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The new-found ubiquity of embedded processors in consumer and industrial applications brings
with it an intensified focus on security, as a strong level of trust in the system software is crucial to
their widespread deployment. The growing area of software protection attempts to address the key
steps used by hackers in attacking a software system. In this paper we introduce a unique approach
to embedded software protection that utilizes a hardware/software co-design methodology. Results
demonstrate that this framework can be the successful basis for the development of embedded
applications that meet a wide range of security and performance requirements.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles—Adaptable
architectures; C.3 [Special-Purpose and Application-Based Systems]: Real-time and embedded systems

General Terms: Design, Measurement, Performance, Security

Additional Key Words and Phrases: Software protection, HW/SW codesign

1. INTRODUCTION AND MOTIVATION

Software protection is one of the most significant outstanding problems in security today
[Computer Security Institute and Federal Bureau of Investigation 2002]. Because most
successful attacks involve tampering with executable instructions, the related problems of
code understanding, data tampering, and authorization circumvention together with code
tampering form the four main types of attacks on software systems. In addition, while
software protection is an important issue for desktop and servers, the fact that over 97%
of all processors are embedded processors [Hoffmann et al. 2002] shows the importance
of protecting software on embedded systems. Imagine an attack on a key networked mi-
crocontroller used in transportation systems: the resulting tampered executables can cause
large-scale disruption of mechanical systems. Such an attack can be easily replicated be-
cause embedded processors are so numerous. Efforts in the area of software protection tend
to lie at one of two extremes: a “camouflage” approach in which software is obfuscated or
in which software checks are periodically embedded, or a “Fort Knox” approach in which
the processor is architected with sophisticated public-key cryptographic hardware and ex-
ecutables are encrypted. As is pointed out later, the “camouflage” approach may only slow
down hackers whereas the “Fort Knox” approach requires a new processor technology.
This paper presents an approach whose level of security lies between the two extremes
and can be tuned within this range. Furthermore, by exploiting the wide availability and re-
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Fig. 1. Conceptual view

programmability of FPGA (Field-Programmable Gate Array) hardware, these techniques
will be applicable in the near future (3-5 years) and are compatible with System-on-Chip
(SoC) designs that feature processor cores, interconnects and programmable logic. The
proposed method works as follows (see Figure 1). The processor is supplemented with
an FPGA-based secure hardware component that is capable of fast decryption and, more
importantly, capable of recognizing and certifying strings of keys hidden in regular un-
encrypted instructions. To allow a desired level of performance (execution speed), the
compiler creates an executable with parts that are encrypted (the “slow” parts) and parts
that are unencrypted but are still tamper-proof. Thus, in Figure 1, the first part of the exe-
cutable is encrypted and will be decrypted by the FPGA using a standard private (secret)
key technique [Daeman and Rijmen 2000]. The second part of the executable shows in-
struction block A containing a hidden key and, at a distance d from A, an instruction A’.
Upon recognizing A, the FPGA will expect A’ = f(A) at distance d (where f is computed
inside the FPGA); if the executable is tampered with, this match is highly unlikely to oc-
cur and the FPGA will halt the processor. The key sequences can be hidden within both
instructions and data. The association of A’ with A is hidden even from invasive electronic
probing. THe FPGA waits for the processor to fetch A and A’ during program execution
before checking the key. The programmability of the FPGA together with the compiler’s
ability to extract program structure and transform intermediate instructions provide the
broad range of parameters to enable security-performance tradeoffs.

This approach has the following advantages: (1) it simultaneously addresses the four
main types of attacks on software integrity; (2) the compiler’s knowledge of program
structure, its execution profile, and the programmability of the FPGA allow for tuning the
security and performance for individual applications; (3) the approach is complementary
to several software-based instruction validation techniques proposed recently [Chang and
Atallah 2000; Collberg et al. 1997; Horne et al. 2001]; (4) the hardware required in this
scheme is simple and fast; (5) the use of FPGAs minimizes additional hardware design
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and is applicable to a large number of commercial processor platforms; (6) this proces-
sor/FPGA architecture is well-suited for future designs that utilize SoC technology. Ex-
periments show that for most of the selected benchmarks, the average performance penalty
for this approach is less than 20%, and that this number can be greatly improved upon with
the proper utilization of compiler and hardware optimizations.

The remainder of this paper is organized as follows. In Section 2, background is pro-
vided into the problem of software security, with an overview of the more recent research
in that field. Section 3 provides more details about the SAFE-OPS approach, explain-
ing how the compiler and FPGA interact in a tunable fashion to improve system software
security. In this section experimental results are also presented detailing the inherent per-
formance/security tradeoffs by examining several embedded application benchmarks. Sec-
tion 4 investigates the performance benefits of some hardware and software optimizations
that can be applied within the experimental framework. Finally, in Section 5 conclusions
are presented, with a discussion of future optimizations and analysis techniques that are
currently in development.

2. RELATED WORK

This section reviews past work in the general area of software security. As will be shown,
most approaches tend to focus on purely-hardware or purely-software solutions.

