
Hardware-enforced Fine-grained
Isolation of Untrusted Code

Eugen Leontie
Dept. of Computer Science

George Washington University
Washington, DC 20052

eugen@gwu.edu

Gedare Bloom
Dept. of Computer Science

George Washington University
Washington, DC 20052

gedare@gwmail.gwu.edu

Bhagirath Narahari
Dept. of Computer Science

George Washington University
Washington, DC 20052

narahari@gwu.edu

Rahul Simha
Dept. of Computer Science

George Washington University
Washington, DC 20052

simha@gwu.edu

Joseph Zambreno
Dept. of Electrical and
Computer Engineering
Iowa State University

Ames, IA 50011
zambreno@iastate.edu

ABSTRACT

We present a novel combination of hardware (architecture) and
software (compiler) techniques to support the safe execution of un-
trusted code. While other efforts focus on isolating processes, our
approach isolates code and data at a function (as in, C function)
level, to enable fine-grained protection within a process as needed
for downloaded plugins, libraries, and modifications of open-source
projects. Our solution also enforces timing restrictions to detect
denial of service from untrusted code, and supports protection of
dynamically allocated memory. Because bookkeeping data can be-
come substantial (permission tables that at their finest granularity
describe which memory words may be accessed by which func-
tions), our solution employs a stack-structured bookkeeping mech-
anism that tracks the flow of execution and automatically dispenses
with bookkeeping data when no longer needed. This approach also
enables an architectural optimization to handle permissions for dy-
namically allocated memory, allowing heap blocks to be appropri-
ately shared across the trust boundary. Tested across a suite of
benchmarks, our solution had a worst case 12% overhead and 3.5%
average overhead at the finest level of code granularity (every sin-
gle function in its own unit of isolation). The overhead is easily
reduced by using trace-driven analysis to combine functions into
coarser-grained groups that share permissions.

Categories and Subject Descriptors

K.6.5 [Security and Protection]

General Terms

Security, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecuCode ’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-782-0/09/11 ...$10.00.

Keywords

Memory protection, isolation, fine-grained protection, software se-
curity, architectural support for security

1. INTRODUCTION
Two trends in the software industry today are accelerating the in-

corporation of untrusted code in applications. In the first, feature-
rich applications – examples include browsers and media players,
as well as servers [21] – are explicitly designed to allow users to
customize their experience by downloading third-party plugins, ex-
ecutables that are directly incorporated into the execution environ-
ment of the application. The second trend is the continuing growth
of open-source software, which not only allows sophisticated users
to modify code but to easily share such modified code with other
users. In both cases, by design, untrusted code runs in the same
process as the application and with the same privileges, for which
reason existing OS-level protection is insufficient to protect the ap-
plication from a malicious plugin or from vulnerabilities therein
[13]. For example, a report by Symantec [22] shows that in the
first six months of 2007, no fewer than 300 security vulnerabilities
for web browsers originated from security flaws in popular add-ons
(e.g. JVM, QuickTime, Adobe PDF reader, Adobe Flash player)
[5].

For many years now, commodity hardware and operating sys-
tems have offered protection at the page-level (process A may not
access page B) and at the process-level (process X cannot access
process Y’s memory). Recently, several research efforts have fo-
cused on offering memory protection to processes (or threads) in
smaller chunks, as small as a single word [24], or have proposed
carefully managing the interactions between processes [8, 7]. While
valuable for processes, such process-oriented memory protection

approaches have two drawbacks for the kinds of applications we
target – applications that use plugin architectures or incorporate
open-source packages. The first drawback is that, to use process-
oriented memory protection, software that is written using tradi-
tional function call-return semantics (in languages such as C or
C++) needs to be rewritten to separate functions into processes –
a significant burden on developers, especially for legacy code. The
second drawback is that inter-process communication (IPC), nec-
essary for an application divided into multiple processes, carries
much more overhead than a simple function call, even with operat-

ing systems that optimize IPC. In view of these drawbacks, what is
desirable is the type of isolation semantics provided by Java: an ap-
plication can load untrusted code into a pre-defined security sand-
box, can call functions in that code, and has the (virtual) machine
enforce security. While the Java Virtual Machine provides such
isolation for bytecode, our goal is to provide the same for native
applications.
The main contribution of this paper is a function-oriented mem-

ory protection approach that, for the most part, requires no re-
writing of code but merely identification of untrusted functions or
groups of functions – the untrusted code. Such identification can
be provided either at compile-time (in a project’s makefile, for
instance) or at load time. Furthermore, our approach does not need
an operating system to mediate communication between isolation
units or supervise the management of permissions. The handling
and checking of permissions is performed entirely in hardware. In
addition, our approach has the following useful features:

• Arbitrary domain and principal granularity. Our approach
allows fine granularity on both sides of an access permis-
sion: the permission domain can be as small as a single word
and the principal can be as small as the smallest function (a
single instruction with an accompanying return). Because
fine granularity can result in significant bookkeeping data –
for the currently executing function, our hardware needs to
know what memory the function can access – we propose
a stack-structured approach in which permission tables are
loaded and discarded automatically as functions are called
and return. This approach has the further advantage that
all permission-related metadata are already in the hardware
when needed and therefore avoids the equivalent of a “page
fault” that is characteristic of on-demand approaches.

• Dynamic memory. Our stack-structured approach makes it
easy to incorporate permissions for dynamically allocated
memory. In particular, a function may allocate memory (us-
ing, say, malloc) and set permissions on it before passing
the pointer to untrusted code. Note that this feature needs
compiler support (to automatically insert such permission
setting) and a one-time re-write of the allocator.

• Minimally invasive architectural support. The architectural
modifications we devise are designed to sit between cache
and CPU in a single unit that can be added to a processor
core without modifying either the instruction set or the rest
of the architecture. However, some optimizations are possi-
ble if one is willing to modify the instruction set (for setting
dynamic memory permissions) and CPU (to optimize the in-
struction pipeline for performance).

• Protection from denial of service. One of the simplest at-
tacks is to insert an infinite loop or an especially long com-
putation that slows the processor. Thus, when calling an un-
trusted function, one would like some assurance that it will
return within a reasonable time. Our architectural modifica-
tions include execution timing that is checked against pre-
determined limits, which can be set by the application devel-
oper based on profiling.

• Control flowmonitoring. Our architectural modifications make
it easy to check proper control-flow between units of isola-
tion so that only pre-defined entry points are allowed, thus
preventing attacks based on unauthorized jumps into code [3].

• Tunable efficiency. While it is unlikely that plugins will con-
sist of single functions, our implementation shows a modest

3.5%-average overhead on benchmarks in which every single
function is assigned its own unit of isolation. Overhead is in-
curred when a function call crosses an isolation boundary and
will be much reduced with coarser granularity, allowing de-
velopers some flexibility in trading off strong isolation with
performance.

The remainder of this paper is organized as follows: Section 2
reviews prior work in memory protection; Section 3 introduces
our solution and provides the details of our hardware and software
modifications; Section 4 evaluates the performance overhead intro-
duced by our hardware enforced fine grained memory protection
while Sections 5 and present discussion and concluding remarks.

2. RELATEDWORK
The idea of isolation dates back to the first generation of time-

sharing machines. We adopt the terminology of Saltzer and Schroeder
[16] for memory protection: a domain is the set of objects (mem-
ory) that currently may be accessed by a principal, the entity to
which authorizations are granted. We use principal to mean the
code that executes, and in our work the principal is as fine-grained
as a single function invocation. Note that protection domain is of-
ten used interchangeably with principal, to refer to the protection
context with which code executes; we find it convenient to differ-
entiate between the memory being accessed and the code doing the
accessing, so we will stick with domain and principal.

At the present time, commodity systems exploit hardware sup-
port for paging by including additional permission bits for each
page that determine whether the currently executing process can
access the page. The assignment and revocation of permissions is
managed by the OS, with the process as the principal. However,
such page-based permissions come with several drawbacks. First,
since the page is the smallest domain, an application that needs
to isolate small chunks of memory must place each chunk in its
own page. Second, changes to permissions are mediated by the
OS and therefore require modifications to the OS. Third, as men-
tioned earlier, since the OS is process-based, such a mechanism
does not work for the plugin and open-source applications consid-
ered in this paper. Fourth, the OS can only manage the page tables
during a context switch, when a process suspends or resumes exe-
cution. Thus, a multithreaded application cannot isolate the mem-
ory accesses among its threads when the process is the smallest
principal. The implication for high performance servers is that all
services belonging to a particular application share a principal, and
therefore will have identical permissions to access memory.

Recently, some research efforts have begun to address the prob-
lem of memory protection by proposing architectural modifications
that provide memory protection at a finer granularity of domain
than pages (words of memory) for smaller principals than processes
(threads). One influential work byWitchel et al. is Mondrian Mem-
ory Protection (MMP) [24], which improves on the prevailing page-
based model by allowing permissions to be specified on domains as
small as the word size.

