
Flexible Software Protection Using Hardware/Software Codesign Techniques

Abstract
A strong level of trust in the software running on an em-

bedded processor is a prerequisite for its widespread de-
ployment in any high-risk system. The expanding field of
software protection attempts to address the key steps used
by hackers in attacking a software system. In this pa-
per we present an efficient and tunable approach to some
problems in embedded software protection that utilizes a
hardware/software codesign methodology. By coupling our
protective compiler techniques with reconfigurable hard-
ware support, we allow for a greater flexibility of place-
ment on the security-performance spectrum than previously
proposed mainly-hardware or software approaches. Results
show that for most of our benchmarks, the average perfor-
mance penalty of our approach is less than 20%, and that
this number can be greatly improved upon with the proper
utilization of compiler and architectural optimizations.

1. Introduction

The emergence of embedded processors in high-risk de-
vices has highlighted the need for strengthening their se-
curity. Indeed, even when considering consumer applica-
tions, the new-found ubiquity of embedded processors com-
bined with the increased likelihood of networking capabili-
ties being included in even the simplest of these devices has
only intensified this focus on security. Hackers all over the
world know that the key steps to attacking a software sys-
tem is to first understand the software, and then to tamper
with the software to enable a variety of full-blown attacks.
The growing area of software protection aims to address the
problems of code understanding and code tampering along
with related problems of data tampering and authorization
circumvention. As piracy is a substantial economic prob-
lem, software protection is considered one of the most sig-
nificant outstanding challenges in security today [5]. The
more generic threat addressed by this paper comes from
hackers who modify program segments either statically or
dynamically to allow the execution of an arbitrary amount
of (potentially malicious) instructions while still maintain-
ing much of the original intended program behavior. Given
this backdrop, a necessary requirement for an embedded
software protection scheme is that it makes it difficult for
tampered code to execute, thereby providing a level of con-
fidence that any code that is allowed to run is authorized by
the user.

Our approach is motivated by the observation that prior
approaches, themselves fairly recent, tend to lie at two ex-
tremes of the security-performance spectrum. At one end
are highly secure hardware approaches using the Public-
Key Infrastructure (PKI) that require a substantial buy-in
from hardware manufacturers and can considerably slow-
down execution speed. The other end relies on obscurity, by

Processor
Core

I$

L1
Cache

D$

Buffers, 
Caches, etc.

Instruction
Filters

Instruction
Translators

Secure Hardware Component (FPGA)

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache

Unencrypted but 
with embedded 

codes

Encrypted 
portions

Hidden key in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Main Memory

Cryptographic
Primitives

Processor
Core

I$

L1
Cache

D$

Processor
Core

I$

L1
Cache

D$

Buffers, 
Caches, etc.

Instruction
Filters

Instruction
Translators

Secure Hardware Component (FPGA)

Other resrcs:
- DSPs
- FPGAs
- ASICs
- RAMs
- etc.

System Bus

L2
Cache

Unencrypted but 
with embedded 

codes

Encrypted 
portions

Hidden key in 
instructions

Instruction 
at offset d

Executable Program

A

d

A’

Main Memory

Cryptographic
Primitives

Figure 1. Conceptual view

either mangling the code to make it less understandable or
by burying checksum code-snippets in unlikely places. The
latter approach is not as secure but does not degrade perfor-
mance as much as the full PKI approach. These extremes
invite an approach that allows system designers to position
themselves where they choose on the security-performance
spectrum.

Our proposed method works as follows (see Figure 1).
The processor is supplemented with an FPGA-based se-
cure hardware component that is capable of fast decryption
and, more importantly, capable of recognizing and certify-
ing strings of keys hidden in regular unencrypted instruc-
tions. To allow a desired level of performance, our compiler
creates an executable with parts that are encrypted and parts
that are unencrypted but are still tamper-proof. Thus, in Fig-
ure 1, the first part of the executable is encrypted and will be
decrypted by the FPGA using a standard private key tech-
nique [6]. The second part of the executable shows an in-
struction block A containing a hidden key and, at a distance
d from A, an instruction A′. Upon recognizing A, the FPGA
will expect A′ = f(A) at distance d (where f is computed
inside the FPGA); if the executable is tampered with, this
match is highly unlikely to occur and the FPGA will halt
the processor. The programmability of the FPGA together
with the compiler’s ability to extract program structure and
transform intermediate code provides the broad range of pa-
rameters to explore security-performance tradeoffs.

