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Abstract—The rapid growth and pervasive use of embedded
systems makes it easier for an adversary to gain physical access
to these devices to launch attacks and reverse engineer of the
system. Encrypted execution and data (EED) platforms, where
instructions and data are stored in encrypted form in memory,
while incurring overheads of encryption have proven to be
attractive because they offer strong security against information
leakage and tampering. However, several attacks are still possible
on EED systems when the adversary gains physical access to the
system. In this paper we present an architectural approach to
address a class of memory spoofing attacks, in which an attacker
can control the address bus and spoof memory blocks as they are
loaded into the processor. In this paper we focus on the integrity
of the application data to prevent the attacker from tampering,
injecting or replaying the data. We make use of an on-chip
FPGA, an architecture that is now commonly available on many
processor chips, to build a secure on-chip hardware component
that verifies the integrity of application data at run-time. By
implementing all our security primitives on the FPGA we do
not require changes to the processor architecture. We present
that data protection techniques and a performance analysis is
provided through a simulation on a number of bechmarks. Our
experimental results show that a high level of security can be
achieved with low performance overhead.

I. INTRODUCTION

Embedded systems are especially vulnerable to attacks since
they are more easily captured or stolen for tampering purposes,
resulting in loss of intellectual property and critical secrets.
Additionally, following a physical capture, a successful attack
may easily be replicated because embedded processors are so
numerous. In this paper we focus on a class of attacks that we
term memory spoofing aimed at Encrypted Execution and Data
(EED) platforms and embedded systems. EED platforms are
typically designed for attackers who use their access to the
address and data buses to sniff for information (intellectual
property) or to manipulate memory and execution directly by
controlling the bus. EED platforms seem especially attractive
in embedded systems that are susceptible to physical capture.
Nonetheless, as we argue, a sophisticated attacker using mod-
ern electronic laboratory equipment can mount several types
of memory-spoofing attacks on EED platforms. These do not
reveal information but can disrupt execution and alter the
control flow of the program.

In this paper, we describe an architectural approach to
detecting and preventing three types of memory-spoofing
attacks on the application data in EED platforms. In the most

elementary form of this attack, an attacker controls the bus,
waiting for the processor to fetch a memory block, and then
supplies the wrong (but properly encrypted) memory block;
thus, the attacker, instead of decrypting, merely plays with
the already encrypted blocks. We classify such attacks into
three types: an injection attack in which they seek to disrupt
execution by supplying a data block with random content, a
substitution attack in which an attacker substitutes a correctly
encrypted block from elsewhere in memory, and a stale data
replay attack in which the attacker substitutes a correctly
encrypted, with the requested address, but stale data block.

Our approach can be summarized as follows. The hardware
platform we target is a standard processor with an accom-
panying on-chip reconfigurable logic core in the form of an
FPGA – this enables us to leverage commercially available
System-On-Chip (SOC) architectures, such as chips from the
Xilinx family. The technique works as follows. First, the
back-end compiler module instruments the executable so that
each cache block has a special label containing the start
address of the block. Second, the FPGA module, which we
will call the guard, intercepts cache block read and write
requests from the memory controller, and processes each
encrypted cache block, checks against memory-spoofing and
passes on the decrypted cache block to the processor. When
application data is generated and written to memory, the guard
encrypts the data while also embedding sufficient additional
integrity checking information to detect attacks. It is this guard
module, as we describe in detail later, that uses the embedded
integrity checking information to detect spoofing. While this
paper focuses on securing the application data, our techniques
complement our earlier work on securing the application code
[15] and thus taken together provide a complete system to
protect against both code and data tampering attacks.

The contribution of the paper is the approach itself: by
relying on the secure hardware component, i.e., the FPGA
guard, our approach can accelerate the execution of en-
crypted programs in a secure environment thereby incurring
acceptable performance penalties, and without requiring new
processor designs. Additionally, it provides flexibility, through
reprogramming of FPGAs, to carry out application specific
protections of the application code and data without changing
the architecture. The architecture and design of the secure
hardware component is motivated by emerging trends in em-



bedded systems: standard processor cores are augmented with
FPGA fabric [18]. Since many embedded systems typically
have timing requirements, the overhead incurred determines
the feasibility of a protection scheme. The low overheads
incurred by our system, as tested on various benchmarks from
the MiBench suite of benchmarks, validate the feasibility of
our solution. Our approach differs from prior work in that we
focus on ease-of-adoption – our approach does not require
processor re-design because we use on-chip reconfigurable
logic in the form of a Field Programmable Gate Arrays
(FPGA). Since all our security primitives are implemented on
the FPGA, the entire combination of CPU (instruction set and
microarchicture), cache organization and main memory is left
untouched. In addition, because our techniques are directly
incorporated into the compiler backend and the hardware
our approach imposes no burden on software developers. We

