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Abstract. Random data perturbation (RDP) has been in use for several
years in statistical databases and public surveys as a means of providing
privacy to individuals while collecting information on groups. It has re-
cently gained popularity as a privacy technique in data mining. To our
knowledge, attacks on binary RDP have not been completely character-
ized, its security has not been analyzed from a complexity-theoretic or
information-theoretic perspective, and there is no privacy measure of bi-
nary RDP that is related to the complexity of an attack. We characterize
all inference attacks on binary RDP, and show that if it is possible to
reduce estimation error indefinitely, a finite number of queries per bit of
entropy is enough to do so. We define this finite number as the privacy
measure of the binary RDP.

1 Introduction

The general problem solved by random data perturbation (RDP) is that of pro-
viding statistics while protecting individual values. This is done by adding noise
to the individual values. The larger the probabilistic perturbation of the data, the
more privacy provided to the individual values, and the less accurate the statis-
tics. RDP has been in use for about twenty years in statistical database security
[1, 12], and has recently been proposed as a means of personal privacy protec-
tion in data mining applications [2, 3]. In this paper, we analyze the amount of
privacy provided by binary RDP.

The purpose of a statistical database is to provide statistics to researchers
while keeping individual values “private”. For example, a health database would
keep “private” whether individual X had Hepatitis A or not, but would reveal
how many members in a community had Hepatitis A. The general technical
problem is as follows:

- Database A contains two (possibly intersecting) sets of binary variables:
Q = {q1, q2, ...qi, ...} (queryable bits) and S = {s1, s2, ...si, ...} (sensitive
bits).
- Data collector B queries the value of f(a1, a2, ..., ak)ai∈Q = X ∈ {0, 1},
for any f . In particular, B can query combinations of queryable values
across records such as “the most common gender among records 1, 2
and 3”.
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- Q and S are probabilistically-related, i.e. the mutual information be-
tween the two (the change in uncertainty in one on knowing values in
the other) is non-zero: I(S; Q) �= 0.
- The bits in S are to be “protected”.

One approach is to compute the value of f(a1, a2, ...ak) so that no other
information is revealed. This can be done using secure multiparty computation
[9]. However, secure multiparty computation cannot prevent inference attacks
[6, 12], which involve the determination of information on bits in S from several
queried values Ai = fi(a1, a2, ...ak), i = 1, 2, ...n. It is not straightforward to
recognize such attacks.

Example 1. The general inference attack. Consider
s1 “gender”
s2 “Over 40”
q1 “Losing Calcium”
q2 “Balding”
q3 “Greying”
q4 “Gaining weight”

Suppose B wishes to determine bits s1 and s2. To do so, B may query func-
tions of the bits q1, q2, q3, q4, which would reveal information about the sensitive
bits, but would not determine them completely. For example, women over 40 are
more likely to be losing Calcium than any of the three other categories. Similarly,
men over 40 are almost the only category balding. However, it is possible for a
man over 40 to have the same responses as a man under 40.

The RDP of Ai = fi(a1, a2, ...ak) before revealing the values, whether com-
puted using trusted multiparty computation or not, makes the task of inference
more difficult. Binary RDP proceeds as follows:

B requests bit X from A and receives the variable φ(X) = Y ∈ {0, 1}
generated according to P (Y |X),

P (Y |X) =
{

ρ Y = X
1 − ρ Y �= X

i.e. B receives the requested bit flipped with probability 1 − ρ. There
are no conditions on the amount of information A has about what B
received, i.e. we do not consider private information retrieval.

The simplest attack on RDP is the repeated query attack, where B repeatedly
asks for the same bit x ∈ Q ∩ S and guesses the correct value of x to be the
one received most often (assuming ρ > 1

2 ). Clearly, the estimation error can be
decreased without bound by increasing queries without bound, i.e. if ωm is the
probability of error using m repeated queries of a bit, limm→∞ ωm = 0.

