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Image Capture: Simulation of Sensor Responses from
Hyperspectral Images

Poorvi L. Vora, Joyce E. Farrell, Jerome D. Tietz, and David H. Brainard

Abstract—This paper describes the design and performance of
an image capture simulator. The general model underlying the sim-
ulator assumes that the image capture device contains multiple
classes of sensors with different spectral sensitivities and that each
sensor responds in a known way to irradiance over most of its op-
erating range. The input to the simulator is a set of narrow-band
images of the scene taken with a custom-designed hyperspectral
camera system. The parameters for the simulator are the number
of sensor classes, the sensor spectral sensitivities, the noise statis-
tics and number of quantization levels for each sensor class, the
spatial arrangement of the sensors and the exposure duration. The
output of the simulator is the raw image data that would have been
acquired by the simulated image capture device.

To test the simulator, we acquired images of the same scene
both with the hyperspectral camera and with a calibrated Kodak
DCS-200 digital color camera. We used the simulator to predict
the DCS-200 output from the hyperspectral data. The agreement
between simulated and acquired images validated the image
capture response model and our simulator implementation. We
believe the simulator will provide a useful tool for understanding
the effect of varying the design parameters of an image capture
device.

I. INTRODUCTION

I N THIS paper, we describe how one can simulate the
camera’s response to a scene from hyperspectral image

data.
The light sensors in many modern image capture devices (e.g.

digital scanners and digital cameras) are based on charge-cou-
pled device (CCD) or active pixel sensor (APS) technology.
These devices are usually designed so as to have linear irra-
diance-response functions over most of their operating range
[1]. The overall camera system may not exhibit the underlying
device linearity, however. For example, there may be a non-
linear mapping between the raw sensor output and the digital re-
sponses actually available from the camera. Such a nonlinearity
might be designed into a camera system if the quantization pre-
cision of the sensor itself is larger than that of the camera. This
is the situation with the Kodak DCS-420. It employs a 12-bit in-
ternal data representation for measurements that are linear with
respect to irradiance, but its standard control software provides
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only eight bits of precision and eight-bit output that is nonlinear
with respect to irradiance.

Color cameras require multiple classes of sensors with dif-
ferent spectral sensitivities. By placing color filters in series
with either CCD or APS sensors, usually on a pixel-by-pixel
basis, such multiple classes can be created. When the color fil-
ters are placed in a mosaic pattern, one color per pixel, the cam-
eras are referred to as color filter array (CFA) cameras. Evalu-
ation of digital camera design parameters has received consid-
erable attention in the recent literature [2]. These evaluations
are based on theoretical models of image statistics and simple
image quality metrics. A useful complement to the theoretical
approach is to evaluate the performance of different camera de-
signs for actual scenes. A difficulty with this approach is that it
is not always feasible. This paper describes a method for con-
structing, testing and evaluating the performance of an image
capture device simulator. A reliable simulator provides a means
for evaluating the performance of a complete image capture de-
vice design prior to manufacture.

The simulator we describe is based on several simplifying
assumptions about the image capture device. These are that the

1) optical system is linear and shift invariant;
2) response of the sensors to light at varying intensities and

wavelengths is known;
3) sensor noise is additive.

The input to the simulator is a hyperspectral image of the scene,
which provides the full spectral power distribution of the inci-
dent light at every image location. The image is acquired with
a custom-built hyperspectral camera system described in this
paper. Given the hyperspectral image, the simulator computes
the response of the image capture device using the response
models developed here.

This paper is organized as follows. Section II briefly describes
work in camera modeling. In Section III we describe the simu-
lator and Section IV contains experimental results verifying its
accuracy. Section V presents conclusions and future directions.
The Appendix details the modeling and calibration methods and
results.

II. CAMERA MODELS

The range of operation of CCD sensors is highly linear. We
assume two models for the entire camera system—the first is
a simple linear model, the second a linear model for the sensor
with a static nonlinearity. These models are used to calculate the
output of a camera given its input and are described briefly in
this section before we describe the simulator.