Fig. 1. Codeseal architecture

assume that compilation itself occurs in a safe location and that
the additional hardware cannot be manipulated by the attacker
since it is inside a chip. Our protection mechanism does not
protect against code vulnerabilities such as buffer overflows.
Also, although an FPGA constant power consumption would
obfuscate the CPU power drain, our approach does not address
power analysis attacks

The rest of the paper is organized as follows: Section II
discusses previous work; Section IV discusses our threat
model – EED attacks after physical capture of the system.
Section IV presents a conceptual view of our architecture;
Section V discusses our implementation and a security analy-
sis; Section VI presents the experimental results, after which
concluding remarks are given in Section VII.

II. RELATED WORK

Software only approaches, for code or data security, will
not prevent against attacks under our threat model where the
adversary has physically captured the device. Therefore we
restrict ourselves to reviewing related work in architectural
support for software security.

Architectural solutions specifically designed for protecting
specific software vulnerabilities, such as buffer overflow, in-
clude the past work of [3] or [9]. In solutions that focus
on providing architectural support to protect memory, such
as the Mondrian system[13] and InfoShield [14], the systems
combine software fault isolation techniques together with ac-
cess control enforcements to separate program memory spaces
from malicious applications running simultaneously on the

same system. However, the architectural changes required by
these systems are extensive, involving ISA level modifications,
cache hierarchy redesign and even extending the length of
memory modules (external, cache or registers) with additional
security information. In addition, they do not address protec-
tion against adversaries with physical access to the protected
devices.

There are several projects that address the design of EED
platforms, and provide both data and code integrity in a
physical attack. Examples include the XOM architecture [7],
and several others that tamper-resistant processors [8], [17].
Under our threat model (with a sophisticated attacker with
physical access) these systems are still vulnerable to an
attack. The AEGIS [16] architecture greatly improves on its
predecessor(XOM) and presents techniques for control-flow
protection, privacy, and prevention of data tampering. Their
techniques require re-design of the processor. The project also
includes an optional secure operating system kernel, which is
responsible for interfacing with the secure hardware. The code
and memory protection schemes employ cached hash trees and
a log-hash integrity verification mechanism is used to verify
integrity of memory accesses. The level of confidentiality and
integrity protection is further improved by [12] in an approach
to merge the two concepts of encrypted execution with access
control validation.

A common theme in past work, on EED platforms, is the
requirement of the design of new processors. These proposed
architectural changes, to the processor and instruction set,
incur a high cost in terms of design and require a buy-in from
chip manufacturers and do not leverage COTS technology.
These factors serve as a key motivation for our approach – we
explore architectural solutions that do not require changes to
the processor by exploiting commercially available platforms,
such as the Xilinx Virtex Pro family, that provide a processor
core with an on-chip FPGA logic. Our work in this area has ex-
plored the use of reconfigurable logic, in the form of an FPGA,
towards providing software security in embedded systems
without requiring a re-design of the processor . Our solutions
combine hardware and compiler techniques to provide secure
systems. In early work we explored embedding watermarks
[10] and the use of FPGAs to provide encrypted execution
[11] focusing on incurring minimum cost in terms of hardware
design and performance penalty. In more recent work [15],
we applied this architectural concept of using on-chip FPGA
logic to present a solution for protecting code (including code
injection, replay, and code modification attacks) against EED
attacks. We provide code integrity and control-flow protection
by using the information extracted at compile time, and the
code memory layout, to enforce the correct run-time behavior
of program execution. The additional hardware, in the form of
an on-chip FPGA logic, ensures fast and efficient execution of
the cryptographic primitives necessary for the validations. We
provided solutions for known encryption execution vulnerabil-
ities with minimum overhead by exploiting program execution
properties such as code locality and security properties of
the cryptographic primitives. This solution uses the same



CODESSEAL architecture model presented in this paper and,
therefore, taken together with the application data protection
methods presented in this paper would form a complete system
that protects against EED attacks on code and data.

Fig. 2. Data And Instructions Paths

III. DATA ATTACKS ON EED PLATFORMS

Before describing our approach, we discuss our threat model
and the types of attacks that are possible on EED platforms
under physical capture. Since protection of application data
is the focus of this paper, we direct the reader to [15] for
a discussion of EED attacks on code and program control
flow. In an EED platform both code and data are encrypted
and remain in encrypted form in memory; when the memory
content is requested by the CPU in the execution process
(across the untrusted bus), the memory blocks are decrypted
inside the execution unit. We assume that the single chip
execution unit forms our trusted boundary. Likewise, when
the CPU writes data back to memory, the data is encrypted
and then transmitted across the bus to memory.

