Hardware Containers for Software Components:
A Trusted Platform for COTS-Based Systems

Eugen Leontie,* Gedare Bloom,* Bhagirath Narahari,* Rahul Simha,* and Joseph Zambreno
*Department of Computer Science, George Washington University
tlowa State University, Department of Electrical and Computer Engineering
E-mail: {eugen,gedare,narahari,simha}@gwu.edu, zambreno@iastate.edu

Abstract—Much of modern software development con-
sists of assembling together existing software components
and writing the glue code that integrates them into a
unified application. The term COTS-Based System (CBS)
is often used to describe such applications, for which the
components assembled are understood to be Commercial-
Off-The-Shelf (COTS) components written by a multitude
of independent third parties. The manner of assembly in
CBS includes full-source components that are integrated at
compile-time, pure-binary libraries incorporated at load-
time, and plugins that are loaded into the application
at execution time by the user. Because components have
access to system resources, applications may crash due to
faulty components or may be compromised by malicious
components. In this paper, we ask the question: can
hardware support the development and deployment of
CBS by providing applications with a trusted platform for
managing components and their interactions? We present
an architecture that places each CBS component in a
hardware-enforced container. The hardware then detects
improper usage of system resources (unauthorized memory
accesses or denial-of-service) and enables applications to
undertake a hardware-supervised recovery procedure. Fur-
thermore, the hardware also maintains a violation record to
enable developers to recreate the violation for the purpose
of debugging and further development. Taken together,
the purpose of the architecture we propose is to enable
executing untrusted CBS code on trusted hardware.

I. INTRODUCTION

By some estimates [4], over 90% of instructions exe-
cuted are from Commercial-Off-The-Shelf (COTS) com-
ponents, pre-packaged software components developed
independently and meant for use in multiple applica-
tions [16]. Such a statistic underscores a sea change in
software development over the past few decades: Instead
of building applications by writing code from scratch,
developers combine existing components together with
glue code that manages the interactions between com-
ponents. Furthermore, many applications allow users to
incorporate optional third-party plug-ins or extensions
long after the application is deployed. Thus, an appli-
cation’s security and stability is often beyond the control
of the application developer since malicious or faulty
components may not only crash an application but may

actively compromise the security and privacy of other
components.

In this paper, we propose a trusted platform sup-
porting COTS-Based Software (CBS) applications. Such
a trusted platform enables executing untrusted compo-
nents in a safe manner by detecting and responding to
malicious behavior. To see why such hardware support
is desirable, consider the fact that, not so long ago,
it was possible for any application to walk all over
memory — indeed, it wasn’t until the hardware was
able to check memory accesses that kernel integrity and
process separation were enforceable. Unfortunately, the
operating system (OS) process, today’s unit of isolation,
is both too reliant on intervention from the OS, which
itself may contain vulnerabilities, and too coarse a unit to
help in overseeing the interactions inside a component-
built application. For a CBS application, one needs to
detect the tampering activity of a malicious component,
to isolate a component that has crashed, and to recover
and continue operation in systems that must remain
responsive.

While our architectural features are intended for gen-
eral computing platforms, embedded systems can benefit
by having automatic recovery without human interven-
tion and can use the framework to constrain the I/O
capabilities of software components. The need to restrict
a component’s I/O will grow in importance as increasing
device complexity makes the component style of devel-
opment more appealing [11]. Also the security of such
devices is becoming more important, as hackers have
created elaborate software-based techniques to evade ele-
mentary security mechanisms. For example, a flaw in the
component used by the iPhone and Sony PSP to handle
Tiff files has been manipulated by hackers to allow them
to run code that was not permitted by the manufacturer
[19]. Thus, a trusted platform that supports component-
based applications by providing strong isolation and
recovery features will be useful in embedded systems.