Some researchers have proposed using encryption to protect mem-
ory [4, 12, 18]. For example, Shi et al. describe MESA [18], an
architecture for a secure memory system with both access control
and encryption for tamper proof storage. Although MESA supports
separating code and data (memory spheres) into different principals
(principles), the encryption increases the cost of sharing between
principals. Thus, using MESA to protect memory between func-
tions would impose a high cost on marshaling parameters.

With a different objective and approach, InfoShield [17] protects
a fixed set of highly critical data, such as secret keys. However,

InfoShield allows access to anything that is not explicitly protected.
In contrast, our solution by default denies access to all data and thus
can protect more data than InfoShield.
Arora et al. [1] introduce security tags for data ranges to support

memory protection policies, including isolation for a large number
of small principals. However, the complexity and cost of switching
between principals becomes prohibitive as the number of security
tags increases. To protect functions, the security tags must be de-
fined statically and a static permission map of the entire application
must be known. Such information is not generally available for dy-
namically allocated memory.
At the other end of the hardware-software spectrum lie software-

only solutions, such as static techniques based on information flow
[27], executing untrusted code in an interpreter [10], or specialized
isolation for operating system drivers [20, 23]. Type safe languages
are also used by Microsoft’s Singularity project [8, 7]. These ap-
proaches all have some drawbacks, either in extra overhead, no
support for weakly typed low-level languages, or weak support for
dynamic memory.
Our solution combines hardware, in the form of a memory pro-

tection hardware module, and software, as a compiler module that
inserts protection-assigning instructions for dynamic memory, and
differs from previous work in several ways. As mentioned ear-
lier, the main difference is that we are focused on fine-grained
function-oriented memory protection suited to plugin software ar-
chitectures, the importing of libraries, and unbridled modification
of open-source code. We explored the high level motivation and in-
troduced our solution in a previous paper [11], which discusses us-
ing our architecture to support component-based software but omit-
ting architectural details; in this paper, we present those details.
We are able to achieve this protection without prohibitive costs

by leveraging call-return semantics to get automatic prefetching
and revocation of static permission data, in much the same way that
the call stack provides automatic memory management of stack-
based data (parameters, local variables). This stack-structured ap-
proach, as it turns out, also lends itself to an efficient way for man-
aging permissions on dynamic data. In addition, we provide timing
protection for denial of service attacks and control-flow checking
to detect unauthorized jumps, and our modifications are minimally
invasive in terms of the required architectural redesign.

3. CONTAINER-BASED APPROACH
A primary goal of our approach was to make both our hardware

and software enhancements as transparent as possible. In the case
of hardware, we provide the bulk of the needed hardware function-
ality in a module called the Container Manager that sits between
the CPU and cache as shown in Figure 1 (The details are described
in Section 3.3.) In this manner, a processor designer would merely
insert our module and interface it with both the CPU and the cache.
Similarly, our goal in software is to have most of the work done by
the compiler and loader, with minimal work required for the pro-
grammer. In fact, the only action on the part of the programmer is
to define the units of isolation – this requires modification of a soft-
ware development tool that builds the application (like make). Fig-
ure 1 also shows the additional bookkeeping data (the permissions)
stored in main memory, which are fetched into the Container Man-
ager as needed to enforce isolation boundaries. We next describe
details, starting with a definition, followed by software support in
Section 3.2 and architectural details in Section 3.3.

3.1 Containers
We use the term container to describe our unit of code or data

isolation. On the principal (code) side, this unit can be as small as

Figure 1: A high level view of our architecture. The container

manager acts as a reference monitor formemory access control,

with additional cycle counting to detect denial of service.

a single function, or can be as large as a substantial library of func-
tions, or even the whole application. On the domain (data) side, the
unit can be as small as a single word or an arbitrarily large buffer.
Most often, since plugins and libraries contain both code and data, a
container will protect one or more functions and some data as a sin-
gle unit. Every container has a unique identifier, the Container-ID,
and has a set of internal bookkeeping data (metadata, permission
tables) that are used by the hardware to enforce memory protec-
tion. This data includes static permissions that govern accesses to
global data ranges and stack allocated variables, as well as code
entry/exit points.

