			Introduction	
One	way	to	prompt	a	long	list	of	complaints	is	to	ask	any	engineering	faculty	about	the	
math	skills	of	their	undergraduates.	The	more	thoughtful	complaints	often	center	
around	poor	conceptual	understanding	and	an	overreliance	on	formula-driven	plug-
and-chug	problem	solving.		Such	concerns	about	the	degree	to	which	students	really	
understand	mathematics	are	shared	by	researchers	in	mathematics	education.	
Schonfeld	(2009)	summarizes	the	different	issues	and	schools	of	thought	on	
mathematical	“sensemaking,”	tracing	the	arc	from	early	heuristic	approaches	to	
problem	solving	(Polya,	1945)	to	modern	studies	that	now	drive	the	growing	body	of	
research	on	mathematical	thinking.	This	paper	seeks	to	contribute	a	new	approach	to	
strengthening	students’	conceptual	understanding	of	mathematics:	using	computation	
to	reinforce	intuition	and	sensemaking	in	mathematics.	The	details,	however,	matter.	
The	mere	use	of	sophisticated	computational	tools	such	as	Matlab	or	Mathematica,	we	
argue,	is	no	better	than	its	widely	criticized	counterpart	in	traditional	mathematics	
instruction:	teaching	students	formulas	and	how	to	apply	them.		The	main	purpose	of	
this	paper,	therefore,	is	to	also	contrast	the	proposed	approach	from	the	current	uses	
of	computation	in	engineering	curricula.		
	
One	important	practical	rationale	for	an	alternative	approach	is	to	reach	students	who	
learn	differently,	and	who	merely	“survived”	the	traditional	math	courses.	In	the	
traditional	symbolic	approach,	a	student’s	mental	model	of	quantitative	concepts	
centers	on	the	algebraic	relationships	between	key	symbols	representing	problem	
parameters.	For	many	students	not	fully	facile	with	symbolic	manipulation	and	

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

interpretation,	conceptual	understanding	is	often	replaced	with	merely	“cranking	out”	
the	math,	or	plugging	values	into	a	recipe-driven	problem-solving	approach.	In	
contrast,	students	who	are	comfortable	enough	with	programming	can	see	the	same	
mathematical	concepts	through	a	different	lens,	and	one	in	which	they	see	the	
mathematics	“in	action”	through	the	code	they	write.	Because	the	representation	in	
code	is	constructive	and	algorithmic,	students	get	to	see	very	concretely	many	of	the	
details	that	are	often	hidden	in	the	symbolic	approach.	Combining	the	two	modes,	
symbolic	and	computational,	and	balancing	them	is	the	central	goal	of	our	approach.		
	
2.0			Some	illustrative	examples	
Since	our	focus	is	on	post-secondary	mathematics,	we	begin	with	one	example	each	
from	calculus	and	probability.	
	
Example	problem	#1:	evaluate	

sin 2𝜋𝑡 𝑑𝑡
!.!

!
	

	
Symbolic	approach:	
(1) Look	up	the	integral:		

−cos 2𝜋𝑡
2𝜋

	
(2) Plug	values:	

−cos 𝜋
2𝜋

−
−cos 0
2𝜋

	
	
(3) Write	as	symbol	or	use	calculator:	

1
𝜋
= 0.31831	

Computational	approach:	(Java)	
(1) Write	code	

	
double delT = 0.05;
double sum = 0;
for (double t=0; t<=0.5; t+=delT) {
 sum += Math.sin(2*Math.PI*t) * delT;
}
// Print sum (code not shown)

(2)	Edit,	compile,	execute,	debug,	as	needed	
	
(3)	Experiment	with	delT	

Example	problem	#2:	An	unbiased	coin	is	flipped	10	times.	What	is	the	probability	of	observing	7	
or	more	heads?	
	
Symbolic	approach:	
(1) Look	up	the	formula:		

𝑃 𝑋 ≥ 𝑖 =
!

!!!

𝑛
𝑘

 𝑝! 1 − 𝑝 !!! 	

(2) Plug	values:	

𝑃 𝑋 ≥ 7 =
!"

