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Abstract

Because of their rapid growth in recent years, embedded systems present a new
front in vulnerability and an attractive target for attackers. Their pervasive use, in-
cluding sensors and mobile devices, makes it easier for an adversary to gain physical
access to facilitate both attacks and reverse engineering of the system. This paper
describes a system — CODESSEAL — for software protection and evaluates its over-
head. CODESSEAL aims to protect embedded systems from attackers with enough
expertise and resources to capture the device and attempt to manipulate not only
software, but also hardware. The protection mechanism involves both a compiler-
based software tool that instruments executables and an on-chip FPGA-based hard-
ware component that provides run-time integrity and control flow checking on the
executable code. The use of reconfigurable hardware allows CODESSEAL to pro-
vide such security services as confidentiality, integrity and program-flow protection
in a platform-independent manner without requiring a redesign of the processor.
Similarly, the compiler instrumentation hides the security details from software de-
velopers. Software and data protection techniques are presented for our system and
a performance analysis is provided using cycle accurate simulation. Our experimen-
tal results show that protecting instructions and data with a high level of security
can be achieved with low performance penalty, in most cases less than 10%.
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1 Introduction

Software protection is one of the significant problems in security today. An
estimated $100 - $200 billion is lost in sales due to industrial espionage and
$12 billion in business losses due to software protection failures [24]. In addi-
tion, while software protection is an important issue for desktops and servers,
the fact that over 90% of all processors are embedded [5] underscores the
importance of protecting software on embedded systems. Embedded software
systems are especially vulnerable, as they tend to be written in lower-level
languages with poor support for runtime error checking. Furthermore, em-
bedded devices are more easily captured or stolen for tampering purposes,
resulting in loss of intellectual property and critical secrets. Additionally, fol-
lowing a physical capture, a successful attack may easily be replicated because
embedded processors are so numerous. Indeed, embedded systems present an
ideal scenario for resourceful attackers because they can access the processors
that drives the system — an attacker that wants to probe vulnerabilities in a
cell phone, or media player, merely needs to extract the hardware, and after
devising an attack, can easily install modified hardware components in these
units.

One approach to securing embedded software from resourceful attackers is
to encrypt executables so that instructions and data are decrypted within the
processor chip. We term such platforms Encrypted Execution and Data (EED)
platforms. This approach considerably raises the bar for attackers with hobby-
level equipment, and aims to prevent attacks on confidentiality and software
integrity. However, such systems can nonetheless be attacked by exploiting
the structure in encrypted instruction streams and data. As discussed in [33],
by identifying block level control flow of the application code the attacker
can learn more about the programmer’s code, secret keys and sensitive data.
The goal of this paper is to devise mechanisms to protect EED platforms,
and to evaluate the overhead incurred in using these mechanisms. Since many
embedded systems typically have timing requirements, the overhead incurred
determines the feasibility of a protection scheme. Our approach differs from
prior work in that we focus on ease-of-adoption — our approach does not require
custom hardware design because we use on-chip reconfigurable logic in the
form of Field Programmable Gate Arrays (FPGA), and imposes no burden
on software developers because the techniques are directly incorporated into
the compiler. And because the compiler instrumentation is at the backend and
independent of other compiler modules, it is easy to modify legacy executables
to operate in our framework.

Our approach, called CODESSEAL — COmpiler Development Suite for SEcure
AppLications — can be summarized as follows. The hardware platform we
target is a standard processor with an accompanying on-chip reconfigurable



logic core — this enables us to leverage commercially available System-On-Chip
(SOC) architectures. Consider an application that is to run on this platform.
First, the compiler uses the control-flow graph built during compilation to em-
bed special labels and integrity information into each block of the executable,
after which the compiler encrypts the executable with a pre-determined ses-
sion key at a secure location prior to distribution. In a similar manner the
reconfigurable logic is programmed with what we call the “guard” — a hard-
ware component that contains the session key, is able to decrypt executables,
and check the integrity information embedded in the executables. At runtime,
when the processor fetches blocks into cache, the blocks are routed through
the guard, which performs decryption and checks integrity, and which is able
to detect the types of EED attacks described in this paper. Similarly, when
data is written to memory, the guard encrypts the data while also embedding
sufficient additional information to detect certain attacks. By relying on the
secure hardware component, i.e., the FPGA guard, our approach can accel-
erate the execution of encrypted programs in a secure environment thereby
incurring acceptable performance penalties, and without requiring new pro-
cessor designs. Additionally, it provides flexibility, through reprogramming of
FPGAs, to carry out application specific compiler-driven protections of the
application code and data.

The rest of the paper is organized as follows. Section 2 discusses previous work
in hardware assisted EED platforms. Section 3 describes the threat and attack
model considered in this paper. Section 4 presents the CODESSEAL archi-
tecture in detail. It describes the hardware architecture, the compiler instru-
mentation tasks, and the security mechanisms. Section 5 provides a security
analysis of our solutions and discusses our assumptions. Section 6 experimen-
tal results and a performance analysis of our system and Section 7 concludes
the paper.

2 Related Work

The general area of computer security, and in particular, software protection,
has grown tremendously over the past decade and a result there is a significant
amount of literature that addresses various aspects of software security. We
restrict ourselves to reviewing related work in compiler-hardware approaches,
and in FPGA-related work in the area of security.

The use of digital signatures at compile time, to help identify whether applica-
tion code has been modified, has been the topic of several papers [2,13,3]. The
work in [2] introduces the concept of guards, pieces of executable code that
perform checksums to guard against tampering. In [13], the authors propose a
dynamic self-checking technique to improve tamper resistance. The technique



consists of a collection of testers that test for changes in the executable code
as it is running and reports modifications. In [3] a self-checking technique is
presented in which embedded code segments verify integrity of the program
during runtime. These self-checking approaches [2,3,13] essentially compute
checksums on code to assert code integrity. This computation is exactly the
same as any other digest or MAC computation for secure communication: it
relies on the high probability that a modification to the code will create a
modified checksum. Such digest checking is attractive because digests can de-
tect any kind of modification to code or data, and is relatively inexpensive in
terms of computation effort. At the same time, these techniques strongly rely
on the security of the checksum computation itself. If these checksum compu-
tations are discovered by the attacker, they are easily disabled. However, in
many system architectures, it is relatively easy to build an automated tool to
reveal such checksum-computations. For example, a control-flow graph sepa-
rates instructions from data even when data is interspersed with instructions;
then, checksum computations can be identified by finding code that oper-
ates on code (using instructions as data). This problem is acknowledged but
not addressed in [13]. More importantly, in the context of this paper, these
techniques do not protect against physical attacks where the adversary has
captured the device.