3.2 Compiler Support
We augment a standard C compiler to extract container bound-

aries and permissions. By default, each function is assigned its own
container and has full access permissions to static variables. Vari-
ables that are passed to a function are given read-only permission if
the const keyword is used, and otherwise are given read and write
permissions. Memory ranges for static variables are automatically
calculated, so bounds checking is enforceable by the hardware.

In the traditional software development approach, an application
developer creates a project file (for example, makefile) to build
the application using a collection of configuration, compilation and
loading tools. In our approach, the software product goes through
an additional step: extracting an application permission manifest.
The manifest consists of all the information needed by the hard-
ware: a list of containers, their identifiers, memory permissions,
permitted call patterns, and approximate run times (in terms of the
number of instructions executed) for selected containers of inter-
est. Although most permissions can be extracted automatically at
compile-time, some permissions for dynamic memory accesses are
only computable at runtime (due to the lack of bounds checking, ar-
ray index computation, and pointer aliasing in C). In such instances,
the compiler is unable to infer the correct permission assignments,
and the programmer is instructed to add permission annotations.
The tool then generates the manifest, which can be edited manu-
ally by the developer. Our point here is that both developers and
language designers have the option of using the hardware to appro-

Figure 2: Use of the ALLOW macro. (a) shows an unprotected

code snippet with a possible violation since i is not initialized in

bar. (b) shows how ALLOW is added in foo, giving permission

to the next function (bar) to read/write the memory located at

the address of buff and continuing for 100 bytes. (c) shows

how ALLOW is used to produce dynamic memory and bar pro-

vides permissions to its caller (foo).

priately strengthen robustness. In some languages such as C with
much low-level pointer manipulation, more programmer interven-
tion may be needed, whereas the burden on developers is consid-
erably less in higher-level languages or even in C variants such as
Cyclone [9]. The entire application now consists of all the exe-
cutable code and static data along with the manifest.
Note that in the above scenario the developer leaves a number of

decisions to the compiler. For example, consider the code exam-
ple in Figure 2(a) which shows a function foo() calling a func-
tion bar(). If the developer places both in the same container,
bar() has permission to access the buffer buf passed into it. On
the other hand, if the two functions are in different containers, ex-
plicit permission needs to be granted. In this case, as shown in
Figure 2(b), the compiler default is to insert a macro that we call
ALLOW to specify the read-write permission on this shared data
that crosses container boundaries. In the case, for example, where
the type modifier const is used in C/C++, the compiler will in-
sert an ALLOW macro with read-only permission. Similarly, for a
heap-allocated block that is returned, the compiler inserts an appro-
priate ALLOWmacro as shown in Figure 2(c). Other cases include
call-by-reference parameter passing or any situation in which a ref-
erence is passed between containers. In this manner, the compiler
inserts a number of such ALLOW macros depending on how the
compiler infers the desired permission.
During the code generation phase, the compiler translates AL-

Figure 3: ALLOW implementation: (a) in high level language;

(b) implementation using a new instruction, pcd; (c) implemen-

tation using memory mapped operations.

LOWmacros into a special instruction called pcd (permission con-
trol delegate), that enables the hardware (the Container Manager)
to manage the permissions at runtime. The pcd instruction takes
a memory range and permission type (for example, read-only) as
operands and associates the permission with the given range of
memory. Figure 3 shows how a single ALLOW macro translates
into two machine instructions, one of which is pcd. (An alternative
to defining a new machine instruction is to use memory-mapped
I/O, at the cost of requiring more instructions - Figure 3c).

Although the compiler is able to extract permission information
needed for static memory accesses, dynamic memory is another
matter. Handling dynamic memory requires both a modification to
the memory allocator and a mechanism for creating memory per-
missions at runtime. Recall that the compiler (or programmer) gen-
erates the high-level macro ALLOW, as shown in Figure 3(a), for
explicitly assigning permissions that carry across container bound-
aries. Thus, if dynamic memory is allocated in one container and
needs to be passed to another, the ALLOW macro is inserted to
assign the default permission. The compiler can be set up to use
other defaults (for example, a default of read-only) and directives.
Thus, assignment of permissions is straightforward. However, re-
vocation is more complicated. Consider how revocation is handled
in process-oriented approaches: Tables are maintained by the OS
[24], and permissions must be “undone” when the permission ex-
pires or goes out of scope. Most often, this revocation occurs on
every return from one domain to another. In contrast, our approach
exploits the execution stack by letting dynamic permissions disap-
pear implicitly when no longer needed so that no explicit revocation
is required. The Container Manager described in the next section
uses stack like structures to save the permission context. Permis-
sions for dynamic memory are kept active only for live functions,
and revocation is automatic when functions return. This strategy
avoids frequent supervisor calls for execution patterns that follow
an activation tree structure. For other execution patterns like excep-
tions, setjmp/longjmp, and preemptive context switches, the appro-
priate mechanism is a software-based supervisor in the kernel.

