
No Principal Too Small: Memory Access Control
for Fine-Grained Protection Domains

Abstract—Modern programs comprise multiple threads of
execution inside a single principal—the process—with a single
protection domain, usually a page table. We propose a hardware-
enforced, fine-grained memory protection mechanism to divide
the process into smaller principals and multiple protection
domains. Our approach supports modern software engineering
better than traditional processes by enabling developers to
align software components with protection mechanisms. We
implemented our architecture using a cycle-accurate simulator
of a complex out-of-order pipeline and evaluate our solution
using open-source benchmarks and synthetic microbenchmarks
designed specifically to stress our system.

I. INTRODUCTION

Modern applications increasingly use untrusted third-party
code to decrease development time and improve features.
Software reuse has become such a widely accepted software
engineering practice that experts estimate over 99% of ex-
ecuted instructions in US Department of Defense software
come from commercial off-the-shelf components for which
the vendor does not supply the source code [1]. Demand
for features puts pressure on developers to allow user cus-
tomization: Web servers like Apache [2] and browsers like
Firefox [3] allow users to download third-party plugins that run
directly as part of the application. Unfortunately software reuse
and extensibility have led to safety and security problems.
Symantec reports [4] at least 300 vulnerabilities for web
browser plugins during 2010, and 500 in browsers themselves.
The Ariane rocket crashed shortly after its first take-off causing
the loss of about $500 million USD due to improper reuse of
a software component [5]. A flaw in the software that handles
tiff files for the iPhone and Sony PSP [6], [7] was exploited
to allow users to run unlicensed applications that are not
signed by the manufacturer. Despite such problems, economic
pressure and user demands push software development toward
components and plugins.

Application developers can use software isolation to prevent
exploits from propagating beyond a vulnerable software com-
ponent. Software isolation dates back to the first generation
of time-sharing machines, from which Saltzer and Schroeder
[8] defined a common terminology for memory protection.
We adopt from their terminology the notions of principal
and domain. A principal is the entity to which authoriza-
tions are granted. A protection domain is the set of objects
(memory) that currently may be accessed by a principal.
Modern hardware and OS mechanisms support the process
as a principal and the virtual address space (page table) as a
protection domain. Such mechanisms can be used to isolate
software components: Chromium [9] is a web browser that

renders each web page in a separate process from the main
browser. But widespread adoption of process-based component
isolation is discouraged by engineering costs, performance
loss, and philosophical idealogy. (Open-source projects like
GNU [10] encourage tight integration of dynamic plugins and
base applications because of the copyleft philosophy of the
GNU Public License.)

Fine-grained memory protection can divide an application
into its constituent components so each can be given a smaller
principal and protection domain that aligns with modular
software design. In this paper we describe the design, im-
plementation, and evaluation of a solution for fine-grained
memory protection. We designed a hardware reference monitor
that checks each memory access for compliance to a strict set
of access control permissions; previous solutions for memory
protection have shown that such checks can be efficient in
hardware [11], [12], [13].

Our work improves the state-of-the-art by demonstrating
that modern systems can use fine-grained principals and pro-
tection domains efficiently even when considering complex
processor pipelines and concurrent applications. Although
fine-grained memory protection has been proposed in the past
(see Section IV), a novel aspect of our solution is that a single
thread of execution can be subdivided and internally isolated
into multiple, finer-grained principals. We implemented our
reference monitor in a full system simulator of a modern out-
of-order processor; for multithreaded applications our refer-
ence monitor requires systems software support for which we
modified RTEMS (Real-Time Executive for Multiprocessor
Systems). We evaluated our implementation of architectural
and software modifications using a comprehensive set of
commercially representative embedded systems benchmarks
and a synthetic microbenchmark that exercises the refer-
ence monitor. Our experimental results show that the single-
threaded performance overhead of applying our solution (to
the benchmarks we used) varies from as low as 0.01% to as
high as 12.17% with an average increase in execution time
of 2.28%. We view these numbers as modest with respect to
the security and safety gains made by achieving fine-grained
memory protection.

II. HARDWARE CONTAINERS

Fine-grained memory protection can prevent unauthorized
accesses between components of a program, which is often
an early step in a sophisticated high-level attack. Our solution
divides any code base into small units (functions/procedures)
and creates strict bounds for each. With this approach we

prevent several classes of attacks: memory scanning, buffer
overflows, raw memory writes.