However, this is the best B can do with repeated queries, i.e. if ηm is the
number of queries per bit determined, ηm increases indefinitely if ωm is not
bounded below.

lim
m→∞ ωm = 0 ⇒ lim

m→∞ ηm = ∞ (1)
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There are a number of attacks other than a repeated query attack, which
is very recognizable. However, because these are not well characterized, it is
typically assumed that expression (1) represents a best-case scenario for B. In
[16] it is stated that, if C is the channel capacity of the protocol viewed as a
communication channel, attacks in which

lim
m→∞ ωm = 0 for ηm =

1
C (2)

exist, i.e. that inference attacks can be more efficient than the repeated query
attack - if the queries x are functions of the bits B wants to determine, and if B
and A are willing to participate in a large enough number of queries.

In this paper we show that expression (2) is the best an attacker can do, i.e.
that

lim
m→∞ ωm = 0 ⇒ lim

m→∞ ηm ≥ 1
C

for all inference attacks if limm→∞ ηm exists. Note that the lower bound obvi-
ously does not hold for attacks that do not seek to reduce error arbitrarily. We
define the asymptotic lower bound on ηm as the privacy measure of the protocol;
it is the inverse of the channel capacity of the protocol viewed as a communi-
cation channel. Note that, we use “asymptotic” as used by mathematicians, to
mean: “in the limit”.

When the protocol has a small bias β (i.e. each bit is flipped with probability
0.5 + β, β small), Chernoff-type bounds [11, 10] provide estimates of the query
complexity of a repeated query attack. For example, from the Chernoff bound:

m = ηm =
[ln( 2

δ )]
0.38β2 ⇒ ωm ≤ δ

We show that ηm for an inference attack can be independent of δ, i.e. while
m → ∞, ηm can be finite, though bounded below. In particular we show that
ηm is Θ( 1

β2 ).
Our main contributions are: (a) the framework we have used to study the

security of binary RDP, and the corresponding definitions and associations with
information theory and coding; (b) a general characterization of inference at-
tacks, and (c) the use of our framework in deriving a very general efficiency
result that changes some of the view of the efficiency of inference attacks.

The paper is organized as follows. In section 2 we present a short review of
existing work, and in section 3, definitions motivated by the statistical database
security problem. Section 4 presents our results with proofs. The conclusions are
presented in Section 5.

2 Related Work

The database community has measures of the privacy of randomization [8, 3, 2];
these are, however, not motivated by a security analysis. The security analyses
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that do exist [12] focus on the variance of the estimation error. [2] proposes
the use of the differential mutual information between the original and per-
turbed continuous-valued data points as a measure of “conditional privacy loss”,
which inspires our measure. The mutual information between two variables is
the change in uncertainty of one on knowing the other. Thus the measure of
conditional privacy loss has some useful properties: (a) it addresses the change
due to a protocol instance, and (b) because it is based on entropy, it distin-
guishes among situations where the two possibilities are almost equally likely
and situations where this is not so. The measure does, however, depend on the
original pdf, and not only on protocol parameters. Our privacy measure, the
inverse of the protocol channel capacity, is closely related to this measure, but
improves on it by being independent of the input pdf (channel capacity is the
maximum value of the mutual information, taken over all possible input pdfs).
Unlike [2], our work also provides a connection between our privacy measure and
the complexity of certain types of attacks.

3 Definitions

In this section we provide the definitions we shall need to prove our results. We
provide a list of symbols in the appendix.

Consider a query sequence x of length m. The number of possible values of
the true responses need not be 2m, because certain bit combinations may not
be possible, as the queries are not generally independent. We denote the size
of the set of all possible values of x by M . Clearly, a “most efficient” query
sequence would use exactly log2M bits to distinguish among the M values, but
most effective query sequences would want to correct for the RDP and would
hence consist of more that log2M queries.

Definition 1. The query complexity per bit, of query sequence x of length m,
as a means of distinguishing among M possible values of x is ηm = m

log2M .

We define the most general inference attack, such as the one of example 1,
next.

Definition 2. An inference attack is a set of queries x such that x and the set
of sensitive bits S are not independent, i.e. I(S;x) �= 0.