We believe this approach has the following advantages:
(1) the compiler’s knowledge of program structure, it’s ex-
ecution profile, and the programmability of the FPGA al-
low for tuning of the security and performance of individ-
ual applications; (2) the approach is complementary to sev-
eral software-based code checking techniques proposed re-
cently [3, 4, 8]; (3) the use of FPGAs minimizes additional
hardware design and is applicable to a large number of com-
mercial processor platforms; (4) our processor/FPGA archi-
tecture is well-suited for future designs that utilize System-
on-Chip (SoC) technology. Results demonstrate that our
framework can be the successful basis for the development



of embedded applications that meet a wide range of security
and performance requirements.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of some of the more re-
cent research in the field of software security. Section 3
goes into more detail about our codesign approach, explain-
ing how a compiler can be modified to generate custom
hardware and software descriptions that together can im-
prove the overall system software security. In Section 4 we
examine the performance implications of our approach, and
we investigate the benefits of some hardware and software
optimizations that can be applied within our experimental
framework. Finally, in Section 5 we present our conclusions
alongside a discussion of future optimizations and analysis
techniques that are currently in development.

2. Related Work

Most other approaches to the general problem of soft-
ware protection tend to focus on mainly-hardware or
mainly-software solutions. Secure coprocessors are com-
putational devices that can be trusted to execute their soft-
ware in a trusted manner by running programs directly in
an encrypted form. A number of secure coprocessing so-
lutions have been designed and proposed, including sys-
tems such as IBM’s Abyss [14] and µAbyss systems [13].
In [9] an architecture is proposed for tamper resistant soft-
ware and a hardware implementation is provided, based on
an execute-only memory (XOM) that allows instructions
stored in memory to be executed but not manipulated. This
type of approaches, while extremely secure, can greatly im-
pact processor performance. Two key factors differentiate
our work from the XOM approach. One distinction is that
our architecture requires no changes to the processor itself.
Also, our choice of reconfigurable hardware permits a wide
range of optimizations that can shape the system security
and resultant performance on a per-application basis. Smart
cards, which can store sensitive computations and data with
little or no direct user I/O, can also be viewed as a type of
secure coprocessing [7, 12]. As noted in [3], a limitation
of smart cards is that they can only be used to protect small
fragments of code and data.

A common software-based protection technique is ob-
fuscation, whereby code is deliberately mangled while
maintaining correctness to make understanding difficult [4].
Obfuscating approaches range from simple encoding of
constants to more complex methods that rearrange or trans-
form code. In [3], the authors propose the concept of
guards, pieces of executable code that typically perform
checksums to protect against tampering. Similar dynamic
self-checking techniques for improving tamper resistance
are proposed in [8] and [1]. Proof-Carrying Code (PCC)
is essentially a self-checking mechanism by which a host
can verify code from an untrusted source [11]. Safety rules,
as part of a theorem-proving technique, are used on the host
as sufficient guarantees for proper program behavior. These
techniques strongly rely on the security of the checksum
computation itself; if these instructions are discovered by
the attacker, they can be easily disabled. In many system

LOAD X, 
LOAD Y, 
ADD R1, 
MOV 3, 
ADD R2, 
SUB 4,

.

.

.

BRZ  L1
Instruction filtering 

and hashing

Register sequence 
extraction

String 
encoding

R1
R2
R2
R1
R1
R2

P
ro

gr
am

 s
eg

m
en

t

“011001”

“R1 R2 R2 R1 R1 R2”

Match?

Implemented in FPGA

H (“BRZ”)

F (“011001”)

NO ∴∴∴∴ halt the 
processor

YES ∴∴∴∴ continue 
execution

Binary 
translation

LOAD X, 
LOAD Y, 
ADD R1, 
MOV 3, 
ADD R2, 
SUB 4,

.

.

.

BRZ  L1
Instruction filtering 

and hashing

Register sequence 
extraction

String 
encoding

R1
R2
R2
R1
R1
R2

P
ro

gr
am

 s
eg

m
en

t

“011001”

“R1 R2 R2 R1 R1 R2”

Match?

