Stochastic Tree-Based Generation of Program-Tracing Practice
Questions

Anderson Thomas
The George Washington University
Washington, DC
athomasl@gwmail.gwu.edu

Pablo Frank-Bolton
The George Washington University
Washington, DC
pfrank@gwmail.gwu.edu

ABSTRACT

Recent work [6, 23] has shown that mental program-execution
exercises, in the form of Parson’s puzzles or program-tracing, are
effective in improving student performance in intro CS courses.
This form of practice is promising because its low cost of creation
and short duration (for the student) can promote the significant
practice needed for learning. The goal of this paper is to enable
wider use of such exercises through large-scale automated gener-
ation of short, multiple-choice mental execution questions. The
challenge in automation is to algorithmically generate effective dis-
tractors (plausible, but incorrect choices), and to generate questions
of varying levels of difficulty and whose difficulty level can be set by
the instructor. In this paper, we propose a language-generalizable
approach for automatically generating a practically unlimited num-
ber of such exercises, each constructed to a designated level of
difficulty and incorporating the core programming-in-the-small
themes: assignment, conditionals, loops, and arrays. The stochas-
tic tree-based generation algorithm and a subsequent simulation
of execution also enable generating effective distractors since all
possible execution paths are readily available in the tree at the
time of generation, and the distractors, therefore, correspond to
reasonable (but ultimately incorrect) paths of execution. Further-
more, the approach is easily transferable to other languages with
little effort. The generated questions are delivered through a mobile
app that can be customized by the instructor to vary the questions
generated and to introduce interleaving to take advantage of the
spacing effect. Preliminary student feedback on the experience has
been positive.

KEYWORDS

Intro CS, Question Generation, Practice Tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287492

Troy Stopera
The George Washington University
Washington, DC
troystopera@gwmail. gwu.edu

Rahul Simha
The George Washington University
Washington, DC
simha@gwmail. gwu.edu

ACM Reference Format:

Anderson Thomas, Troy Stopera, Pablo Frank-Bolton, and Rahul Simha. 2019.
Stochastic Tree-Based Generation of Program-Tracing Practice Questions.
In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE °19), February 27-March 2, 2019, Minneapolis, MN, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287492

1 INTRODUCTION

The past decade has seen a surge of interest in enhancing student
learning in introductory programming courses with activities that
go beyond the traditional lecture followed by programming assign-
ment [9, 10, 19]. One such enhancement, the use of program-tracing
exercises, has been correlated to an improvement in the quality of
programming skill in students [6, 18, 19, 23]. Systematically offering
students many small exercises, in various gradations of difficulty
and repeatedly, also aligns well with research from the science of
learning, for example, deliberate practice [7], in which exercises
are customized to the individual learner’s level, provide immediate
feedback, and are in the learner’s zone of proximal development —
just slightly harder than what the learner is capable of. An ideal
support system for deliberate practice in programming, in addition
to regular programming assignments, should also allow the instruc-
tor to set some broad parameters (numbers of questions, mix of
difficulty levels), should be efficient in generation to enable scaling
with numbers of students, and should reach students where they
are (on their smartphones) to encourage repeated practice. These
requirements pose a problem for hand-crafting custom questions,
already a significant time sink for instructors, who might opt-out
of these approaches to avoid the additional overhead.

One way to generate lots of questions is to use question tem-
plates that let an instructor specify which parts of a question can
be randomly generated or selected, which then enables automated
grading [3, 4, 8, 10, 11, 14, 17, 23]. The human effort involved in
template-generated questions is both its advantage and disadvan-
tage. Instructors thoughtfully generate and identify opportunities
for learning through careful crafting of templates, expertly judge
the level of difficulty, and are even able to include appropriate hints
if the generated question is incorrectly answered. At the same time,
the writing of templates takes time, as does vetting the generated
questions, and ensuring that at least some distractors in each ques-
tion are meaningful.

https://doi.org/10.1145/3287324.3287492
https://doi.org/10.1145/3287324.3287492

The goal of this paper is to ask whether a more automated ap-
proach — ours is called GenCODE - can be effective. In particu-
lar, can an algorithm judge the difficulty level during generation,
provide sufficient variety, and most importantly, create meaning-
ful distractors? We propose a stochastic tree-based approach that
works in two phases, first to generate the code for a tracing ex-
ercise, and second, to generate the distractors for multiple-choice
questions. (The latter is less important in variations where students
must fill code.) The first phase mirrors a recursive-descent parser
in that a tree similar to a parse-tree is constructed by randomly
expanding nodes representing statements into assignments, loops,
conditionals — some of which have statement-blocks that are then
recursively expanded. The second phase simulates the execution
of the generated tree to explore a variety of execution paths with
the intent of identifying incorrect distractors which might appear
plausible to students.

