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Abstract

Accurate scanning of a colour image, which is absolutely essential for good colour reproduction, can ensure that all
relevant information about the colour stimulus of a signal is obtained. This paper introduces a measure of goodness
of a set of colour scanning filters. The q-factor of a single colour scanning filter is shown to be a particular case of
the measure. Experimental results are presented to justify the appropriateness of the measure.

1 Introduction

Most current research in colour systems assumes that the visual frequency spectrum can be adequately represented
by samples taken about 10 nm apart over the range 400-700 nm. Integrals are approximated by summations, and the
infinite-dimensional Hilbert space of visible spectra with the usual 2-norm is reduced to an N-dimensional Hilbert
space, where N is the number of samples (in this case N=31). A continuous function of wavelength is represented
by an N-vector of its sampled values. Hence, visual spectra will be treated as vectors in an N-dimensional Hilbert
space in this paper.

The notation in this paper follows that of [1]. Let S = [i s2 53], where s1, s2 and s3 are N-vectors that represent
the colour sensitivity functions of the three types of cones in the eye. Let A = [a1 a2 a3] and P = [P1 P2 P3}
,where a1 and pj (i = 1 2, 3) are N-vectors representing the CIE matching functions and the corresponding CIE
primaries, respectively.

For a given reflectance spectrum f viewed under a uniform radiance source,

STf STPt (1)

where
t=ATf (2)

The spectra f and Pt provide identical colour stimuli, and are known as metamers. Thus, the colour stimulus of f
may be reproduced exactly if t, the vector of tristimulus values, is known and the primaries are realisable. Notice
that t is uniquely determined by the projection offonto the space spanned by the set oflinearly independent vectors,
{ a}1 [2], which is also the space spanned by the set of linearly independent vectors, {s}1 . The spectrum g is a
metamer of f under uniform illumination if:

ATf = ATg (3)
i.e. the projection of g onto the space defined by {a1}1 is identical to the projection of f.
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Suppose the spectrum of the illuminant is represented by 1. The reflectance spectrum f is seen as Lf, where L is a
diagonal matrix, such that L2 = 1(i). For a perfect colour match between the signals f and g, as viewed under
illuminant 1,

ATLf = ATLg (4)

i.e.,
(LA)Tf (LA)Tg (5)

or
AIf = Ag (6)

and the visual stimulus of a signal is now determined uniquely by its projection onto the space spanned by the set
of vectors, {La1}1 . This space is defined as the Human Visual Subspace for the illuminant 1. The projection is

Pvf AL(ArAL)1Aif (7)

and is also called the fundamental of f [3] . The spectrum g is known as a metamer of f under illuminant 1, and the
matrix AL denotes the matrix product LA.

Colour reproduction begins with correctly determining the projection of a given spectrum onto the HVSS. The set
{La1}1 is not the only basis that may be used for the HVSS. In general, the scanning filters can be any set of
vectors that span the HVSS. In this paper, {a}1 denotes the set of matching functions; {m}1 denotes any set
of r scanning filters, and M denotes the matrix of scanning filters:

M = [ml m2 mn (8)

The range space of a matrix X is denoted by R(X). Hence, the HVSS may be denoted by R(LA), and R(M) denotes
the set of linear combinations of the scanning filters. An arbitrary scanning filter is represented by the vector m. A
reflectance spectrum whose colour stimulus is to be reproduced is denoted by f.

A number of problems arise in the implementation of a scanning system that obtains the required projection of
f. In particular, it is difficult to construct a designed scanning filter exactly, and any errors in filter construction
will change the space spanned by the filters, resulting in an error in the measurement of the required projection.
This error will lead to an error in the reproduction. Notice that this error will occur even if the measurements are
noise-free in all other regards. In an attempt to measure the goodness of a colour filter with respect to such an error,
the quality factor or the q-factor of a colour filter was defined by Neugebauer [4] . If m represents a colour filter and
Pv(m) its orthogonal projection onto the HVSS, the q-factor of m is defined as:

q(m) = IIPv(m)112

where II.II is the 2-norm in N-dimensional vector space. Notice that

O<q(m)<1 (10)

and the closer the value of q(m) to unity, the 'better' the colour scanning filter m. If the value of q(m) is small
compared to unity, the filter measures very little of the spectrum that is in the HVSS, and hence is not a good
filter for colour scanning. The q-factor seems a reasonable quality measure for filters not in the HVSS, because
11m112(1 — q(m)) is the square of the euclidean distance of m from the HVSS. If any one of a set of three scanning
filters, {m}1 is not in the three-dimensional HVSS (i.e. q(mi) 1 for some i), then R(LA) R(M), and {m}1
is inaccurate for colour sensing. A major disadvantage of the q-factor is that it is designed to be used with only a
single filter.