Our solution’s isolation primitive is the container, which
we define as the collection of executable code (a set of
functions) together with an enforceable list of permissions
and metadata that restrict the code’s access to memory. Our
hardware reference monitor mediates interactions between
containers by interposing on accesses to instruction memory
and changing the reference monitor state when the executing
code calls a function belonging to a different container. We
term this change in state a security context switch meaning
that the context for making security-related decisions changes.
Because the reference monitor manages container permissions
and state we call it the Container Manager (CM). The
rest of this section describes the design of our system—
including memory permissions, the internal design of the CM,
integration of the CM with a complex out-of-order pipeline,
and systems software support for multitasking—and practical
considerations that arose during implementation.

A. Memory Permissions

The CM grants to executing code the access permissions to
memory regions according to preconfigured permission lists
and runtime permission changes. Memory access permissions
include read, write, execute, and delegate. The first three of
these should be familiar; read allows load instructions, write
allows store instructions, and execute allows new code to run.
Execute permissions accomodate dynamically loaded libraries,
plugins and function pointers. The delegate permission prop-
agates permissions between containers; in particular, the lack
of the delegate permission prevents a container from passing
permissions to any other container.

Usually a compiler can extract memory permissions along
with memory allocations for program variables. Sometimes,
however, the compiler cannot extract permissions: when source
code is unavailable; when a system-wide runtime policy con-
flicts with the expected compile-time policy; and when dy-
namic memory references cannot be determined statically. For
unavailable source code a developer can assemble permissions
externally to the code and link them into the executable. When
the compiled permissions conflict with a system-level policy
the system will need to replace the program’s permissions at
load time, which can be solved by using dynamic linking for
the permissions. Dynamic memory needs more support, which
we describe in the remainder of this section.

A dynamic memory range poses two problems for per-
missions extraction: the base address and size. Often the
base address is unknown until the heap allocator supplies
the address. In many cases a static analysis tool can validate
if dynamic ranges are accessed safely, but exceptions such
as unsafe memory references and pointer arithmetic require
runtime support [14], [15]. For each dynamic memory region
that program code may access, the program must inform
the CM about the base address and size of the region so
that the CM can validate memory accesses. Our solution
comprises a set of new instructions and CM logic that enables

application code to handle dynamic permission creation and
delegation. When compile-time tools cannot determine the
bounds for a pointer reference, a programmer must intervene
to disambiguate it.

We introduce a compiler primitive, ALLOW, that permits
both compiler-generated and manual annotations for bound-
ing memory accesses. To simplify permissions management
the CM automatically revokes dynamic permissions when
a container exits (code returns to a function in a different
container). In other words, an ALLOW gives permissions only
to an instance of a container and automatically revokes the
permissions once the container goes out of scope. A container
uses the same primitive to return dynamic data with the
access permissions required. Our approach has the benefit that
the target of an ALLOW is implicit; the current container
gives permissions either to the next callee container, or the
permissions are passed to the caller container upon a return.
Figure 1 shows some examples of code using ALLOW.

Fig. 1. Using ALLOW: (a) function foo() does not give permissions on buff
before calling bar(), and at runtime the CM will prevent bar() from writing
into buff. (b) foo() gives read and write permissions on the whole range of
buff before calling bar(), which rewrites the data in buff; (c) bar() is a factory
function that passes control for the created buffer to the caller with delegate
permission so the caller can give permissions on the buffer to other containers.

Permission delegation enables access permissions to follow
the flow of a program’s call stack. We bootstrap permissions
by initiating the heap allocator (new/delete/malloc/free) with
ownership over the whole heap. We also modify the heap
allocator so that dynamic memory is allocated in containers
and permissions are granted to the callee by using ALLOW.

When allocating a new buffer the allocator will do its normal
job to allocate space, and then it will return the buffer with
access permissions only for the buffer. Our approach to pro-
tecting dynamic memory reduces the attack surface of heap-
allocated data to be exactly those buffers that are accessible for
normal program use; heap metadata, unallocated heap space,
and unshared memory regions are protected implicitly.