2.1 Mostly-hardware approaches

Tamper-resistant packaging can coat circuit boards or encase the entire device, such as
the iButton developed by Dallas Semiconductor [1999]. Alternatively, a custom proces-
sor can be used with special-purpose hardware that makes it difficult to decompile code,
and extremely difficult to insert tampered code. However, this approach is much more
expensive than providing tamper-resistant packaging.

Secur e coprocessor sare computational devices than can be trusted to execute their soft-
ware in a trusted manner. Programs, or parts of the program, can be run (in an encrypted
form) on these devices thus never revealing the code in the untrusted memory and thereby
providing a tamper resistant execution environment for that portion of the code. A number
of secure coprocessing solutions have been designed and proposed, including systems such
as IBM’s Citadel[White et al. ], Dyad [Tygar and Yee 1993; Yee and Tygar 1995; Yee ],
the Abyss and pAbyss systems [White and Comerford 1987; Weingart et al. 1990; Wein-
gart 1987], and the commercially available IBM 4758 which meets the FIPS 140-1 Level
4 validation [IBM 2002; Smith and Weingart 1999; Smith ]. Distributed secure coprocess-
ing is achieved by distributing a number of secure coprocessors and some have augmented
the Kerberos system by integrating secure coprocessing into it [Itoi ]. In [Lie et al. 2000]
an architecture is proposed for tamper resistant software and a hardware implementation
is provided, based on an execute-only memory (XOM) that allows instructions stored in
memory to be executed but not manipulated. The machine works on encrypted instruc-
tions and the XOM machine decodes the session key, decodes instructions from external
memory using the session key and provides partitioned storage for the XOM code. For
x86 Intel processors, they estimate that a memory bound computation will have a less than
50% slowdown. Finally, several companies have formed the so-called Trusted Computing
Platform Alliance [2003] to provide hardware-software solutions for software protection.

Smart Cards. Smart cards can be viewed as type of secure coprocessing; a number of
studies have analyzed the use of smart cards for secure applications [Gobioff et al. 1996;
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Kommerling and Kuhn 1999; Schneier and Shostack 1999; Neve et al. 1999; Smith ].
Sensitive data and critical instructions can be stored on smart cards but they offer no direct
I/0 to the user. Most smart card applications focus on the secure storage of data although
studies have been conducted on using smart cards to secure an operating system [Clark
and Hoffman 1994]. As noted in [Chang and Atallah 2000], smart cards can protect only
small fragments of code and data. In addition, as noted in [Kocher 1995; Smith ], low-end
devices derive their clocks from the host and thus are susceptible to attacks that analyze
data dependent timing.

2.2 Mostly-software approaches

A survey of several software protection techniques appears in [Fisher 2000]. A survey of
the broader area of software security in the context of Digital Rights Management (DRM)
appears in [Chang et al. 2001; Wyant 2001]. The SAFE-OPS approach of embedding
codes resembles steganography [Johnson and Katzenbeisser 1999] in some ways but that
the goals and details are quite different.

Copyright notice and watermarking. The oldest “prevention” technique, embedding
a copyright into the code, does not prevent a hacker from actually using the code or mod-
ifying it. A survey and taxonomy of watermarking techniques are given in [Collberg and
Thomborson 1999; 2002].

Obfuscation. In this technique, code is deliberately mangled while maintaining cor-
rectness to make understanding difficult — a survey of obfuscation techniques appears in
[Collberg et al. 1997]. Obfuscation techniques range from simple encoding of constants
to more complex methods that re-arrange or transform code [Collberg et al. 1998; 1997].
Other authors [Wang et al. ; Wang et al. 2001] also propose transformations to the code
that make it difficult to determine the control flow graph of the program, and show that
determining the control flow graph of the transformed code is NP-hard. Theoretical lim-
itations are discussed in [Barak et al. 2001]. However, many obfuscation techniques can
be attacked by designing tools that automatically look for obfuscations. Another approach
to attacking obfuscation techniques is to emulate the code in a debugger and to identify
vulnerabilities in the code step-by-step using the debugger. The SAFE-OPS approach is
complementary to obfuscation techniques.

Code-checksums. In [Chang and Atallah 2000] the authors propose the concept of
guards, pieces of executable code that typically perform checksums to guard against tam-
pering. In [Horne et al. 2001], the authors propose a dynamic self-checking technique to
improve tamper resistance. The technique consists of a collection of "testers” that test for
changes in the executable code as it is running and report modifications. A tester computes
a hash of a contiguous section of the code region and compares the computed hash value
to the correct value. An incorrect value triggers the response mechanism. They note that
performance is invariant until the code size being tested exceeds the size of the L2 cache.
A marked deterioration in performance was observed after this occurred. In [Aucsmith
1996] a self-checking technique is presented in which embedded code segments verify the
integrity of the program during runtime. These techniques strongly rely on the security of
the checksum computation itself. If these checksum computations are discovered by the
attacker, they are easily disabled. Moreover, in many system architectures, it is relatively
easy to build an automated tool to reveal such checksum-computations. For example, a
control-flow graph separates instructions from data even when data is interspersed with
instructions; then, checksum computations can be identified by finding code that operates
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on code (using instructions as data). This problem is acknowledged but not addressed in
[Horne et al. 2001].