The main contribution of this paper is a trusted
hardware-support framework for component-based de-
velopment. The hardware features limit a component’s

Program code

Reference Recovery code
Monitor cach
cpy with ache Permissions
Memory Access
Timing Constraints| Data

Recovery Monitor

Main memory

Fig. 1. High-Level Architecture. We add a hardware reference monitor
for memory access control that also manages recovery after detecting
a violation. Static and dynamic permissions are managed and stored in
regular memory by our added hardware.

memory accesses, control data sharing between compo-
nents, continually monitor each component’s execution,
and enable hardware-supervised recovery when some-
thing goes wrong. In particular, the hardware places
each component in a conceptual container — think of
each component as having its own virtual processor
— that provides isolation and memory protection, call-
return monitoring, denial-of-service detection, container
recovery, and gathering of forensic information. For
some of these features, we refine and integrate some
ideas in the architecture literature (for example, the
memory-protection mechanism in [33] and the notion
of recursive recovery in [6]), and for others (denial-
of-service, memory-protection of dynamic memory), we
devise entirely new solutions. The architectural details
are explored further in a separate paper [14].

Our approach differs from related work in that we
directly address the need to protect dynamic memory at
a fine granularity and we seek to minimize the hardware
design necessary to realize our solution. In particular,
we place logic outside of the processor pipeline, as
shown in Figure 1, and use compiler and language
techniques to produce a permission stack that follows
the natural activation record of modern programs. To-
gether, the software-generated and hardware-enforced
containers provide a robust execution platform for CBS
applications. Our evaluation of the overhead incurred by
the close monitoring performed in hardware shows a
modest 6% average overhead across a suite of bench-
marks even with the finest container granularity. The
performance impact can only be accurately measured
through simulation because the modified code affects
caching behavior. The overhead is also caused by looking
up access permissions in hardware, assigning dynamic
permissions, and conservatively flushing the pipeline to
prevent invalid violations triggered by misspeculations.

In addition to hardware support, there are two ac-
companying software tools implied in our architectural
framework: a compiler module that produces the run-
time metadata needed by the hardware, and a runtime
loader that securely translates symbolic linked modules
into pre-specified relative addresses. Neither tool entails

any significant modification to existing compilation, but
instead constitute modest added steps.

Note that although a Trusted Platform Module (TPM)
[29] can be used for integrity checking, its use requires
a trusted OS and it is limited to verifying that the code
that executes is untampered. The model of verifying code
by checking its hash simply places trust in the code’s
provider or some third party reviewer. In the case of CBS
development, this means that every component’s provider
must be trusted by the application developer. Our solution
instead validates the runtime behavior of components by
providing strong isolation coupled with hardware-based
monitoring. By treating components as black boxes, the
developer of a CBS application can focus on component
functionality without devoting resources to test the secu-
rity and reliability of each component used.

The rest of the paper is organized as follows. We
begin by defining and describing containers in the next
section. Following this, we describe an overview of the
architecture in Section III. Section IV describes simula-
tion results that evaluate our platform’s performance. We
present related work in Section V before concluding in
Section VI

II. How CONTAINERS WORK: PRACTICALITY,
DETECTION, AND RECOVERY

What is a container? A container is a unit of isolation
supported by the hardware. The unit may be as small as a
single byte of addressable memory or as large as an entire
application. Thus, a container may encapsulate just data,
just code, or most typically both code and data as one
may expect with components. The hardware monitors all
memory accesses in containers, all jumps into and out of
containers, and each container’s execution time. In this
manner, containers may be used to protect data, to protect
code, and to ensure some degree of proper execution.
For a language like C++, we envision containers used
to encapsulate all dynamically allocated memory, every
object, and even individual methods if desired. Of course,
a fine granularity carries greater overhead, so developers
can choose instead to only “containerize” large compo-
nents such as libraries.