3.3 Hardware Support
Achieving acceptable performance with fine-grained memory pro-

tection requires augmenting existing hardware. In our hardware de-
sign, we extensively use three types of memory: registers, scratch-
pad RAM, and content addressable (associative) memory (CAM).
Figure 4 shows the architecture of the Container Manager, the mod-

Figure 4: Details of the Container Manager. The Container Manager is modularized into three pieces: the Container Management

Logic handles all storage that applies across the set of all containers; the Container Specific Logic handles storage for only the

currently active container; the Container Control Logic implements the functionality using the storage.

ule that we introduce between CPU and cache, conceptually di-
vided in three components: Container Management Logic (for han-
dling data related to all containers), Container Specific Logic (for
information about the currently executing container), and Container
Control Logic (to implement permission checking, dynamic per-
missions management, timer management, and container switch-
ing).

3.3.1 Container Management Logic

Some of the Container Manager’s hardware tracks state across
all of the containers for an application. This hardware resides in
the Container Management Logic, which comprises the Container
Identification Table and the Container Stack Register. The Con-
tainer Identification Table has both the Container Entry Check CAM
and the Container Metadata RAM. The Container Entry Check mon-
itors every instruction address to identify if a new container is be-
ing accessed. The set of all container entry points is prepared by
the compiler and pre-loaded with the executable binary, so that
checking for entry points involves only a single cycle CAM lookup.
The data in the Container Metadata are paired with container entry
points to specify where the container’s static permissions are lo-
cated.
The Container Identification Table characterizes each execution

unit (a process or thread) and is a detailed breakdown of the con-
tainers that are part of the execution context. The key elements are
the container entry points and the addresses where the permission
records for the containers are stored. As containers can have one
or more functions, not necessarily in continuous locations, all entry
points must be listed. A unique Container ID is used for grouping
the constituent functions, and for detecting whether the container
context needs to be switched. For each memory fetch, the Con-
tainer Manager checks the address against all entry points in the

Container Identification Table. Any memory fetch from one of the
entry points different from the current loaded container will trig-
ger a security context switch, which is executed by the Container
Manager independent of any supervisor (OS).

3.3.2 Container Specific Logic

For each container, its static and dynamic permissions are stored
by the Container Manager in the Container Specific Logic, consist-
ing of the Container Runtime Record, Dynamic Permission Buffer,
Timing Control, and a handful of bookkeeping registers. Static per-
missions to memory ranges are stored in the Permission Table, a
range checking CAM, and allowable function calls are stored in
the Call Targets CAM. The Dynamic Permission Buffer temporar-
ily holds the permissions that the active container provides to the
next container to execute. The Timing Control hardware consists of
a cycle counting timer and a pointer to a stack of timers. There are
also registers that contain the active container identifier, the par-
ent of the active container (caller), and a pointer to an exception
handler to assist with memory access or timing exceptions.

One of the key elements of the Container Manager is the ability
to verify if a memory access is in the authorized list associated with
the active container. Since this is a frequent operation that occurs
on every memory access, the time spent during the check is a criti-
cal factor in the performance of the system. In order for the access
control verification to impose little or no impact on the performance
of the system, the penalty incurred by the search in the access list
must be at most the same delay as the memory access. Content Ad-
dressable Memory (CAM) has been widely used for fast searches in
applications like cache indexing using translation lookaside buffers
(TLB) and high speed routers. CAMs are now also available in
range-checking variants (with extended comparator circuitry) that
store memory ranges, and return the range in which a given data

word resides [19]. This is exactly the functionality needed for a
permission check: given an address, identify whether it lies in the
set of ranges stored for the current container.