The definition is intentionally broad, as we show a lower bound on the query
complexity per bit for an inference attack for which limm→∞ ωm = 0. The def-
inition also assumes nothing about the relationship between queried bit xi and
previously received responses: φ(x1), φ(x2), ...φ(xi−1), and, hence includes adap-
tive inference attacks.

B cannot do any better in reducing the uncertainty of S than is possi-
ble through accurate knowledge of all of Q and unlimited computing power.
Assume, wlog, that B wishes to determine the k bits p = (p1, p2, ...pk) =
{gi(a1, a2, ..aj ...)aj∈Q}k

i=1 from each record in database A. The RDP limits B
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in determining p accurately, but does not affect the uncertainty reduction in S
from complete knowledge of p. In evaluating the RDP, hence, we focus on the
accurate determination of p. We denote the entropy of p as queryable entropy,
(that which can be reduced to zero through queries if there is no RDP). Contrast
this to the entropy of bits in S, which, in general, cannot be reduced to zero
through queries of functions of queryable bits even if there were no RDP.

The maximum probability of estimation error1, denoted ωm, is a measure of
the success of query sequence x, of length m, in estimating p. As the value of m
grows, it is reasonable to expect the error to reduce, or, at least, not increase.
We define attacks in which asymptotic error is zero as small error attacks.

Definition 3. A small error inference attack is one in which limm→∞ ωm = 0.

Clearly, error and query complexity are related, and a lower error could re-
quire a higher query complexity per queryable bit. An RDP that forces a higher
query complexity to reduce error is better from the privacy point of view. We
propose that the measure of the privacy of binary RDP be the minimum value
of the query complexity per bit of queryable entropy required for a small error
attack.

Definition 4. The privacy of binary RDP is the (tightest) asymptotic lower
bound on the query complexity, on average, per bit of queryable entropy, for a
small error attack.

We now review some definitions from information theory necessary for our
results.

Definition 5. [5] A communication channel is a triplet of the following: a set of
input variables, X , a set of output variables, Y, and a a posteriori pdf, P (Y |X),
and is denoted (X , P (Y |X),Y).

We denote the channel corresponding to a protocol by Φ, and the channel
corresponding to binary RDP with probability of lie 1 − ρ by ΦB(1 − ρ).

Definition 6. The channel capacity of protocol Φ is the maximum decrease in
entropy of variable X due to the protocol, and is denoted C(Φ).

The channel capacity of the binary symmetric protocol with probability of a
lie 1 − ρ is

C(ΦB(1 − ρ)) = 1 − H(ρ) = 1 + ρlog2ρ + (1 − ρ)log2(1 − ρ)

bits, where H(ρ) is the entropy of the binary variable with ρ being the probability
of one of its values. When the protocol has a small bias, i.e. ρ = 0.5+β for small
β, its capacity is determined by the second order term of the Taylor expansion
(zeroth and first order terms are zero):

C(ΦB(0.5 ± β)) =
2β2

ln2
, β small (3)

1 The estimation error calculation assumes a maximum likelihood estimation.
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4 Our Results

We wish to determine the privacy of binary RDP. To do so, we demonstrate an
asymptotic lower bound on the query complexity, per bit of queryable entropy,
for a zero error inference attack. [16] implies that the bound is tight. However,
attacks that achieve the bound might be recognizable.

We approach the problem by viewing binary RDP as a communication chan-
nel as in [16]. The analogy with communication over a channel is as follows: the
protocol is a channel and p a message. The channel coding (“Shannon’s second”)
theorem [14, 5] provides a tight upper bound of channel capacity on the inverse
of ηm for a zero error attack - if each query is a function of p, and ηm is constant
as m increases. Hence, when the query sequence x is a function of p, inference
attacks are channel codes; η−1

m are the rates of the codes; when such attacks are
zero-error with constant ηm = η, the inverse of channel capacity is the minimum
value of η, achieved by attacks that correspond to Shannon codes.