The GenCODE system itself consists of an instructor interface
that gives the instructor the ability to set broad parameters. The
generated questions are then available to the instructor for further
editing or vetting, if the instructor so chooses. The questions are
then delivered to a smartphone app, where they are gamified into
various levels to encourage students to win points. As each student
starts to answer questions and “level up” in the game, they are given
harder questions. Furthermore, when a student incorrectly answers
a question, the system will ensure that the question is presented
back to the student at a later time, to exploit the learning that arises
from the spacing effect [2].

GenCODE was piloted in a brief two-week trial in an introduc-
tory semester-long programming course (in Java) at our university
during the Fall of 2017 and Spring 2018. Our main findings in this
experience-report are the following. First, when human experts
evaluate the difficulty level of generated questions, the human rat-
ing of difficulty has reasonably close correlation to the algorithm’s
rating of difficulty, suggesting that the approach has the poten-
tial for producing questions in the the desired student’s zone of
proximal development. Second, students were found to often get
questions wrong and get the same questions wrong multiple times,
which suggests that the algorithmically produced distractors are
reasonable.

Third, students surveyed about their experience responded posi-
tively, appreciating the opportunity for low-stakes practice. Finally,
using a Turing test, we attempted to discern whether experts (se-
niors, grads) could distinguish between the algorithm’s generated
questions and similar hand-crafted questions from other experts.
Here, we discovered that our approach needs refinement: human
experts were able to intuit some inexplicable signature from the
algorithm-generated questions. Accordingly, some surface features
of the tree-generated code may need modification; however, the
questions are nonetheless useful for practice.

In the following sections we describe the related work on ques-
tion generation and the implementation details of our system, fol-
lowed by a discussion of the types of questions involved and the
response to the system.

2 RELATED WORK

Computer Science educational research has investigated a variety of
approaches to support the learning of programming that go beyond
the typical weekly programming exercises, including for example,
pair-programming, live coding and gamification. Program-tracing,
the focus of this paper, is one such approach that researchers have
found effective [16, 18, 19]. For example, Kumar et al [16], used
a controlled study to show that code-tracing can improve code-
writing abilities of students. A concomitant growth in delivery
platforms has accompanied the interest in types of exercises: many
researchers have elected to build systems designed to work on
mobile devices [5, 12, 20]. This has allowed researchers to create
program-assembly questions based on predefined code snippets.
These findings have led to the integration of programming ques-
tions into new mediums, as seen in the work of Oyalere et al [20],
where gamification is applied to Parsons Puzzles. Deb et al.[5] ex-
tend these tracing tasks with the inclusion of per-question feedback.
More recently, Ericson et al. [6] found that program-question gen-
eration with automated feedback provides a system for reducing
the time-cost of practicing programming through tracing activi-
ties, while yielding the equivalent results to activities that focus on
writing code. Particular focus has surrounded Parson’s Program-
ming Puzzles[21], which are puzzle-like questions where students
complete programs by correctly ordering code snippets.

In related work, the description of a program’s execution as a
method of explaining the correct answer has been shown to yield
improved program writing skills in students [4, 8]. Focusing on
the specific domain of counter-controlled loops, Kumar [4] presents
a template-based system for generating C++ code snippets and
questions. In [22], Prados et al. obtain some reuse of their system
by changing the programming language of the generated code
snippets.