Implemented in FPGA

H (“BRZ”)

F (“011001”)

NO ∴∴∴∴ halt the 
processor

YES ∴∴∴∴ continue 
execution

Binary 
translation

Figure 2. An illustrative example

architectures it is relatively easy to build an automated tool
to reveal such software-based protective schemes. Our ap-
proach is complementary to many of these techniques, as
the checking computations can themselves be strengthened
by our HW/SW infrastructure.

3. Our Approach

3.1. An Illustrative Example

Consider a sample program as depicted on the left in Fig-
ure 2 and focus on the instruction stream. Initially, for il-
lustration, we will not consider the complexity introduced
by loops. The sequence of instructions comprising the in-
struction stream has instructions that use registers. We will
extract one register in each register-based instruction. Then,
the sequence of registers so used in the instruction stream is
called the register stream.

In the example, part of the register stream shown is: R1,
R2, R2, R1, R1, R2. The key observation is that this reg-
ister stream is determined by the register allocation module
of the compiler. In the FPGA hardware, the register stream
is extracted from the instruction stream. In addition, the
FPGA also extracts the opcode stream.

The example shows how R1 encodes 0 and R2 encodes
1 and therefore this particular sequence of registers corre-
sponds to the code 0 1 1 0 0 1. A binary translation compo-
nent in the FPGA simply flips the bits (various transforma-
tions are possible) in the register code to result in the key: 1
0 0 1 1 0. The key is then compared against a cryptographic
function of the opcode stream. In the example above, an
instruction filter module picks out an instruction following
the register sequence (at distance d, as in Figure 1) and then
compares (the function f in Figure 1) the key to the opcode.
If a match occurs, the program segment is considered valid.

The example illustrates the main ideas:

• The compiler performs instruction filtering to decide
which instructions in the opcode stream will be used
for comparisons.

• The compiler uses the flexibility of register allocation
to bury a code sequence in the register stream.

• The FPGA is programmed with an application-specific
configuration which would include some knowledge of
the overlying code structure.

• Upon execution, the instruction stream is piped
through the secure FPGA component.

2



• The FPGA then extracts both the filtered opcodes and
the register sequences for comparisons.

• If a violation is detected, the FPGA halts the processor.

If the sequence of instructions has been tampered with,
there is a very high probability that the register sequence
will be destroyed or that the opcode filtering will pick out
a different instruction. For example, if the filtering mech-
anism picks out the sixth opcode following a register se-
quence, any insertion or deletion of opcodes would result in
a failure.

3.2. General Approach

Our general approach is motivated by the observation
that, since register allocation is done by the compiler, there
is considerable freedom in selecting registers to allow for
any code to be passed to the FPGA. The registers need
not be used in contiguous instructions since it is only the
sequence that matters. Note that other approaches could
use instruction opcodes, immediate constants, or data ad-
dresses. However, because of its ease of use, and because of
the independence of register allocation from the rest of com-
pilation, using register sequences for our purpose makes the
most intuitive sense. It is important to mention, that when
examining a block of instructions to be protected using our
scheme, it will often be the case that the compiler will lack a
sufficient number of register-based instructions to perform
the custom encoding. In this case, additional instructions
which contain the desired sequence values but which other-
wise do not affect processor state will need to be inserted
by the compiler. This caveat comes with it a performance
penalty which we examine in Section 4.1.

The register sequence can be used to encode several
different items. For example, an authorization command
can be inserted, after which other codes may be passed to
the secure component. This technique can also be used
to achieve obfuscation by using a secret register-to-register
mapping in the FPGA. Thus, if the FPGA sees the sequence
(R1, R2, R1), this can be interpreted by the FPGA as an
intention to actually use R3. In this manner, the actual pro-
grammer intentions can be hidden through using a mapping
customized to a particular processor. The complexity of
the transformation can range from simple (no translation)
to complex (private-key based translation). Such flexibility
brings with it tradeoffs in hardware costs in terms of delay
and performance.