The most general inference attack (see example 1, section 1 and definition 2,
section 3) is not one in which the query sequence is a function of the required
values p. Nor does an inference attack require constant ηm as m increases. By
modifying the proof of the converse of the channel coding theorem using Fano’s
inequality [5–pg. 205] - the main ingredient for demonstrating channel capacity as
a bound on the rate of a code - we show that the tight asymptotic lower bound on
the query complexity per bit for the (more general) small error inference attack is
also the inverse of the channel capacity of the protocol. Fano’s inequality provides
the asymptotic lower bound on ηm, and the result in [16] and the channel coding
theorem provide the existence of zero error inference attacks that achieve it.

Theorem 1. Given a binary RDP Φ, an asymptotic lower bound on ηm, for a
small error inference attack, is 1

C(Φ) . More formally,

lim
m→∞ ωm = 0 ⇒ ∃ {Λm}∞

m=1 such that ηi ≥ Λm∀i ≥ m and lim
m→∞ Λm =

1
C(Φ)

Proof. The proof is similar to the proof of the converse of the channel coding
theorem [5], except for two differences: (a) in an inference attack, queries x are
not necessarily a function of bits required p, and (b) inference attacks do not
have constant ηm as m increases.

Assume limm→∞ ωm = 0, i.e. the attack is small error. Then limm→∞ Em = 0
where Em is the average probability of error. Consider the case when the values
of pm are equally likely. Then,

log2M = H(pm) = H(pm|φ(x1), φ(x2), ...φ(xm)) + I(pm; φ(x1), φ(x2), ...φ(xm))

From equation (8.95) (Fano’s inequality), [5–pg. 205],

H(pm|φ(x1), φ(x2), ...φ(xm)) ≤ 1 + Emlog2M

and hence,

log2M ≤ 1 + Emlog2M + I(pm; φ(x1), φ(x2), ...φ(xm)) (4)
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Further,

I(pm; φ(x1), φ(x2), ...φ(xm))
= H(φ(x1), φ(x2), ...φ(xm)) − H(φ(x1), φ(x2), ...φ(xm)|pm)
= H(φ(x1), φ(x2), ...φ(xm)) − ∑

i H(φ(xi)|φ(x1), φ(x2), ...φ(xi−1),pm)
≤ H(φ(x1), φ(x2), ...φ(xn)) − ∑

i H(φ(xi)|φ(x1), φ(x2), ...φ(xi−1),pm, xi)
= H(φ(x1), φ(x2), ...φ(xm)) − ∑

i H(φ(xi)|xi)
≤ ∑

i H(φ(xi)) − ∑
i H(φ(xi)|xi)

=
∑

i I(xi; φ(xi))
≤ mC(Φ)

From equation (4),

log2M ≤ 1 + Emlog2M + mC(Φ)

Hence,

ηm =
m

log2M
≥ 1 − Em

1
m + C(Φ)

= Λm

and
lim

m→∞ Λm =
1

C(Φ)

ηm = Ω(1)

Theorem 2. For a binary RDP Φ, ∀Λ > 1
C(Φ) , there exists a small error infer-

ence attack on Φ with ηm = Λ, ∀m.

Proof. Follows from the channel coding theorem [14].

Theorem 1 indicates that ηm = Ω(1). Theorem 2, that ηm = Θ(1).
Attacks that correspond to codes are those where the queries x are deter-

ministic functions of the desired bits p. These are rare but not impossible. We
provide an example of such an attack.

Example 2. The deterministically-related query attack. Consider a database of
records of all residents of a county. From each record, consider the set of the
following bits:

x1. “location = North”;
x2. “virus X test = positive”;
x3. “gender = male” AND “condition Y = present”.
Suppose it is also known that, for this county,

(location = North) ⊕ (virus X test = positive) ⇔ (gender = male)AND
(5)

(condition Y = present)

i.e,
x1 ⊕ x2 = x3 (6)

for all records, where ⊕ represents the XOR operation. This could be determined,
for example, from county health statistics.
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Suppose B chooses as desired bits p = (x1, x2) for all records, and designs an
over-determined query sequence by also requesting x3. Without randomization,
B would not need to do so; with randomization, x3 serves as a parity check for
the values of x1 and x2, or, in the communication channel framework, as an
error-detecting symbol. The queries x = (x1, x2, x3) may be thought of as the
code bits. In general, one can have an over-determined sequence of m queries
whose values are completely determined by p - through a set of m equations
known to be satisfied by p and x. Equation (6) is one such equation.