Because dynamic permissions follow the call stack, the
CM can store dynamic permissions of past containers in a
permissions stack that provides efficient storage and retrieval
in the usual case of a sequential execution stream. During
a security context switch induced by a call instruction the
CM pushes all dynamic permissions of the current container
onto the permissions stack, so that during a return the security
context switch can pop the permissions stack to load the
dynamic permissions of the caller container into the CM.

Compiler-assisted permission extraction and delegation re-
duce the effort of writing programs that use fine-grained mem-
ory protection. When the compiler cannot resolve ambiguous
memory references, the ALLOW primitive can be invoked
directly in source code to control memory access permissions.
Our solution allows permissions to follow the program control
flow naturally, thus allowing local decisions about access
rights and an efficient mechanism—the permission stack—for
managing dynamic permissions.

B. Container Manager Details

We have so far treated the CM as a black box that tracks
containers, executes new instructions for permissions man-
agement, loads permission lists, manages dynamic permission
changes, validates memory accesses, and handles access con-
trol violations. The CM’s internal components, shown in the
architectural overview in figure 2, include

• the Container Identification Table: holds the definitions
of all containers in a program comprising mainly their
entry points and the location of permission lists.

• the Container Runtime Record: holds the currently exe-
cuting container’s permission list, which includes both a
static and dynamic part. The static part contains the acces-
sible memory ranges resolved at compile-time, the code
range of the container, the full list of permissible jumps
to other containers,and a function pointer to a recovery
routine for handling security violations. The dynamic part
is the set of dynamic permissions on memory ranges that
have been granted from other containers by the ALLOW
primitive.

• the Dynamic Permissions Buffer: a buffer for storing
dynamic permission between container switches.

• the Permissions Cache: although not part of the CM
proper, this cache stores the recently used static and dy-
namic permissions. All permissions loading goes through
the permissions cache.

These components play a role in how the CM handles the
following container-related execution events:
Program Load When the loader initializes memory with
the program’s code and data it also loads the Container

Fig. 2. Overview of how the CM fits into a typical architecture. The current
container (shown in red in the Container Identification Table) corresponds to
the security context residing in the CRR. The Dynamic Permissions Buffer
is a temporary storage area for permissions that will be given to the next
container to execute.

Identification Table.
Context switch During a context switch the OS is responsible
for saving and loading this table. See section II-D for more
container details related to multitasking.
Security context switch A permissible jump—usually a
function call or return—from one container to another initiates
a security context switch. On a call the CM pushes the CRR’s
dynamic permissions on to the permission stack, discards the
caller’s static part of the CRR, fetches the static part of the
callee’s CRR from memory, moves the Dynamic Permission
Buffer into the CRR, and stores the return address onto an
internal stack. On a return the CM verifies the return address
against its internal stack, discards the callee’s CRR, fetches
the static part of the caller’s CRR, pops the permissions stack
to restore the caller’s dynamic part of the CRR, and merges
the Dynamic Permissions Buffer into the CRR. Similar to
any hardware stack, the return address and permissions stacks
enforce an expected call tree structure. Improper returns or
setjmp/longjmp violate this assumption. Although we currently
do not support sejmp/longjmp functionality, we could add the
necessary control mechanisms to the OS and C library to
handle such functionality.
Legal behavior inside a container Code executing inside a
container is permitted to read and write memory in accordance
with the permissions in the CRR.
Executing ALLOW The CM executes ALLOW to enable
containers to propagate permissions dynamically. After ver-
ifying that the current container has delegate privilege on
the memory range, the CM adds the range to the Dynamic
Permissions Buffer. As explained above, the security context
switch merges the dynamic permissions into the CRR.
Security violation A security exception is raised whenever
the currently executing container attempts to take an imper-
missible action, for example fetching an instruction from a
memory location without execute permission, returning to a

different location than the original caller, calling a container
not listed in the permissible calls list, executing ALLOW on
a memory range without delegate permissions, or attempting
to escalate permissions by passing ALLOW a superset of the
container’s permissions on a memory range. For any security
violation the CM records the details of the violation (type,
memory address, operation, source and destination container)
and then invokes the recovery routine (exception handler)
listed in the CRR.