Encryption, of application data or code, is typically per-
formed in blocks because it is prohibitively time-consuming
or impossible (because the cache may not be able to hold
the entire program) to decrypt the entire program at once. A
sophisticated attacker can exploit this by manipulating data
and address lines and change the encrypted blocks without
the decryption mechanism noticing any difference. While
instruction code blocks are harder to forge, since not any code
block will decrypt into valid execution codes, data blocks do
not have any restriction and they gain meaning only in the
context of a software application. Although hard to replicate a
forged exact value inside an encrypted block without knowing
the encryption key, brute force can lead to approximate values
in reasonable times, thus tricking the running application
and changing its behavior. We describe the three types of
application data attacks that are considered in this paper –
data injection, data substitution and stale data replay.

Data Injection. Since the attacker has physical access to the
device, he/she can try to inject their own data and (even though
the data will be decrypted into a random stream since they
do not know the encryption key). Unlike instructions which
are limited to the valid opcodes in the instruction set, any

data injected by the attacker will be correctly decrypted and
passed to the processor. Thus, encryption in this case provides
no protection other than privacy of the application data. The
attacker may still be able to disrupt the execution or learn
something about the executable. In addition, by examining
the pattern of data write-backs to RAM, the attacker can
intelligently guess the location of the runtime stack even if
that is encrypted, as commonly-used software stack structures
are relatively simple.

Data Substitution. The attacker can substitute a currently-
requested data block for another data block generated by
the application, and therefore correctly encrypted, and thus
observe the program’s behavior. For example, if the program
requests data from address A the attacker can inject data from
address B. Once again, simply encrypting the data does not
prevent such data injection attacks.

Stale Data Replay. Data is even more sensitive to replays
than code is as its content changes in time. If we consider
a block of data and its evolution in time as the program
executes, time 0 being the loading time, we can observe why.
Any change in the content of the block creates a new valid
encryption of that block in memory. An attacker that sniffs the
bus can keep snapshots of data (ex. if time 1, 2, 3 represent
write-backs to the same data block the attacker has 4 valid
encryption of that block, including that of the initial state).
If the block holds security session information, the attacker
could use block 2,for example,when the processor requests it
without triggering any exception from the validating hardware
and driving the program into an expired state.

Taken together, the attacks point out that mere encryption is
not sufficient to guarantee proper execution and data protection
and that these types of attacks can go undetected unless we
provide explicit support. What is required, as also observed
by others [16], is some form of integrity checking information
that needs to be associated with the application data. We now
turn to our approach in which we insert integrity information
into the data blocks, and utilize FPGA logic on the chip
to implement the validation logic required. We note that the
compiler inserts the integrity information for static data and
the hardware inserts this information for dynamic data.

IV. OUR APPROACH AND THE ARCHITECTURE

Our secure execution tool chain [4] relies on two main com-
ponents: a front-end tool that generates a security-annotated
binary and a hardware mechanism that implements the al-
gorithm for intrusion detection and prevention. Designed as
a general mechanism for protecting both control-flow and
data privacy our system achieves high security standards with
relative modest performance penalties. The architecture and
design of the hardware validation component is motivated
by emerging trends in embedded systems: standard proces-
sor cores are augmented with FPGA fabric [18]. We build
our validation logic in the FPGA for the following reasons:
no change is needed to processing core and the validation
mechanisms are easily configurable to allow new validation
mechanism. Overall the costs of building such systems are



greatly reduced this way. The compiler is responsible for code
layout analysis and provides the information needed by the
code generation step (the linker) on the structure of memory
regions. It is the last stage of the compilation that performs
the encryption and signature computations. Focusing on data
privacy and integrity protection, the compiler’s analysis derives
three main code regions: static data (constants, initialization
values, string tables) run-time data (stack and heap) and shared
data (memory regions that do not hold sensitive information
and/or are used for inter-process communication). Run-time