If the attack is recognized, A could:
(a) refuse to respond
(b) respond with φ(x1) ⊕ φ(x2) instead of φ(x1 ⊕ x2).
Recognizing the attack is not trivial. If, instead of “male with condition Y”,

x3 were, “(location = North) ⊕ (virusXtest = positive)”, it may be recognized
by A, through extensive record keeping, as a logical combination of previously
provided bits. But in the form of a request for a bit about gender and condition
Y, and in the absence of knowledge of the specific relationship of equation (5),
or a causal relationship - as opposed to a statistical one in a limited population -
gender and condition Y are not readily seen to be revealing information regarding
infection with virus X. Such an attack is fairly difficult to recognize, and hence
to counter.

An approach like that of the source-channel coding theorem shows that B
cannot do better using another procedure. This gives our final result, that the
tight asymptotic lower bound on query complexity for zero asymptotic error is
the ratio of queryable entropy to protocol channel capacity. As a corollary, the
privacy of binary RDP is the inverse of its channel capacity.

The values of pm are not necessarily uniformly distributed, and hence the
entropy of p, the queryable entropy, is not necessarily log2M . From the source
coding theorem, if the entropy of p is H(p), then p is represented by H(p)
bits on average (over many records). This observation can be combined with a
reasoning similar to that in Theorem 1 to obtain a result similar to that of the
source-channel coding theorem, except, as with Theorem 1, inference attacks are
not of constant ηm, and do not consist of queries x that are deterministic com-
binations of the required bits p. Again, we derive the asymptotic lower bound,
and Shannon’s results show it is tight.

Theorem 3. The tight asymptotic lower bound on the query complexity, on av-
erage, per record, for a small error inference attack, is H(p)

C(Φ) if the record sequence
is stationary, i.e. if the number of records is Nr, and γm the number of queries
per record of sequence x,

lim
m→∞ ωm → 0 ⇒ ∃ Γm such that γm ≥ Γm ∀ i ≥ m and lim

Nr→∞
Γm =

H(p)
C(Φ)

Proof. H(p)
C(Φ) is an asymptotic lower bound: Assume the existence of a small error

attack with asymptotic query sequence length K = H(p)
C(Φ) − ∆ per record on

average, ∆ > 0. This means that, given ε, δ > 0, a query sequence of length at
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most m = Nr(K +ε) for Nr records, Nr large enough, can result in a probability
of error at most δ. By Theorem 1, for any given ν, ηm for the attack must be
at least 1

C(Φ) − ν, for large enough m, and hence the length of p, m
ηm

, at most
Nr(K+ε)
( 1

C(Φ) −ν) = Nr(H(p)−C(Φ)(∆−ε))
1−νC , i.e. each record is represented, on average, by a

number of bits strictly smaller than the record entropy for small enough ε, δ, ν.
This violates Shannon’s source coding theorem [5–pg. 89, Thm. 5.4.2] and [14].

H(p)
C(Φ) can be achieved from above (i.e. tightness): straightforward from Shan-

non’s source-channel coding theorem [5].

Thus Theorem 3 says that the query complexity per record, on average, for
a zero error attack, is independent of the error.

Theorem 2 says that small error attacks in which ηm remains the same (but
decrease in error is paid for by increase in total query complexity) exist if ηm ≥

1
C(Φ) . It does not say anything about how the attacks will be constructed, and
while the query complexity is tightly bounded below, the information-theoretic
result does not indicate whether the processes of determining the values of x and
p are computationally feasible. Recall that the value of x is computed by the
database, A, and its complexity is measured by the number of logical operations
performed to produce a response to a query from points in the database.