Brusilovsky et al. focused on the development of tools for out-
of-classroom self-assessment [3]. In their study, students answered
sets of template-generated questions, resulting in the detection of
a significant improvement of student understanding of program se-
mantics. Variability in the generated material was obtained through
the use of randomized parameters within highly structured code
snippets [3]. With respect to the domain of variable scope, Fernandes
et al. [8] found improved learning when studying the coupling of a
question generator and a feedback system. In the work of Kumar
at al. [14] on question generation, and specifically on domain-tree
models capable of describing scope, the authors describe a system
notable for being capable of providing feedback at various con-
ceptual levels. In addition, the authors found improved learning
when studying the coupling of a question generator and a feedback
system. The work of Hsiao et al [10] describes in detail QuizJET, a
templating system for object-oriented programming. QuizJET was
designed to focus on a narrow subset of programming concepts and
required on the order of 100 handcrafted templates for generating
questions. These studies showcase the ability of templating systems
to cover and provide materials for new topic domains but simulta-
neously illustrate the difficulty of extending them to new topics.
With a different approach, Zavala et al. [23] move away from the
strict templating systems and use ontological elements to provide
randomized questions. Through the use of linked open data, Zavala

et al. were able to add relevance to questions from real data sources.
This approach, as well as the one we describe in this paper, lends
itself to a more scalable paradigm for question generation. Related
to this, we note that others have focused on providing feedback or
tutoring specialized topics [1, 3, 8, 11-13, 15].

In contrast, our work is primarily aimed at simplifying and au-
tomating the generation of program-tracing questions by exploring
whether structural (tree-based) algorithms have the potential of
generating useful questions.

3 THE GENCODE ALGORITHM AND SYSTEM

In the following sections, we describe the stochastic tree-based
approach to the generation of multiple-choice program-tracing
questions, and the methods used to obtain variability in structure
and difficulty. GenCODE is itself written in Java and currently
generates Java questions, although the approach is easily applied
to other languages.

3.1 Generating Program Structure

We start by describing the first step in generating a question: the
generation of the code on which the tracing question is based. At
the current time, GenCODE is capable of generating programs on
topics such as assignments, for-loops, conditionals, and for-arrays.
These, in turn may be combined (sequentially or through nest-
ing) to create problems of increased complexity. The instructor
indicates the topics of interest, with a broad difficulty category
(easy, medium, hard) for each topic, which GenCODE then uses to
generate questions.

As mentioned earlier, the general principle used is to generate
recursively a tree that resembles a parse-tree by starting with a
root node (a code block), which then has randomly generated child
nodes (statements), each of which can be recursively expanded at
random. However, solely using a language grammar to randomly
generate terminal strings (programs, in this case) can result in
strange-looking and unrealistic code, or sometimes, code that does
not execute, and thereafter creating the burden of vetting on the
part of the instructor. To constrain this process and generate valid
code useful for tracing questions, we use three strategies with the
goal of creating program-tracing questions that are restricted by
parameters selected by the instructor, guaranteed to execute, and
useful in bringing out common student misconceptions.

The first strategy is to present the instructor with an interface
to specify topic combinations. These options are interpreted from
the topics indicated by the instructor to the form of patterns. A
pattern is the desired outline of the target program, along with
a limited nesting depth. Currently, GenCODE has implemented
seven patterns encompassing the following basic intro-CS topics:
for-loops, conditionals, and for-arrays. The patterns are:

o Nested Patterns: These combine building blocks (Nested-
Loop, NestedConditional, and NetstedLoopConditional)

e Non-Nested Patterns: These provide a non-nested block (Sin-
gleLoop, SingleConditional, and ComboLoopConditional)

e Manipulation patterns: These manipulate some part of the
code to create distractor answers: (ArrayWalk and LoopSkip-
Manip)

The hope is that, through a quick glance at the name, an instructor
can intuit the type of code that will be generated. At this time,
any of these may be freely combined, except for conditionals and
for-arrays (which remains a work in progress).

Note that patterns differ from templates in the amount and type
of information that is predefined. While templates usually fix struc-
ture and alter coefficients and constants, our patterns are simple
outlines of topic combinations that can be recursively expanded.
The actual tree depth of any generated code can vary because the
elements of the tree are randomly generated.

The second strategy is to limit the depth because, if a generated
program is too long and unwieldy, program tracing becomes too
difficult for intro-CS students.

The third strategy is to build the tree not out of traditional gram-
mar elements but out of larger units called blocks that better align
with the goals of identifying opportunities for learning. For exam-
ple, an evaluation block can be a boolean expression (that itself
may contain arithmetic expression) built out of variables declared
prior to the block. Such a block can be used in a conditional or in a
for-loop. What makes this higher-level structure useful is that the
handling of an alternative execution pathway from an evaluation
block is similar regardless of where it is used. In this manner, we
also define other blocks such as statement blocks, and component
blocks. A statement-block is equivalent to a leaf node in the tree,
consisting of simple variable declaration or assignment, while a
component block can be instantiated, for example, as a for-loop
(which itself has a component block and evaluation block). Lastly,
because tracing questions most often involve program output, a
component block may include a print statement.