Hardware approaches can be categorized into co-processor solutions [28,22],
including smartcard applications [15], and solutions that specify particular
architectures or use FPGA’s as hardware accelerators. FPGA’s have been
used to implement accelerated versions of several well-known cryptographic
primitives such as private-key algorithms, secure hash algorithms, and public-
key algorithms [7,10,17]. Some of the recent work in this area has focused
on implementing high-throughput or low-area Symmetric key Block Cipher
(SBC) architectures on FPGAs [31].

Among architectures specifically designed for software protection, there is past
work that on memory protection [5,25], on specific attacks [20], or even the
initialization of a system [1]. Our own work in this area [29,30] has focused
on using compiler-directed register allocation to embed watermarks that are
then checked in FPGA support hardware.

A subclass of hardware approaches are those directed at EED platforms and
embedded platforms [18]. Among the first of these is the XOM architecture [16]
in which instructions stored in memory are encrypted and the XOM CPU de-
crypts before execution. Nonetheless, attacks are possible on EED platforms
and therefore a number of papers have focused on addressing such attacks.
The SPEF [14] architecture presents a new processor that provides tamper-
resistant environment. The AEGIS [23] architecture presents techniques for
control-flow protection, privacy, and prevention of data tampering. Their tech-
niques work at a cache block level, and require processor re-design. In [32,33],



the authors study the problem of information leakage when an attacker ex-
tracts patterns of access in an EED platform and matches those patterns
against a database of well-known patterns extracted from open-source soft-
ware or from unencrypted executables run inside a debugger. Their findings
suggest that many algorithms can be identified by observing their memory ac-
cess pattern and that this signature pattern can itself lead to both information
leakage as well as additional types of attacks. They propose address random-
ization to foil such attacks and study the performance of specific architectural
support hardware for address randomization. Finally, our own work in this
area [29,30] has explored the use of reconfigurable logic, in the form of an
FPGA, towards providing software security. In [29] we presented a compiler-
FPGA approach to watermark detection but does not address EED attacks.

A common theme in past work on preventing EED attacks is the design of new
processors. These proposed changes to the processor (and instruction set) re-
quires a buy-in from chip manufacturers and does not leverage COTS technol-
ogy. In addition, developing security schemes that are architecture dependent
reduces portability. These factors serve as key motivation for our approach —
we explore solutions that do not require changes to the processor and apply
security measures higher up in the compilation chain to reduce the amount of
architecture dependence. As we have seen in Section 2, there has been a lot
of work done in the field of software protection. Our research proposes to add
protection methods, which would complement already existing research.

3 Threat Model

In order to better understand the focus of the our proposed methods, it is
important to see the threat model. In general, systems can be exposed to two
means of attacks in terms of access to the system: remote attacks and physical
attacks. In a remote attack on the application the system is accessed through
some kind of a communications channel (be it a network or just an input
variable) — these constitute the vast majority of attacks addressed by current
work. A physical attack assumes that the attacker has direct physical access
to the hardware and is sophisticated and resourceful enough to examine and
manipulate instruction and data buses. We focus on physical attacks on EED
platforms. However, the fact that encryption occurs in blocks enables a so-
phisticated attacker to mount some attacks on EED platforms, as we outline
below. Even more importantly, since memory chips can be controlled exter-
nally, the attacker can supply the processor with any block of their choosing.
The most effective form of attack tries to supply the processor with an un-
expected block; in doing so, an attacker might then observe the outcome and
use that advantageously. For example, an attacker might notice that skipping
a certain block leads to skipping a license check. We consider the following



types of attacks:

e Code Injection/Execution Disruptions: Here an attacker tries to modify or
replace a portion of an encrypted block of instructions. Of course, if we
assume the key has not been broken, this attack merely places random
bits into a cache block. Nonetheless, these random bits will be decrypted
into possible valid instructions, whose outcome can be observed carefully by
our sophisticated attacker. We can estimate the probability that randomly-
injected bits result in valid opcodes. If the Instruction Set Architecture
(ISA) happens to use n bits for each opcode, there are a total of 2™ possi-
ble instructions. If, among these, v is the number of valid instructions, and
if the encryption block contains k instructions, then the probability that
the decryption will result in at least one invalid instruction in the block is
1— (2%)"c Since a good processor architecture doesn’t waste opcode space
with unused instructions, it is highly probable that if the attacker supplies
a random block it will be decrypted and executed without detection. For
example if we consider an encryption block size of 16 bytes and if 90% of the
opcode space is used for valid instructions, the probability of an undetected
disrupted execution is 19%. We term this type of attack execution disruption
through instruction/code injection. The attacker will not be able to execute
the exact code that they want to execute,but by observing the program’s
behavior, the attacker can deduce information about the program’s execu-
tion. Such code injection EED attacks suggest the need for run-time code
integrity checking, for example by the use of signatures embedded into the
executable.