The CM’s most frequent operation is validating memory
accesses—instruction fetches, and data loads/stores—against
the permission tables in the CRR. Multiple such operations
can occur simultaneously every clock cycle, so any delays
will degrade execution performance significantly. To accelerate
memory access searches we use content addressable memory
(CAM), which has been widely used for fast searches such as
in cache indexing using translation lookaside buffers (TLBs)
and high speed routing.

CAMs are specially-designed memory modules that allow
for addressing memory by the value rather than index for
a fast hardware search. A shortcoming of typical CAMs
is that the lookup can only be done for a fixed value, so
checking for a range of values needs several accesses to
the CAM. Researchers in routing and networking appliances
designed specialized CAM with extended comparator circuitry
for applications that require range checking (such as port
ranges in IP lookups) [16].

Checking which memory range a particular access belongs
to fits in the same usage pattern for both instruction fetches
(to which function does it belong) and loads/stores (if the
range is in the access list then validate permissions for that
range, otherwise trigger an access violation). Delays for such
checking is in the range of typical L1 cache hit latency (1-3
processor cycles) and occur in parallel to cache accesses.

C. Pipeline Integration

A modern out-of-order processor contains a complex
pipeline that is tuned for maximum execution throughput and
minimum stall cycles. Our design accordingly strives to min-
imize the delays caused by memory validation and maximize
code parallelism while balancing the need for security checks
and updates to the CM state. All memory accesses—loads,
stores, and instruction fetches—must be validated by the CM,
and we modify the pipeline to handle each kind of memory
access. Figure 3 shows a diagram of a simplified pipeline with
the integration of the CM. We modify two (conceptual) stages
of the pipeline: fetch and commit.

The fetch stage modifies the effective program counter
(PC) address, which identifies the currently active container.
(Using the PC was a conscious design decision that elides
namespace problems and potential attacks that would decouple
the name of a container from the instructions it executes.) The
instruction fetch stage routes through the CM so that the PC is
available to infer the current security context. While executing
within a container the fetch will belong to the current container
and the CM does nothing. When the PC indicates a new

Fig. 3. A simplified view of a processor pipeline. The CM hooks into
the fetch and commit (write-back) stages of the pipeline to validate memory
accesses efficiently.

container is being entered the CM initiates a security context
switch, during which time the fetch stage of the pipeline
stalls until all instructions belonging to the active container
clear the pipeline and enough of the new security context has
been loaded to validate the fetched instruction. Most compiler
optimizations and code dependencies do not span function
calls, and we found that stalling the pipeline simplifies CM
state at an acceptable performance vs complexity tradeoff.

Other than instruction fetching, the memory accesses as
seen by the pipeline are speculative loads/stores that make
visible changes to architecture state during the commit (or
similar) stage. The memory address of such operations are
known shortly after the execute stage. Validating such memory
accesses can be done in two ways: as a parallel memory access
permission check with the memory access or as an in-order
extension of the commit stage of the pipeline. The second
approach is simpler to implement and has no influence on the
sensitive tuning of the pipeline timing. Another advantage is
that waiting for the speculative state to be resolved results in
fewer lookups into the permission tables because the squashed
operations will not try to validate permission.

The ALLOW primitive and its variants are implemented
as specialized implementation dependent instructions, and
executed by the container manager in a co-processor configu-
ration.

D. Concurrency Support

The traditional model of processes and threads strongly
relates to protection boundaries: Within a process one or
more execution threads allows for multiple sequences of
instructions to execute concurrently sharing access permissions
to process resources. Many modern programming paradigms
require concurrency, and they often ignore the notion of
protection among the various execution threads because the
process model does not give them any choice. With some
systems software support containers easily supports concurrent
programming with a twist in the protection model: instead of
having multiple execution sequences (threads) inside a single

protection domain, containers supports multiple protection
domains inside a single execution sequence.

We refer to the continuous execution sequence containing
one more more containers as a task. (Some readers may be
familiar with Ada or real-time tasks, which correspond well
with our use of the term). Multiple tasks have isolated stacks
and heap space, but they can directly share memory if their
containers have appropriate permissions to the shared data
structures. Tasks share access to static data by setting the
appropriate static permissions at load time. As opposed to
traditional lightweight processes (threads) the heap memory
is not shared between tasks. In order to share data between
separate tasks the sharer needs to allow access explicitly to
the data by invoking a new system call, share. share adds
a new entry in the appropriate destination container’s dynamic
permission list.