3.3.3 Container Control Logic

As instructions are fetched, the address of the instruction is com-
pared with the known entry points of containers in the Container
Identification Table, and also with exit points in the Container Run-
time Record to see if this instruction indicates a container switch is
impending. Similarly, for data accesses, the Container Manager
checks the address and access type with the permission tables in
the Container Runtime Record. For pcd instructions, the Container
Control Logic decodes the instructions and loads the Dynamic Per-
mission Buffer as directed by pcd.
Timing is tracked by the number of instructions committed, and

timing constraints are specified by software developers. If a maxi-
mum timeout is specified for a container, a countdown timer is set
to the timeout. For a hierarchy of container calls, the timer in the
top container must include the timing of its callees. If a callee’s
timeout is greater than the caller’s timeout, then the callee will in-
herit the more restrictive timeout. A stack of timers is maintained,
with only the active container’s timer being updated on each com-
mitted instruction; when the child container returns, the elapsed
time of the child invocation is subtracted from the parent’s timer. A
timer overflow is checked only for the active container.
When the active container executes a call or return instruction, a

container switch occurs. In the case of a call, if the target is found
in the Call Targets, the call is allowed to proceed and the Con-
tainer Entry Check CAM is searched to find the static permissions
of the callee, and the dynamic permissions of the active container
are pushed to the Dynamic Permissions Stack (the static permis-
sions are discarded). In the case of a return instruction, the Con-
tainer Stack Parent register indicates where to find the static per-
missions, and the Dynamic Permissions Stack is popped to retrieve
the parent’s dynamic permissions, which are written to the Permis-
sion Table. In both cases, all valid data in the Dynamic Permission
Buffer are merged in to the Container Runtime Record, allowing
for dynamic buffers to be respectively passed and returned to callee
and caller. The container switch also updates the active, parent, and
timing registers.

4. EVALUATION
Our solution imposes performance overhead from added instruc-

tions for managing dynamic permissions and from interposing on
memory accesses. To evaluate the overhead, we instrumented the
SimpleScalar simulator [2] with our modified hardware in an out-
of-order processor model with the ARM ISA. For the software sup-
port, we modified the gcc 3.3 cross-compiler for the ARM plat-
form, translating the ALLOW macro to two instructions for pcd.
Our baseline simulator was SimpleScalar’s sim-outorder con-

figured as a typical embedded system, with a 400 MHz CPU, 100
MHz bus and memory. The data and instruction cache sizes for the
baseline results were matched to the cache sizes of the experiments.
We chose the embedded environment because of the ubiquity of
downloaded apps in mobile devices. To the baseline, we added our
hardware along the memory hierarchy for checking and managing
permissions, including extra cache space for permissions. We also
varied the cache sizes in our experiments, to observe the effects of
such architectural parameters.
To evaluate the performance of our solution, we ran experiments

using a range of benchmark applications. We chose computation-
ally intensive benchmarks fromMiBench [6], data intensive bench-
marks from the Data Intensive Systems (DIS) benchmark suite [14],

Figure 5: Performance Overhead with 16 KB Permission

Cache.

Figure 6: Performance Overhead with Varying Permission

Cache Size, Fixed 16 KB Instruction And Data Cache Sizes.

and, to stress the dynamic permissions, the heap intensive Richards
benchmark [26]. Each benchmark was executed on the baseline
platform, and then with the modified architecture with varying pa-
rameters. All of our results are presented as the percent overhead
compared with the baseline performance, so lower is always better.

Figure 5 shows the percentage overhead for all benchmarks, with
a 16 KB permissions cache, with a breakdown of the overhead
into static and dynamic components. The results are not surpris-
ing, since some benchmarks use more dynamic memory than oth-
ers. With a maximum of 12.37% and an average of only 3.5%, the
overhead is reasonable for a large class of applications.

Figure 6 shows how performance depends on the size of the per-
mission cache, as it is sized from 16 KB down to 2 KB.Most bench-
marks fare well with a permission cache size above 2 KB, although
some benchmarks are more sensitive than others. Overhead de-
creases rapidly as the permission cache size is increased relative to
the data/instruction cache size, but the decrease tapers off after 4
KB, suggesting that permissions exhibit considerable locality and
only a modest cache size is needed.