Instructor Output
Inputs

: Correct Distractor Java Code
Pattern Answer Sample
Selection ? * *
* : Imperfect Code
Execution |- N f
Stochastic Execution Formatting
Tree-based Tree T T T
Generator Structure

Figure 1: GenCODE structure

Figure 1 shows a high-level overview of the components in the
system. The instructor specifies generation parameters (patterns
and difficulty levels), and the tree-based algorithm generates a code
snippet in the form of a tree. The tree is then explored for execution
pathways, as explained below, to generate the correct answer and
distractors that are clearly different yet plausible.

Two example code snippets are shown below. Both were gen-
erated by GenCODE when given the input topics “for-loops and
for-arrays”, and difficulty setting of 0.1 (easy), and 0.9 (hard), re-
spectively.

1 public int easy_example () {
int[] a = {18, 11, 37, 33, 27, 21};
int b = 99;

4 int ¢ = 97;

for (int c=0; c<a.length; ¢ = c+1){
7 alc] = ¢;

8 b = bs«c;

o)

10 return a[5];

H}

i public int hard_example () {
2 int[] a = {46, 21, 62, 75, 96, 89, 84, 92, 51, 85};

3 int b = 47;
4 int ¢ = 97;

int[] d = {33, 46, 72, 2, 81, 84, 18, 89, 66};
6 int e = 96;

: for (int f=0; f<d.length; f = f+1){
9 for (int g=0; g<10; g = g+2){

10 for (int h=5; h>=2; h = h-2){

11 d[f] = g;

12 e = exh;

13 }

14 }

15 }

16 return d[5];

7}

For the easy case, the correct choice is 5, with distractors of: 8, 6,
and 3. For the hard case, the correct choice is 8, with distractors of: 9,
6, and 11.1t is a simple matter to modify the difficulty settings inside
GenCODE to narrow or widen the difference between extreme
difficulty settings. For the pilot where the system was tested, the
settings were adjusted to a more “narrow” spread so that even the
“hard” problems are solvable by novice programmers.

3.2 Virtual Execution of Generated Code

Rather than generating code that is then compiled for actual ex-
ecution, we simulate the execution within the tree itself. This is
useful because the tree is a convenient structure that embodies all
possible execution paths, some of which serve as candidates for
producing distractors, and it is a convenient code data-structure
for tracking variables and making adjustments.

The execution simulation tracks variables and the values in them,
because ultimately, the values of some variables are printed (or
returned) and are therefore ideal for generating “What does this
method print (or return)?” questions. The simulation engine is
independent of the generation, and can simulate any combination
of topics and depth when given a tree.

Distractors, in a multiple-choice setting, are possible answers
that vary in their similarity to the correct option. Good distractors
are plausible answers that cause the student to pause and think
carefully. Generally, the more plausible the distractors, the harder
the question. During the simulation, the algorithm can change the
path of execution at will, sometimes stopping for a partial answer
(the current state of the variable to be printed), or following an
alternative (but ultimately wrong) path of execution. For example,
one distractor could offer an answer choice that results from having
stopped a loop before its completion. Another might obtain a faulty
final state by skipping an iteration step. The resulting final value

of the incomplete or modified execution can be used as a distractor
answer.

One important aspect of this procedure is that the choosing
of each type of erroneous option (incomplete execution, skipped
iterations, inverse logic, etc) points to specific conceptual errors
that the student might be consistently falling prey to. This might
give an insight into conceptual gaps that the student may have and
help craft corrective actions (by designing specific sets of questions)
that precisely target them.

3.3 Question Difficulty

One of the key principles of deliberate practice, the well-studied
theory of how practice needs to be structured [7], is that practice
exercises need to be in the learner’s zone of proximal development:
just slightly harder than what their current ability can tackle. For
automated generation, this translates into the problem of generat-
ing questions with a target level of difficulty so that, as students
gain in performance, the system presents with increasingly harder
questions. This goal is challenging both because question hardness
is subjective and we know little about the connection between
program structure and the difficulty of resulting questions about
tracing the program.