0x100

0x200,
BlockB

ox300_ Y ox200
[BlockC]<
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Fig. 1. Example of (a) Injection and (b) Control Flow Attacks

e [nstruction Replay. In this type of attack, the attacker re-issues a block
of encrypted instructions from memory. This can be accomplished either
by freezing the bus and replacing the memory read value with an old one,
overriding the address bus with a different memory location than the one
the processor requested or simply overwriting the memory at the targeted
address. This is illustrated in Figure 1(a). In this example, the processor re-
quests blocks A, B, C' from addresses 02100, 02200, 02300 respectively. How-
ever, when the processor requests block from address 02300, the attacker



injects block B (which they know will be correctly decrypted and executed).
What is clear is that the incorrect block is decrypted into valid executable
code. If the replayed block has an immediate observable result (such as an
I/O operation) the attacker can store the block and replay it at any point
of time during program execution, without the attacker having to guess
the entire instruction block functionality. Also, by observing the results of
a multitude of replay attacks, the attacker can catalog information about
the results of individual replay attacks and use such attacks in tandem for
greater disruption or to get a better understanding of the application code.
The vulnerability of EED platforms to such replay attacks suggests the need
to validate that the contents are indeed from the memory location requested
by the processor. We note that simply storing the signature inside the code
block does not prevent such attacks.

Control Flow attacks. Since the attacker has access to the address and data
bus, by sniffing on the address bus they can elucidate the control-flow struc-
ture of a program without any decryption. This control-flow information can
lead to both information leakage as well as attacks on the application. As
described in [32,33], obtaining the block level control flow graph (CFG) can
lead to information leakage since control flow graphs can serve as unique
fingerprints of the code and can detect code reuses. By watching the interac-
tion and calling sequences, the attacker can learn more about the application
code. Additionally, as pointed out in [32,33], knowledge of the CFG can also
compromise a secret key and leak sensitive data. Since branches compare
values, the attacker could force which path to take in the application code.
To disrupt the execution or steer the execution in the desired direction, the
attacker can transfer control out of a loop, transfer control to a distant part
of the executable (thus allowing them to circumvent license checks), or force
the executable to follow an existing execution path (akin to subverting an
if-then-else statement). For example, consider Figure 1(b). During normal
execution, block A (at address 0x100) can transfer control to either block
B (address 0x200) or block C' (address 0x300) depending on the value of
some variable z. An attacker who has observed this control flow property,
can substitute block C' when B is requested and observe the outcome as
a prelude to further attack. Thus, they can successfully bypass any check
condition that may be present in block A. Additionally, another type of
attack is when blocks A and B together form a loop. Then, upon observing
this once without interference, and recording the blocks, the attacker can
substitute blocks from an earlier execution to prevent the loop from being
completely executed. As we have observed above, simply signing and en-
crypting code blocks is not sufficient to prevent control flow attacks. What
is needed is a mechanism by which the correct control flow, as specified by
the application, must be embedded and validated at run-time.

Data injection/modification. In a manner similar to attacks on application
code, discussed thus far, the application data is also susceptible to EED at-
tacks. By examining the pattern of data write-backs to RAM, the attacker



can intelligently guess the location of the runtime stack even if that is en-
crypted, as commonly-used software stack structures are relatively simple.
Since the attacker has physical access to the device, he/she can try to inject
their own data and (even though the data will be decrypted into a random
stream) observe the program’s behavior. The attacker may still be able to
disrupt the execution or learn something about the executable.

e Data substitution. The attacker can substitute a currently-requested data
block for another block, which is also currently valid and observe the pro-
gram’s behavior. Unlike instructions which are limited to the valid opcodes
in the instruction set, any data injected by the attacker will be correctly de-
crypted and passed to the processor. Thus, encryption in this case provides
no protection other than privacy of the application’s data.

As described above, these EED attacks point out that mere encryption is not
sufficient to guarantee proper execution and that these types of attacks can go
undetected unless we provide explicit support. We now turn to our approach
in which a combination of compiler-inserted information and supporting hard-
ware forms the framework needed to detect and prevent such attacks.

4 The CODESSEAL System

Compiler |
' ! Trusted chip boundaries
} |Source code or pre-compiled binarﬂ ! P
' | Embed integrity and control flow| !
pr otictlon Processor core FPGA Guard
i ‘ Encrypt executable ‘ | ©
Loader v Cache ”g&gdl Authorization Ve
e N xternal ain
‘ Load program ‘ . ] Bu memory
S ‘ Cache Content Integrity
. Architecture : CPU N
. (FPGA) !
Verify incoming cache blocks | : Data c“;glt’%’al tfé"’_’w
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verification if necessary — Privacy
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Fig. 2. (a) The CODESSEAL Infrastructure and (b) Hardware Architecture



4.1 Quverview of our Approach

Our approach, designed for a standard Harvard architecture (with separate
instruction and data memory), has three core components. The first is ar-
chitectural: the use of supporting FPGA hardware that we refer to as the
FPGA-Guard. The second is a back-end compiler module that instruments
the executable such that each code block has a label. The third is a detec-
tion algorithm, implemented on the FPGA, that examines the labels of code
blocks to verify proper execution (control flow and code integrity checking).
Figure 2(a) illustrates our overall framework and the specific tasks carried out
by the FPGA and compiler components. Figure 2(b) illustrates our hardware
architecture.

The key elements of our approach are as follows:

e The FPGA is programmed and configured with logic to run in a co-processing
paradigm.

e The FPGA contains a secure independently verifiable PKI-capable compo-
nent. The configuration for the FPGA (i.e., the FPGA program) is itself
encrypted when downloaded using PKI. The secure loader decrypts and pro-
grams the FPGA. We will assume that the FPGA itself is verifiable through
independent means.

e The compiler will generate code that is encrypted using an application key.
For any code to be executed on the processor it must first be decrypted and
validated by the FPGA.

e Based on program analysis, the compiler will generate integrity and control
flow checking information that will be embedded into the executable.

e The FPGA encrypts the data blocks directly using the application key.