When the OS does a context switch—swapping from one
execution context (task) to another—it saves/restores the ex-
ecution context, such as registers and the PC, to/from a data
structure called the task (thread or process) control block or
TCB. When the OS initiates a task switch, it notifies the
container manager by a dedicated instruction CTXSWITCH
that handles the container context switch before allowing the
new task to continue execution.

CTXSWITCH saves/restores the Dynamic Permissions
Buffer and dynamic permissions from the CRR to the top of
the permission stack of the previous/next task. The instruction
also saves/restores the Container Identification Table as part
of the TCB.

E. Performance Considerations

Our approach for fine-grained memory protection involves
many low-level operations in the processor that can cause
performance loss when using our security solution: secu-
rity context switches may happen as often as each function
call/return, and additional code executes to delegate dynamic
memory permissions. We have given careful consideration to
each of these potential sources of performance loss in order to
minimize the negative impact of our approach, and we present
some optimizations to reduce overhead.

a) Security context switches: When a security context
switch happens and the new context is not loaded into the
CM the processor is stalled and no instruction is allowed
to retire. We explore three strategies for optimizing context
switches: partial container checking, container windowing, and
bus widening.
Partial checks allow loads and stores to be validated against
a partially loaded permissions list. If a hit occurs the memory
operation is valid, otherwise the CM continues to stall the
pipeline and retries the memory access when the permission
list finishes loading.
Windowing mimics the register window behavior of the
SPARC architecture. The basic idea is to have storage in the
CM for multiple CRRs that can be rotated on a security context
switch. Writing out the older contexts to memory could be
deferred or done in the background while execution continues

Name Value Name Value
Cores 1 Inst Window Size 32

Branch Predictor YAGS
L1 Dcache 8KB 4xassoc Reg Window Sets 8
L1 ICache 16KB 4xassoc L2 Latency 23 cycles
L2 cache 3MB 12xassoc DRam Latency 80 cycles

TABLE I
SIMULATED ARCHITECTURAL PARAMETERS

with the new context. Such a mechanism would reduce many
of the memory transfers during a security context switch, but
would increase the chip space used by the CM.
Bus widening reduces the bandwidth bottleneck between
the CM and the permissions cache. For register to memory
operations a word-size bus (16/32/64 bits) is typical: matching
the size of the register to the memory load/store makes sense,
since a larger bus will have higher latency (and power cost)
and provide little throughput benefit if the data size is less
than the bus width. For moving data between the CM and the
permissions cache, however, the data sizes are larger than one
register—especially during a security context switch, for which
the CM transfers large continuous sequences of permission
lists. Increasing the bus width allows the CM to move data at
greater throughput because plenty of data are available.

b) ALLOWM: ALLOW for multiple ranges: Complex
data structures such as linked lists, trees, or graphs pose a
challenge for dynamic permission assignments. In order to
pass a complete structure from one container to another the
same processing as traversing the data structure is necessary
to delegate permissions. When data nodes are distributed over
a large memory space this traversal can be time consuming.
To optimize such a scenario we created a variant of ALLOW
called ALLOWM (for allow multi) that takes as parameters the
number of ranges and the location in memory of a security per-
mission data structure that holds multiple delegation attributes.
Such security attributes can be made part of the data structure
itself and maintained by the data structure operations so that
permissions can be reused without re-traversing the structure.

III. EXPERIMENTS AND RESULTS

We implemented the CM on top of a modern processor
architecture based on the UltraSPARC III architecture. The
UltraSPARC III represents an iteration of a long line of
RISC processor designs, and it is equipped with state-of-the-
art architectural features. GEMS/Opal [17] provides a cycle
accurate micro-architecture simulator and cache model for
this architecture. GEMS relies on WindRiver Simics [18] for
device models and functional coherency when used for full
system simulations. We implemented extensions to GEMS
and plugins for Simics to emulate the hardware features
of our reference monitor. Table I summarizes some of the
simulated processor parameters, which we chose to match
typical system-on-chip and embedded platforms available as
commercial products.