Our approach for this aspect of the system is to start with some-
thing heuristic, and to test the results with actual users assessing
the level of difficulty. In this way, if there is reasonable correlation,
the heuristic approach can be used to generate questions with a
desired level of difficulty in order to support optimal practice. For
the heuristic, we loosely use a combination of the program elements
and its length as a measure, and successively build a piece of code
that meets the target level of complexity, which we use as a proxy
for the level of question difficulty. The instructor chooses a diffi-
culty level between 0 (easiest) and 1 (hardest). Then, to generate a
question with the requisite difficulty, the algorithm first randomly
chooses a pattern and then uses the recursive generation approach
to extend the complexity of the code to achieve the target difficulty
level. The actual assessment of individual component difficulty is
heuristic, and initially devised through some trial and error. In the
next section, we describe the results of some user testing that sup-
ports our general approach although further refinement is needed
for higher accuracy in difficulty-level generation.

3.4 Preliminary Trial and Lessons Learned

Our generated questions have focused on program tracing in a
multiple-choice format. Both the correct answer and distractor
answers are determined by virtually executing the generated code
in the way explained in Section 3.2. As mentioned earlier, generated
questions are delivered to students on an app downloaded to their
smartphones. This app is part of the mobile platform developed
by this research group for delivering practice questions for any
course (a similar experiment with Biology questions is underway).
The platform tracks the performance of every individual on every
question, and recycles questions (after a gap in time) that a learner
got wrong, while also providing an instructor with a dashboard of
student activity.

Our pilot was performed at the end of the Fall 2017 and Spring
2018 semesters at our university. The course in both cases was the

standard CS-1 course (in Java) offered to majors and non-majors
alike. The questions were generated and given to student volun-
teers in the course (N = 79) about two weeks before the final exam,
as practice for the final exam. Exercises focused on for-loops, con-
ditionals, for-loops with conditionals, and for-loops with for-arrays.
The initial question generation process resulted in a set of 200 ques-
tions. Some of the original questions (complex conditionals) were
discarded due to their length, which did not fit the course objectives.
In future iterations, maximum problem length may be added as an
input parameter.

3.5 Types of generated questions

3.5.1 Conditionals . The evaluation of expressions, as used in con-
ditionals, to their final Boolean values prepares students to learn
more complex programming blocks such as for-loops. In these chal-
lenges, students must correctly follow the path of a variable through
a series of manipulations. While nesting conditional statements is
one way to increase the difficulty level, an excessive use of nesting
results in spaghetti-looking code. Therefore, the generation also
combines conditionals with loops.

3.5.2 For-Loops . Understanding simple and nested for-loops, es-
pecially those that manipulate variables across scope, encourages
students to build upon their knowledge of execution order and
conditionals. Eventually, the hope is that students come closer to
viewing simple for-loops as an operation, instead of having to unroll
each loop during execution.

3.5.3 For-Loops and Conditionals . Combining a for-loop with con-
ditionals is a staple of programming, and therefore useful as a
practice exercise. The conditionals can exist both outside and inside
the loop, and can be nested. The resulting problems usually have
distractors that students find challenging, especially if the iteration
variable is used in generating the distractor.

3.5.4 For-Loops and For-Arrays . Since arrays are important and
are often the first type of data structure seen by students, GenCODE
generates questions that combine loops and arrays. These questions
are particularly useful when the array itself is modified inside the
loop, and when the loop iteration variable is featured in the array
references.

4 RESULTS

In the following parts, we discuss the results of the approach used to
set difficulty, and the responses from the students that participated.

4.1 Difficulty and Executable Blocks

We use the term executable-block to approximate what is sometimes
called a basic block in compiler terminology: a piece of code that
executes linearly without branching. Thus, a compiled program is
a collection of basic blocks connected through jump instructions.
Since we are using a tree representation for a generated program,
we use the term executable-block because it also captures smaller
elements such as declaration and expressions. For example, a for-
loop has at least four executable blocks that make up its declaration,
comparison, and stepping logic. Figure 2 shows the relation between
the target difficulty (entered by the instructor) difficulty and the

total number of executable blocks, organized by topic (In the Figure,
ARRAY represents the for-array topic).