Figure 2(b) illustrates our architecture overview. The processing chip is on the
left and main memory on the right, with the address and data bus connecting
the two components. We assume that the chip comes with FPGA logic, as do
many commercial processors today. We use this logic to implement the guard.
To see how this works, consider how memory accesses take place without such
guard logic: when a cache miss occurs, the memory management logic (in this
the cache controller) issues a read to memory on the bus, after which, following
the bus protocol, the memory dumps the contents on the bus. These bits are
then routed into the instruction cache. Our architecture is constructed so that
every read access to memory also goes through the FPGA guard. Thus, the
guard logic is aware of the address requested (and the start address of an
instruction block). Furthermore, in our architecture, the bus lines are routed
through the guard so that the guard receives memory contents before the
processor. The guard logic is therefore able to enforce our security mechanisms,
such as decryption and integrity checking (which may require examining some



of the contents of the data or instructions read from memory) before it is
fed into the instruction cache. Thus, all communication into and out of the
chip must go through the FPGA guard thereby enabling the decryption and
any other security schemes that are built into the guard. This is the key to
ensuring trust: the blocks that reach the processor cache have been verified by
the guard so that the processor sees (and therefore executes) only validated
blocks.

In contrast to much of the past work, for example [23,16,32,33], our protection
schemes operate at the granularity of a basic block of code; i.e., our system
operates on the control flow graph where each node of the graph is a basic
block. By operating on basic blocks we deal with control flow properties in-
trinsic to the application and independent of architecture specific parameters
such as size of cache line, and size of cache. Subsequently, our methods can
be ported to any processor and could be applied to existing legacy code by
constructing the control flow graph of the program.

4.2 CODESSEAL Security Scheme

Protection against EED attacks, as discussed in Section 3, will require provid-
ing privacy (of application code and data), integrity checking methods, and
control flow validation.

We now describe our proposed schemes for integrity and control-flow valida-
tion, and the next section provides a security analysis wherein we describe
how our approach prevents the various EED attacks. We first describe our so-
lutions for each security requirement and then summarize the overall process
in the next subsection.

4.2.1 Code and Data Integrity

As is typical in EED platforms, our system starts with the condition that
instructions and data in encrypted form in the memory thereby providing
privacy. Thus, an attacker snooping the bus cannot determine the actual ap-
plication code or values of the application data. The computational overhead
of asymmetric protocols suggests that we use symmetric key protocols for this
purpose, and we use AES for encryption of data and instructions. We assume
that a key exchange protocol is implemented in our system to allow an appli-
cation key to be loaded into the FPGA guard. (We assume that a unique key
is loaded into the FPGA, and its public key is available to the trusted code
developers.)

Our instruction block granularity is a basic block of code — i.e., a straight
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line sequence of code with one entry point and one exit point (a branch or
jump instruction). Since the size of a basic block can be larger or smaller than
a 128-bit AES block or/and a cache block, a basic block may consist of a
number of AES blocks or cache blocks. Fetching a basic block of instructions
could therefore require pre-fetching a number of cache blocks (or cache lines)
and decrypting a number of AES blocks. This pre-fetch logic is built into the
guard. The role of the compiler in the encryption process is to generate the
encrypted executables, and this is done post-compilation.

4.2.2  Code and Data Injection

As noted earlier, simply encrypting instructions and data does not prevent
EED attacks. To prevent and detect code or data injection attacks we need
to provide integrity checking. Embedding an integrity checking information
inside each code block (in our case, a basic block) and data block (in our
case, a cache block) would prevent an attacker from successfully injecting
their code or data. For example, we could use any kind of hashing algorithm
to generate a hash that could serve as the unique signature to embed inside
each block of code or data. One option is the use of a lightweight CRC, and
an alternate option is to generate a collision resistant The code block and
hash is then encrypted by the compiler. The guard will then fetch the block,
decrypt the block, compute the SHA-1 hash of the code and compare with the
signature stored in the block. This scheme will successfully detect and prevent
an attacker from injecting their code or data.

4.2.3  Control-Flow Integrity

Consider the example in Figure 3 which shows a piece of application code
with two basic blocks bb; and bb, at addresses 0200 and 0x10. If the branch, at
address 020C', is successful then the processor requests a basic block at address
0230. The attacker can inject basic block bby at address 0x10. Simply storing
signatures does not prevent this attack on the control flow of the program since
the guard will validate the signature stored in bby since no instructions inside
bby are changed by the attacker. What is required is a mechanism for checking
that the memory contents fetched are indeed from the memory located at the
address requested by the processor. In other words, we need to embed the
memory address into the code block signature.

We use the relative address labels of the basic block as the control-flow in-
tegrity checking information. The labels, which are relative addresses in the
program, of the basic blocks are generated at the last pass in the compilation
stage, and these labels are embedded into the basic block by the compiler
before encryption. For example, in Figure 3(a) the label for basic block bb; is
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0x00 | add r1,r2,r3 bb1 0x00 | signature(0x00, bb1) add r1.r2.r3
0x04 | mult rd,r2,r1 bt 0x04 | add r1,r2,r3 g§32 mult rd.r2.r1
0x08 | sub r2,r1,ro 0x08 | mult r4,r2,r1 0x08 | sub r2 .10
0x0C be 0x30 ;adr(bb) 0x0C| sub r2,r1,r0 0x0C | be OXéO ’ adr(bbA)
0x10 | Id r1,#100(R3) 0x10| be [adr(bb,)] 0x10 [ d 1, #100(R3)
0x14 | add r1,r2,r3 0x14 [signature(0x14, bb2)  0x14 | add r1.r2.r3
0x18 | st r2,#200r1 8)(;?: I r1,#100(R3) 0x18 | st r2 #200r1
0x1C| jmp 0x00 ;adr(bb X add r1,r2,r3 R .
Jmp (bb) | oo A 0x1C | jmp 0x00 ;adr(bb,)
0X00 0x24 | jmp 0x04 ;adr(bb,)
codeSize+ 0x00 | signature(0x00, bb1)
0x10 ;4 030 COdeS"Z.% 0x04 signature(0x10, bb2)

(@ . (b) _[(c)
Control flow graph and  signature embedded signature stored
original memory layout  in each basic block  separately (end of code)

Fig. 3. Sample Code and Embedding Control Flow Information

0200 and for bb, the label is 0x10. Observe that the absolute address requested
by the processor depends on the label of the block and the starting address
of the program. However, given the starting address a4+ of the program and
the address requested by the processor a;, we can compute the label of the
requested block bb; as [; = a; — agsre- The FPGA guard architecture needed
to support this integrity check must read and store the address a; requested
by the processor, store the starting address of the program a,,, and check if
the label x stored inside the block is equal to a; — ag.+. This also implies that
a key assumption in our approach is that we have a secure loader, which loads
the starting address into the FPGA guard — an assumption that is reasonable
for most single application embedded systems such a media player or set-top
box.