Proof-Carrying Code. Proof-Carrying Code (PCC) is a technique by which a host can
verify code from an untrusted source [Necula and Lee 1996; Necula 1997; 2003; Appel and
Felten 1999; Baifanz et al. 2000; Bauer et al. ]. Safety rules, as part of a theorem-proving
technique, are used on the host as sufficient guarantees for proper program behavior. Ap-
plications include browser code (applets) [Baifanz et al. 2000] and even operating systems
[Necula and Lee 1996]. One advantage of proof-carrying software is that the programs are
self-certifying, independent of encryption or obscurity. The PCC method is essentially a
self-checking mechanism and is vulnerable to the same problems that arise with the code
checksum methods discussed earlier; in addition they are static methods and do not address
changes to the code after instantiation.

Custom OS. Another software technique is to create a system of customizable oper-
ating systems wherein much of the security, checksumming and obfuscation are hidden.
However, in practice this solution will take longer to find acceptance for several reasons.
First, it is expensive to maintain multiple flavors of operating systems. Second, the main
vendor of entrenched operating systems fiercely protects code sources — a political act may
be needed to require such customizability. Third, the installed base of operating systems is
already quite high, which would leave many existing systems still open to attack.

2.3 FPGA-based approaches

FPGASs have been used for security-related purposes in the past as hardware accelerators
for cryptographic algorithms. Along these lines Dandalis and Prasanna [Dandalis et al.
2000; Prasanna and Dandalis 2000] have led the way in developing FPGA-based architec-
tures for internet security protocols. Several similar ideas have been proposed in [Taylor
and Goldstein 1999; Kaps and Paar 1998]. The FPGA manufacturer Actel [2003a] offers
commercial IP cores for implementations of the DES, 3DES, and AES cryptographic al-
gorithms. These implementations utilize FPGAs not only for their computational speed
but for their programmability; in security applications the ability to modify algorithmic
functionality in the field is crucial.

In order for an FPGA to effectively secure an embedded or any other type of system,
there is a requisite level of confidence needed in the physical security of the FPGA chip
itself. In an attempt to raise consumer confidence in FPGA security, Actel [2003b] is cur-
rently developing new anti-fuse technologies that would make FPGAs more difficult to
reverse-engineer. This added physical security greatly enhances the value of the SAFE-
OPS approach, since as hardware technologies improve to make the “secure component”
more secure, the level of trust of the software running on a target embedded system signif-
icantly increases.

The approach described in this paper is unique in its utilization a combined hardware
and software technique, and that it allows designers tremendous flexibility in terms of
their positioning in the security-performance spectrum. For these reasons this work, while
certainly applicable to a variety of platforms including desktops and server platforms, is
well suited for embedded systems. Ultimately, the proposed research framework, indepen-
dent of the particular software protection details, will provide practical tools to manage
the security-performance tradeoff; other protection strategies can be tested as plug-ins into
these tools.
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Fig. 2. A register stream example

3. THE SAFE-OPS APPROACH

Our approach, called SAFE-OPS (Software/Architecture Framework for the Efficient Op-
eration of Protected Software), will consider the following broad themes. First, designers
would like the ability to fine-tune the level of security for a desired level of performance.
Second, it may not be practical to store a secret key within the FPGA in small embedded
processors; for such systems, a simpler approach is recommended. Third, for performance
reasons, it is possible to inhibit tampering without necessarily addressing code understand-

ing.

3.1 A Register Stream Example

Consider the sample program depicted on the left in Figure 2 and focus on the instruction
stream. Initially, for illustration, the complexity introduced by loops is not considered.
The instruction stream contains instructions that use registers. Isolating one register in
each register-based instruction will extract a sequence from the instruction stream that can
be called the register stream.

In the example of Figure 2, the part of the register stream shown is: Ry, Rs, Ro, Ry, Ry, Rs.
The key observation is that this register stream is determined by the register allocation
module of the compiler. In the FPGA hardware, the register stream is extracted from the
instruction stream. In addition, the FPGA also extracts the opcode stream.

In the example, R; encodes ‘0’ and Ry encodes ‘1’ and therefore the sequence of reg-
isters (R, Ro, R2, R1, Ry, Ro) corresponds to the code 01100 1. As an illustration, a
code-transformation component in the FPGA simply flips the bits (other transformations
are possible) in the register stream to result in the key: 1001 1 0. The key is then com-
pared against a cryptographic function of the opcode stream. In the example above, an
instruction filter module picks out an instruction following the register sequence (at dis-
tance d, as in Figure 1) and then compares (the function f in Figure 1) the register-stream
key to the opcode. If a match occurs, the code is considered valid.
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The example illustrates the key ideas:

—The compiler performs instruction filtering to decide which instructions in the opcode
stream will be used for comparisons.

—The compiler uses the flexibility of register allocation to bury a key sequence in the
register stream.

—Upon execution, the instruction stream is piped through the secure FPGA component.

—The FPGA then extracts both the filtered opcodes and the register sequences for com-
parisons.

—If aviolation is detected, the FPGA halts the processor.