A developer’s perspective. An important consider-
ation for our platform is its practicality, in particular
how containers affect application developers. Much of
the development process remains the same — a devel-
oper assembles components and writes the glue code as
before. However, just prior to deployment, the developer
will use our modified compiler tools to generate an appli-
cation manifest that identifies components and specifies
constraints on their behavior. To the extent recovery is
desired, the developer will need to write or identify

recovery code. Also, some code annotation by the devel-
oper may be helpful to manage (more efficiently than the
compiler) the fine-grained access control mechanisms,
which allow data sharing between components at any
level of granularity.

A hardware and OS perspective. From a hardware
perspective, much of the hardware functionality is per-
formed by a module inserted between the standard CPU
and cache!. Thus the processor is mostly unmodified. A
standard OS can be used with only one modification — for
a context switch, metadata related to containers needs to
be swapped, similar to switching page tables. Naturally,
the hardware can also be used for isolating parts of
the operating system such as drivers, which requires re-
compiling those parts of the operating system. Note that
the handling of container-related events is almost entirely
done in hardware and is not OS specific, and can even
be used in embedded platforms without an OS.

Detection of violations. Whether malicious or not, we
identify the following violations: illegal inter-component
read, illegal write to read-only data, buffer overflow,
illegal code entry or return point, denial-of-service, and
faulty recovery. An illegal inter-component read occurs
when one component reads memory owned by another,
for example a bad pointer, which is identified as an
out-of-container access by the hardware and is imme-
diately trapped. Similarly, an illegal write to read-only
(or permissionless) data is easily detected in hardware
if software has appropriately set permissions for read-
only objects. Buffer overflow, a common bug and popular
exploit [1], is prevented by enforcing memory bounds
checking in the hardware. A jump or return to invalid
code, as determined by the metadata stating which code
a container can reach, is detected by the hardware. To
detect denial-of-service, upon entry to a container the
hardware starts an instruction counter that is compared
against a maximum value specified by the metadata. Fi-
nally, recovery is another component which is potentially
faulty or maliciuos, thus the hardware also monitors
recovery, allots fixed timeouts for each component’s
recovery process, and ensures each affected component
is given a chance to recover.

Recovery. At this point, it is worth asking: what
kinds of actions are typical in recovery? We envision
three broad types of recovery actions: intra-component
recovery, sub-component instantiation, and application
restart. Transient faults within a component might be
rare and managed by simply allowing a component to
restart itself. Thus a component writer could set up
intra-component recovery by re-initializing data struc-

I'As in software development, hardware design today partly consists
of putting together blocks, so-called cores, created by third-parties. Our
proposed module can be designed as one such separate core.

tures, clearing internal buffers, or performing integrity
checking of persistent data stores. If a component is
consistently failing, its caller can re-instantiate it or
replace it with an alternate solution, perhaps a library
with a compatible interface or an older, more stable
but slower version of the faulty component. This sub-
component instantiation can stabilize a system from
persistent faults with runtime loader support for dynamic
loading and re-instantiation of components. Finally, if the
chain of recovery reaches the main component, it may
decide to inform the user and exit gracefully or attempt
to reset the entire application. Writing a well-organized
recovery procedure is not a simple task. However, once
such recovery code is written, the hardware can help
ensure that the recovery proceeds in an orderly and safe
manner.

ITI. ARCHITECTURE OVERVIEW

The effort for creating our dependable, secure exe-
cution environment lies on two fronts. On the software
engineering front are extraction of program properties
and writing of recovery code that satisfies the developer’s
security policies. On the computer architecture front,
we design a trusted execution platform that validates
fine grained memory access, checks control flow, and
enforces an orderly recovery procedure.