E IF FOR | FOR_IF ARRAY
£
s 100 . [
5 -
§ 75 = |
w one®|
50 ;‘J" "‘
o -
3 a® | | u'*-' e
- ! 0 wt
E 25 "*- ..#‘.-'- "-ﬁ" —
s 0 '
© c o o0 o0 o0 © o o -
= R N A~ IS - o S S IR~ I

Difficulty

Figure 2: Difficulty Input Vs Number of Executables for
each topic. Light points can be identified and discarded for
being too easy.

As one would expect, the size and complexity of the programs
increase as the input difficulty parameter increases. This, in addi-
tion to the patterns, allows the system to generate sets of problems
that vary in difficulty and topic and that can be easily adjusted to
fit a desired challenge level. Given the probabilistic nature of the
question generation, some questions do not include programming
blocks that provide added complexity and therefore remain “easy”.
These can be seen as the sets of points with few executable blocks,
despite the increasing target difficulty. These cases are easily iden-
tifiable and future versions of GenCODE will adjust for this issue
by eliminating them.

4.2 Number of Useful questions

Even without discarding the trivial cases shown as lighter points in
Figure 2, the ratio of useful questions was high. The ratios for each
question type are shown in Table 1. This means that for the condi-
tionals and for the for-loops, the instructor will have to discard half
of the generated questions, while for the for-loops with conditionals,
and for for-arrays, the instructor must discard about one in twenty.

Table 1: Ratio of Useful questions

IF 53.6%

FOR 54.1%
FOR_IF 96.6%
FOR_ARRAY | 93.3%

4.3 Generated vs. Perceived Difficulty

In order to determine the degree to which input (or generated)
difficulty adhered to perceived difficulty, we conducted a small
survey where 12 experienced programmers where asked to label
36 questions as being "easy", "medium", or "hard". We compared
the actual difficulty and the assigned label. Two instances were left
unlabeled for a total of 430 labeled difficulties. As can be seen in
Table 2 and Figure 3, the distribution of difficulty labels is reasonably
aligned with the desired difficulties in the sense that the peak of
each of the label categories lies on the actual difficulty.

Table 2: Difficulty Assignment Table

| Labeled]
Easy Medium Hard
Easy 112 16 2
Created | Medium 66 75 15
Hard 31 70 43
a0
560
<1
© Human
30 Label
M Easy
M Medium
0 Hard
Easy Medium Hard

Difficulty

Figure 3: Difficulty VS Human Labeling

4.4 Student Response

A survey of student experience was collected at the end of the
semester. Figure 4 shows the distribution of responses when stu-
dents where asked "To what extent did the practice exercises help
you prepare for the exam?" (in Figure 4a); and when they were
asked "To what extent did the practice exercises help uncover some
gap in your understanding (that perhaps led you to review some
concept)?” (in Figure 4b).

20 20

15 15
-
€
3
o110

0 0

1 3 4 5 1 5

2 3 4
Helped with Understanding

Count

=)

o

2
Helped with Exam

(2) (b)

Figure 4: Perceived effect of using the system on the final
exam 4a and for conceptual understanding 4b.

As can be seen in Figure 4, while there was a generally positive
effect of the use of GenCODE to help prepare students for the final
exam, the main effect was on helping students identify erroneous
concepts. This suggests the possibility of implementing such as
system from the start of a semester, rather as a simple practice and
review tool. These conclusions are supported by the responses from
students where 75% preferred to have the tool introduced early in
the course; 3% preferred somewhere in the middle; and 22% prefer
it as a practice tool for the final exam.

5 DISCUSSION

The stochastic tree-based generation algorithm is a compromise be-
tween using a database of templates and pure generation from the
target language’s grammar. The latter produces too many unrealis-
tic and unwieldy code snippets, while the former incurs instructor
overhead. The stochasticity in generation enables scaling and re-
peated practice of the same level of difficulty.

The higher-level tree-based approach allows topic combinations
as well as a reasonable way to achieve target difficulty levels, a
necessary condition for reliably generating questions in a gradation
of difficulty. In terms of difficulty variation, GenCODE uses the
pattern tiers and probabilistic nesting and concatenation of pro-
gramming blocks. This procedural generation system resulted in
a reasonably close correlation between the generated and human-
labeled difficulties. Combining the analysis of the results obtained
with the adjustable method of increasing difficulty can allow the
instructor to develop questions in the student’s zone of proximal
development.