If the code has been tampered with, there is a very high probability that the register se-
quence will be destroyed or that the opcode filtering will select a different instruction. For
example, if the filtering mechanism picks the sixth opcode following a register sequence,
most insertions or deletions of opcodes will result in a failure.

The example above shows how compiler-driven register keys can be used for efficiently
ensuring code integrity, authorization and obfuscation. By including these keys in compiler-
driven data allocation, the fourth goal of data integrity can also be included.

3.2 General Approach

The general approach is motivated by the observation that, since register-allocation is done
by the compiler, there is considerable freedom in selecting registers to allow for any key
to be passed to the FPGA. The registers need not be used in contiguous instructions since
it is only the sequence that matters. Other approaches could use instruction opcodes, im-
mediate constants, or data addresses. However, because of its ease of use, and because
of the independence of register-allocation from the rest of compilation, using register se-
quences for this purpose makes the most intuitive sense. When examining a block of code
to be encrypted using this scheme, often the compiler will lack a sufficient number of
register-based instructions to encode the desired custom key. In this case, “place-holder”
instructions which contain the desired sequence values but which otherwise do not affect
processor state, can be inserted by the compiler. Figure 3 shows a sample basic block
where the desired register sequence values are obtained using a combination of register
allocation and instruction insertion.Introducing instructions adds a performance penalty
which is examined in Section 3.3.3.

The register-sequence can be used to encode several different items. For example, an
authorization code can be encoded, after which other codes may be passed to the secure-
component. This technique can also be used to achieve code obfuscation by using a
secret register-to-register mapping in the FPGA. Thus, if the FPGA sees the sequence
(R1, R2, Ry), this can be interpreted by the FPGA as an intention to actually use R3. In
this manner, the actual programmer intentions can be hidden through using a mapping cus-
tomized to a particular processor. The complexity of the transformation can range from
simple (no translation) to complex (private-key based translation). Such flexibility brings
with it tradeoffs in hardware in terms of speed and cost.

The SAFE-OPS approach can complement other approaches. Both code-obfuscation
and checksum-based code-tampering approaches can be used simultaneously. The register
allocation can be done independent of the code re-structuring techniques typically used in
code-obfuscation [Collberg et al. 1997]. As an example, software checksum computations
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0x00d0: CMP r0, r12

0x00d4: SUBLT r7,r1,r0

0x00d8: LDRLT r7,[r14,r7,LSL #2]

0x00dc: LDRLT  r2,[r13,r1,LSL #2]

0x00e0: LDRLT  r3,[r4,r0,LSL #2]

0x00e4: ADDLT r0,r0,#1

0x00e8: MLALT r2,r7,r3,r2

0x00ec: STRLT r2,[r13,r1,LSL #2]

0x00f0: BLT 0xdO Original basic block

Desired sequence: 10010110
Register encoding: r10=0,r11=1

0x00d0: CMP  r0, r12

0x00d4: ADD r11,r12,r13 // Inserted instruction will not change CPU state
0x00d8: SUBLT r10,r1,r0 // Register change r7 > r10

0x00dc: LDRLT r10,[r14,r10,LSL #2]

0x00e0: LDRLT r11,[r13,r1,LSL #2] // Register change r2 > rll

0x00e4: LDRLT r3,[r4,r0,LSL #2]

0x00e8: ADDLT r0,r0,#1

0x00ec: ADDLT r10, r10, #0 // Careful insertion of harmless instruction
0x00f0: MLALT r11,r10,r3,r11

0x00f4: STRLT rl1,[r13,r1,LSL #2]

0x00f8: SUBLT r10, rl0 #0 // Additional inserted instruction

0x00fc: BLT 0xdO Modified basic block

Fig. 3. Obtaining a desired register sequence value. In this example the sequence is obtained by reallocating
registers in the instructions that use the registers r7 and r2 to those that use r10 and r11.

can be strengthened by ensuring that the checksum computation is itself secure. The start
address of the checksum computation can be passed into the secure-component using a
register-sequence code. The FPGA will expect the checksum computation to be executed at
that starting address. Next, by inspecting successive addresses during the checksum com-
putation, the secure-component will ensure that a pre-determined range of addresses are
used in the checksum computation. This approach prevents two attacks on the checksum
computation: (1) routing around the computation, and (2) interfering with the checksum
computation.

The strength of this approach is tunable in several ways. The key length and the map-
ping space can be increased, but at a computational cost. An optional secret key can be
used to make f a cryptographic hash [Bellare et al. 1996] for increased security. By only
using register codes that are examined by the FPGA, a lower level of security is provided,
but the executable instructions are left compatible with processors that do not contain the
FPGA component. The computations performed in the FPGA are very efficient: there are
counters, bit-registers and comparators. All of these operations can be performed within a
few instruction cycles of a typical CPU. In Section 4, this assumption is relaxed with an
investigation of the performance benefits of the placement of more complex functionality
on the FPGA.
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Fig. 4. SAFE-OPS experimental framework.