1057–7149/01$10.00 © 2001 IEEE
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A. Linear Response Model

Assuming linearity, the output of a sensor array at grid posi-
tion maybe be approximated as

noise (1)

where
exposure setting;

argument variation with wavelength;
spectral sensitivity of the sensor at position

;
irradiance distribution incident on the camera
at position ;
wavelength sampling for the irradiance and
spectral response functions;
spatial sampling rate (i.e., the distance be-
tween contiguous sensors, assumed to be uni-
form and identical in both horizontal and ver-
tical directions);

noise sensor measurement noise.
Correct calibration allows us to drop the constant in the
above sum. In the formulation of (1) we neglect optical blur of
the camera. This is justified for the moment because we con-
sider only images of the Macbeth ColorChecker Chart (MCC),
a low spatial frequency target, where optical blurring is not a
critical factor. We also assume that the spectral response of a
single sensor is constant over each pixel and that the wavelength
sampling used is fine enough to accurately represent the spec-
tral response.

The Kodak DCS-200 is an example of a camera system which
responds linearly to irradiance. Experimental results showing
this are reported in [3] and summarized in the Appendix.

B. Static Nonlinearity Model

The behavior of some cameras like the Kodak DCS-420 can
be described by astatic nonlinearity model. For this model, the
camera response for a pixel of theth sensor type pixel is given
by

noise

(2)

where is a monotonically increasing nonlinear function.
The Kodak DCS-420 operating in its standard eight-bit mode

is an example of a camera system which responds according to
the static nonlinearity model. Experimental results showing this
are reported in [3] and summarized in the Appendix.

III. CAMERA SIMULATOR

In [3] and [4], we have shown that a linear model with the
application of a static nonlinearity (if necessary) is good at pre-
dicting sensor response from digital image sensors. These re-
sults are further summarized in the Appendix. In this section, we
describe the use of the linear model to simulate the response of
a specific digital camera to a specified scene. We also describe a

hyperspectral camera system used to provide input to the camera
simulator. The digital camera is defined by the values of a set of
camera design parameters, and the scene is defined by irradi-
ance values as a function of space and wavelength.

A. Simulator Description

The input to the simulator consists of a set of images which
together represent an approximation of the irradiance incident
on the camera lens as a function of space and wavelength. At
present, the input is a set of 31 images taken with the hyperspec-
tral camera system described in Section III-B. The 31 images
each represent a spatial distribution of the incident irradiance
over a narrow range of wavelength values. The simulator can
also take a different representation of the input, for example a
set of images each of which represents the spatial distribution of
coefficients with respect to a basis set of principal components
of a database of radiant spectra. The simulator uses (1) or (2) to
compute the simulated output image.

The parameters of the simulator are

1) sensor spectral sensitivities as a function of wavelength,
sampled at the same rate as the representation of the input
(or represented in terms of the same basis vectors as the
input);

2) exposure time;
3) noise statistics (mean and variance);
4) mosaic pattern;
5) number of bits per pixel of the camera sensors;
6) function .

A final step of the simulation, not described by (1) and (2), is
to quantize the simulated output to the same number of bits as
the simulated device. The output raw data image of the simulator
may be directly compared with the camera image for numerical
verification. For visual quality judgements, we need to demosaic
and color correct the outputs of the DCS-200 and the simulator
and then compare the color images.

B. Hyperspectral Camera

The hyperspectral camera was based on a scientific grade
monochrome CCD camera (Photometrics PXL, 2 K by 2 K spa-
tial resolution at 12 bits/pixel direct digital interface, electronic
control of temporal integration, liquid cooling reduces dark
current, irradiance-response function is linear, 50 mm Nikkor
lens) interfaced to a Macintosh host. Hyperspectral images
were acquired by sequentially placing interference filters in the
optical path of the camera and acquiring monochromatic im-
ages through each filter. For the work reported here, the filters
were placed directly in front of the camera lens. The filters were
narrowband (roughly 10 nm full-width at half-height) with
peak wavelengths that evenly spanned the visible spectrum (31
filters, 400 nm to 700 nm, in 10-nm steps). Aperture (f-stop)
and exposure duration for each monochromatic image were
adjusted so that the image data were within the response
range of the camera, and focus was adjusted individually for
each monochromatic image. Dark images (camera shutter not
opened) were acquired for each exposure duration used, and
the appropriate (same exposure duration) dark image was sub-
tracted from each monochromatic image. A spectraradiometer
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Fig. 1. RGB Scatter plot of MCC color simulation.