A measure that extends the idea of the q-factor to judge the effectiveness of a set of colour scanning filters would be
very useful. Notice that the q-factor can be used to measure the goodness of the filter as a member of a set of three
scanning filters in a limited sense. For example, it does not indicate if the filters are linearly independent. In most
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existing scanning systems, only three scanning filters are used. Three linearly independent scanning filters can span
the three-dimensional HVSS if all three have unit q-factors. Hence the q-factor indicates a perfect set of filters if

q(mi) = 1 for every i (11)

and the m2 are linearly independent vectors. The q-factor does not assist in differentiating among imperfect sets
of vectors, and may not be used by itself to indicate a 'better' imperfect set of filters. Another disadvantage of the
q-factor is that it may at best be used to judge a set of three filters.

There are at least two reasons why more than three filters may be used to improve the quality of the colour
reproduction. Firstly, in many cases, three parameters are not enough to define sufficiently the visual stimulus of
an N-dimensional signal for colour correction. Typically, such a situation arises when the colour reproduction is
to be viewed under two different illuminants. In such a case, six parameters (representing the projections of the
signal onto the two different Human Visual Subspaces defined by the two different illuminants) are required to
accurately represent the signal [1]. Secondly, the constraint of constructabilty on the filters might imply that no set
of three constructable filters can span the HVSS though a set of four filters could be constructed so that the required
projection is obtained. When more than three parameters, (four scanning filters, for example) are necessary, the
q-factor is not an effective measure of the goodness of even each single filter as part of the set of more than three
filters. For example, suppose {m}1 is a set of scanning filters. It is possible that the HVSS is contained in the
span of the set of four filters, i.e.:

R(M) R(A) (12)

but,
q(m1) < 1 i = 1, 2, 3, 4 (13)

Such a set could provide perfect colour scanning, though the individual q-factors would not indicate this. An example
of such a set is presented in Section 4.

The performance of a set of filters can be judged by the reproduction quality of a set of signals. Usually this set
of signals is chosen so as to represent the ensemble of signals which will be scanned. The average error in the
reproduction is often used as an indicator of the goodness of the set of filters. The q-factor of a colour scanning filter
has the disadvantage of not being a good indicator of the perceptual error in colour reproduction.

As just discussed, the q-factor has three major disadvantages. Firstly, it measures a single filter independently of
other filters in the scanning set. A measure that extends the idea of the q-factor to judge the effectiveness of a set
of colour scanning filters would be very useful. Secondly, it can be used to judge the merit of a single filter as part
of a set of three filters only in the limited sense of determining if the set spans the HVSS. Thirdly, it is not useful in
judging the merit of a single filter as part of a set of more than three filters. It is possible to develop a measure that
overcomes these disadvantages. Section 3 presents such a measure. The relationship of the proposed measure with
the q-factor is discussed. Section 2 deals with the requirements of an effective measure.

2 Requirements of an Effective Measure

If a set of scanning filters is linearly independent, the measurements obtained (the values of mTf) will be non-
redundant and can be used to obtain the projection ofthe measured spectrum onto the space spanned by the scanning
filters. If these filters are not linearly independent, all measurements are not necessary to find the projection onto the
space spanned by the filters. In this case, the extra measurements may help eliminate noise in the scanning process.
In either case, a measure of goodness of the filter set is related to the space spanned by the scanning filters, and
the relation of this space with the HVSS. This measure should not be related to the noise performance of the filters,
as it should measure performance of the filters with respect to an error that occurs independent of any additional
measurement noise.