In traditional software development, an application de-
veloper creates a project file (for example, makefile)
to build the application using a collection of configu-
ration, compilation and loading tools. In our approach,
the application developer goes through a few additional
steps. Step 1: Create an application manifest. The man-
ifest consists of all the information needed by the hard-
ware — a list of components, their identifiers, memory
permissions, permitted call patterns, and approximate run
times (in terms of the number of instructions executed)
for selected methods of interest. Much of this informa-
tion is compiler-generated. However, to estimate running
times, the programmer would need to use a profiling tool
or execute the entire application in a debugger. Memory
regions dynamically allocated at run-time are identified
to the hardware together with the access control metadata
for sharing with other containers. To expose this metadata
at the language level, we define a primitive termed
ALLOW that the compiler and programmers can use
for passing a memory range and associated permissions
to other containers. This primitive can be implemented
either with an addition to the instruction set or memory
mapped operations. Step 2: Write recovery code. The
developer writes small chunks of recovery code for each
component for which recovery is desired. This code
would be used for re-initializing the component’s state
or replacing a persistently faulty sub-component with an

Processor

Container Manager

Dynamic
Permissions
Buffer
Container Container
CPU Identification Runtime
= Table Record

Core

o

Bus Memory
/A Instructions A Stack
Cache ‘;;;l
11197
A I
100 Heap

011@)
10011
M9/

Permissions Static Data
Cache || =) & Code
ey

Container
Permission
Tables

o110/
= < Permission
Data Stack

V 27V

Fig. 2. System Overview. The Container Manager interposes on memory accesses so that access control can be enforced efficiently. Each
component is uniquely identified by a Container Identifier and is associated with a Container Runtime Record (CRR) that stores static access
permissions, which are loaded from the Container Permission Tables in main memory. For each executing container, the Dynamic Permissions
Buffer stores permissions to dynamic memory, for example heap-allocated buffers. These dynamic permissions are evicted to the Permission
Stack on a container switch. Static and dynamic permissions are stored in the cache hierarchy within a distinct Permissions Cache.

alternate solution, if available. The application developer
can write such recovery code or may require component
developers to provide it for their components. Step 3:
Build the application. The entire application now consists
of all the executable code and static data along with the
manifest. The manifest is shipped with the executable.
Further involvement of the developer occurs only when
forensic data are retrieved after a violation occurs, to
inform the next round of development.

The compiler tool-chain creates the manifest for each
application. This manifest consists of one Container Run-
time Record (CRR) for each container. It is the CRR that
has the needed runtime information and is loaded into the
container manager when a container executes. Metadata
within a CRR depends on the type of data or code being
accessed. For the code section, the compiler generates
a list of static (global) data ranges that the container
needs to access. These ranges, as well as the size of
the code, are stored as the static permission table in the
CRR. Read and writes to memory are validated against
a list of permissions to memory ranges, expressed as a
tuple (start_address, end_addresss, access). In addition
to memory ranges, the compiler generates all combina-
tions of jumps and jump targets, so that only valid control
flow is permitted by the hardware. For optional detection
of denial-of-service, each container can be assigned a
maximum execution time, counted in cycles obtained by
profiling, that the hardware checks by setting a timer.
Also, access permissions to stack data are extracted
by the compiler, as offsets from the stack pointer, and
are added to the CRR. For every heap-allocated block,

the compiler instruments the code with the ALLOW
primitive to enable functions to pass or return data safely.
These ALLOW statements add dynamic permissions to
the otherwise pre-computed CRR.

The primary task of our added hardware is to check
that every memory access from a container is within the
statically permitted ranges, within the stack bounds, or
within permitted ranges of the heap. For this task, the
hardware needs to look up permitted ranges quickly. This
search is achieved through the use of content-addressable
memory (CAM). CAM provides a fast parallel search
for a finite amount of data, and is most well-known
for its use in the translation lookaside buffer, or TLB,
used in commodity systems for speeding up virtual to
physical address mapping. The hardware also needs to
check each jump and jump-target, and the number of
cycles allocated to each function invocation. Figure 2
shows the placement of our added hardware, which we
call the Container Manager. The Container Manager au-
tomatically identifies container context switches between
the defined containers based on instruction fetching,
loads the appropriate permission state from memory, and
validates each memory access. Three CAM accelerated
tables maintain container context. The Container Identifi-
cation Table lists all code regions in a process and their
mapping to individual containers. The Container Run-
Time Record Table allows memory permission checking,
timing and control flow for the currently executing
container. Dynamically allocated memory ranges using
ALLOW are transferred through the Dynamic Permission
Buffer. A few architectural optimizations are necessary