3.3 Experimental Evaluation

As previously mentioned, in the course of allocating registers to form code sequences, the
compiler will often need to insert instructions into the executable. Increasing the sequence
length will have a negative impact on performance. For the scheme to work properly,
the coarsest granularity of instructions that can encompass a single key is a basic block.
This is due to the fact that if register sequences were allowed to span basic blocks, the
FPGA would have no guarantee that each instruction in a specific register sequence would
be fetched exactly once per validation. Consequently, the inherent security/performance
tradeoffs of the SAFE-OPS approach can be evaluated by varying both the register se-
quence length and the percentage of encoded basic blocks.

3.3.1 Experimental Framework. Figure 4 shows the current SAFE-OPS experimental
framework. Using a modified version of the gcc compiler targeting the ARM instruction
set, register encoding schemes were implemented within the data-flow analysis, register
allocation, and code generation phases of the gcc back-end. The compiler’s output is
(1) - the encrypted application binary and (2) — a description file for the secure FPGA
component.

A custom hardware/software cosimulator was developed in order to obtain performance
results for the following experiments. As can be seen in Figure 5, the SAFE-OPS sim-
ulation infrastructure leverages a commercial software simulator and a commercial HDL
simulator, which are connected together by a socket interface. The ARMulator simulator
from ARM [1999] was utilized for modeling the software component of the system. The
ARMulator is a customizable instruction set simulator which can accurately model all of
the various ARM integer cores alongside memory and OS support. The ARMulator can be
customized in two ways: first, by changing system configuration values (clock rate, cache
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Fig. 5. HWI/SW cosimulator structure.

size and associativity, etc.), and second, through pre-defined modules known as the ARMu-
lator API, that can be extended to model additional hardware or software for prototyping
purposes.

For simulating the FPGA, the Modelsim simulator from Mentor Graphics [2002] was
selected. Similar to the ARMulator API, the Modelsim simulator contains a Foreign Lan-
guage Interface (FLI), which allows for the simulation of C code concurrent with the
VHDL or Verilog simulation. A socket interface was set up between the two simulators by
using the ARMulator API and the Modelsim FLI. In the general case, when the ARMulator
senses a read miss in the instruction cache, the interface code sends a signal over the shared
socket to the interface written in the FLI. This signal informs the HDL simulator that an in-
struction read request has been made, and the appropriate FPGA code is then triggered for
execution. When the FPGA finishes loading the instruction from memory and potentially
decoding it, a signal is sent back through the socket to the ARMulator containing both the
desired instruction along with data signifying how many execution cycles were required.
Since the ARM would in general halt execution to handle the event of an instruction cache
miss, the total system run-time would be equal to the sum of the total number of cycles
required by the ARM for its normal execution and the total humber of cycles required
by the FPGA. Since the cosimulator handles the separate tasks of hardware and software
simulation at a cycle-accurate level, the entire system simulation is also cycle-accurate.

3.3.2 Benchmarks. In order to test the effectiveness of the approach, a diverse set of
benchmarks from a variety of embedded benchmark suites were selected. Chosen from
the MediaBench [Lee et al. 1997] suite are two different voice compression programs: ad-
pcm —which implements Adaptive Differential Pulse Code Modulation decompression and
compression algorithms, and g721 — which implements the more mathematically complex
CCITT (International Telegraph and Telephone Consultative Committee) standard. From
the ARM Applications Library that is included with the ARM Developer Suite arm_fir —
which implements a Finite Impulse Response (FIR) filter. From the MiBench [Guthaus
et al. 2001] embedded benchmark suite three applications were picked: susan — an image
recognition package that was developed for recognizing corners and edges in Magnetic
Resonance Images (MRI) of the brain, dijkstra — an implementation of Dijkstra’s famous
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Table I.  Benchmarks used for experimentation.

Benchmark Source Code Size | # Basic Blocks |Instr Count (mil)
adpcm MediaBench 8.0 KB 26 1.23
g721 MediaBench 37.9 KB 84 8.67
arm_fir |ARM AppsLib| 44.0 KB 34 .301
susan MiBench 66.4 KB 119 2.22
dijkstra MiBench 42.5 KB 32 7.7
frt MiBench 69.2 KB 44 4.27

algorithm for calculating shortest paths between nodes, customized versions of which can
be found in network devices like switches and routers, and fft — which performs a Fast
Fourier Transform (FFT) on an array of data. These benchmarks are representative of the
tasks that would be required of embedded processors used in multimedia and/or network-
ing systems. More details of the selected benchmarks can be found in Table I.

For the initial experiments, the simulator was configured to model an ARM9TDMI core
which contains sixteen, 32-bit general purpose registers. The ARM core is configured to
operate at 200Mhz and is combined with separate 8KB instruction and data caches. Setting
the memory bus clock rate to be 66.7Mhz, the cache miss latency before considering the
FPGA access time is 150ns (~30 CPU cycles). This configuration is similar to that of the
ARMO920T processor.

The default FPGA model runs at a clock speed identical to that of the ARM core and
requires an extra 3-5 cycles to process and decode an instruction memory access. However,
the clock speed of an FPGA is in general determined by the critical path of its implemented
logic. As will be demonstrated in Section 4, when considering architectural improvements
to the FPGA decoder implementation, the potential effect on clock speed will also need to
be considered.