Figure 7 shows the performance results for a set of cache con-
figurations that shows the 2 to 1 ratio of data and instruction cache
to permission cache. Note that, for each set of results, the baseline
is the unprotected system with the same data and instruction cache
as in the result set. These results show that in resource constrained
devices, where caching is limited, a good performance standard can
be achieved with a relative small amount of permission cache (only
one fifth of the total processor L1 cache space). As the permission
cache is lowered to less than 2 KB, the cache pressure from fetch-
ing the static permissions heavily degrades performance. Also the
performance overhead from executing the extra instructions, thus

Figure 7: Performance Overhead with 2:1 Ratio of Data and

Instruction Cache Size to Permission Cache Size

Figure 8: Overhead with a Limited (2 KB) Permission Cache

using relatively more of the shrinking instruction cache space, for
dynamic permission delegation becomes more substantial than the
pressure of a relatively smaller permission cache. The cost of the
added instructions from dynamic permissions is especially visible
in the Richards benchmark, and also can be observed in Figure 8,
where we explore the overhead of a small permission cache of 2 KB
with larger instruction and data caches. In this case, the Richards
benchmark shows anomalous behavior because dynamic memory
allocations dominate the overhead of loading static permissions.
Figure 9 shows how trace driven container grouping can be used

to improve performance. For these results, we used a very simple
grouping algorithm: The most frequently “connected” functions
are included in the same container, and we force each container
to hold the same number of functions. The number of functions per
container is varied from 1 – the same as in Figure 5 – to 5. The
average performance penalties for grouping 2, 3, 4, and 5 functions
per container were 1.7%, 1.87%, 1.78%, and 1.94% respectively.
Note that performance is not always improved by increasing the
number of functions per container. As the number of functions
per container increases, the cost to load the static permission table
also increases. If only a few of the functions in the container are
called consecutively, the unused functions’ permissions are need-
lessly prefetched. Thus, the cost of fetching all permissions may
outweigh the benefit of avoiding the container switch, in certain
cases. This result means there is room for future work in fine-tuning
the algorithm that groups functions in to containers.

5. DISCUSSION
We have shown that fine-grained monitoring of code execution

is feasible with modest overhead, minimal software effort and a
minimally-invasive architecture. Our solution is successful because

Figure 9: Overhead with Multiple Functions per Container, 32

KB Data and Instruction Cache, 16 KB Permission Cache

we use the behavior of call-return programs to motivate our permis-
sion management’s stack structure.

5.1 Exploiting Stack Locality
As a program executes, the call stack naturally reflects data and

code locality. By using a stack structure for permission tracking,
our solution directly exploits this locality. When the code for a
container is first loaded, all of the permissions for the container’s
stack-allocated variables are also loaded. Thus, permissions for
static data are automatically retrieved with the instructions that will
use that data, hiding the cost of fetching the permissions. When
a container calls another container, its dynamic permissions are
stored on a permissions stack. When the container resumes, the dy-
namic permissions are restored from the stack. When a container
exits via a return instruction, its dynamic permissions are automat-
ically revoked, because they are no longer stored anywhere. Thus,
permissions are efficiently managed in a stack structure, similar to
how the call stack achieves automatic memory management.

5.2 Minimally Invasive Architecture
The results we present are based on assuming that precise iden-

tification of container boundaries is feasible in hardware. How-
ever, very complex pipelines might make extracting such informa-
tion difficult. We also tested a solution in which the compiler adds
instructions to flush the pipeline when a container switch should oc-
cur. This flushing added an average of 2% overhead to our perfor-
mance results, but represents a very simple solution that can mini-
mize the invasiveness of our architectural changes.

5.3 Applications of the Approach
Plugins and extensions for web-based applications routinely link

in third-party code to run in the same address space as the browser
itself [15], a perfect fit for our model. High performance server ap-
plications also use a plugin architecture, such as the Apache httpd
Modules [21], that provides feature customization for servers. Fi-
nally, commodity operating systems use a modular framework for
device drivers, but the drivers are themselves executed within the
kernel address space; using our solution, driver functions could be
called with restricted privileges. Note that adding such protection
to an OS kernel is not trivial, as demonstrated by Mondrix [25], an
application of MMP to Linux.

5.4 Secure Loading
Thus far, we have not addressed an obvious attack: what if un-

trusted code is able to modify the metadata (manifest) to overwrite
its privileges? The loading of permission data can be made se-

cure through standard techniques such as encryption and integrity
checks. Also, ensuring that the manifest is distributed and installed
properly requires a special-purpose trusted installation mechanism.

6. CONCLUSION
We have presented a solution for isolation of untrusted code at

a function level, combining compiler techniques with additional
hardware, to provide seamless integration of trusted and untrusted
code. By using the stack-like nature of function calls, we can pro-
tect execution at a finer granularity than existing solutions, which
rely on the OS to manage permission tables at a process or thread
level. We also protect memory at a finer granularity than page-
level, allowing permissions to be specified to individual words if
necessary. The fine granularity of protection allows for low over-
head protection of code without substantial code re-writing. Our
solution also includes mechanisms for handling dynamic memory,
monitoring control-flow, and detecting denial-of-service, all with
modest overhead.