Based on the discussions thus far, we require some form of “signature” (to
prevent code modification) and the basic block label to be embedded into the
instruction blocks, i.e., the compiler must embed this information into the
code block so that it contains integrity and control-flow information. This is
then followed by encryption thus providing a signature for the code block.
Inserting this integrity information, containing a hash of the code and the
basic block labels, will require re-computing the labels. Figure 3(b) shows the
effect of inserting the labels (i.e., a signature of length 32 bits which is one
instruction) into the basic blocks; observe that basic block bbs now has a label
of 0x14.

What happens once this code is decrypted and validated by the guard? Since
this integrity checking information, i.e., the signature, is not part of the exe-
cutable, the guard must replace this information with NOPs to the processor.
The length of this information determines the number of NOPs inserted by
the guard. For example, a 32-bit CRC is replaced by a single NOP in a 32-bit
processor whereas a 160-bit SHA-1 hash results in 5 NOPs inserted into the
executable sent to the processor. The number of NOPs add to the execution
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time and thus constitute a performance penalty. In addition, the rearrange-
ment of code could lead to changes in the cache performance such as the cache
miss rates. An alternative to storing the signatures inside the code block is
to store them in a separate portion of memory. Figure 3(c) illustrates this
option for the code shown in Figure 3(a). Storing the signatures in a sepa-
rate portion of memory (for example after the end of the program) implies
that the guard will no longer need to insert NOPs into the executable thus
eliminating the overhead of executing these NOPs. However, the guard now
needs to generate an additional memory access to fetch the signature of the
requested block. This also involves implementing the mapping to compute this
address based on the requested address. For example, one possible mapping is
to compute the address of the signature as the basic block number added to
the end address of the program. Alternately, the loader could reserve a special
portion of memory and specify the starting address of this part of memory to
the guard. Since the decryption algorithm will take a large number of cycles
the additional memory access latency can be largely hidden by overlapping
the decryption with the memory fetch. Regardless of which mapping scheme
we implement, we observe that the reduction in performance overhead comes
with an increase in the architecture complexity (and thus in increased number
of logic gates required) in the FPGA. The amount of logic available on current
FPGAs, such as the Virtex II or Virtex IV systems from Xilinx Corporation,
justifies this assumption [26].

We now address the algorithms used to create the signatures for each code
block. We considered two methods. In the first, we insert the label of the basic
block and the SHA-1 hash of the resulting instructions into the basic block.
The combined size of this signature is now 192 bits (or 6 NOPS in a 32-bit
processor). The performance overhead due to computation of SHA-1 [11] and
due to the NOPs could result in unacceptable time penalties. When timing
requirements are stringent we need to consider faster schemes that compromise
security for performance. We describe such a scheme next.

To improve the performance of control-flow integrity checking,for every basic
block the instructions in the block and its label are used as input to a CRC.We
chose a 32-bit CRC since it is the length of one instruction; in general, we can
choose the length to be equal to the processor instruction width or any other
number. The CRC is then added into the basic block in a manner similar
to how the SHA-1 hash would be added. We program the FPGA guard to
compute the CRC, and this can be done in a single FPGA cycle. During
run-time, we can compute the basic block’s label as before when given the
requested address and the starting address of the program. After decryption,
the guard then calculates the CRC over the label and the instructions. If the
computed CRC matches that stored inside the fetched block then the integrity
and control-flow is validated and the block is sent to the processor. If the CRC
was stored inside the basic block, then the guard will need to replace these
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bits with the NOP bits.

4.2.4  Instruction and Data Replay.

Embedding just a signature into the code, or data, will not prevent an attacker
from replaying an instruction. For example, consider the sample code in Figure
3(a). After basic block bb; has been fetched and executed, the attacker knows
that instructions at address 0200 are valid. Thus, injecting the block at address
0200 when processor requests a different address will lead to a successful attack
since the signature (of the injected block bby) is verified by the guard. The
protection scheme proposed for control-flow integrity also prevents instruction
replay attacks, and thus no separate mechanism is needed. Additionally, the
same scheme can be used to prevent data injection attacks. In this case, the
signature and cipher-text for each data block is computed by the guard and the
signature is stored separately outside the data block. On memory writebacks,
the guard also generates the signature and encrypts the data before writing
back to memory. As with instructions, we examine the use of SHA-1 and CRC
for creating the signatures for the data. However, we considered only the case
where the signatures are stored external to the data block.

4.3 Architecture and Compiler Design

Our hardware-software codesign approach requires specific functions in the
compiler and the hardware. The hardware functions, i.e., the implementation
of the guard, are built entirely on the FPGA and thus require no changes to
the processor. In addition, we require the loader (assumed to be trusted) to
provide the starting address of the program to the FPGA guard.

The overall CODESSEAL workflow process, with the specific functions to be
implemented in the compiler, loader and FPGA components is shown in Figure
4.

The changes to the compiler, to implement the functions needed, are done
entirely at the back-end of the compiler and as part of the post-compilation
process. The first two steps, C1 and C2 in Figure 4, consists of constructing
the control flow graph and identifying and labeling the basic blocks — in fact,
typical compilers provide this information. Step C3 is an implementation of
the SHA-1 or CRC hash algorithms, and step C4 computes new labels based
on the new addresses. Step C5 is an implementation of the AES algorithm
and uses the application key.