An effective measure of goodness of a set of scanning filters should satisfy the following conditions. Firstly, the
measure should depend only on the space spanned by the scanning filters, and not on particular, individual filters.
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For perfect scanning, the HVSS should be contained in the space spanned by the scanning filters, as indicated in
equation (11). Hence, a second requirement is that the measure should indicate a perfect set of scanning filters.
When the scanning is not perfect, the measure should distinguish among filter sets according to the goodness of the
approximation to projections in the HVSS. Thirdly, the measure should be generalizable to an arbitrary number of
filters and an arbitrary reproduction space.

Let {v }:= denote a set of vectors that define the space to be spanned, then the space to be spanned is denoted by
R(V), where,

V = [vi v2 vJ (14)

It is necessary to note here that R(V) need not be three-dimensional; for example, effective colour correction requires
the projection onto a space of dimension greater than three [1]. The dimensions of R(V) and R(M) may not be
equal; a large set of filters {m}1 may be used to ensure the spanning of R(V).

A measure that immediately comes to mind is the dimension of the intersection of R(M) and R(V). On closer
examination this measure is found to be too coarse. It takes on only integer values, and does not distinguish well
enough between 'good' and 'not-so-good' sets of scanning filters. For example, consider the space spanned by the N-
vectors v1 = [1 , 0, 0, 0 o]T ,v2 = [0, 1 , 0, 0 and v3 [0, 0, 1 ,0 o]T the space to be spanned. Let the
N-vectors m1 = [1,0, 0, 0 01T ,m2 = [0,0, 1, 0 0]T and m3 = [0, 0, 0, 1 be the scanning filters. The
dimension of the intersection, R(V) fl R(M) is two. Now suppose m = [1 , 0, 0, 0 m = [0,0.95, 1 ,0 o]T
and m = [0, 0, 0, 1 o]T is another set of scanning filters. The dimension of the intersection is also two, but the
second set will provide much more information of the required projection. A measure is needed that will distinguish
between such sets of filters.

The problem of finding a measure of the goodness of a set of scanning filters is directly related to the error associated
with such a set, in the absence of any additional noise. The error is defined as the difference between the required
signal and the signal obtained with the scanning filter set. This error depends on the particular reflectance vector,
f, which is being measured. As the human eye is sensitive only to errors in the Human Visual Space, the error may
be defined as the difference between the actual and the reconstructed fundamentals. It is common to consider an
average error over some well-defined set of reflectance spectra, {fk}. Among the many error measures that may be
used to judge the performance of a filter set are the mean square error, the mean square tristimulus error and the
mean square error in a uniform colour space such as the CIEL*a*b* space. Two of these errors are studied in this
paper, but before an error expression can be obtained, some notation needs to be established.

Let an orthonormal basis for R(V) be defined:

N = [n1 n2 n] (15)

such that:
R(N) = R(V) (16)

and:
NTN = I (17)

which may be obtained by the Gram-Schmidt orthogonalisation procedure [6]. The number of orthonormal vectors,
a, is the rank of {v1}1 and equals s iff {v}1 is a linearly independent set. Similarly, define an orthonormal
basis for R(M):

0 = [01 2 op] (18)

such that:
R(O) = R(M) (19)

and:
= i (20)

Again, notice that j is the rank of {m}1 and 3 equals r if {m}1 is a linearly independent set. The orthonormal
bases N and 0 need not represent realisable filters. Let PM(.) represent the orthogonal projection operator onto
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R(M) in N-space. Similarly, let P(.) represent the orthogonal projection operator onto R(V) in N-space. Define:

P(O) = [P(oi) P(°2) . Pv(op)] (21)

and likewise:
PM(N) = [PM(fli) PM(n2) . PM(fla)] (22)

The projection of a visual spectrum f onto R(V) is the information required for accurate colour reproduction as
defined by the designers of the reproduction system. This required projection of a visual spectrum f onto R(V) is

P(f) = NNTf (23)

In the special case where R(V) is the HVSS, P(f) is the fundamental of the spectrum f [3]. The projection obtained
using the scanning filters {m}1 is the projection onto R(M):

PM(f) = 00Tf (24)

The projection of this onto the HVSS is
PVPM(f) = NNTOOTf (25)

In the special case where R(V) is the HVSS, PVPM(f) is the estimated fundamental of the spectrum f and is
the relevant information about f that can be obtained from the scanned data. Expressions (22) and (25) give the
required projection and the obtained projection, respectively. Clearly, the most important criterion of a measure of
goodness is that it must provide a good indication of the error in the reproduction. The next section deals with the
mean square error measure for colour reproduction, and a measure of goodness that is directly related to this error
measure.