!!!

10
𝑘

 0.5! 1 − 0.5 !"!! 	

	
(3) Use	calculator:	0.172…	
	

Computational	approach:	(only	step	(1)	shown)	
for (int trial=0; trial<numTrials;
trial++){
 int numHeads = 0;
 for (int i=1; i<=N; i++) {
 if (uniform() < p) {
 numHeads ++;
 }
 }
 if (numHeads >= k) {
 numSuccesses ++;
 }
}
// Print numSuccesses/numTrials 	

	

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

What	do	the	examples	tell	us	about	the	two	approaches?	Cosmetically,	it’s	obvious	that	
they	look	very	different	and	so,	at	the	very	least,	the	instructor	could	draw	connections	
between	the	two,	for	example	by	comparing	the	inner	for-loop	with	the	summation	in	
the	second	problem.		
	
Next,	let’s	contrast	the	actions	of	the	student	in	each	approach.	In	the	symbolic	
approach	to	Example	1,	the	student	is	likely	to	either	look	up	the	integral	or	use	an	
online	resource	like	Wolfram-Alpha	(which	directly	provides	both	symbolic	and	
numerical	answers).		Then,	the	values	are	plugged	in	and	the	result	is	calculated.	
Similarly,	in	the	second	case,	the	student	finds	a	similar	problem	already	solved	
(almost	every	probability	textbook	has	an	example	similar	to	the	one	above),	and	plugs	
in	the	parameters	from	the	problem	description.	In	contrast,	in	the	computational	
approach,	the	student	writes	code,	which	may	not	be	correct	code	in	the	first	attempt,	
and	then	goes	through	a	cycle	of	execution	and	debugging.		
	
Conceptually,	however,	the	differences	are	striking.	In	the	integration	example,	the	
student	who	looks	up	the	result	is	far	removed	conceptually	from	the	concept	of	
integration.	However,	the	student	punching	out	the	code,	is	at	least	confronted	with	
the	meaning	of	integration	via	the	addition	of	areas.	Similarly,	the	code	in	Example	2	
clearly	outlines	the	experiment:	it’s	obvious	that	there	two	types	of	repetitions,	one	
involving	the	experiment,	and	the	other	within	the	experiment	(of	multiple	coin	flips).	
It	is	very	easy,	on	the	other	hand,	for	student	doing	formula-lookup	or	problem-pattern	
matching	in	the	symbolic	approach	to	completely	miss	the	point.	
	
The	differences	in	mistakes	and	false	starts	are	equally	illustrative.	In	the	symbolic	
approach	for	Example	1,	possible	mistakes	include	wrong	lookup,	improper	
substitution	of	values,	incorrect	sign,	and	incorrect	calculation.	Which	of	these	really	
help	with	understanding	the	concept	of	integration?	We	argue	that	none	of	them	have	
anything	to	do	with	the	concept.	All	of	them	fall	in	the	category	of	“this	is	how	it’s	done;	
I’d	better	get	the	steps	right.”	Similarly,	with	the	probability	example,	errors	include	
incorrect	parameter	substitution,	using	“greater-than”	instead	of	“greater-than-or-
equal”,	and	incorrect	calculation	of	the	final	answer.	Again,	we	point	out	that	none	of	
these	ultimately	relate	to	how	the	Binomial	distribution	works.		
	
On	the	other	hand,	consider	the	potential	mistakes	made	in	the	computational	
approach	and	what	the	student	might	learn.	First,	we’ll	assume	basic	proficiency	in	
computing,	well	past	the	issues	with	the	programming	language,	compilation	and	
syntactic	errors.	Similarly,	even	thought	the	student	may	err	in	implementing	the	
function	(say,	by	writing	Math.sin(t)	in	the	first	problem),	we	assume	that	finding	such	
a	mistake	is	easy	and	falls	in	the	realm	of	purely	programming	errors.	The	more	
interesting	type	of	error	is	a	conceptual	error.	For	example,	a	delT	value	that’s	too	
large	will	produce	a	result	that’s	slightly	off,	which	when	the	student	experiments	with	
will	help	them	understand	why	the	summation	is	an	approximation	and	gets	better	in	
the	limit.	Computational	mistakes	in	the	second	example	are	likely	to	be	more	helpful	

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

to	the	student.	For	example,	if	the	loop	order	were	changed,	the	student	would	have	to	
confront	a	fundamental	misunderstanding	of	what	an	experiment	is.		
	