Another benefit of the stochastic tree approach is the fact that
it can be easily extended to other languages. The blocks represent
programming concepts that are combined to produce the tree, which
is used, in turn, to obtain the correct answer and the appropriate
distractors. The only element that needs to be adjusted is the module
that generates the sample code to produce the actual question, and
small changes to the execution engine.

Our analysis of the trial showed that students get questions
wrong on all difficulty tiers with similar frequencies, which points
to the effectiveness of the distractor generation.

An additional aspect of interest is the possibility of using the
tree of a programming question to infer difficulty. While the initial
results linking the number of executable blocks and input difficulty
point towards a correlation between the two, there still remains
the question of whether or not the reverse is true: if the parsing of
an existing problem into its constituent unique executable blocks
lend itself to an extraction of difficulty.

While the original intention was to use the system as a practice
tool for the final exam, a significant amount of students found it
extremely useful in helping them detect, and then correct, concep-
tual errors. Most of the user comments focused on the utility of
"walking through" problems, especially for the topic of loops and
nested loops. Other sample comments:

e “The whole structure of the problems was useful to be able
to mentally walk through a program instead of just clicking
‘run’”

e “Help finding the output of a complex method”

e “I discovered how much improvement I needed in interpret-
ing other’s code”

e “When helping me to find where I need to put the most
studying in”

e “It helped me practice reading code instead of just writing
it”

In the course of the study, we discovered that the produced
output still needs some work to be indistinguishable from hand-
crafted problems. Details in the produced questions seem to suggest
to the user that a question has been artificially generated. One
example given was: “A few questions had expressions like "if a >

a", which seemed like something a human would be unlikely to
include”. While the tool was found to be beneficial for practice and
for concept clarification, by presenting more realistic instances of
programming questions, the usefulness of the tool would increase.

Note that this project has not conducted a learning effectiveness
study, for which we rely on the works of [6, 23]. Nonetheless, further
study is warranted to compare the effectiveness of particular types
of questions.

6 CONCLUSIONS AND FUTURE WORK

This paper explored the potential of automated generation of multiple-
choice program-tracing questions using a stochastic tree-based
approach. The approach offers the advantage of high scalability,
correlation with desired difficulty levels, and easy portability to
other languages. A preliminary trial resulted in supporting these
goals, along with positive feedback from students.

In the future, we intend to quantitatively evaluate the learning
effectiveness of the tool when used as support for conceptual clarifi-
cation when introduced at the beginning of a course and not just as
an exam practice resource. In addition, we plan on refining the pro-
cedural question generation to detect and discard those questions
that present syntax that is clearly artificial.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the efforts of Michael God-
dard, a GW undergraduate who developed an exploratory prototype
for his senior project, and Jennifer Hill, who developed much of the
server/app combination that was used to distribute the generated
questions. Part of this effort was supported through NSF award
1347516.

REFERENCES

[1] Stina Bridgeman, Michael T. Goodrich, Stephen G. Kobourov, and Roberto Tamas-
sia. 2000. PILOT: an interactive tool for learning and grading. ACM Press, 139-143.
https://doi.org/10.1145/330908.331843

[2] Peter C Brown, Henry L Roediger III, and Mark A McDaniel. 2014. Make it stick.
Harvard University Press.

[3] Peter Brusilovsky and Sergey Sosnovsky. 2005. Individualized exercises for self-
assessment of programming knowledge: An evaluation of QuizPACK. Journal on
Educational Resources in Computing 5, 3 (Sept. 2005), 6—es. https://doi.org/10.
1145/1163405.1163411

[4] G. Dancik and A. Kumar. 2003. A tutor for counter-controlled loop concepts and
its evaluation, Vol. 1. IEEE, T3C_7-T3C_12. https://doi.org/10.1109/FIE.2003.
1263331

[5] Debzani Deb, Mohammad Muztaba Fuad, and Mallek Kanan. 2017. Creating
engaging exercises with mobile response system (MRS). In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,
147-152.

[6] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
Conference on Computing Education Research. ACM, 20-29.

[7] K Anders Ericsson, Robert R Hoffman, Aaron Kozbelt, and A Mark Williams.
2018. The Cambridge handbook of expertise and expert performance. Cambridge
University Press.

[8] Eric Fernandes and Amruth N. Kumar. 2004. A tutor on scope for the pro-
gramming languages course. ACM SIGCSE Bulletin 36, 1 (March 2004), 90.
https://doi.org/10.1145/1028174.971332

[9] Michail N Giannakos. 2013. Enjoy and learn with educational games: Examining
factors affecting learning performance. Computers & Education 68 (2013), 429—
439.