(PhotoResearch PR-650) was used to measure the spectrum
from a small, approximately uniform, image region at the
same time as the 31 monochromatic images were acquired.
This measured reference spectrum was used to calibrate the
dark-subtracted monochromatic images. Image data from the
region corresponding to the radiometer measurement were
extracted and a scale factor for each monochromatic image was
computed that brought the extracted data into agreement with
the reference spectrum. Similar calibration procedures have
been used by others [5], [6]. Since the focus of the present work
is on the chromatic properties of the simulator, no attempt was
made to correct for small alignment errors between individual
monochromatic images and we did not evalute the spatial point
spread function of the hyperspectral camera. A website [7]
provides information about the ongoing development of our
hyperspectral camera system. Descriptions of similar hyper-
spectral cameras may be found elsewhere [5], [6], [8]–[10].

IV. SIMULATOR VERIFICATION

This section describes the experiments performed to verify
the accuracy of the simulator for color patches. The DCS-200
was used to take pictures of the MCC in a laboratory illumi-
nated by an incandescent source (Kodak 4400 Slide Projector)
at different exposure settings: 1/8, 1/15, 1/30, 1/60, and 1/125
s. The hyperspectral camera system was also used to acquire a
31-band hyperspectral image of the same chart under the same
conditions. The hyperspectral image, the DCS-200 spectral sen-
sitivities (estimated as described in [4] and summarized in the
Appendix), the exposure durations, the measured noise statis-
tics, the bits per pixel value (8) and the calibrated nonlinearity
(the identity) of the DCS-200 were used to generate simulated
images. The simulated images were compared both numerically
and visually.

Fig. 1 is a scatter plot of the real versus simulated
values over all the shutter speeds studied in the experiment. It
is clear that the agreement between real and simulated values is
good. Table I lists the numerical error statistics of , and
values averaged over the center of each patch in both real and

TABLE I
STATISTICS OF SIMULATION ERROR FOR

MCC-DCS-200

simulated images. Since the DCS-200 is an 8-bit camera, the
numerical response values range between 0 and 255. The values
in the table are computed from response values on this scale.

For purposes of comparison, the spatial variation in a dark
noise image taken with the DCS-200 has a root mean square
value of about 0.89 (see the Appendix). Linearity tests for
this camera have shown that the root mean square value of
the variation from linearity is 1.45 [3] (see the Appendix).
Furthermore, the correspondence between predicted and
empirical sensor values is consistent across exposure settings,
supporting our assumption of linearity with respect to exposure
duration—an assumption implicit in (1), and verified through
earlier experiments reported in [3] and [4] and summarized in
the Appendix.

We visually compared the predicted and empirical sensor data
after processing the data with a simple demosaicing routine
based on bilinear interpolation. (The complexity of the demo-
saicing routine is not expected to make a difference to visual
quality, as the images consist of large color patches.) The real
and simulated images had similar appearances.

To further quantify the accuracy of the simulator with respect
to perceptual error, we calculated the perceptual error repre-
sented by the real and simulated values for one simu-
lated image and the corresponding real image. For this compar-
ison we chose the image that covered best the dynamic range of
the camera. We used the estimated camera spectral sensitivities
(see the Appendix for details of the estimation procedure) and
to calculate a linear minimum mean square error correction of
camera RGB values recorded in the tungsten illuminant to CIE
tristimulus values for illuminant D65. This correction is equiv-
alent to a regression estimate for simulated camera RGB values
under tungsten for the Macbeth chart to CIE tristimulus values
under D65. As the data set is known to be the Macbeth Chart,
we chose to use this fact in the color correction procedure. Our
method is based on [11].