3.0			Caveat	#1:	about	(too)	powerful	tools	
It	is	critical	to	note	that	our	proposed	approach	has	the	student	writing	code	at	the	
lowest	possible	level,	directly	in	a	programming	language	like	C	or	Java,	as	opposed	to	
merely	calling	some	function	in	a	scientific	package	like	Scilab.	We	argue	that	replacing	
the	detailed	code	with	a	single	call	to	a	external	function	that	does-it-all	more	or	less	
voids	the	advantages	we’ve	outlined	in	the	prior	section.	All	the	important	detail	would	
be	buried	“under	the	hood”	leaving	the	student	with	few	opportunities	to	grapple	with	
conceptual	detail.	Furthermore,	because	the	powerful	tools	make	it	too	easy	to	solve	
simple	problems,	the	instructor	is	forced	to	devise	artificially	complex	problems	to	
challenge	the	student,	which	then	moves	away	from	basic	math	concepts	to	
computational	concepts	or	mere	programming	skill	development.	
	
4.0			Features	of	the	computational	approach	
We	discuss	a	few	features	that	we	believe	make	best	use	of	our	proposed	approach:	
• Promotes	exploration,	sometimes	to	more	advanced	ideas.	The	computational	

approach	allows	student	to	experiment	quite	easily	with	minor	edits	to	the	code.	
For	example,	we	use	simple	Euler	integration	to	have	students	explore	applications	
with	non-linear	ODEs	(a	rather	large	class	of	applications)	that	would	be	hopelessly	
out	of	reach	symbolically.	All	of	these	programs	are	about	10-20	lines	long,	very	
easy	to	implement,	and	let	the	students	directly	interact	with	applications	from	
population	dynamics	to	molecular	reactions.	Similarly,	students	can	solve	harder	
physics	problems	(such	as	the	brachistochrone)	or	engineering	control	problems	
(robot	dynamics)	that	would	quite	difficult	in	an	undergraduate	course.	

• Enables	self-discovery.	We	use	the	computational	approach	to	let	students	
discover	important	results.	For	example,	consider	how	the	all-important	central	
limit	theorem	is	taught	in	a	standard	symbolic-based	undergraduate	course:	it	is	
simply	stated	as	a	result	because,	after	all,	how	could	students	possibly	sit	through	
a	detailed	proof	in	class,	much	less	derive	the	central	limit	theorem	on	their	own?	
Yet,	computationally,	it	is	very	easy	for	students	to	write	code	to	form	visual	
histograms	based	on	generated	data,	then	scale	the	histograms	by	the	measured	
standard	deviation,	and	watch	the	central	limit	theorem	emerge	in	front	of	their	
eyes.	This	is	in	fact	how	we	teach	many	core	concepts	in	the	computational	
approach:	to	have	students,	with	appropriate	scaffolding,	discover	them	on	their	
own.	

• Helps	students	build	an	internal	model.	Because	the	approach	is	directly	
constructivist,	students	build	an	internal,	if	computational,	model	of	mathematical	
concepts.	The	ideal	way	to	build	on	this	model	is	to	also	have	the	students	grapple	
with	the	symbolic	equivalent	and	connect	the	two	models.	We	find	this	to	be	the	
most	appealing	way	to	get	at	deeper	concepts.	For	example,	in	teaching	linear	
algebra,	students	must	work	through	traditional	pen-and-paper	examples	of	
Gaussian	elimination,	while	implementing	solutions	in	code,	all	of	which	enables	
them	to	very	clearly	see	how	row	reduction	works.	

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

• Easily	aligns	with	active	learning.	The	fact	that	small	edits	to	code	are	simple	and	
quick,	allows	the	instructor	to	build	learning	activities	in	class.	The	two	courses	we	
teach	generally	intersperse	learning	activities	every	5-10	minutes.	