The loader starts by establishing a session key and downloads the application
key. In step L2 it sets the program start address and sends to the guard.
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C5. E t (AES (prefetching if necessary)
nerypt ( ) H4. Fetch stored signature of basic block

bb, x=sign_compile(bb))
H5. Compute the signature of the fetched
block bb, y=sign_runtime(bb+a, +a_, )
H6. If (y,==x,) then valid (send to cache)
L1. Set the program context (key) else HALT
L2. Set program start address (a

Run-time Validation(loader)

start)

Fig. 4. CODESSEAL Process: Compiler and FPGA Roles

Much of the design effort lies in the FPGA architecture, although we leverage
the opencore implementations that are available for most of the functions.
The guard is designed to sit between the processor and main memory, and
can thus read any memory request generated by the processor (i.e., more
specifically the cache controller). In the first step H1 the guard simply reads
the address generated and stores it in step H2 into a local register — this can
be accomplished by routing the address lines into the FPGA. Step H3 requires
implementing the AES encryption and decryption algorithms. In addition, we
need to implement the pre-fetch logic to fetch until the end of the basic block.
This logic only requires that the guard examine the decrypted block to check
if a branch instruction is present. If there is no branch then the basic block
continues to the next memory location and it fetches the next cache block
from memory and repeats the checking. Once the entire basic block is fetched,
it moves to step H4. If the signature is stored in the basic block then there is
no fetch required. However, for the case when these are stored separately it
generates a request to fetch the signature. In step H5 it computes the signature
based on the basic block it has fetched, and this requires implementation of the
SHA-1 or CRC schemes. Step H6, the validation logic, is a simple comparison
operation which can be implemented as a comparator. For the case of data,
step H3 is simplified since our schemes work at a data cache block granularity.
However, if the processor requested a write-back then it only executes steps
H1, H2, H4, and H3 — note that it first computes signature and then encrypts
the data before writing to memory. The detailed steps taken by the FPGA
guard are summarized below and detailed FPGA architecture components
required to implement our scheme is shown in Figure 5.

FPGA Guard Details:

e The starting address a4 is stored in a local register.
e Each time there is a miss in cache memory, the cache controller makes a
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request to main memory to fetch the block.

e The guard intercepts the address a; — let’s call this the snooped address —
and stores it in a register (inside the guard).

e The guard generates all the remaining requests to memory for the rest of
the block. In the meantime, the processor waits.

e When the main memory supplies the contents and when the guard has read
the entire block, the guard decrypts the block using the (private) key.

e Next the guard extracts the signature and then the basic block label /;, and
checks if a; = l; + Gsart-

e [f the validation succeeds, the guard continues by checking integrity. It com-
putes the signature (SHA1) of the fetched block and compares with the
signature stored.

e [f the validation or integrity check fails, the guard either stops the execution
or loads a piece of code located at a predetermined static location in memory
to handle the exception.

e [f the validation succeeds, the guard feeds the decrypted cache block into
the processor. If the signature was stored inside the block then it inserts
NOP instructions.

5 Security Analysis

We first explain how our system detects the different types of attacks described
earlier and then discuss the validity of the assumptions made in our approach.

First, note that code injections and execution disruptions are detected using
the signature. Second, replay and control-flow attacks are detected because the
guard always returns the correct block to the processor; in other words, when
the cache controller requests an block (by providing the start address), the
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validation mechanism ensures that no other block is delivered to the processor
cache.

To see how this works, consider first a control-flow attack such as the one
shown in Figure 1(b). Suppose block A transfers control to either block B or
block C, depending on runtime conditions, and that block A requests (ad-
dress for) block B. which the attacker remembers and stores. Later, when the
attacker notices that block A requests block C, the attacker can substitute
block B. However, the label for block B is different from the label of block C'.
The guard, by reading the address of block C' and decrypting and performing
the CRC, can compute the label of the requested block C'. Since the labels
are different, the guard guard detects the substitution and halts the processor.
Similarly, in a replay attack, the attacker can substitute block A itself, which
again will be caught by the guard because its label conflicts with the actual
request.

Are buffer-overflow attacks detected in our system? Because buffer-overflows
are considered a language vulnerability in an EED platform, neither the stan-
dard encryption nor our integrity and control flow mechanism checks against
array boundaries. However typical buffer overflow attacks are detected and
prevented because the code injected would have to be properly encrypted
and verified. Furthermore, even if the injected code is a replay of a known
encrypted block, it will not have the correct label and hence will be caught
through our integrity checking mechanism.

Finally, what are the performance and security tradeoffs in choosing CRC over
the SHA-1 for the hashing schemes? Let us consider the two schemes in terms
of security strength; discussion of their relative performance is discussed in
the next section. Assuming an EED platform with encrypted code and data,
a birthday attack [21] on the hash is infeasible, since we are assuming that
the encryption is strong enough. In an ideal block cipher, the probability
of specific plain-text bits changing/flipping when any bit of the cipher-text
is flipped is 1/2. Hence probability of flipping k bits if (1/2%) even when
several bits of cipher-text are flipped. Therefore, the probability of injecting
instructions, which would result in the same hash [27] is 51&5. If we use a 32-
bit CRC, the probability that a block modification will result in a successful
CRC verification is 2% By using a 32-bit CRC we are reducing the security
strength of our scheme, but as we observe in the next section the performance
penalty is greatly reduced. In general using a k—bit CRC will give us a security
strength of Zi,c This then becomes a problem of a tradeoff between security
and performance. We can achieve the same security strength as SHA-1 by
increasing the size of the CRC to 160 bits, but this would still be potentially
more efficient, since the CRC calculations are much faster than the hash.
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5.1 Observations and Assumptions

Our approach makes several assumptions about the system components: com-
piler, operating system, and hardware. We now clarify the assumptions, and
discuss further observations, for each of these three components.

e In terms of the compiler, first, we note that the labels can be inserted
into executables without knowledge of the base address because only the
offset is needed. Second, although we call this a post-compilation modifi-
cation, it could be used directly with executables and can thus be applied
to legacy code with some additional effort to extract and modify branch
targets. Third, we have not explicitly provided the details of computing the
integrity checksum, nor the encryption itself, because we use standard al-
gorithms which have been addressed elsewhere. Fourth, we assume that the
compiler itself is trusted since it is embedding all the protection mechanisms
and performing the encryption function. This is a reasonably assumption
since application code in an embedded system is developed at a trusted site
before loaded to the hardware.