Some results since Shannon’s work help address the issue of feasibility and
construction. Forney’s work, originally published in [7], shows that Shannon
codes that are encodable and decodable in polynomial time exist. This implies
that polynomial-time small-error attacks of constant finite ηm exist. More re-
cent work, that of Spielman, [15] shows how to construct linear time encodable
and decodable codes that approach the channel coding theorem’s limits. Thus,
linear time attacks with ηm approaching ηmin, and arbitrarily low error, can be
constructed. It is likely that attacks modeled on good, computationally feasi-
ble, error-correcting codes would consist of queries x that are rather contrived
combinations of queryable bits from Q. It is not clear how easy it would be to
recognize such attacks. Recognizability constraints, ignored by us, could affect
the existence result.

Corollary 1. The tight asymptotic lower bound on the query complexity, per bit
of queryable entropy, for a small error inference attack on ΦB(0.5 ± β) is ln2

2β2 .
Hence ηm is Θ( 1

β2 ).

Proof. The result follows from Theorem 1-3 and equation (1).

Corollary 2. The privacy of Φ is 1
C(Φ) .

Proof. Follows from Theorems 1-3 and Definition 4.

Corollary 3. The privacy of ΦB(0.5 ± β) is Θ( 1
β2 ).

Proof. Follows from Corollary 1 and Definition 4.
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In statistical databases, it is typically assumed that a larger number of queries
(per attribute desired) is required for a lower error. Our proof of the existence of
small error attacks for all asymptotic rates below channel capacity implies that
a finite, fixed number of queries, per attribute desired, can ensure asymptotic
error is zero; i.e. while total cost needs to increase to reduce error, the cost per
bit of entropy need not.

Further, our work demonstrates that some inference attacks, which may not
be as recognizable as repetition queries, are less expensive per bit. Last, at first
glance it might appear that combinations of a greater number of bits for a query
provides greater protection of the bits. But we have shown that combinations of
a greater number of bits may also reduce error considerably through B’s use of
efficient error correcting codes.

Though our results follow very easily from classical results in information
theory and coding, our view of the protocol as a channel has one important point
of difference from the view of a channel in communication theory. The goal of
communication theory is to increase information transfer over a channel given
certain constraints. The goal of a privacy protocol is to decrease the information
transfer over the protocol given certain constraints (such as the error in statistics
that use these perturbed data points). Because of this, A would be interested in
channels with small capacity, i.e. “good” privacy protocols. On the other hand,
B is interested in the efficient transfer of bits over a particular protocol, typically
a channel with small capacity, and a number of the constructive results from the
theory of coding are of interest to him.

5 Conclusions

Our result on the correspondence between channel codes and certain types of
inference attacks is an example of the study of attacks on non-perfect protocols
using results from coding theory. Interesting further results could follow from
viewing non-perfect anonymous delivery protocols - such as Crowds [13] and
non-perfect combinations of mixes - as channels. Ramp secret sharing schemes
[4] might also be amenable to this approach. An even more interesting direction
of further work is to determine if our approach provides ingredients for a theory
of statistical attacks on block and stream ciphers known to leak information.
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A Appendix: List of Symbols

A Database
B Data collector
Q set of queryable bits
qi a queryable bit
S set of sensitive bits
si a sensitive bit
X, xi, Ai a single queried bit
I(α; β) the mutual information between α and β
Y = φ(X) a single response to a query X
ρ probability of truth
Σ {0, 1}
P (Y |X) posterior pdf, (or a posteriori pdf) of protocol/channel
m number of queries or length of query sequence x
ωm maximum probability of error for x
ηm ratio of queries to bits determined for x
x a query sequence
M number of values of x
p sequence of queryable bits B wishes to determine
k number of required bits or length of p
Φ protocol/channel
C(Φ) capacity of Φ
ΦB binary protocol
β small bias of a binary protocol
Em average probability of error of protocol using x
H entropy of q
Nr number of records
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