The average absolute error between the real and simulated
values is very low for the and values (0.0189 and 0.0193
out of maximum values of 0.6991 and 0.7044 respectively; cor-
responding to 2.7% and 2.74%, respectively) and slightly higher
for the values (0.0887 out of a maximum value of 1.3548 cor-
responding to 6.55%). This is probably because the color correc-
tion matrix has a very large term for the conversion from blue
to , which would multiply the contribution of errors in blue
readings to values. The large term in the color correction ma-
trix is because of the low blue sensor response of the DCS-200
camera and the fact that the image was taken in tungsten light
which further reduces the blue response of the recording system.
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We calculated CIE Lab values corresponding to the tris-
timulus values, assuming a white point of (0.6991, 0.7044,
1.3548)—the values for the macbeth white square in
the real DCS-200 image after correction to values in
D65. The perceptual agreement between real and simulated
values—as far as it is represented by similar CIELab values—is
fair. The maximum error in CIELab space is 14.79, and the
average is 6.6874.

A comparison of Fig. 1 and the bottom panel of Fig. 4 sug-
gests that much of the simulation error arises because of dif-
ferences between the hyperspectral image data compared to di-
rect radiometric measurements. Such differences could be in-
troduced because our hyperspectral camera calibration does not
account for geometric distortions. It is worth noting that for pur-
poses of evaluating camera design it is not critical that the hy-
perspectral image data exactly measure the input scene, since
comparisons will be between performance of different camera
designs simulated for the same hyperspectral input.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

The use of a linear model with the application of a static non-
linearity if necessary is appropriate for the simulation of the
sensor responses of color filter array cameras. The color fidelity
of output simulated using the linear model is good for a wide
range of exposure settings. In the future we will incorporate
a model for the optical system to simulate the effects of lens
blur. The simulation of spatial effects (including the effect of a
lens blur that may vary as a function of position with respect to
center-field and wavelength, inter-sensor charge leakage and the
mosaic pattern) on the visual quality of an image will be veri-
fied by using calibrated hyperspectral input images of scenes
with richer spatial variation. Another direction for future study
is the calculation and correlation of the perceptual error of the
simulator with observer preferences.

APPENDIX

We summarize relevant experimental results for modeling
and calibrating the camera in the Appendix. These results are
detailed in [3], [4]. This Appendix covers the camera model
linearity assumption, calibration of a static nonlinearity, noise
measurement and characterization and spectral calibration for
the Kodak DCS-200 and the Kodak DCS-420 cameras.

A. Camera Linearity

To test the linearity of the camera response, we measured the
irradiance-response functions at several exposure durations for
both cameras.

A typical result is shown in the left image of the first row
in Fig. 2. The -axis shows the irradiance of the incident light
(calculated as described in [3]) and the-axis shows the camera
output value (with the expected value of the noise subtracted).
The crosses represent actual data points. The straight lines are fit
to the data and constrained to pass through the origin. In fitting
the data, we excluded saturated points and points with very low
intensities. The good agreement between the data and the fit
lines indicate that the DCS-200 has a linear irradiance-response
function over most of its operating range.

We note that the performance of a second digital camera (the
Kodak DCS-420) is not well-described by the linear model, at
least when it is operated with the standardly-supplied eight-bit
acquistion software [3]. A typical result is plotted in the right
image in the first row of Fig. 2. In this figure, the expected
value of the dark noise has not been subtracted from the camera
output. The relationship between irradiance and response was
clearly nonlinear. A probable cause for this nonlinearity is the
12-to-8-bit reduction in the image acquisition software. We de-
scribe the calibration of the static nonlinearity of the Kodak
DCS-420 in Appendix Section C.

B. Camera Response to Variation in Exposure

To test for linearity with exposure duration in the Kodak
DCS-200, we took pictures under fixed illumination at different
exposure durations. The left panel of the second row of Fig. 2
shows typical results. As with the figure above it, the crosses
represent actual data points with the expected value of the noise
subtracted and the lines are fits constrained to pass through the
origin. A slight variation from linearity may be due to the fact
that the shutter exposure time is not controlled accurately.

As the irradiance-response function of the DCS-420 is not
linear, it would be surprising if its output were linear with expo-
sure duration. We roughly calculated the average green sensor

value at the center of the image field for images taken at
various exposure durations for 525-nm illumination. The right
panel of the second row of Fig. 2 shows the results with average
noise subtracted (’s) overlaid on irradiance-response data (re-
plotted as ’s). The -axis represents exposure duration relative
to one second and irradiance relative to unity. The two readings
corresponding to one second and unit irradiance are replications
of the same illumination condition, so that no scaling of the data
were required. The close agreement between the two curves sug-
gests that the same nonlinearity mediates both.