Fig. 3. Signature Memory Layout

data has the property that its lifespan lasts only while the
process is active. The keys needed for their encryption do
not leave the guard premises. On the other side, static data is
encrypted by the compiler, thus the key information needs to
be brought into the guard. The complexity of the protected
system dictates the mechanism for key establishment. The
key is either preloaded (in the most simple form) for a ded-
icated device, transferred with software updates or managed
by a secure kernel. For this purposes the FPGA contains a
secure independently verifiable PKI-capable component. The
configuration for the FPGA (i.e., the FPGA program) is itself
encrypted when downloaded using PKI. The secure loader
decrypts and programs the FPGA. We will assume that the
FPGA itself is verifiable through independent means.As shown
in fig 1 the FPGA Guard mitigates all memory communication
between the CPU and the peripheral memory system. When a
cache miss occurs, the memory management logic (in this the
cache controller) issues a read to memory on the bus, after
which, following the bus protocol, the memory dumps the
contents on the bus. These bits are then routed into the cache.
Our architecture is constructed so that every read access to
memory also goes through the FPGA guard. Thus, the guard
logic is aware of the address requested (and the start address of
an instruction block). Furthermore, in our architecture, the bus
lines are routed through the guard so that the guard receives
memory contents before the processor. The guard logic is
therefore able to enforce our security mechanisms, such as
decryption and integrity checking. On a eviction of a cache
block to memory, the guard is responsible for re-encryption
and new integrity meta-data computation.

V. IMPLEMENTATION AND ATTACK ANALYSIS

Encryption alone is a powerful mechanism to guard against
eavesdropping and to enforce confidentiality. Already estab-

lished as an industry standard and with fast and efficient
FPGA implementations, the Advanced Encryption Standard
(AES) algorithm is the perfect candidate for the encryption
mechanism. But as we saw in section III it is not sufficient
to enforce data integrity. A signature mechanism makes sure
that the block was not modified while it is located outside the
trusted bounds, the location information of the block position
within the program guarantees that the no substitution attack
can be performed and lastly a time-stamping mechanism stops
replays of old data blocks. For the signature selection, a broad

Fig. 4. Time stamping using Data Freshness Labels

range of options are available: starting with a lightweight CRC
and ending up with a collision resistant secure hash mechanism
such as SHA-1. The signature is either stored sequentially with
the data blocks, or in a special section. In either case the
FPGA guard is responsible for the address mapping transla-
tion (Fig.3). Location information is provided by the relative
address of the data cache block within the program space.
For fixed partitioning memory systems the address directly
maps to physical addresses, where as for others the program
start address provides the reference point. The label(address)
information is not directly stored with the memory block.
Since we already need the signature mechanism in place, the
label becomes part of the signature computation. The 32 bit
(16 or 64 bits depending on the processor word length) address
label is concatenated with the content of the cache block and
then the signature is computed. When the guard fetches the
block it performs the following tasks: it fetches the cache
block requested by the cache controller, decrypts its content,
concatenates the start address of the block and compute the
hash code of this sequence. If the computed signature matches
with the hash value fetched from memory for the block the
block is considered valid. An inconsistency triggers a tamper
alarm. This scheme will successfully detect and prevent an
attacker from injecting external data or substitute blocks from
other location in memory.

To prevent timing and stale data replay a time-stamping
algorithm is a required part of the integrity validation. We
have not chosen a regular counter/timestamp for this purpose
since counters eventually reach a maximum value, which
usually requires re-encryption of the entire memory space
and key re-establishment [7]. We use probabilistic model: a
data freshness indicator(DFID) scheme to prevent the stale
data replay attacks. As we can see in Figure 4, we use part
of the signature as the data freshness indication. The DFID



Fig. 5. Performance penalty with 32 byte cache blocks and SHA-1 signature

Fig. 6. Performance penalty with 64 byte cache blocks and SHA-1 signature

Fig. 7. Performance penalty with 32 byte cache blocks and CRC as signature

together with the data blocks address (which we also use
as its label) is stored in a special table inside the FPGA
Guard. Every time a data block is fetched from memory, its

signature is calculated and the DFID is checked. On a dirty
write, the new signature is computed and the DFID table
inside the FPGA Guard is updated with the new value. We
use only part of the 160-bit SHA-1 hash as the DFID (32
bits) because of storage limitations inside the Guard. The
size of the DFID table inside the FPGA Guard must also be
taken into account. It is reasonable to assume that for small,
embedded applications there can be enough storage space for
all DFIDs needed. However, in a general case, the FPGA has
to store the overflow DFIDs encrypted in memory using the
same encryption/hashing/labeling/timestamping techniques for
a hierarchical recursive structure. The length of the DFID can
be changed to accommodate for more collision resistance or
for less internal storage overhead. We can also note that DFID
can be created out of any part of the encrypted data block with
the same effect(we rely on the collision resistance of SHA-1
or AES in the latter).