The requirements of a valid measure of goodness may be summarized as follows. Firstly, the measure must be
indicative of a perfect filter set, and of colour reproduction errors when the filter set is imperfect. Secondly, the
measure must be independent of the particular filters used and dependent only on the space spanned by the scanning
filters. Thirdly, it should be generalizable to an arbitrary dimension of R(V) and to an arbitrary number of filters.

3 An Error Measure and a Related Measure of Goodness

Two major error measures are often used in the evaluation of colour reproductions, mean square error and mean
L*a*b* error. In either case, the mean error indicates an average over a particular data set, and is hence dependent
on the data set. The problems of correlating mean square error with perceptual error are well known. The mean
square error is addressed because it is easy to manipulate and because its analysis provides valuable insight into the
problem of reproduction errors due to filter construction errors. The mean error measure is far more difficult
to analyse and manipulate, but is a valid perceptual error measure. While there are cases where colour estimates
may have low mean square errors and high iL*aSb* errors and vice versa, the average of the errors over a data set
are generally in qualitative agreement, as demonstrated in Section 5.

3.1 Mean Square Error

The error between the two fundamentals P(f) and PVPM(f) is the difference between expressions (23) and (25):

Pve = Pv(f) — PVPM(f) = NNTf NNTOOTf (26)

It can be shown that the mean square value of the components of P (e) is:

E[IIPv(e)112] Trace(NT(I — OOT)R(I OOT)N) (27)

where E{.] is the expectation operator over the particular ensemble and R is E[ff T1 This expression may not be
simplified further unless assumptions are made about the nature of R. For a given sample set, however, this error is
easily computed and will be useful for many who now use sample sets anyway.
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3.2 Error for Independent, Identically Distributed Components

In the particular case when R is a scalar multiple of the identity matrix, i.e. when the spectrum f can be expressed as
a sequence of independent, identically distributed random variables, the error expression is considerably simplified.
It is then:

E[IIPv(e)112] = o2Trace(NT(I — ooT)(i OOT)N) (28)

where 2 is the variance of a single component of f. This simplifies to

E[IIPv(e)112] q2((1 _ A(OTN))) (29)

where )1(OTN) denotes the i singular value of (OTN). Perfect reproduction is possible when:

a = EA2(OTN) (30)

or,
)(OTN) = 1 i = 1 a (31)

which happens when
R(M) R(V) (32)

It may be noted that the conditions for perfect reproduction are independent of the variance of the components of f.
The term c in expression (28) is the dimension of the space to be spanned, and is assumed invariate. The summation
may be used as a measure of goodness of the filters, as a high value of the summation indicates a low error. It can
be shown that,

)(OTN) < 1 i = 1 a (33)

and a normalised measure of goodness of the filter set is:

zi(V, M) = >::= (OTN)
(34)

Notice that
v(V, M) = 1 if R(M) D R(V) (35)

Hence the measure is unity if and only if the set of scanning filters is perfect.

3.3 Relationship with Q—factor

It can be shown that the measure of goodness defined in expression (34) is related to Neugebauer's q-factor measure.
Specifically, this measure of goodness is the sum of the q-factors of the o2 divided by the dimension of R(V). Hence,

a

\NTO) = >qfactor(o) (36)

Thus the sum of q-factors of the filters represented by 0, an orthonormal basis for the space spanned by the scanning
filters, is a valid measure of goodness for the set of filters, when the signal f is from an ensemble of independent
identically distributed random variables. The sum may be normalised so that a maximum value of unity indicates
perfect reproduction. This normalised form is:

v(V, M) = qfactor(o)
(37)
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Here the term q-factor is used in a general sense to mean the norm of the projection of the normalised vectors o1
onto the c -dimensional R(V). Neugebauer's original definition of the q-factor implies the specific case where this
space is the three-dimensional HVSS.