C. Calibration of Linearity and Static Nonlinearity

Our data indicate that the linear response model describes the
output of the Kodak DCS-200, at least over the output range
20–240 out of a total range of 0–255 camera units. To obtain
the parameters describing a single line for all the data, we fit a
calibration line to the data for the blue sensor readings of the
left panel of the first row of Fig. 2,without subtracting out the
averagedark noise value. The calibration line is the solid line in
the left panel of the last row of Fig. 2. Measured camera values
on a scale of 0–255 are plotted on the-axis, while linearized
fractional input on a scale of 0–1 is plotted on the-axis.

To verify that the calibration line derived from one irradi-
ance response function describes all the data, we can use this
line to normalize all of our data and examine it on a single plot.
For each measured irradiance response function, the irradiance
measure we used is arbitrary, since we varied both the expo-
sure and wavelength across the different measurements. We can
use the calibration line to normalize the data, however. For each
data set, we found the highest camera output value in the linear
range (below 240) and found its position on the calibration line.
We then scaled all the irradiance values of that data set by a
single normalization scale factor such that the highest camera
output value in the linear range would correspond to the irra-
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Fig. 2. Intensity and exposure responses.

diance factor obtained by looking at the calibration line. This
procedure allows us to compare all of our data to the calibration
line, as shown in the left panel of the last row of Fig. 2. The
highest camera output value for each data set lies on the line
because of the way the normalization is performed. Data points
with values below 240 and above 20 all lie close to the line. Data
points with values below 20 or above 240 are plotted with aster-
isks or lie outside the region shown in the plot.

The Kodak DCS-420 is not linear. To examine whether the
static nonlinearity response model described its performance,
we asked how well a single function can describe its output
across the conditions we measured. We used the measurements
plotted in the right panel, first row, Fig. 2 as a reference. This
series covered most of the dynamic range of the camera. By in-
terpolating and extrapolating the reference, we obtain acalibra-
tion curvefor the DCS-420 that maps between sensor values (0
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Fig. 3. Variation from calibrated curves and noise.

to 256) to intensities that lie between 0 and 1. This irradiance
measure is in arbitrary units but may be calibrated to physical
units. The result is tabulated in [3] and graphed as the line in the
right panel of the last row of Fig. 2. It represents the value of

(or ) of (2).
We tested the accuracy of the calibration curve by asking how

well it described the rest of our data. Each set of acquired data
points has a different irradiance scale. A value of unit irradiance
corresponds to the maximum irradiance for the shutter speed
used for that test. To check if the other acquired data points
lie on the calibration curve, the irradiance values need to be
transformed to a single scale. We calculated the scale factor for
the conversion for each data set by using the highest measured
output value (which corresponds to a unit irradiance for that
series), finding its position on the calibration curve, and using
the fractional irradiance value thus obtained as the scale factor.
The data points from all of our irradiance-response series as well
as the exposure data are plotted in the right panel of the last row
of Fig. 2 along with the calibration curve. The data all lie along
the curve.

D. Variation from Linear Model and Static Nonlinearity

The data points vary slightly from the linear model for the
DCS-200 and from the calibration curve for the DCS-420. In
this section, we quantify the variation.

To estimate the slight variation from linearity of the DCS-200,
we calculated the differences between values predicted by the
straight line in the linearity plot of the left panel of the last row
of Fig. 2 and actual values, for measured values above 20 and
below 240. These differences are plotted in the top left panel
of Fig. 3. This calculation assigns zero difference to the max-
imum value in each data set because of the way placement of
all data points on one curve is performed and is thus only ap-
proximate. The error statistics reported below were calculated
without using the maximum value in each data set, and are trans-
formed from fractional values from 0 to 1 to camera values from
0 to 255. The mean absolute value of the variation is 1.13, and
the mean value is 0.58. The average of the noise when estimated
from the calibration curve is 12.5. This value is close to the value
of 13.6 obtained by directly estimating the dark noise (see Ap-
pendix Section E below). The root mean square value of the
variation is 1.45. The maximum error is 4.67 and occurs for a
green sensor reading.