To demonstrate the feasibility of the fine-grained memory
access control in a complex software environment we chose

RTEMS [19] as a suitable OS. We developed a Board Sup-
port Package (BSP) for the UltraSPARC III (and OpenSparc
Niagara) and contributed it as the first 64-bit target port for
RTEMS; it is now part of the upstream RTEMS distribution.
RTEMS is POSIX-compliant and offers support for custom
task extensions including a context switch call-out, which we
utilized to implement the container context switch.

We evaluate the performance of our solution with experi-
ments using benchmark applications from MiBench [20], the
Data Intensive Systems (DIS) benchmark suite [21], a reduced
size Dhrystone test, and the heap-intensive Richards bench-
mark [22]. We also designed a synthetic microbenchmark that
can vary container-related code features such as the rate of
function calls, the ratio of dynamic to static memory accesses,
the ratio of CPU-bound to memory-bound code, the layout of
function bodies, and the size of permission lists.

Each benchmark was executed on the baseline platform, and
then with the modified architecture with varying architectural
parameters and optimizations. We compute performance over-
head as the change in the number of pipeline cycles when
benchmarks execute with and without fine-grained memory
protection. Graphical results are presented as the percent
overhead compared with the baseline execution time, so a
lower percentage represents better performance.

Single-Threaded Performance. Our first set of experiments
test the performance impact of using containers to protect
single-threaded applications and the effectiveness of the opti-
mizations described in section II-E. For these experiments we
modified the benchmarks, RTEMS system calls, and support
libraries to use fine-grained memory protection with containers
at the granularity of one function per container. Interrupts were
configured to run in the security context of the application, so
that interrupt handlers can execute at any time without causing
a protection violation.

Figure 4 shows the performance as the percent difference
in execution time measured in processor cycles between our

Fig. 5. Multithreaded performance. Overhead of context switch time
respective to whole program execution time when running crc, susan (corners
and edges), and dhrystone in separate tasks. We include the overhead from the
usual task context switching (task context) above which remains the overhead
caused by using containers for fine-grained memory protection (containers).

design and the unmodified architecture. The Richards bench-
mark, which has a high function call frequency and uses a lot
of dynamically-allocated sparse data structures, exhibits the
worst performance overhead at 12.17%.

Multithreaded Performance. For our next set of experi-
ments we concentrate on the added task context switch over-
head due to containers. In these experiments we constructed
a multithreaded program by placing individual benchmarks
from crc, susan (corners and edges), and dhrystone in their
own RTEMS task. Figure 5 shows the performance overhead
of this program with preemptive round-robin scheduling with
preemption frequency increasing from 0 (no preemption; tasks
run sequentially) to 1 KHz. On context switches we execute a
custom RTEMS task extension. We save the security context
with the task context using a single CTXSWITCH instruc-
tion. Not accounting for the overhead of executing the task
extensions, the overhead for using containers grows slowly in
relation to the preemption frequency.

Function Call Frequency. When each container holds a
single function every function call triggers a security context

Fig. 4. Single-threaded performance. Performance overhead for each benchmark using containers without optimization (simple) and with each optimization
applied: ideal container windowing (windowing), partial container checking (partial checks), doubling the CM-cache bus (double bus), quadrupling the CM-
cache bus (quad bus), and the combination of windowing, partial checks, and quad bus (combined).

Fig. 6. Function Call Frequency. Performance overhead as the number of
function calls (per 1000 instructions) increases.

Fig. 7. Sparse Memory Access and Allow Multiple (ALLOWM). The
overhead of our solution increases with the number of memory ranges
that get passed between containers. Two extremes are when every permis-
sion is determined at runtime with the ALLOW statement (dynamic) and
when permissions are determined at compile-time and put in a list (static).
ALLOWM uses a table storing permissions for memory ranges that can
be passed to a function dynamically. We show the performance when the
ALLOWM permissions table is created at compile-time (multi), which shows
that ALLOWM can be nearly as efficient as using a static permissions list.

switch, so the frequency of function calls affects performance.
Figure 6 shows the performance degradation as the fre-

quency of function calls/returns increases. Each function ref-
erences both dynamic- and static-allocated memory. We used
our synthetic microbenchmark for this set of benchmarks, and
tuned the dynamic memory (execution of ALLOW instruc-
tions) to account for roughly 10% of the total overhead.