The performance and resultant security of the SAFE-OPS approach was first explored
by using this customized HW/SW cosimulator to analyze two main metrics: (1) the de-
sired length of the register sequence; and (2) the selection criteria for inserting a sequence
inside a suitable basic block. The results of these experiments is presented in the following
section.

3.3.3 Register Sequence Length. For the six selected benchmarks the effect of increas-
ing the encoded register sequence length on the overall system performance was simulated
in the case when approximately 25% of the eligible basic blocks of each benchmark are
encoded using a random-selection algorithm. The results, as shown in Figure 6, are normal-
ized to the performance of the un-encrypted case. As can be seen in the figure, these initial
results demonstrate the potential security/performance tradeoffs inherent in the SAFE-OPS
approach. Overall, for most of the benchmarks the performance is within 80% of the base
case (no encryption) when considering sequence lengths up to 16. However, when con-
sidering the most extreme case (when the sequence length is 32), two of the benchmarks
suffer a performance penalty of over 25%. This decreased performance is due to the fact
that (1) the inserted instructions require extra cycles for their execution and that (2) the
increased code size can lead to more instruction cache misses. This explains why the two
largest benchmarks, susan and fft, performed the best of the set. It is also interesting to
note that two other benchmarks arm_fir and dijkstra of similar sizes do not follow the same
performance trends; arm_fir performs almost as well as susan for each configuration while
dijkstra does not. This can be explained by the fact that dijkstra is a much longer running

SUBMISSION: ACM Transactions on Embedded Computing Systems (Rev. 3).



12 . Joseph Zambreno et al.

10 __ - N

0.9 4 | — L

0.8 - [

0.7 A

0.6 §

05+

Performance

0.4 1

0.3 -

0.2

0.0

2481632 ' 2481632 2481632 2481632 2 481632 2 4 81632
adpcm(8KB) g721(38KB) armfir(44KB) susan(66KB) dijkstra(43KB) fft(69KB)
Register sequence length

Fig. 6. Performance as a function of the register sequence length, normalized to the performance of the unencoded
benchmarks. When the percentage of selected basic blocks is held constant (25%), increasing the level of security
(sequence length) has a negative impact on performance. For most benchmarks, performance remained within
80% of the base case until considering the longest sequence lengths.

benchmark, with several basic blocks with extremely high iteration counts. It is very likely
that the random-selection algorithm encoded one or more or these high frequency blocks.
As will be explained in the following section it is possible to select from the basic blocks
in a more intelligent fashion that takes these types of loop structures into account.

3.3.4 Basic Block Selection. In Figure 7 the case is now considered where the register
sequence length is kept at a constant value of 8, and the effect of the aggressiveness of the
random basic block selection technique is examined. As the upper limit on the number of
encoded basic blocks is increased, it can be seen that there is a limit to the performance
of the resulting code. For the majority of the benchmarks, the performance in even the
most secure case is within 75% of the unencrypted case. However, for the two smallest
benchmarks (adpcm and g721), encrypting more than 50% of the eligible basic blocks can
have a drastic effect on performance. These results show that if it is possible for the SAFE-
OPS compiler to select the right basic blocks to be encoded with an appropriate sequence
length value, one would be able to keep the performance at an acceptable level while
still increasing security. These results motivate the development of compiler algorithms
that utilize profiling and in-depth application analysis techniques in order to make better
choices for selecting basic blocks. Two such approaches are discussed in the following
section.

4. EXPLORING HARDWARE AND SOFTWARE OPTIMIZATIONS

4.1 Intelligent Basic Block Selection

In many cases, it would make sense for the application developer to select the basic blocks
to apply the register code insertion technique on an individual basis. Appropriate targets for
such a selection approach would be those which are most likely to be attacked - examples

being basic blocks that verify for serial numbers or that check to see if a piece of software
is running from its original CD. However, it is also useful to cover a greater percentage of
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Fig. 7. Performance as a function of the rate of encoding basic blocks, normalized to the performance of the
unencoded benchmarks. While for all of the benchmarks the performance penalty when encoding less than half
of the basic blocks is less than 25%, there is a potential for severe performance degradation when the overwhelm-
ing majority of the basic blocks are selected. These results motivate the development of basic block selection
heuristics that take expected performance into account.

the entire executable with such a technique, as doing so would both increase the confidence
that no block could be altered and would hinder the static analysis of the vital protected
areas.

In the previous section a random select approach was investigated, where it was discov-
ered that the performance penalty of the register code insertion technique was not often
severe even in the case where all eligible basic blocks were encoded. However, it makes
sense to develop more intelligent algorithms for basic block selection, as this would allow
the embedded application provider more flexibility in terms of positioning on the per-
formance/security spectrum. Before developing these techniques it is necessary to first
identify the root causes of the increase in total execution time.

Assuming a constant FPGA access latency, the key source of performance degradation
for our approach is the addition of instructions needed to form register sequences of the
desired length. Given a basic block i of length i;,, ., and a requested sequence length of
liey registers, the transformed basic block length can be written as:

& _ g i
bblock = lbbiock T Q"+ liey » (1)

where o € [0,1] is the percentage of a requested sequence length that cannot be encap-
sulated using register allocation. For example, for a register sequence length of 8, a basic
block that can hide 6 of the needed key values in its original instructions would have an o
value of 0.25, meaning that 2 additional instructions would need to be inserted to complete
the sequence.