A necessary condition for the measure to be independent of the particular set of filters used to span the respective
spaces is that the filters 0 should be orthonormal. So, for example, >qfactor(m) cannot be used as a measure
instead of >:= qfactor(o). To see that the normalised sum of the q-factors of the scanning filters themselves is
not a valid measure consider the following example:

Let v1 = [1, 0, o]T, and v2 = [0, 1, 01T be the vectors representing a simple three-dimensional HVSS. Let
m1 = [1, 0, 0]T, and m2 = [0, Cosfr/3), Sinfr/3)}T be vectors representing the scanning filters. The sum of
the q-factors is 1.25. Now, suppose another set of scanning filters is chosen, that spans the same space as the first
set. Suppose the set is m1 = [1,0, 0], and m2 = {, Cos(w/3) S:n(T/3)] Notice that this set of scanning filters is
not orthogonal. The sum of q-factors for this set is 1.85. Hence,

q(V, M) =
2

qfactor(m) (38)

is seen to be dependent on the particular filters used, and is not just a function of the space spanned by the filters,
unless the orthogonality condition is imposed on the filters. Hence it is not a valid measure of goodness. Note that
if the filters rn are narrowband with little overlap, they are "close" to orthogonal. In this case (V, M) may be a
good approximation to v(V, M). The measure v(V, M) avoids this problem entirely.

If each scanning filter is to be evaluated by itself, and not as part of a larger set of filters, the proposed measure can
be used to evaluate the set consisting of a single scanning filter. In this case, the proposed measure is exactly the
same as the q-factor of Neugebauer, and Neugebauer's definition of the q-factor may be seen as a specific instance
of the measure defined in (34).

4 A Perfect Filter Set

In Section 1 , it was mentioned that it is possible that a four-filter set can ensure perfect colour scanning. An example
is presented here of an imperfect three-filter set with fairly high individual q-factors. It is demonstrated that the
addition of a fourth filter to the set makes the set perfect, though the q-factor of the fourth filter is very low.

Consider the set of three all-positive filters shown in Figs. 1-3. This set of filters has a measure, v(A, M), of 0.953.
The filters have q-factors of 0.873, 0.891 and 0.939 respectively. Clearly, this set does not span the HVSS, and is not
a perfect set of scanning filters. The mean square error between the fundamental and the estimated fundamental
for a 64 signal subset of the Munsell chip set is 0.188, and the average zL*a*b* error for the same set is 3.4. The
addition of a fourth filter to the set, shown in Fig. 4, increases the measure to 1.0, and the resulting four-filter set
spans the HVSS. The q-factor of the fourth filter is 0.246. This is an example of a case where the q-factor of a filter
is not indicative of its appropriateness as a scanning filter.

5 Experimental Results

Several ensembles were used to study the appropriateness of the proposed measure, v(V, M). The results presented
below used a 64 sample set of Munsell chips. Filter Set 1 is the set of Kodak Wratten gelatin filter Nos. 52, 49, 72B.
Filter Set 2 is the above set with a fourth filter added, the Kodak Wratten gelatin filter No. 57. Filter Set 3 consists
of a five filters, the four in Set 2 and Kodak Wratten gelatin filter No. 30. Filter Set 4 is the set of filters shownin
Figs. 1-3. The mean-square error and the LL*a*b* error are tabulated with the measure zi(A, M).
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Filter Set Measure Mean Square Error I.EL*a*b*
1 0.858 0.188 16.41
2 0.913 0.152 15.73
3 0.943 0.004 2.43
4 0.953 0.015 3.40

Notice that the mean-square error and the LL* a b* error behave similarly. A reasonable conclusion is that the
average mean square error is a good indicator of the average perceptual error. The measure is not always a good
indicator of the mean-square error, as the data set used is not composed of signals with independent, identically
distributed (iid) components. This is also a problem with the q-factor, which gives no indication of perceptual error.

6 Conclusions

The proposed measure is a valid measure of goodness of a filter set with respect to the mean square error between
the fundamental and its estimate, when the signal components are iid. If the signal components are not iid, the
proposed measure is at least as good as the q-factor, and does eliminate some of the disadvantages of the q-factor.
The mean square error is usually a good indicator of the average zL*a*b* error.
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First scanning filter, q-factor = 0.873
(transmission vs. wavelength)

Figure 3

Third scanning filter, q-factor = 0.939
(transmission vs. wavelength)

Second scanning filter, q-factor = 0.891

(transmission vs. wavelength)

Fourth scanning filter, q-factor = 0.246
(transmission vs. wavelength)
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