e In terms of the assumptions and observations about the architecture, they
deal with the FPGA guard and not with the processor itself. First, we ob-
serve that the guard’s actions are completely independent of the processor
and require no modification of the processor’s internals whatsoever. Fur-
thermore, the manner by which the guard interacts with the processor is
compatible with various cache controller algorithms such as critical-word-
first or sequential-requests. Similarly, the use of the guard requires no change
to main memory since the guard is programmed to use the standard bus
protocol. However, what does change is performance: because the label is
replaced by a NOP, both the size of the program and the execution time
increases. By storing the label (or signature) in a separate portion of mem-
ory, we have an additional memory access to fetch this information but the
code block sent to the processor does not include a NOP. The latency of
this additional memory access is hidden by the latency of decryption by
overlapping AES decryption with memory fetch. The cost of storing this in-
formation in a separate portion of memory is passed to the complexity of the
FPGA design logic. Specifically, the guard must store the memory mapping
function and generate the address where this information (signature/labels)
for each address requested by the processor. Note that because the guard
is implemented in FPGA logic, a variety of architectural optimizations can
be explored in the future.

e Our scheme requires that the guard needs to know the base address for a
program. Thus, we assume that this part of the operating system is trusted.
In a simple embedded system, this assumption is quite reasonable since the
load addresses are usually known ahead of time. However, a desktop system
with a sophisticated operating system presents two problems: the first is
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that the load address is not known prior to deployment, and the second is
that the base address will need to be switched when a process is switched.
Clearly, a kernel module that supplies the base addresses to the FPGA
(using encrypted communication) is one way to handle this case. However,
that requires a high degree of trust in the operating system.

6 Experimental Results and Performance Analysis

For the overall simulation of our system, we used the SimpleScalar simula-
tion suite [4] for an ARM processor architecture. The performance of our
architecture was observed for a memory hierarchy that contains one level sep-
arate instruction and data caches. The instruction cache has 32Kb of available
32-way associative memory. Data cache is 32Kb, 64-way associative. The sim-
ulator used is sim-outorder. The architectural features of SimpleScalar were
configured to model an ARM architecture with an on-chip FPGA. In our sim-
ulation parameters, the processor speed is 400Mhz and the FPGA operates at
200Mhz. Thus every FPGA computation cycles that does not overlap proces-
sor execution creates 2 processor penalty cycles. The external bus and main
memory is assumed to run at 100Mhz.

The benchmarks we have chosen from two different suites: MiBench [8], which
are specifically designed for various kinds of embedded systems, and DIS [9],
which are designed to be very data-intensive.

The overhead incurred by the encryption and validation mechanisms come into
play only when a cache miss occurs and the requested cache block is fetched
from memory and validated by the FPGA. Therefore when a cache miss oc-
curs, the additional delays (which now consitute our performance penalties)
are added to the access time to the lower level memory, 7.e., the cache miss
penalty. However, since executable code may be rearranged and require more
overall memory there could be a resulting effect on the cache miss rate of the
application. Thus, the overall performance penalty is affected by three factors:
increased cache misses and increased cache miss penalty, extra instruction ex-
ecutions due to NOPs inserted into the code, and decryption. The increase
in the program size comes from reserving the extra space for the validation
and this causes more cache misses, since less of the original instructions fit
in the same cache memory space. The encryption and validation adds a fixed
penalty for each memory fetch. The operations performed by the Guard can
be modeled as an increased latency in the instruction fetch.

Figure 7 depicts how the penalty cycles were estimated for instruction fetches
assuming a 32-byte cache block. We note that multiple cache blocks may need
to be accessed by the FPGA pre-fetch logic in case of a basic block that spans
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across multiple cache blocks. Recent FPGA implementations of AES manage
to achieve high throughput by pipelining the execution path and unrolling
techniques [19]. The AES and SHA-1 implementations chosen by our model
is one that minimizes the operational latency since high throughput is not
the target in this architecture. The timing requirements for implementing
these algorithms on a Xilinx FPGA were obtained from [11,12] The 10 FPGA
cycles for AES [12] encryption/decryption translates into 20 processor penalty
cycles that are added to the cache miss penalty. The FPGA implementation
of SHA-1 takes 82 FPGA cycles which translates to 164 processor cycles. In
the case where CRC is used in place of SHA-1, the guard takes 2 cycles. The
other Guard processing time requirement is 1 cycle for address validation. The
space utilization by the fpga guard, to implement the various algorithms, is
low compared to the amount of logic available on the chips that we considered.
For example, the aes-decryption takes 284 slices out of 10K available slices on
a Xilinx Virtex2Pro [26].

The cache miss penalty can be computed according to the equation :

MissPenalty = (%] x (AES DecryptionCycles + Signature —

Computation + ValidationCycles) + MemAccess

We evaluated the effectiveness of our approach in terms of the performance
overhead incurred by our techniques when compared to the execution time to
the baseline case where no security mechanism is used. Figure 7 summarizes
the performance penalties, for each of our security schemes, in terms of per-
centage increase in execution time of the application over the baseline case for
each of the benchmarks. For example, the third column (labelled Encryption
Labels with internal storage) for the benchmark fft shows that this security
scheme resulted in a 13.35% increase in execution time. While we used un-
encrypted execution as our baseline, we note that in an encrypted system
the baseline case should be when instructions and data are encrypted, i.e.,
the baseline case should be the second column in the table (labelled “encryp-
tion”). Using the encrypted execution scheme as the baseline would result in
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a smaller increase in performance penalties for our system. The performance
penalties for instruction protection schemes and data protection schemes are
shown separately in the Figure, under the columns for Instruction and Data
categories. For protection of instructions, we analyzed the performance of in-
tegrity protection schemes using (1) CRC and (2) SHA-1 — the columns labeled
“Encryption, Labels” refer to using a CRC with basic block labels and code
followed by encryption, and the “Encryption,Hashing,Labels” refers to using
SHA-1 along with the block labels followed by encryption. In addition, we
tested each of the two instruction protection schemes for the cases where we
stored the signature inside the block (shown as internal storage) and external
to the block (referred to as external storage).