It is important to again note that our approach can
complement other techniques. Both code obfuscation and
checksum-based protection schemes can be used alongside
our approach. Clearly, the register allocation can be done
independent of the program restructuring techniques typi-
cally used in obfuscation [4]. Similarly, our approach can
be used with software checksum computations by ensuring
that the checksum computation is itself secure, by prevent-
ing routing around the computation and interfering with the
computation itself.

Finally, the strength of our approach is tunable in sev-
eral ways. The key length and the mapping space can be

software

hardware

FPGA 
Description

Secure 
Binary

C 
program

GCC 
Front-end

Data Flow 
Analysis

Register 
Allocation

Code 
Generation

RAM / 
ROM

Secure 
FPGA

Optional Key
Target CPU

Secure Compiler Backend

software

hardware

FPGA 
Description

Secure 
Binary

C 
program

GCC 
Front-end

Data Flow 
Analysis

Register 
Allocation

Code 
Generation

RAM / 
ROM

Secure 
FPGA

Optional Key
Target CPU

Secure Compiler Backend

software

hardware

FPGA 
Description

Secure 
Binary

C 
program

GCC 
Front-end

Data Flow 
Analysis

Register 
Allocation

Code 
Generation

RAM / 
ROM

Secure 
FPGA

Optional Key
Target CPU

Secure Compiler Backend

Figure 3. Compilation framework

increased, but at a computational cost. Furthermore, an op-
tional secret key can be used to make f a cryptographic hash
[2] for increased security. Similarly, by only using register
codes that are examined by the FPGA, a lower level of se-
curity is provided, but the executable is left compatible with
processors that do not contain the FPGA component. Most
importantly, the computations performed in the FPGA are
very efficient: there are counters, bit-registers and compara-
tors. All of these operations can be performed within a few
instruction cycles of a typical CPU.

4. Experimental Analysis

As previously mentioned, in the course of allocating reg-
isters to form key sequences, the compiler will often need
to insert instructions into the executable. As the desired
sequence length is increased this will consequently have a
negative impact on performance. Also, for our scheme to
work properly, the coarsest granularity of instructions that
can encompass a single sequence is a program’s basic block,
defined as a sub-sequence of instructions that contains only
one entry point and one exit point [10]. This is due to the
fact that if register sequences were allowed to span basic
blocks, the FPGA would have no guarantee that each in-
struction in a specific register sequence would be fetched
exactly once per validation. Consequently, by varying both
the register sequence length and the percentage of basic
blocks that are encoded using our technique, we can eval-
uate the security/performance tradeoffs inherent in our ap-
proach.

4.1. Initial Evaluation

Figure 3 shows our current compilation framework. Us-
ing a modified version of the gcc compiler targeting the
ARM instruction set, we implemented our register encod-
ing schemes into the data-flow analysis, register allocation,
and code generation phases of the gcc back-end. The out-
put of our compiler is (1) – the encrypted application binary
and (2) – a description file for the secure FPGA compo-

3



Benchmark Source Code Size # Instrs
adpcm MediaBench 8.0 KB 1.23M
g721 MediaBench 37.9 KB 8.67M

arm fir ARM AppsLib 44.0 KB .301M
susan MiBench 66.4 KB 2.22M

dijkstra MiBench 42.5 KB 7.77M
fft MiBench 69.2 KB 4.27M

Table 1. Selected benchmarks.

nent. We developed a custom hardware/software cosimu-
lator in order to obtain performance results for our experi-
ments. Our cycle-accurate simulator connects a commercial
ARM core simulator to a commercial HDL simulator over
a shared socket interface.

In order to test the effectiveness of our approach, we
adapted a diverse set of benchmarks from a variety of em-
bedded benchmark suites. These benchmarks are repre-
sentative of the tasks that would be required of embedded
processors used in multimedia and/or networking systems.
More details can be found in Table 1.

For our initial experiments, we configured our simulator
to model an ARM9TDMI core which contains sixteen, 32-
bit general purpose registers. The ARM core is configured
to operate at 200MHz and is combined with separate 8KB
instruction and data caches. Setting the memory bus clock
rate to be 66.7MHz, our cache miss latency before consider-
ing the FPGA access time is 150ns (∼30 CPU cycles). This
configuration is similar to that of the ARM920T processor.
Our default FPGA model runs at a clock speed identical to
that of the ARM core and requires an extra 3-5 cycles to
process and decode an instruction memory access. Using
our customized HW/SW cosimulator we first explored the
effects of our approach on performance and resultant secu-
rity by analyzing two main metrics: (1) the desired length
of the register sequence; and (2) the selection criteria for
inserting a sequence inside a suitable basic block.