To quantify the slight variation of the scaled DCS-420 data
points from the curve in the right panel of the last row of Fig. 2,
we calculated the difference between the data point and the
value on the curve corresponding to the scaled irradiance, i.e.
the difference between indirectly measured values of

and values obtained from the calibration curve. As for the
DCS-200, this calculation assigns zero difference to the max-
imum value in each data set and is thus only approximate. The
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error statistics reported below were calculated without using the
maximum value in each data set, and without scaling the lin-
earized output to the camera output scale of 0–255.

The average absolute value of the variation was 0.0015. The
root-mean-square value of the variation was 0.0021, approxi-
mately 0.5 units per 256 (for comparison with the variation for
the DCS-200) and the maximum value was 0.0072, approxi-
mately 1.8 units per 256. As can be seen from the plots in the
top right panel of Fig. 3, the blue has most variation, and the red
and green variations are comparable.

E. Noise Measurements

We took a number of dark images at different times during our
day-long experiments, and at different exposure durations. The
effect of aging is negligible and is detailed in [3]. We discuss
the effect of exposure duration on dark current noise.

The data for the DCS-200 are tabulated in Table II. Dark noise
shows some variation with exposure duration, up to 4 units, but
is quite constant over the different color bands. The mean of the
data tabulated is 13.61, 13.63 and 13.61 for red, green, and blue
sensors respectively. The overall mean is 13.62. The variances
for the three sensor types are 0.78, 0.79, and 0.81 respectively;
the corresponding standard deviations are 0.88, 0.89 and 0.90.
The overall variance about 13.62 is 0.79 with a standard devia-
tion of 0.89. Variation is greatest for blue sensors and least for
red, but the differences are slight.

The mean values may be compared to those obtained from
the variation from linearity calculations in Appendix Section D.
The value of 12.5 obtained there is close to the measured values.
The variation values may be compared to the values obtained in
Appendix Section D. The variation from linearity includes the
dark noise variation, but is larger because it is not limited to the
dark noise variation. It includes other nonlinear aspects of the
sensor response, including other noise sources like shot noise.

The bottom panel of Fig. 3 illustrates the fact that the vari-
ation of dark noise with exposure duration is not monotonic at
low exposure durations. This could be because of inaccuracy in
the mechanics of the shutter movement. At exposure durations
of 1/4 s and higher, the variation of dark noise with exposure
duration is monotonically decreasing. This could be because the
effects of dark current are averaged out at higher exposure du-
rations.

The average value of dark current noise is usually subtracted
from readings that are known to be linear, i.e., readings pre-
dicted by (1). As the DCS-420 sensor outputs are the result of a
nonlinear function operating on the CCD measurements, [(2)],
the dark noise average cannot simply be subtracted from the
sensor readings. In fact, our calibration curve (the right panel in
the last row of Fig. 2) provides an indirect estimate of

and the variability from this curve provides an estimate of the
effective additive noise. Nonetheless, obtaining a direct mea-
sure of the dark noise variability seems useful for an estimate of
acceptable errors in RGB prediction for camera calibration [4]
(see Section F).

We took a few dark images (with the lens cap on) at var-
ious stages of the experiment, and at various exposure times.
We calculated the average value over the same rectangle in the
center field used for other measurements. The average value did

TABLE II
DARK NOISE VS. EXPOSUREDURATION, DCS 200

not vary much. Its average over the different images was 25.02,
25.01, and 25.06 over red, green, and blue sensors, respectively.
Its overall mean was 25.03. Individual variances about indi-
vidual means were 0.2375, 0.2207, and 0.2203 for red, green
and blue respectively. Its overall variance with respect to the
overall mean was 0.2266 and the standard deviation 0.4760.

If we convert the dark noise standard deviation to the linear
domain (using the average slope of the calibration curve) we
get a value of 0.0019. This is a little lower than the measured
deviations of the data from the curve. As with the DCS-200, the
difference is explained by the fact that variation from the cali-
bration curve includes the effects of other types of noise besides
dark noise.