Sparse Data Structures. When data cells are not adjacent
in memory, each cell needs a separate memory permission
entry. In the worst case, passing a reference to such a data
structure to another principal for processing requires travers-
ing the entire data structure for permissions assignment. To
support such behavior a program can maintain a permission
table associated with a data structure, and update the table
when adding/removing elements to the data structure. The
ALLOWM instruction will pass permissions by taking as
argument the number of memory ranges and the location of
the permission table.

Figure 7 illustrates how performance degrades as permission

lists for each function invocation increase in length. While
maintaining a constant arithmetic and memory workload for
each function call, we increase the size of the access lists
for both a static and dynamic sparse data structure. Using
individual ALLOW calls for each data cell has a significant
performance overhead as the processor is busy executing the
extra instructions for each function call. Replacing the AL-
LOW statements with a single ALLOWM to the precomputed
permission table reduces the overhead for dynamic memory
closer to that of statically derived permissions.

Summary. We have demonstrated through a series of
experiments that fine-grained memory protection is practical
and obtainable. Architectural optimizations and careful de-
sign and integration of the CM with the processor pipeline
gives single-threaded performance a modest penalty for the
improved security that containers can provide. Multithreaded
benchmarks do not exhibit penalties much larger than those
of single-threaded benchmarks because the extra work of
managing the CM during a task context switch is small; the
dominant overhead becomes the task context switch time as
the frequency of context switching increases. Containers are
an effective solution for modern hardware and concurrent
applications.

IV. RELATED WORK

One approach to fine-grained memory protection is to
place each protection domain in a distinct set of pages and
then use the OS to modify page tables. Examples of this
approach include StackGuard [23] and HeapServer [24]. A
related solution is to divide an application into processes
that use inter-process communication (IPC) mediated by the
OS so that existing process and page-table protection can be
used; an example is the Chromium project [9]. Unfortunately
these solutions cannot support fine-grained principals because
calling into the kernel to change page tables or deliver IPC is
prohibitively slow. To circumvent such overhead others have
proposed custom hardware solutions designed for fine-grained
memory protection.

Mondrian Memory Protection (MMP) [13] uses a
hardware-traversed hierarchical trie that provides word-grained
read/write permission on data and thread-grained execute per-
mission. A TLB-like caching structure accelerates permission
checks based on locality. Permissions are encoded compactly
to minimize the amount of memory reserved for permis-
sion storage. Unfortunately compaction complicates permis-
sion changes, and frequent changes to permissions results in
frequent trie node updates that are difficult in hardware and
slow in software. MMP aims to protect large code modules
whose interaction is mediated by an OS. As such, the OS is
invoked every time a security context switch occurs. In MMP,
the smallest principal is a thread, whereas in our solution
individual function invocations within a thread are protected.

Shen et al. [25] leverage program properties to offer a mixed
TLB (for page-grained protection) and array-based (for word-
grained protection) permission checking. They achieve low

performance overheads, but do not offer fine-grained code
protection as we do.

Similarly to our work, MemTracker [11] tackles integration
with a complex out-of-order pipeline. The solution is designed
for validating the state of heap allocations to assist in debug-
ging memory errors, and is not intended for security. Also
MemTracker only tracks memory reads and writes and is not
concerned about instruction fetches, which must be monitored
to track the active principal.

InfoShield [26] proposes a hardware reference monitor
that holds the access permissions for a limited number of
memory locations. The limited number of protection zones—
and performance penalties that come with the extra instruc-
tions executed—make the scheme impractical for protecting
multiple interacting software components.

Arora et al. [27] enforce application-specified data proper-
ties at run-time by tagging data addresses with an additional
security tag. For example, using a single bit SECTAG can
mark read-only memory regions at a fine granularity. The
checker (reference monitor) can be set to interpret and enforce
the value of the security tag as specified by a program-wide
security policy. The solution works for protection domains
that are defined statically. When dealing with function-level
principals and dynamically allocated memory the solution
becomes impractical or infeasible.

Our solution differs from and improves on the related work
by enforcing permissions at a finer granularity of principal.
Our prior work1also supports a fine-grained principal but
without consideration for concurrency, out-of-order pipelines,
sparse data structures, or the architectural optimizations de-
scribed in this paper.