Using our six benchmarks we simulated the effect of in-
creasing the encoded register sequence length on the overall
system performance when approximately 25% of the eli-
gible basic blocks of each benchmark are secured using a
random-selection algorithm. The results, as shown in Fig-
ure 4, are normalized to the performance of the unmodi-
fied case. As can be seen in the figure, these initial results
demonstrate the potential security/performance tradeoffs in-
herent in our approach. Overall, for most of the benchmarks
the performance is within 80% of the base case (no tam-
per proofing) when considering sequence lengths up to 16.
However, when considering our most secure case (when the
sequence length is 32), two of our benchmarks suffer a per-
formance penalty of over 25%. This decreased performance
is due to the fact that (1) the inserted instructions require ex-
tra cycles for their execution and that (2) the increased code
size can lead to more instruction cache misses. This par-
tially explains why our two largest benchmarks, susan and
fft, performed the best of the set.

In Figure 5 we now consider the case where our regis-
ter sequence length is kept at a constant value of 8, and the
effect of the aggressiveness of our random basic block se-
lection technique is examined. As we allow for a greater

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Register sequence length

P
er

fo
rm

an
ce

2 4 8 16 32
adpcm

2 4 8 16 32
g721

2 4 8 16 32
arm_fir

2 4 8 16 32
susan

2 4 8 16 32
dijkstra

2 4 8 16 32
fft

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Register sequence length

P
er

fo
rm

an
ce

2 4 8 16 32
adpcm

2 4 8 16 322 4 8 16 32
adpcm

2 4 8 16 32
g721

2 4 8 16 322 4 8 16 32
g721

2 4 8 16 32
arm_fir

2 4 8 16 322 4 8 16 32
arm_fir

2 4 8 16 32
susan

2 4 8 16 322 4 8 16 32
susan

2 4 8 16 32
dijkstra

2 4 8 16 322 4 8 16 32
dijkstra

2 4 8 16 32
fft

2 4 8 16 322 4 8 16 32
fft

Figure 4. Performance as a function of the
register sequence length, normalized to the
performance of the unmodified benchmarks.

number of basic blocks to be encoded, we see that there is a
limit to the performance of the resulting code. For the ma-
jority of our benchmarks, the performance in even the most
secure case is within 75% of the base case. However it is
to be noted that for our two smallest benchmarks (adpcm
and g721), selecting more than 50% of the eligible basic
blocks can have a drastic effect on performance. These re-
sults show that if it is possible for our compiler to select
the right basic blocks to be encoded with an appropriate se-
quence length value, we will be able to keep our perfor-
mance at an acceptable level while still increasing security.

4.2. Intelligent Basic Block Selection

In many cases, it would make sense for the application
developer to select the basic blocks to apply the register
code insertion technique on an individual basis. Appro-
priate targets for such a selection approach would be those
that are most likely to be attacked; some examples are basic
blocks that verify for serial numbers or that check to see if
a piece software is running from its original CD. However,
it may also be useful to cover a greater percentage of the
entire executable with such a technique, as doing so would
both increase the confidence that no block could be altered
and would hinder the static analysis of the vital protected
areas. To do this in a smarter fashion than the random se-
lection approach of the previous section, it is necessary to
first identify the root causes of the increase in total execu-
tion time.

Assuming a constant FPGA access latency, note that the
key source of performance degradation are the additional
instructions that may need to be added to form register se-
quences of the desired length. Given a basic block i of
length libblock and a requested sequence length of lkey regis-
ters, the transformed basic block length can be written as:

li
′

bblock = libblock + αi · lkey , (1)

where αi ∈ [0, 1] is the percentage of requested sequence

4



0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0% 20% 40% 60% 80% 100%

Percentage of basic blocks encoded

P
ef

o
rm

an
ce

adpcm

g721

arm_fir

susan

dijkstra

fft

Figure 5. Performance as a function of the rate
of encoding basic blocks, normalized to the
performance of the unmodified benchmarks.

length that cannot be encapsulated using register allocation.
For example, for a register sequence length of 8, a basic
block that can hide 6 of the needed key values in its orig-
inal instructions would have an αi value of 0.25, meaning
that 2 additional instructions would need to be inserted to
complete the sequence.