Acknowledgments

This work is partially supported by NSF grants ITR-025207 and
CNS-0934725 and AFOSR grant FA9550-09-1-0194.

7. REFERENCES
[1] D. Arora, S. Ravi, A. Raghunathan, and N. Jha. Architectural

support for run-time validation of program data properties.
IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 15(5):546–559, 2007.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. Computer, Feb
2002.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: Generalizing return-oriented
programming to RISC. In Proceedings of the ACM
Conference on Computer and Communications Security

(CCS), 2008.

[4] O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and
J. Zambreno. CODESSEAL: A compiler/FPGA approach to
secure applications. In Proceedings of the IEEE Conference

on Intelligence and Security Informatics (ISI), 2005.

[5] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the OP web browser. In Proceedings of the IEEE Symposium

on Security and Privacy (S&P), pages 402–416, 2008.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In Proceedings of
the IEEE Workshop on Workload Characterization, 2001.

[7] G. Hunt, C. Hawblitzel, O. Hodson, J. Larus, B. Steensgaard,
and T. Wobber. Sealing OS processes to improve
dependability and safety. In Proceedings of the European
Conference on Computer Systems (EuroSys), Mar. 2007.

[8] G. Hunt and J. Larus. Singularity: Rethinking the software
stack. ACM SIGOPS Operating Systems Review,
41(2):37–49, Apr. 2007.

[9] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In Proceedings of the
Usenix Annual Technical Conference, pages 275–288, June
2002.

[10] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. In Proceedings of the
USENIX Security Symposium, 2002.

[11] E. Leontie, G. Bloom, B. Narahari, R. Simha, and
J. Zambreno. Hardware containers for software components:
A trusted platform for COTS-based systems. In Proceedings
of the IEEE/IFIP International Symposium on Trusted

Computing and Communications (TrustCom), Aug. 2009.

[12] D. Lie, C. Thekkath, M. Mitchell, and M. Horowitz.
Architectural support for copy and tamper resistant software.
In Proceedings of the International Symposium on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), Nov. 2000.

[13] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor, S. J.
Turner, and J. Farrell. The inevitability of failure: The flawed
assumption of security in modern computing environments.
In Proceedings of the 21st National Information Systems
Security Conference, pages 303–314, 1998.

[14] J. Manke and J. Wu. Data-intensive system benchmark suite
analysis and specification. Atlantic Aerospace Electronics
Corp, 1999.

[15] Mozilla Corporation. Firefox add-ons.
https://addons.mozilla.org/, 2009.

[16] J. Saltzer and M. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[17] W. Shi, J. Fryman, G. Gu, H. Lee, Y. Zhang, and J. Yang.
InfoShield: a security architecture for protecting information
usage in memory. In Proceedings of the International
Symposium on High-Performance Computer Architecture,
pages 222–231, 2006.

[18] W. Shi, C. Lu, and H. Lee. Memory-Centric security
architecture. In Proceedings of the International Conference
on High Performance Embedded Architectures and

Compilers (HiPEAC), pages 153–168, 2005.

[19] E. Spitznagel, D. Taylor, and J. Turner. Packet classification
using extended TCAMs. In Proceedings of IEEE
International Conference on Network Protocols (ICNP),
2003.

[20] M. Swift, B. Bershad, and H. Levy. Improving the reliability
of commodity operating systems. ACM Transactions on

Computer Systems, 22(4), 2004.

[21] The Apache Software Foundation. Apache httpd modules.
http://httpd.apache.org/modules/, 2009.

[22] D. Turner. Symantec internet security threat report: Trends
for January - June 2007. Tech. report, Symantec Inc., 2007.

[23] D. Wagner. Janus: An approach for confinement of untrusted
applications. Technical Report CSD-99-1056, UC Berkeley,
1999.

[24] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Proceedings of the International Conference
on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 304–316, 2002.

[25] E. Witchel, J. Rhee, and K. Asanović. Mondrix: memory
isolation for linux using mondriaan memory protection.
SIGOPS Operating Systems Review, 39(5):31–44, 2005.

[26] M. Wolczko. Benchmarking Java with Richards and
DeltaBlue. available at
http://research.sun.com/people/mario/java_benchmarking,
2006.

[27] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure
program partitioning. ACM Transactions on Computer

Systems, 20(3), Aug. 2002.