The number of extra pipeline cycles required by the execution of the inserted instruc-
tions is highly dependent on the loop structure of the original basic blocks. As an example,
an encoded basic block that is executed O(n?) times will have a considerably greater per-
formance penalty when compared to a neighboring block that is executed only O(n) times.
Consequently special consideration should be given to high-incidence blocks (i.e. blocks
that are deeply nested in loops). Assuming that each basic block i is executed n?, . _ due to

iters
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its containing loop structure, the total delay due to the execution of ¢ can be estimated as:
téelay = nzters : lli)block : CP.F ) (2)

where C'PI* is the average number of cycles per instruction required of the instructions in
basic block i. This delay value ignores the specific types of instructions inside the basic
block since this variation is actually quite small. If basic block 7 is selected for encoding
using the register sequence technique, the new total execution time can be estimated as:

7éielay = néters ' (lli)block + ai ' lkf’y) : CPIZ : (3)

This equation shows that an obvious approach in selecting basic blocks for encoding
is to sort by increasing number of iterations. In practice, however, there will be several
blocks in an application that will not be fetched at all during normal program execution.
Applying dead code elimination will not necessarily remove these blocks, as they are quite
often used for error handling or other functionality that is rarely needed but still vital. For
this reason the blocks where n?, ..., = 0 are placed at the end of the ordered list of eligible
basic blocks.

This can only be a partial solution, as it will be very likely that ties will exist between
different basic blocks with the same n,,,.. value. How should these blocks be ordered?
The simplest method would be to order these subsets of blocks randomly, but a better ap-
proach can be found by further examining the impact on performance of the added register
sequence instructions. A suitable heuristic can be developed by considering that a basic
block with a larger ;... value will have a relatively smaller number of additional instruc-
tion cache misses after a register sequence encoding when compared with other blocks
with the same n?,,,., value but with a shorter original block length. For this reason blocks
can be effectively sorted first by non-zero increasing n',,, ., values and then by decreasing
Ui proer Values.

To estimate the number of iterations for the basic blocks in the selected benchmarks,
profiling runs were performed that fed back the individual loop counts to the basic-block
selection module of the SAFE-OPS compiler. As this approach can potentially lead to
a significant increase in compile time, the profiling experiments were ran using smaller
input sets for the benchmarks, with the goal of not letting profiling information increase
the compiler run-time more than 6 times. This increase is acceptable. Embedded systems
can tolerate much larger compilation times than their general-purpose counterparts since
the resulting programs are used so many times without further compilation.

Figure 8 shows the general trends seen when the tests of Section 3.3.4 are re-run with the
iteration-based block selection policy. These results show that by initially selecting blocks
with low iteration counts, the large performance degradations can be delayed until only the
highest level of security is required. As can be seen from the figure, the performance gains
due to intelligent basic block selection are as large as 80% in one case (g721), average
between 5-20% for the majority of the benchmarks, and is negligible for the fft benchmark.
The reason the g721 benchmark performs so well is that the code size is relatively small,
and that an overwhelming percentage of the total run-time is concentrated in a just a few
basic blocks. Conversely, the fft code size is relatively large, and much of the run-time is
spent in mathematical library calls, instructions that are not eligible for encryption under
the current approach. As is the case when no blocks are selected, when 100% of the
blocks are targeted for encryption using any of the techniques the performance is the same;
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Fig. 8. Performance characteristics of the iteration-based block selection policy. The top graph shows the abso-
lute performance impact that can be visually compared to Figure 7. The bottom graph shows the performance
improvement relative to the random selection approach. These results show that by avoiding basic blocks that
iterate excessively, the iteration-based policy clearly outperforms the random approach, in some cases by as much
as 80%.

in these cases it is more interesting to look to architectural optimizations for a source of
performance speedups.

4.2 FPGA-based Instruction Caching

Given the reconfigurable nature of FPGAs, it is interesting to explore architectural opti-
mizations that could be implemented to improve performance, while maintaining a de-
sirable level of security. This section investigate using the FPGA as a program-specific
secondary level of instruction cache. Three specific techniques are examined:

—L2 cache. As a comparison to the more application-specific caching techniques listed
below, a 32 KB L2 cache was instantiated on the FPGA. As this would consume a con-
siderable amount of programmable resources on the FPGA, this could be implemented
using a relatively fast on-chip FPGA memory and therefore in this configuration the
access latency requirement was increased to 8 cycles.

—Basic block cache. In this configuration, the FPGA caches only the instructions that
are fetched inside selected basic blocks. After the entire block is validated, this smaller
cache can then return the instruction values for future requests without requiring an ex-
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Fig. 9. Performance of the three architectural optimizations, relative to the base case when no instructions are
cached in the FPGA. These results show that while the L2 cache instantiation performs by far the best of the
three, the architecturally much simpler basic block caching technique slightly improves performance when the
percentage of encrypted basic blocks approaches 100%.

pensive access to main memory or any other cycles spent in decryption. This technique
would gain in preference under a configuration where the FPGA decryption algorithm
requires a relatively large number of computational cycles.