TABLE I
DETECTION TIME IN CYCLES FOR VULNERABLE PROGRAMS

Application Version Buffer Size | Cycles to Detect | Cycles to Detect

PP (bytes) (SW stack guards) | (HW containers)
villistextum 2.6.6 32,768 86,108 [10-20]
ringtonetools 2.22 1,024 119,261 [10-20]
ringtonetools 2.22 1,024 119,261 [10-20]
mplayer 1.0pre5 102,400 99,465 [10-20]
csv2xml 0.5.1 1,000 94,828 [10-20]
2fax 3.04 256 6,129,857 [10-20]
bsb2ppm 0.0.6 1,024 92,206 [10-20]
jpegtoavi 1.5 4,096 3,016 [10-20]
o3read 0.0.3 1,024 109,332 [10-20]

for critical operation speedup. The loading of the con-
tainer permission state is accelerated by a dedicated
permission cache, which helps reduce the fetch delays
and limits the memory bus load. Clearly, the performance
overhead depends strongly on how range checking is
performed for every memory access. For range checking,
we leverage ternary CAM (TCAM) designs, which allow
for matching “don’t care” bits, thus enabling efficient
range-checking [27]. Recent work on fast CAMs for
range-checking has shown that the speed of the range-
checking is on par with regular CAM lookups, which
can be achieved in a single cycle [22]. Further details of
our architecture design and optimization techniques are
addressed in a separate paper [14].

IV. EXPERIMENTAL RESULTS

We show in this section two aspects of our experimen-
tation. The first is a comparison of the detection time
for real world vulnerabilities in a software only protec-
tion mechanism versus our hardware accelerated access
monitor. The second is an example of the performance
overhead for our reference monitor using a minimally
invasive, unoptimized architecture.

A. Functional Evaluation

For our comparative analysis, Table I shows eight vul-
nerabilities found in real-world applications, as described
in US-CERT Cyber Security Bulletin SB04-357 [9]. For
each vulnerability, we compare the time between exploit
and detection using our approach versus a software
approach such as StackGuard [30], under the assumption
that the software approach itself has no overhead. The
last two columns illustrate the difference: Our hardware
approach can detect an improper access within a few
cycles whereas a software approach takes many orders
of magnitude more, even when the best case is assumed
for software and the worst-case assumed for hardware.
The reason for such a gap is that software approaches
need to wait at least until the moment the victim function

is about to execute a return. Most software approaches
wait even longer, until the runtime system makes a check
after a function return. In contrast, our approach detects
any unauthorized memory access as it is committed to
memory, allowing for small delays in detection due to
micro-architectural design choices. This detection can
occur as soon as a few cycles, or occasionally take
10-20 cycles because the memory check information
needs to be loaded into the CAM, as described earlier.
In general, the additional speed possible in hardware
is not surprising. What this speed implies, however, is
significantly more time for recovery, which could be
crucial in many embedded applications.

B. Performance Evaluation

In order to evaluate the performance overhead, we
extended the SimpleScalar [3] simulation suite to accom-
modate measurements for our architectural modifications
and memory access profiling. We used the characteristics
of an ARM processor running at 400Mhz with an exter-
nal bus and main memory at 100 MHz. The performance
of our architecture was observed for a memory hierarchy
that contains one level of separate instruction and data
caches. For the baseline system the instruction cache has
32Kb of 32-way associative memory and the data cache
is a 32Kb, 64-way associative cache. These architectural
parameters are typical of an embedded system.