• Facilitates	the	use	of	real	data.	One	advantage	of	the	computational	approach	is	
that	students	can	work	with	real	applications	and	data.	For	example,	in	
demonstrating	the	use	of	the	singular	value	decomposition	to	text	analysis,	we	use	
actual	text	(news	articles).	Contrast	this	with	the	small,	somewhat	artificial	
examples	in	a	textbook	example.	Students	are	generally	more	motivated	if	they	
connect	the	concepts	to	real	applications.	

	
5.0			Caveat	#2:		about	the	balance	between	symbolic	and	computational	
We	wish	to	be	clear	that,	although	the	computational	approach	has	several	advantages,	
it	should	not	replace	the	symbolic	approach.	In	our	courses,	we	do	not	shy	away	from	
proofs	and	the	full	use	of	traditional	mathematical	symbolism.	We	believe	that	
students	benefit	from	seeing	both	side	by	side	and	grappling	with	the	errors,	pitfalls,	
and	misconceptions	in	each.		Thus,	homeworks	and	assignments	often	consist	of	a	pen-
and-paper	part	(traditional),	and	a	programming	part.	Similarly,	many	active-learning	
exercises	in	class	ask	students	to	explain	why	something	is	true.	The	latter	is	often	
possible	only	through	the	symbolic	approach.	
	
6.0			Curricular	options	
How	can	a	computational	approach	fit	into	an	already-full	engineering	curriculum?	We	
do	not	address	the	“what	to	remove”	issue	here,	but	instead	focus	on	course	modules	
and	where	they	may	fit.	We	have	developed	one	course,	consisting	of	two	bodies	of	
material:	(1)	calculus	and	differential	equations;	(2)	probability.	And	we	are	currently	
developing	a	full	course	on	(3)	linear	algebra.	In	more	detail:	

• CS-4341:	Continuous	Algorithms.	Overview	of	structures	in	continuous	
mathematics	from	a	computational	viewpoint.	Main	topics	include	simulation,	
computational	modeling,	machine	learning,	neural	networks,	text	classification,	
statistical	language	processing,	robot	control	algorithms.	

• CS-4342:	A	Computational	Introduction	to	Linear	Algebra.	Linear	algebra	
applied	to	computational	problems	in	computer	science	and	engineering.	
Topics	include	points,	vectors,	matrices,	and	their	programming	abstractions;	
3D	transformations,	pose	and	viewpoint	estimation;	linear	equations;	
algorithms	for	matrix	decompositions,	dimension	reduction,	computation	with	
large	matrices,	under-	and	over-determined	systems;	applications	to	big	data,	
computer	vision,	text	processing.	

	
Computational	prerequisites.	For	both	of	these	courses,	we	assume	the	level	of	
programming	proficiency	of	a	strong	student	coming	out	of	a	two-course	programming	
sequence.	The	actual	programming	challenge	in	our	two	courses	is	in	fact	mild	
compared	to	a	programming-intensive	computer	science	course.	However,	the	
proficiency	matters	because	we	don’t	want	students	hung	up	on	minor	programming	
issues	that	would	distract	from	developing	mathematical	concepts.	Such	a	student	
would	get	frustrated	with	programming,	and	will	not	be	able	to	keep	up	with	the	in-

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

class	active-learning	exercises.	At	the	moment,	both	courses	use	Java	as	the	
programming	language.	However,	because	the	advanced	features	of	Java	do	not	play	a	
role,	it	is	relatively	straightforward	to	rewrite	the	code	in	other	languages.		
	
Mathematical	prerequisites.	For	the	Continuous	Algorithms	course,	we	require	the	first	
calculus	course.	This	is	mainly	so	that	we	can	refer	to	differentiation	and	integration.	It	
is	possibly	to	do	without	calculus	but	that	would	mean	going	at	a	slower	pace	to	
accommodate	definitions	and	some	practice	with	these	concepts.	For	Linear	Algebra,	
high	school	algebra	is	sufficient	but	some	mathematical	maturity	beyond	that	is	
helpful.	
	