[10] I-Han Hsiao, Peter Brusilovsky, and Sergey Sosnovsky. 2008. Web-based pa-
rameterized questions for object-oriented programming. Association for the
Advancement of Computing in Education (AACE), 3728-3735.

[11] L-H. Hsiao, S. Sosnovsky, and P. Brusilovsky. 2010. Guiding students to the
right questions: adaptive navigation support in an E-Learning system for Java

[12

[13

[14

=
&

[16

(17

[18

[19

[20

[21]

[22

[23

programming: Adaptive navigation support in E-Learning. Journal of Computer
Assisted Learning 26, 4 (July 2010), 270-283. https://doi.org/10.1111/j.1365-2729.
2010.00365.x

Petri Ihantola, Juha Helminen, and Ville Karavirta. 2013. How to study program-
ming on mobile touch devices: interactive Python code exercises. ACM Press,
51-58. https://doi.org/10.1145/2526968.2526974

Ville Karavirta, Juha Helminen, and Petri Ihantola. 2012. A mobile learning
application for parsons problems with automatic feedback. ACM Press, 11-18.
https://doi.org/10.1145/2401796.2401798

Amruth N. Kumar. 2005. Generation of problems, answers, grade, and feedback—
case study of a fully automated tutor. Journal on Educational Resources in Com-
puting 5,3 (Sept. 2005), 3—es. https://doi.org/10.1145/1163405.1163408

Amruth N. Kumar. 2005. Results from the evaluation of the effectiveness of an
online tutor on expression evaluation. ACM SIGCSE Bulletin 37, 1 (Feb. 2005),
216. https://doi.org/10.1145/1047124.1047422

Amruth N Kumar. 2015. Solving code-tracing problems and its effect on code-
writing skills pertaining to program semantics. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education. ACM,
314-319.

Amruth N. Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles. ACM Press,
527-532. https://doi.org/10.1145/3159450.3159576

Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of
a relationship between explaining, tracing and writing skills in introductory
programming. ACM Press, 161. https://doi.org/10.1145/1562877.1562930

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. ACM Press, 101-112. https://doi.org/10.1145/1404520.1404531

Solomon Sunday Oyelere, Jarkko Suhonen, and Teemu H. Laine. 2017. Integrating
parson’s programming puzzles into a game-based mobile learning application.
ACM Press, 158-162. https://doi.org/10.1145/3141880.3141882

Dale Parsons and Patricia Haden. [n. d.]. Parson’s Programming Puzzles: A
Fun and Effective Learning Tool for First Programming Courses, Vol. Vol. 52.
Australian Computer Society, Inc., Australia, 157-163.

Ferran Prados, Imma Boada, Josep Soler, and Jordi Poch. 2005. Automatic genera-
tion and correction of technical exercises. In International conference on engineer-
ing and computer education: Icece, Vol. 5.

Laura Zavala and Benito Mendoza. 2018. On the Use of Semantic-Based AIG to
Automatically Generate Programming Exercises. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. ACM, 14-19.

https://doi.org/10.1145/330908.331843
https://doi.org/10.1145/1163405.1163411
https://doi.org/10.1145/1163405.1163411
https://doi.org/10.1109/FIE.2003.1263331
https://doi.org/10.1109/FIE.2003.1263331
https://doi.org/10.1145/1028174.971332
https://doi.org/10.1111/j.1365-2729.2010.00365.x
https://doi.org/10.1111/j.1365-2729.2010.00365.x
https://doi.org/10.1145/2526968.2526974
https://doi.org/10.1145/2401796.2401798
https://doi.org/10.1145/1163405.1163408
https://doi.org/10.1145/1047124.1047422
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3141880.3141882

	Abstract
	1 Introduction
	2 Related Work
	3 The GenCODE Algorithm and System
	3.1 Generating Program Structure
	3.2 Virtual Execution of Generated Code
	3.3 Question Difficulty
	3.4 Preliminary Trial and Lessons Learned
	3.5 Types of generated questions

	4 Results
	4.1 Difficulty and Executable Blocks
	4.2 Number of Useful questions
	4.3 Generated vs. Perceived Difficulty
	4.4 Student Response

	5 Discussion
	6 Conclusions and Future Work
	References