The number of extra pipeline cycles required by the exe-
cution of the inserted instructions is highly dependent on the
loop structure of the original basic blocks. Consequently
special consideration should be given to high-incidence
blocks (i.e. blocks that are deeply nested in loops). As-
suming that each basic block i is executed ni

iters due to its
containing loop structure, the total delay due to the execu-
tion of i can be estimated as:

tidelay = ni
iters · libblock · CPIi , (2)

where CPIi is the average number of cycles per instruc-
tion required of the instructions in basic block i. If basic
block i is selected for encoding using the register sequence
technique, the new total execution time can be estimated as:

ti
′

delay = ni
iters ·

(
libblock + αi · lkey

) · CPIi′ . (3)

This equation shows that an obvious approach in select-
ing basic blocks for encoding is to sort by increasing num-
ber of iterations. In practice, however, there will be several
blocks in an application that will not be fetched at all dur-
ing normal program execution. Applying dead code elim-
ination will not necessarily remove these blocks, as they
are quite often used for error handling or other function-
ality that is rarely needed but still vital. For this reason the
blocks where ni

iters = 0 are placed at the end of the ordered
list of eligible basic blocks. Also, it will be very likely that
ties will exist between different basic blocks with the same
ni

iters value. A suitable heuristic to sort these sets of blocks
can be developed by considering that a basic block with a
larger libblock value will have a relatively smaller number of
additional instruction cache misses after a register sequence
encoding when compared with other blocks with the same
ni

iters value but with a shorter original block length. For this

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0% 20% 40% 60% 80% 100%

Percentage of basic blocks encoded

P
ef

o
rm

an
ce

adpcm

g721

arm_fir

susan

dijkstra

fft

Figure 6. Performance improvements for
iteration-based block selection optimization,
relative to the randomly selected default.

reason blocks can be effectively sorted first by non-zero in-
creasing ni

iters values and then by decreasing libblock values.
To estimate the number of iterations for the basic blocks

in the selected benchmarks, profiling runs were performed
that fed back the individual loop counts to the basic block
selection module of the compiler. As this approach can po-
tentially lead to a significant increase in compile time, the
profiling experiments were ran using smaller input sets for
the benchmarks, with the goal of not letting profiling infor-
mation increase the compiler run-time more than 6 times.
This increase is acceptable. Embedded systems can tolerate
much larger compilation times than their general-purpose
counterparts since the resulting programs are used so many
times without further compilation.

Figure 6 shows the general trends seen when the tests
of the previous section are re-run with the iteration-based
block selection policy. These results show that by initially
selecting blocks with low iteration counts, the large perfor-
mance degradations can be delayed until only the highest
level of security is required. As can be seen from the fig-
ure, the performance gains due to intelligent basic block se-
lection are as large as 80% in one case (g721), averages
between 5-20% for the majority of the benchmarks, and
is negligible for the fft benchmark. The reason the g721
benchmark performs so well is that the code size is rela-
tively small, and that an overwhelming percentage of the
total run-time is concentrated in a just a few basic blocks.

4.3. FPGA-based Instruction Caching

Given the reconfigurable nature of FPGAs, it is inter-
esting to explore architectural optimizations that could be
implemented to improve performance, while still maintain-
ing a desirable level of security. In this section we investi-
gate using the FPGA as a program-specific secondary level
of instruction cache. As an example, consider a configu-
ration where the FPGA caches only the instructions that
are fetched inside selected basic blocks. After the entire
block is validated, this smaller cache can then return the
instruction values for future requests without requiring an
expensive access to main memory or any other cycles spent
in decoding or decryption. This technique would gain in

5



0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

0% 20% 40% 60% 80% 100%

Percentage of basic blocks encoded

P
ef

o
rm

an
ce

susan

dijkstra

fft

Figure 7. Performance improvements for the
basic block caching optimization.

preference under a configuration where the FPGA tamper-
checking algorithm requires a relatively large number of
computational cycles. An important feature of this ap-
proach is that the compiler generates application-specific
FPGA configurations that include basic block information.