Where	do	such	courses	fit	into	a	curriculum?	Clearly,	students	need	to	first	learn	
programming	through	the	standard	two-course	programming	sequence,	and	at	the	
very	least	the	programming	language	that	will	be	used	in	these	courses.	Second,	they	
would	need	first-semester	calculus	for	the	Continuous	Algorithms	course.	It	helps	if	the	
students	have	had	additional	mathematics,	because	they	are	then	better	able	to	use	
computation	to	reinforce	concepts.		
	
Should	students	take	the	traditional	equivalents	first?	We	have	argued	against	replacing	
the	traditional	with	the	computational.	Because	repetition	is	so	central	to	learning,	we	
believe	it	is	best	if	students	take	full	courses	in	both	approaches,	first	taking	the	
traditional	and	then	following	that	up	with	the	computational.	Because	our	courses	
combine	symbolic	and	computational,	it	serves	both	to	reinforce	concepts	learned	
earlier	while	providing	a	fresh	perspective.		
	
7.0			Lessons	Learned	
With	the	linear	algebra	course	under	development	and	three	offerings	of	the	
Continuous	Algorithms	course	completed,	what	lessons	have	been	learned?	One	of	the	
most	important	is	that	students	really	need	to	see	basic	concepts	again	and	again.	We	
have	repeatedly	seen	countless	examples	of	cases	where	a	fundamental	concept	was	
entirely	misunderstood	in	an	earlier	course	and	which	only	came	to	light	because	the	
same	concept	was	explored	and	revisited	in	our	courses.	Modern	curricula	are	
unfortunately	structured	to	pack	as	much	different	material	as	possible,	leaving	almost	
no	room	for	repetition.		
	
Another	important	lesson	is	that	students	are	quite	different	in	how	they	learn.	There	
is	a	certain	type	of	student,	including	the	author,	that	learns	quite	efficiently	from	
hands-on	implementation.	Over	and	over,	students	have	said	“I	finally	understood	[X]	
when	I	implemented	the	code.”	Somehow,	grappling	with	the	detail	at	the	level	of	code	
helps	with	building	understanding.	We	don’t	yet	understand	why,	or	what	the	
epistemological	implications	are,	but	it	is	clear	from	student	feedback	that	they	value	
the	opportunity	to	learn	in	this	manner.	
	
Another	way	in	which	students	markedly	differ	is	in	their	preparation	coming	into	
college,	and	college-level	courses.	For	some,	algebraic	and	therefore	symbolic	

	

Spring 2016 Mid-Atlantic ASEE Conference, April 8-9, 2016 GWU	

manipulation	is	a	sheer	challenge.	For	others,	the	connection	with	geometry	is	
tenuous.	For	yet	others,	the	skill	of	proof	is	far	from	developed.	Because	programming	
can	be	learned	after	K-12,	it	can	sometimes	even	the	playing	field	and	let	students	with	
low	math-self-esteem	feel	motivated	and	able	to	learn	mathematical	concepts.	
	
Finally,	students	have	also	commented	positively	about	the	connection	with	
applications.	The	“application”	examples	in	traditional	math	courses	are	often	toy	
examples	that	leave	the	students	unmotivated,	or	are	not	fleshed	out	in	sufficient	
detail.	
	
Resources	
Code,	course	material,	and	active	learning	exercises	in	Java	are	available	for	the	two	
courses	described	above:	http://www.seas.gwu.edu/~simhaweb/		
	
	
Acknowledgements	
The	author	would	like	to	acknowledge	the	support	from	NSF	grant	1347516.	
	
REFERENCES	
	
G. Polya (1945). How to solve it. Princeton: Princeton University Press.

A.H.Schoenfeld	(1992).	Learning	to	think	mathematically:	Problem	solving,	
metacognition,	and	sense-making	in	mathematics.	In	D.	Grouws	(Ed.),	Handbook	for	
Research	on	Mathematics	Teaching	and	Learning	(pp.	334-370).	New	York:	MacMillan.	