—Register sequence buffer. The FPGA in this architecture is able to determine which reg-
ister sequence values are original instructions, and which are from instructions that are
inserted by the compiler to complete the sequence. This is possible with the addition of a
fairly small amount of instruction decode logic. While a selected block is being fetched
and validated, the FPGA stores the relative locations of the inserted register codes in a
simple buffer. In future requests for these validated basic blocks, the FPGA can return
NOP instructions instead of fetching instructions at these register code locations. This
architecture is the simplest of the three in terms of required resources, requiring a buffer
of at most lkey - Npblock DILS.

The common feature among these three approaches is that after the FPGA fetches an in-
struction from main memory and validates it, it then attempts to store the validated instruc-
tion in a faster buffer.

In evaluating these architectures the effect on performance for three benchmarks was
examined when the sequence length was kept constant at 8 and the percentage of basic
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blocks to be selected (randomly) was increased from 0-100%. Figure 9 shows a summary
of the instruction memory hierarchy performance results of these techniques, normalized
to the case where no architectural optimizations are applied. These results clearly show
that the L2 cache performs much better than the other two approaches. As can be seen
from the figure, instantiating an L2 cache on the FPGA leads to performance speedups of
as much as 55% in some cases, as compared to the basic block caching approach which
is limited to a 5% speedup and the register sequence buffer which demonstrates less than
3% performance improvement. This is to be expected, as the relatively large cache allows
us to buffer a high percentage of all instructions in the benchmarks. While the L2 cache
technique performs the best overall, it is interesting to note that the basic block cache and
register sequence buffer approaches show near-linear speedups as the aggressiveness of the
encryption is increased. This is an important result, as it implies that if the other system
parameters are tuned to allow for even more cryptographic strength (i.e. by increasing the
key length, implementing more complex instruction filters, implementing more algorithmi-
cally advanced register sequence translators, etc.), these two software protection-specific
approaches will begin to perform favorably well when compared to the general L2 cache
case.

When evaluating the implementation of architectural-based optimizations on the FPGA
it is necessary to consider that the clock speed of the FPGA is dependent on the critical
path of the instantiated logic. In order to effectively measure the performance of an FPGA
architectural technique, it is important to consider configurations of varying clock speeds.
Figure 10 shows the results of such experiments on the susan benchmark. In gathering
these results, the register sequence length was held constant at 8 and the percentage of
encoded basic blocks constant at 25%. From this figure it can be clearly seen that as the
clock rate of the FPGA is reduced via simulation, the performance benefits of the L2 cache
implementation can quickly turn negative. This drastic effect on instruction memory hier-
archy performance is a function of the additional FPGA cycles required by the architecture.
This is due to the fact that the memory bus speed is kept constant, and any cycles spent by
the FPGA grow in importance as its clock rate decreases. From these results it can be seen
that if the L2 cache implementation required a clock rate of 150Mhz or slower, the basic
block cache and register sequence buffer techniques would perform better, assuming their
minimal logic would allow them to continue operating at 200Mhz.

5. CONCLUSIONS AND FUTURE WORK

The rapidly increasing use of embedded processors in consumer, telecommunications, and
transportation applications, along with the recent trend of including networking capabili-
ties in even the simplest of these devices, motivates the need for an intensified scrutiny of
the security of system software. In this paper we presented a novel approach to embedded
software protection that utilizes a combination of compiler and architecture techniques.
The main benefit of this approach is the flexibility it allows the embedded application de-
signer in terms of positioning on the security/performance spectrum. Also, the framework
is entirely compatible with the current purely-software approaches to software protection.
The presented results show that, when coupling register sequencing compiler algorithms
with optimized FPGA architectures, the overall application security was improved at only
a nominal cost to performance.

Several improvements to the SAFE-OPS framework are being considered. The current
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Fig. 10. Performance of the three architectural caching strategies for varying FPGA clock rates. These results
demonstrate that the resource-utilization of the FPGA needs to be taken into account when considering architec-
tural optimizations, as the strategy that performs the best under the assumption of an ideal clock rate (L2 cache),
ultimately performs the worst given the condition that the clock rate would need to be lowered to 50Mhz to
compensate for the additional applied logic.

compiler output is an encrypted application binary and a description file for the secure
FPGA. While this description file currently contains code for configuration, in the future
the compiler will be able to generate a customized behavioral specification of the FPGA
decoding and decryption algorithms in a hardware description language such as VHDL or
Verilog. Also, it would be useful for the embedded application designer to be able to assist
the compiler in selecting which segments of code or data are to be encrypted. This requires
some front-end additions to the compiler framework for the inclusion of user directives.
Finally, this current approach operates only on source code. This creates difficulties for
the developer who wants to secure an entire application, but is dependent on statically
compiled 3rd-party libraries for the generation of executables. Future tools will utilize
decompilation techniques to enable this protection approach to be applied to pre-compiled
code.
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