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance overhead of our
proposed approach, we conducted cycle accurate simulations
of our architecture. In our simulation framework we made use
of the SimpleScalar simulation suite [1] for an ARM processor
architecture [2]. We have augmented the simulator code with
an implementation of additional security module to model
the role of the FPGA guard. We used the characteristics of
a Xilinx Virtex-II Pro FPGA operating at 200 MHz for our
FPGA implementation, and assumed an ARM processor cycle
of 400Mhz. Thus every FPGA computation cycle that does
not overlap processor execution creates a 2 processor penalty
cycles. The external bus and main memory are assumed to
run at 100 MHz. The performance of our architecture was
observed for a memory hierarchy that contains one level
separate instruction and data caches. The instruction cache
has 32Kb of available 32-way associative memory and the
data cache is a 32Kb , 64-way associative cache. To examine
the impact of the cache block size, the analysis was performed
on both a 32-byte and 64-byte line caches.

The input for evaluation were benchmarks from two dif-
ferent benchmark suites. We selected ten benchmarks from
the computation intensive tests from MiBench embedded
benchmark suite [5], and these manifest high code locality,
relatively small data accesses. The cache miss rates are rel-
atively small but represent the vast majority of algorithms
for embedded devices in automotive and security domain. We
then evaluated performance of four data intensive benchmarks
– Field, Pointer, Transitive and Update – part of the Data
Intensive Systems (DIS) benchmark suite [6]. These are a good
evaluation of the extreme case applications in the embedded
world. Although simpler than consumer products like PDA
and mobile devices which behave more like desktop comput-
ers, the data intensive benchmarks show a high number of
memory accesses, sometimes saturating the data caches and
thus stressing the encryption and validation modules.

To investigate the performance impact of our approach,
we measured the overall performance penalty in terms of



additional processor cycles taken to complete the execution
when using our security mechanisms. The overall performance
penalty is depends on three factors: (i) extra memory accesses
for fetching integrity information(signatures), (ii) encryption
time for write accesses and decryption time for all cache
misses resulting from data memory reads, and (iii) signature
computation and validation time. The equation below depicts
how the Cache miss penalty is computed based on the essential
parameters: AES encryption and decryption ( 11 fpga cycles
[20]) and signature computation (SHA1 taking 82 FPGA
cycles [19] / 1 cycle for CRC computation).The cycle times
correspond to the implementations of AES and SHA 1 on
Xilinx Virtex II Pro.

MissPenalty = � procf req
fpgaf req � ∗ (AESEncDecCycles +

V alidationCycles) + MemAccess

We summarize the performance of our approach by showing
the comparative performance penalty measured as the percent-
age increase in execution time when compared to the baseline
configuration with no security mechanisms (i.e., plaintext
execution). Figures 5 and 7 show the performance penalty for
a 32-byte cache block size when using two different schemes
for the integrity checking (i.e., for computing signatures) –
using secure hashing algorithm SHA-1 and a lightweight CRC
hashing respectively. The memory access penalties come as
an addition to the validation steps. As expected the compute
intensive SHA-1 algorithm results in higher penalties while
providing a larger degree of security. Due to the different data
access patterns, our benchmarks exhibited varying amounts of
performance penalties in both signature schemes. Using the
compute intensive SHA-1 signature technique, resulted in a
maximum increase of 26% in the execution time; this dropped
to 4.5% when using the CRC scheme. Figure 6 shows the
performance penalty for a 64-byte cache block size and using
the SHA-1 algorithm. As expected the larger cache blocks
incur less overhead (with a maximum of 16%), since the ratio
of original data per signature is larger.

To provide complete protection against both code and data
attacks on EED systems, we can add our code protection
scheme presented in [15] (which resulted in performance
penalties of at most 10%) to the data protection scheme
presented in this paper. Thus, a complete system would result
in the addition of the two performance penalties; i.e., based
on our experiments this led to performance penalties less than
30% using SHA-1 signatures and less than 15% using the
simpler CRC method for signatures.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed architectural support to protect appli-
cation data from a class of EED attacks where the attacker
has gained physical access to the system. Designed as a
general mechanism for protecting both code and data our
system achieves high security standards with relative modest
performance penalties. The architecture and design of the
secure hardware component is motivated by emerging trends
in embedded systems: standard processor cores are augmented

with FPGA fabric [18]. Our approach is transparent to software
developers. The low performance overheads, ranging between
4.5% and 26% as shown in our experimental results through
cycle accurate simulations, demonstrate the feasability of our
approach. In the future, we hope to prototype our architecture
on the Xilinx platform and thereby perform real-time experi-
ments.
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