The benchmarks chosen for the simulations were
computationally-intensive applications from MiBench
[12]. In addition, we selected three data intensive
benchmarks from the Data Intensive Systems (DIS)
benchmark suite [18], and a heap intensive benchmark
known as the Richards benchmark [24].

Figure 3 shows the overall performance penalty as
the difference in execution time measured in processor
cycles between our architectural modifications applied
to the ARM processor and the unchanged ARM core.
The executables for the augmented architecture are fully
instrumented with instructions that handle dynamic mem-

[static
permissions
bitcount
crc S
dijkstra [l
fit_inv [
fit -
field 1
pointer Il
richards [S
sha |
stringsearch [I
susan_corners [l
susan_edges [
susan_smoothing |
transitive [
update [I

0 5 10 15 20 25
% penalty

B Dynamic
permission

B Pipeline
Flush

Fig. 3. Performance Overhead. Overhead added by code changes
made to support containers and by architectural modifications.

ory permission assignment. This change adds to the
length of the code, affects caching behavior, and uses
additional processing cycles. As part of instrumenting
the benchmarks, we also modified the C library (glibc),
which is a major part of the functional code in the stat-
ically compiled benchmarks. Architecture details such
as the internal organization of the pipeline, speculation,
and out-of-order execution have a big impact on the
performance of a memory reference monitor in general.
In order to offer a fair and uniform evaluation on a
wide range of processor architectures, we flushed the
processing pipeline on every container context switch.
While flushing every switch is a conservative approach,
it can be easily applied to both simple in-order and more
complex speculative out-of-order architectures.

The container granularity was made as fine as possible:
Every function and every heap object was assigned its
own container. This code organization allows for precise
isolation and containment of faults, yet it represents the
worst possible overhead, with frequent container context
switches and many memory accesses for fetching the
container permission records. The results show moderate
additional overhead with a 5.97% average across all
benchmarks and a maximum of 24.74% for the CRC
program, which has a very high function call frequency
(2.75 function calls per 100 processor cycles). More
detailed performance results can be found in [14].

V. RELATED WORK

As mentioned earlier, our architecture and approach
refines existing ideas (memory protection) in the archi-
tecture literature with new solutions (hardware-supported
recovery, denial-of-service). The prior work on memory

protection, mostly process-based, is modified to suit the
needs of components and extended to handle dynamic
memory efficiently.

We categorize the most-closely related work into
projects that feature architecture-based protection or sim-
ilar containment-related ideas in other areas such as
operating systems. The idea of protecting memory goes
back to the 1970’s, with some protections available in
older mainframes [17], [32]. Recently, several projects
[2], [10], [25], [26], [33], [36] have taken up this line of
work and proposed architectural mechanisms to check
and protect access to memory, starting with the seminal
Mondrian architecture by Witchel et al. [33]. The central
difference between these and our project, is that all these
efforts have focused on memory protection alone and do
not consider either recovery or denial-of-service, or the
wider issues surrounding component-based development.
Even within the narrower realm of memory protection,
our approach differs in several ways. First, the Mon-
drian approach targets processes whereas ours targets
objects as small as individual functions. Second, we
avoid passing permissions for dynamic ranges through
the operating system by keeping the context state in the
hardware guard. Perhaps more significantly, our approach
to handling dynamic memory uses a stack-like approach
so that permissions are not persistent but aligned with
the natural activation and exit of running code. Another
related project that features memory protection is the
Infoshield project [25], [26]; however, their approach
focuses on a limited set of dynamically assigned permis-
sions aimed at protecting only certain crucial elements
(keys, passwords) in the application.