F. Camera Calibration

To perform calculations, we write a version of (2) that de-
scribes the entire calibration data set. Let , and be vec-
tors representing the readings to a series of narrowband
lights. The vectors , and have and entries re-
spectively, one for each of the narrowband stimuli used to cali-
brate the corresponding sensor. Let the full spectrum of theth
narrowband light be , and let the unknown camera spectral
sensitivities be and . From (2) we have

...

...

(3)

where
vector representing measurement noise with variation
about the average dark noise value;
wavelength sampling for the radiometric measure-
ments;
exposure setting for theth measurement.

The function is applied pointwise to each component of the
vector it acts on. It is the identity for the DCS-200 and the cali-
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Fig. 4. Wiener estimates and simulator scatter plot.

brated static nonlinearity for the DCS-420. Equations similar to
the one above can be written for the readingsand . The equa-
tions for and may be solved in a number of
different ways. In the rest of this section we discuss some pos-
sibilities.

We used a variant of the Wiener estimate that is guaranteed
to produce all positive estimates. The Wiener procedure requires
that we regard the quantity to be estimated (say) as a Gaussian
random variable with known mean and covariance. We took the

mean to be the estimate obtained by assuming the spectral
response is constant over the bandwidth of the narrow-band il-
luminant used for measurement and constructed the covariance
matrix by assuming that was the result of a first-order dis-
crete Gauss-Markov process whose variance was equal to the
variance of the entries ofand whose entry-to-entry correlation
was equal to the correlation between neighboring entries of.
We assumed that the entries ofwere independently and identi-
cally distributed with mean zero and variance equal to 2% of the
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TABLE III
DARK NOISE VS. EXPOSUREDURATION, DCS 200, LATER READINGS

TABLE IV
STATISTICS OFESTIMATION ERROR—DCS-200—WIENER ESTIMATES

TABLE V
STATISTICS of ESTIMATION ERROR—DCS-420—WIENER ESTIMATES

TABLE VI
STATISTICS OF ESTIMATION ERROR FORMCC—DCS-200—WIENER

ESTIMATES

maximum linearized sensor response (after correction for non-
linearity, mean noise level, and exposure duration). We did this
for each sensor and obtained results slightly better than those
obtained by assuming the spectral response is fixed over the
bandwidth of the narrow-band illuminants used for measure-
ment. Graphs of the Wiener estimates for the DCS-200 and the
DCS-420 are presented in the left and right panels of the first
row of Fig. 4. The spectral response estimates are interpolated,
and the numerical values may be found in [4]. Scatter plots of
measured values vs. values calculated from the Wiener spec-
tral sensitivity estimates for the DCS-200 and the DCS-420 are
plotted in the left and right panels respectively of the second row
of Fig. 4. Tables III and IV list the statistics of the estimation er-
rors for the DCS-200 and the DCS-420, respectively.

In contrast to our previous attempts to estimate the spectral
sensitivities of the Kodak digital camera [12], the error for the
estimates are low and close to the rms value predicted by the
noise statistics for both cameras. Presumably one factor driving

the small error is that we used many narrowband lights to cali-
brate the sensors.

Non-linear estimation methods like projections onto convex
sets (POCS) [13] are used when the Wiener estimation method
gives results that clearly do not satisfy prior knowledge of the
solution. For example, POCS would be used if the Wiener es-
timates gave unreasonable errors in the RGB values. Our esti-
mates satisfy the three known constraints: the set of measured
and predicted RGB values agree leaving room for reasonable
noise; the filters are reasonably smooth; the filter transmissiv-
ities are nonnegative. Hence, we did not attempt more compli-
cated nonlinear (particularly constrained) estimation methods.

G. Verification of Estimates

For the DCS-200, we tested the spectral sensitivity estimates
by collecting two images of the MCC under a tungsten illumi-
nant. We compared the actual , and responses for the 24
color checker patches with values predicted from the spectral
sensitivities of the camera and direct radiometric measurements
of the light reaching the camera from each patch. The procedure
is detailed in [4]. The last panel of Fig. 4 shows the predicted
vs. measured values for the Wiener estimates. Table V lists the
error statistics. It is clear that the estimates are excellent, and
perform well on data sets that were not used for the calibration.
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