V. CONCLUSION

In this paper we have shown that HW enforced fine-
grained memory protection is a viable solution for security-
critical applications. The fine granularity of protection allows
for memory access control without requiring programmers
to hand-code page alignments or use inter-process commu-
nication when changing principals or protection domains. Our
solution includes protection mechanisms for handling dynamic
memory and concurrent applications with modest overhead.
We improve on prior art by supporting fine-grained principles
as small as functions and protection domains as small as a
word of memory all at a modest overhead.

REFERENCES

[1] V. R. Basili and B. Boehm, “COTS-based systems top 10 list,” Com-
puter, vol. 34, no. 5, pp. 91–95, May 2001.

[2] The Apache Software Foundation, “Apache httpd modules,”
http://httpd.apache.org/modules/, 2012.

[3] “Add-ons for firefox,” https://addons.mozilla.org/en-US/firefox, 2012.
[4] S. Corp., “Internet security threat report,” vol. 16, April 2011.
[5] J.-M. Jazequel and B. Meyer, “Design by contract: the lessons of ariane,”

Computer, vol. 30, no. 1, pp. 129 –130, jan 1997.
[6] “Apple itouch / iphone tiff image handling privilege escalation,”

http://osvdb.org/show/osvdb/38527, 2012.

1citations omitted for blind review

[7] “Sony psp photo viewer tiff file overflow,”
http://osvdb.org/show/osvdb/19665, 2012.

[8] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer system,” Proceedings of the IEEE, pp. 1278–1308, Sept 1975.

[9] C. Reis, A. Barth, and C. Pizano, “Browser security: lessons from google
chrome,” Commun. ACM, vol. 52, pp. 45–49, August 2009.

[10] “Gnu coding standards: 4.8 dynamic plug-in interfaces,” 2012. [Online].
Available: http://www.gnu.org/prep/standards/html node/Dynamic-
Plug 002dIn-Interfaces.html

[11] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access mon-
itoring and debugging,” High-Performance Computer Architecture, In-
ternational Symposium on, pp. 273–284, 2007.

[12] W. Shi, C. Lu, and H.-H. S. Lee, “Memory-centric security architecture,”
High performance embedded architectures and compilers, Barcelona,
Spain, November 17-18, 2005.

[13] E. Witchel, J. Cates, and K. Asanovic, “Mondrian memory protection,”
Proceedings of ASPLOS-X, Oct 2002.

[14] G. C. Necula, J. Condit, and M. Harren, “CCured: Type-safe retrofitting
of legacy software,” ACM Transactions on Programming Languages and
Systems (TOPLAS), 2004.

[15] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” Usenix Annual Technical Conference,
pages 275-288, Monterey, CA, Jun 2002.

[16] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended tcams,” Proceedings of IEEE International Conference on
Network Protocols (ICNP), 2003.

[17] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 92–99,
2005.

[18] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, pp. 50–58, February
2002.

[19] RTEMS, “http://www.rtems.com.”
[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” IEEE 4th Annual Workshop on Workload
Characterization, 2001.

[21] J. Manke and J. Wu, “Data-intensive system benchmark suite analysis
and specification,” Atlantic Aerospace Electronics Corp, 1999.

[22] M. Wolczko, “Benchmarking Java with Richards and DeltaBlue,” avail-
able at http://research.sun.com/people/mario/java benchmarking, 2006.

[23] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks,” USENIX Security Symposium,
1998.

[24] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and M. Prvulovic,
“Comprehensively and efficiently protecting the heap,” ACM SIGOPS
Operating Systems Review, Proceedings of the 2006 ASPLOS Confer-
ence, pp. 207 – 218, December 2006.

[25] J. Shen, G. Venkataramani, and M. Prvulovic, “Tradeoffs in fine-
grained heap memory protection,” Proceedings of the 1st workshop on
Architectural and system support for improving software dependability,
pp. 52 – 57, 2006.

[26] W. Shi, J. B. Fryman, G. Gu, H. H. S. Lee, Y. Zhang, and J. Yang,
“Infoshield: a security architecture for protecting information usage in
memory,” The Twelfth International Symposium on High-Performance
Computer Architecture, pp. 222–231, 2006.

[27] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha, “Architectural support
for run-time validation of program data properties,” IEEE Transactions
on very large scale integration(VLSI) systems, VOL. 15, NO. 5, May
2007.