Some operating systems projects such as the Nooks
or Janus projects [28], [31] have explored execution-
sandboxes with a narrower focus for operating sys-
tems drivers [28] or for preventing unauthorized system
calls [31]. Similarly, Kiriansky et al. [13] describe how
executables can be run in an interpreter, which can
then check memory accesses. The Solaris-10 release
(2006) [15] has address-space containment for large
applications to facilitate server virtualization, intended
for isolating large web service applications on a sin-
gle machine. Yet other hardware-related projects, such
as Smashguard [21], [34], [35] have studied hardware
modifications for specific types of attacks.

Our focus on recovery is inspired by the Recovery-
Oriented Computing (ROC) framework by Patterson et
al. [5], [6], [23]. However, their work primarily concerns
bugs in large server-based systems. Indeed, their work
in the hardware support area [20] describes their ROC-1
hardware platform, a large scale cluster system designed
to provide high availability for Internet service applica-
tions. Our recovery process goes further than that of [6],

[71, [8] in that we use hardware to additionally guarantee
that recovery code executes in a fixed amount of time,
enforces the recursion, and is itself protected.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described useful hardware sup-
port for COTS-Based Systems (CBS), a major software
engineering paradigm today. Application developers are
currently forced to accept and trust components, but with
the proposed hardware support they can integrate com-
ponents without worrying about compromised privacy,
undetected vulnerabilities, or significant disruption. The
framework also facilitates recovery in the aftermath of a
violation and, because a system snapshot is stored, also
provides valuable debugging information for the next
cycle of development. Future work will address hardware
design issues and protection for I/O and networking.

ACKNOWLEDGMENTS

This work is partially supported by NSF grants ITR-
025207 and NSF Grant CNS-0934725 and AFOSR grant
FA9550-09-1-0194.

REFERENCES

[1] Aleph One, Smashing the stack for fun and profit, Phrack, vol.7,
no. 49, Nov. 1996.

[2] D. Arora, S. Ravi, A. Raghunathan, N. Jha. Architectural Support
for Run-Time Validation of Program Data Properties. I[EEE Trans.
VLSI systems, Vol. 15, No. 5, May, 2007.

[3] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure
for computer system modeling, Computer (Feb 2002).

[4] V. Basili and B.Boehm. COTS-Based systems top 10 list. JEEE
Computer, Vol.34, No.5, pp.91-95, 2001.

[S] A. Brown and D. Patterson. Embracing Failure: A Case for
Recovery Oriented Computing (ROC). Proceedings of the High
Performance Transactional Processing Symposium, 2001.

[6] G. Candea and A. Fox. Recursive Restartability: Turning the
Reboot Sledgehammer into a Scalpel. Proceedings of the Workshop
on Hot Topics in Operating Systems, May 2001.

[7] G. Candea and A. Fox. Crash-Only Software. Proceedings of the
Workshop on Hot Topics in Operating Systems, May 2003.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot: A Technique for Cheap Recovery. Proceedings of
the International Symposium on Operating System Design and
Implementation (OSDI), 2004.

[9] CERT. US-CERT cyber security bulletin sb04-357. Available at
http://www.uscert. gov/cas/bulletins/SB04-357.html, Dec. 2004.
[10] M. Corliss, E. Lewis, and A. Roth. Using DISE to Protect
Return Addresses from Attack. Proceedings of the Workshop on
Architectural Support for Security and Anti-Virus, October 2004.

[11] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and
Future, Computer, vol. 42, no. 4, pp. 42-52, April, 2009.

[12] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, Mibench: A free, commercially representative em-
bedded benchmark suite, IEEE 4th Annual Workshop on Workload
Characterization (2001).

[13] V. Kiriansky, D. Bruening and S. Amarasinghe. Secure Execution
via Program Shepherding. Proceedings of the USENIX Security
Symposium, 2002.

[14] E. Leontie, G. Bloom, B. Narahari, R. Simha, and J. Zambreno.
Hardware-enforced fine-grained isolation of untrusted code. in
preparation, 2009.

[15] C. Mackinnon. Solaris Containers: A Breakthrough Approach to
Virtualization. Processor Magazine, Vol. 28, No. 8, p. 33, February
2006.