Instructions Data
Encryption, |Encryption,
Encryption, |[Encryption,| hashing, | hashing,
labels labels labels labels Encryption,
(internal | (external | (internal | (external Encryption,| hashing,
Benchmark Encryption| storage) | storage) | storage) | storage) [Encryption| labels labels
bitcount 0.03 948 0.03 4741 0.19 0.02 0.02 0.07
crc 0.02 17.03 0.02 99.16 0.15 0.02 0.02 0.06
Dijkstra 0.02 1157 0.03 58.02 054 5.27 550 15.62
fit 0.08 13.35 0.09 39.16 125 380 389 10.71
fitinverse 0.07 14.09 0.08 4754 352 1220 1247 3326
patricia 0.04 44,05 0.05 167359 047 2.74 281 8.74
sha 0.07 525 0.08 22.11 049 0.10 0.11 031
stringsearch 495 2054 5.69 11048 38.30 9.75 10.23 29.63
susan.smoothing 0.04 495 0.05 2460 031 0.16 0.17 049
susan.edges 0.82 569 0.94 18.40 5.74 6.84 706 19.28
susan.corners 150 780 1.73 26.24 1155 13.00 1341 36.17
field 0.01 228 0.01 1102 0.08 0.03 0.03 0.08
pointer 0.02 6.74 0.02 3372 0.13 0.02 0.02 0.06
tc 459 12.65 5.28 70.50 35.24 4.73 496 1427
update 8.04 2312 9.25 114.29 62.22 9.71 10.18 29.39
Average 1.35 13.24 1.56 159.75 10.68 4.56 4.73 13.21

Fig. 7. Performance of Instruction and Data Protection Schemes as Percentage
Increase in Execution time

Examining the CRC method (i.e., the column labeled “Encryption, Labels (in-
ternal storage)”), we observe performance penalties that range from 2% (field
benchmark) to 44% (for Patricia). This penalty is a function of both the cache
miss penalty and the extra execution cycles due to the NOPs inserted. Now
consider the third column, which shows the performance of the CRC method
when the signatures are stored outside the code block. As expected, due to
the absence of the NOPs, the performance penalties are significantly lower
than the first case and on average gives an order of magnitude improvement.
However, we note that the penalties in some cases are also a result of the cache
miss rate being increased. Our experiments demonstrate that internal storage
of integrity information yields a higher performance penalty due to two rea-
sons. First, as we observed in the case of patricia, insertion of extra NOPs
resulted in a much higher cache miss rate and thus a very high performance
penalty (since each cache miss incurs a miss penalty). Second, as we observed
in the case of cre, even though the case miss rate did not significantly change,
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the performance penalty still increased due to frequent execution of the extra
instructions (which appear as NOPs). Overall, the average performance penal-
ties (across all benchmarks) are 13.2% when CRC labels are stored inside the
code blocks and there is an order of magnitude improvement to 1.5% when
these are stored externally. In fact, the performance penalty with external
storage is not significantly different from the baseline encrypted execution.
Moving to the data protection columns, we observe that the average perfor-
mance is comparable to just using encryption. Recall that for data protection,
we store the signatures externally.

Comparing the CRC and SHA-1 signature schemes, we observe that the re-
sults are consistent with the overheads of these two schemes. As shown in
column 4 of Figure 7, when the hashes are stored inside the code blocks, we
incur very high performance penalties in a number of benchmarks. Once again
we observed that the Patricia benchmark results in very high cache miss rates
and therefore high performance penalties. As with the CRC scheme, external
storage (column 5) improves performance by an order of magnitude. Overall,
the average performance penalties (across all benchmarks) when the hashes
are stored externally is comparable to the CRC scheme with internal storage.
However, when comparing each scheme with the same storage scheme we ob-
serve that using SHA-1 results in an order of magnitude larger penalty. As can
be seen from column 8 of Figure 7, similar trends hold for data protection.

In summary, protecting both instructions and data results in a performance
penalty between <1% and 9% when we store CRC signatures external to the
code blocks. In addition, their performance is not noticeably different from
using just encryption and we conclude that our protection mechanisms are
capable of protecting EED platforms with negligible overhead. We found that
the cache miss rates in most of our benchmarks are very low, and therefore
the miss penalty (due to decryption and signature verification) is not incurred
frequently. Evaluating benchmarks, such as the SPEC benchmarks, with a
higher cache miss rates will provide a better picture of how our CODESSEAL
approach performs on more general applications (as opposed to embedded
applications). We also observe that the performance penalties would be higher
if the gap between processor speed and FPGA speed increases.

7 Conclusions and Future Work

This paper presented a joint hardware and software solution to protection of
software from the class of attacks we refer to as EED attacks. In such attacks,
even if an application’s instructions and data are encrypted, an entire series
of attacks on integrity and flow of control are still possible when the system
is physically captured. We presented a system — CODESSEAL — which relies
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on the software (compiler) side to add protection to the program and on the
hardware (FPGA) side to dynamically verify the software and its data at run-
time with low performance penalties. We examined different security schemes,
which represent tradeoffs in security and performance, and different architec-
ture implementations for these. Our simulation studies show that some of our
security schemes incurred very low performance penalties when compared to
the baseline case of encrypted execution. Based on this observation we con-
clude that strong integrity and control-flow protections can be provided in
our system without adversely affecting any timing constraints in the embed-
ded system. Our approach is transparent to software developers. In contrast to
past approaches, our approach augments existing processor with the on-chip
FPGA logic and thereby does not require making changes to the processor
design, As a result we believe our approach can be applied to any embedded
system. We have currently tested our scheme on a suite of benchmarks, de-
signed specifically for embedded systems. Our future plans include testing it
on larger industry-accepted benchmarks, such as the SPEC benchmarks, and
exploring architectural optimizations.
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