In evaluating this architectural optimization we exam-
ined the effect on performance for three benchmarks when
the sequence length was kept constant at 8 and the per-
centage of basic blocks to be selected (randomly) was in-
creased from 0-100%. Figure 7 shows a summary of the in-
struction memory hierarchy performance of this technique,
normalized to the case where no caching is performed on
the FPGA. As can be seen from the figure, the basic block
caching approach was limited to a 5% speedup. It is inter-
esting to note however that this approach does demonstrate
near-linear speedups as the aggressiveness of the encoding
algorithm is increased. This is an important result, as it
implies that if we tune other system parameters to allow
for even more cryptographic strength, this type of approach
will begin to perform favorably well when compared to a
general caching strategy.

5. Conclusions and Future Work

The rapidly increasing use of embedded processors in
critical applications motivates the need for an intensified
scrutiny of the security of the system software. In this paper
we presented a novel approach to embedded software pro-
tection that utilizes a hardware/software codesign method-
ology. The main benefit of our approach is the flexibility it
allows the embedded application designer in terms of posi-
tioning on the security-performance spectrum. Our results
show that we are able to improve application security at a
nominal cost to performance.

Note that for our approach each protected program re-
quires a unique FPGA representation needing permanent
storage, and that this file would potentially need to be
reloaded for each processor task switch. As reverse engi-
neering and selectively reprogramming an FPGA is a con-
siderably difficult undertaking when compared to an equiv-
alent attack on software, we can state with some confidence
that the choice of FPGA hardware increases application se-

curity when compared to the previously discussed mainly-
software approaches.

Several improvements to our framework are being de-
veloped. In order to more accurately measure the effect of
different FPGA configurations on clock rates and perfor-
mance, we are considering adding a synthesis path to our
compiler. Also, as our current approach operates only on
source code, our hope is in the future to utilize decompila-
tion techniques to allow our software protection methodol-
ogy to be applicable to pre-compiled code and libraries.

References

[1] D. Aucsmith. Tamper-resistant software: An implementa-
tion. In Proceedings of the 1st International Workshop on
Information Hiding, pages 317–333, May 1996.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Message authen-
tication using hash functions: the HMAC construction. RSA
Laboratories’ CryptoBytes, 2(1), Spring 1996.

[3] H. Chang and M. Atallah. Protecting software code by
guards. In Proceedings of the ACM Workshop on Security
and Privacy in Digital Rights Management, pages 160–175,
Nov. 2000.

[4] C. Collberg, C. Thomborson, and D. Low. A taxonomy
of obfuscating transformations. Technical Report 148, De-
partment of Computer Science, The University of Auckland,
July 1997.

[5] Computer Security Institute and Federal Bureau of Investi-
gation. CSI/FBI 2002 computer crime and security survey.
available at http://www.gocsi.com, Apr. 2002.

[6] J. Daeman and V. Rijmen. The block cipher Rijndael. In
J.-J. Quisquater and B. Schneier, editors, Smart Card Re-
search and Applications, volume 1820 of Lecture Notes in
Computer Science, pages 288–296. Springer-Verlag, 2000.

[7] H. Gobioff, S. Smith, D. Tygar, and B. Yee. Smart cards in
hostile environments. In Proceedings of the 2nd USENIX
Workshop on Electronic Commerce, pages 23–28, Nov.
1996.

[8] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic
self-checking techniques for improved tamper resistance. In
ACM Workshop on Security and Privacy in Digital Rights
Management, pages 141–159, Nov. 2001.

[9] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proceedings of the 9th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 168–
177, Nov. 2000.

[10] S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, CA,
1997.

[11] G. Necula. Proof-carrying code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languagers, pages 106–119, Jan. 1997.

[12] B. Schneier and A. Shostack. Breaking up is hard to do:
modeling security threats for smart cards. In Proceedings
of the USENIX Workshop on Smartcard Technology, pages
175–185, May 1999.

[13] S. Weingart. Physical security for the mABYSS system. In
Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 52–58, Apr. 1987.

[14] S. White and L. Comerford. ABYSS: A trusted architecture
fo software protection. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 38–51, Apr. 1987.

6