[16] M. Morisio and M. Torchiano. Definition and classification of
COTS: a proposal, Int. Conf. Composition-Based Software Sys.
(ICCBSS), Feb, 2002.

[17] L.M. Molho. Hardware Aspects of Secure Computing, Proc.
Spring Joint Computer Conf., pp.135-141, 1970.

[18] J. Musmanno. Data Intensive Systems (DIS) Benchmark Perfor-
mance Summary. AFRL Technical Report AFRL-IF-RS-TR-2003-
198, 2003.

[19] Open-source Vulnerability Database (OSVDB), reference IDs
38527 (Apple iTouch / iPhone TIFF Image Handling Privilege Es-
calation) and 19665 (Sony PSP Photo Viewer TIFF File Overflow).

[20] D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda,
N. Treuhalt, and D. Patterson. ROC-1. Hardware Support for
Recovery-Oriented Computing. IEEE Transactions on Computers,
Vol. 51, No.2, pp. 100-107, February 2002.

[21] H. Ozdoganoglu, T. Vijaykumar, C. Brodley, B. Kuperman, and
A. Jalote. Smashguard: A Hardware Solution to Prevent Security
Attacks on the Function Return Address. IEEE Transactions on
Computers, Vol. 55, No. 10, pp. 1271-1281, October 2006.

[22] K. Pagiamtzis and A.Sheikholesami. Content-addressable mem-
ory (CAM) circuits and architectures: a tutorial and survey, IEEE
J. Solid-State Circuits, pp. 712-727, 2006.

[23] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N.
Treuhaft. Recovery-Oriented Computing (ROC): Motivation, Def-
inition, Techniques and Case Studies. Technical Report CSD-02-
1175, University of California, Berkeley, 2002.

[24] The Richards Benchmark.http://research.sun.com/
people/mario/java_benchmarking/.

[25] W. Shi, J. Fryman, G. Gu, H-H. Lee, Y. Zhang, and J. Yang.
InfoShield: A Security Architecture for Protecting Information
Usage in memory. Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), Feb. 2006.

[26] W. Shi, C. Lu, and C. Lu. Memory-centric Security Architec-
ture. High Performance Embedded Architectures and Compilers,
Barcelona, Spain, November 17-18, 2005.

[27] E. Spitznagel, D. Taylor and J. Turner. Packet Classification
Using Extended TCAMs, Proc. IEEE Int. Conf. Network Protocols
(ICNP), 2003.

[28] M. Swift, B. Bershad, and H. Levy. Improving the Reliability of
Commodity Operating Systems. ACM Transactions on Computer
Systems, Vol. 22, No. 4, 2004.

[29] Trusted Computing Group.
http://www.trustedcomputing.org.

[30] P. Wagle and C. Cowan. Stackguard: Simple Stack Smash Pro-
tection for GCC. Proceedings of the GCC Developers Summit, pp.
243256, 2003.

[31] D. Wagner. Janus: An Approach for Confinement of Untrusted
Applications. Technical Report CSD-99-1056, UC Berkeley, 1999.

[32] W.H. Ware. Security and Privacy in Computer Systems, Proc.
Spring Joint Computer Conf., Vol. 30, pp.287-290, 1967.

[33] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory Protec-
tion. Proceedings of the International Symposium on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS), 2002.

[34] X.Zhuang, T. Zhang, H-H. Lee, and S. Pande. Hardware Assisted
Control Flow Obfuscation for Embedded Processors. Proceedings
of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), September 2004

[35] X. Zhuang, T. Zhang, and S. Pande. HIDE: An Infrastructure
for Efficiently Protecting Information Leakage on the Address
Bus. Proceedings of the International Symposium on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS), October 2004.

[36] K. Zhang, T. Zhang, and S. Pande. Protection through Dynamic
Access Control. Proc. 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pp.123-134, 2006.

