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ABSTRACT 
The reconstruction of an image from incomplete view 
data requires the use of several constraints not derived 
from ray sum (projection data) measurements. The 
constraints can be incorporated through the method 
of (sequential and parallel) projections onto the con- 
straint sets. These methods for the use of information 
regarding the noise and the image are implemented and 
compared in this paper. I t  is shown that the use of 
noise statistics decreases the mean square error in the 
image and that the method of parallel projections re- 
sults in smaller error than the method of sequential 
projections if a sufficient number of iterations is per- 
mitted. 

1. INTRODUCTION 

Algebraic methods were among the first used to solve 
the tomographic problem. These methods approach 
the tomographic problem as one where the solution is 
constrained to satisfy a set of linear equations. The 
algebraic reconstructive technique (ART) [l] seeks a 
solution by sequential projection of an initial estimate 
onto the sets of solutions of the linear equations, each of 
these sets is a hyperplane. The simultaneous iterative 
reconstructive technique (SIRT) [l] approaches the so- 
lution through parallel projection onto the hyperplanes 
and provides far better results in the presence of noise. 

The method of sequential projections onto closed 
convex constraint sets for the general image recovery 
problem was proposed in [2] and implemented without 
using noise information on tomographic images in [3]. 
A set-theoretic framework for the use of prior infor- 
mation obtained from the noise statistics for the gen- 
eral signal recovery problem was provided in [4], and 
demonstrated to be very useful with certain types of 
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signals. The use of (set-theoretic) parallel algorithms 
to solve the general constrained signal recovery problem 
was presented in [ 5 ] ,  and these algorithms were shown 
to be more resilient to noise than (set-theoretic) se- 
quential methods. The foundations of set-theoretic es- 
timation are discussed in detail in [6] ,  where the method 
of sequential projections is referred to as MOSP and 
that of parallel projectiolns as MOPP. 

This paper presents the use of parallel set-theoretic 
methods for the tomogra,phic problem. It also suggests 
the use of noise information along the lines of [4] in 
the image reconstruction process. It is shown that the 
problems of noisy projection data can be partly over- 
come using MOPP (even without noise information) or 
MOSP with information about the noise variance. 

2. SET THEORENTIC FORMULATION 

The tomographic problem may be formulated in set- 
theoretic terms as follows. The linear model for image 
reconstruction may be written as, 

g = : H f + n  

where g is the projection data vector of size ( M  x l), 
f is the original image vector of size ( N 2  x 1),H is 
the weight matrix of size ( M  x N 2 ) ,  n is the signal- 
independent, gaussian, zero-mean noise vector of size 
( M  x 1). 

The required image, f, is assumed square. f(i) rep- 
resents the ith pixel of any image f E gN N. The resid- 
ual [4], r = g - Hf, is the ‘noise estimate’. Constraints 
on the residual may be expressed as constraints on the 
required image. The required image may be chosen to 
belong to one or many of the following constraint sets 
in the N2-dimensional vector space over the reals: 

1. Set of all images with non-negative pixels 

c1 = {fs.t.f(i) 2 0 VZ} 
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2. Set of all images whose pixel values lie in a pre- 
scribed closed interval, 

c2 = {fs. t .a < f ( i )  < p V i }  

3 .  Set of images with known points, 

c3 = {fs.t.f(i) = YiVi E I c (1 .... P},} 

4. Set of all images that provide a residual of rea- 
sonable mean [4] 

c7n = { f l  I - [Hfl,) I< 6,) 
2 

where g, and [Hf], are the tth elements of vectors 
g and Hf respectively. The bound 6, represents 
the confidence limits on the sample mean.The size 
of the set is determined by 6,. 

5. Set of all images that provide a residual of rea- 
sonable variance [4] 

Gl = {f i Ilg - Hf1I2 I 6v> 

The bound 6, represents the confidence limits on 
the sample variance.The size of the set is deter- 
mined by 6,. 

It is simple to check that each of the above sets is con- 
vex and closed. In MOSP, an initial estimate is pro- 
jected onto each of the above closed convex sets in a 
cyclic fashion. In MOPP, all sets are activated at  each 
iteration, i.e., projections are made on all sets during 
each iteration [5]. The estimate is a weighted-average 
of all the projections. Both methods converge to a 
point in the intersection of the constraint sets if the 
intersection is non-empty. If the intersection is empty, 
MOSP does not converge and oscillates among the con- 
straint sets. MOPP, however, converges to a minimum 
weigthed-square solution, i.e. it converges to a point 
whose distances from the constraint sets are such that 
the weighted sum of the squares of these distances is 
minimum [6]. 

intersecting constraint sets often arise because of noisy 
projection data which gives rise to a set of inconsis- 
tent linear equations. ART and SIRT are specific cases 
of MOSP and MOPP respectively, when the only con- 
straint sets are the hyperplanes defined by the projec- 
tion data. It is well-known that SIRT has far better 
noise characteristics than does ART. ART deals with 
noise by allowing variation in the hyperplane, but this 
treats each noise variable separately. Using the sets C, 
and Cm in addition to the constraints used for ART 
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will allow a method in which the noise can be treated 
as a random process. 

Illustrative results that demonstrate the use of con- 
straint sets other than non-negativity and the ray-sum 
linear equations are presented in the next section. The 
next section also presents an example of the better be- 
haviour of MOPP in noisy conditions. 

3. SIMULATIONS AND RESULTS 

Simulations were mainly carried out on three images : 
(i) An elliptical image of size 10 x 10 with uniform grey 
level in the background, with 130 equations in 100 un- 
knowns. 
(ii) A sagittal section of the human brain of size 64 x 
64, 5520 equations in 4096 unknowns. 
(iii) A 16 x 16 image of alternating white and black 
squares of value 0 and 255. 
Apart from these images another image of the human 
head was used to confirm the results. 
Ray sums were calculated and simulated zero-mean, 
gaussian, independent, identically distributed noise vari- 
ables added. 

Figure 1: Original Image. 

Fig. 1 shows the original 64 x 64 brain image. Fig. 2 
shows its reconstruction using ART. The mean-square 
error in this case is 117.61, corresponding to an RMS 
error of 10.84. The maximum value for the image .is 
255. Fig. 3 shows the reconstructed image with use 
of (32, the set of images with pixels bounded above by 
255 and below by 0, in MOSP. The mean square error 
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in this case is 80.97, corresponding to an RMS error of 
almost 9. 

50 
20 

Figure 2: ART Reconstruction. 

Iterations 
2 0.25 0.18 
2 0.25 0.18 

Figure 3: MOSP Reconstruction with C,. 

The set of images with bounded pixels is very effec- 
tive since the mean square error has reduced remark- 
ably. The above images are representative and the re- 
duction in error is true for both noisy as well as non- 

noisy cases. The above terror-reduction was also noted 
in ART with non-negativity, but the above formulation 
provides far more flexibility. 

Gaussian noise of mean 0 and variance 1 is added to 
the projection data and the image reconstructed using 
C,, the residual variance set, in addition to the linear 
equations and non-negativity. Table 1 lists results for 
projections including C, for the ellipse image. MSEl is 
the mean square error for 6, = 2.2493, and MSE2 is the 
mean square error for 6, = 1.7649. Lagrange’s multipli- 
ers for the projection operator are found by solving the 
constraint equation by the Newton-Raphson method 
[4]. Projecting onto C, is computationally highly in- 
tensive [4]. 

Table 1: MSE for Projections onto C,, for ellipse. 

I #Iterations I Newton I MSEl I MSE2 I 

“1 
0.13 

The size of the set plays an important role during 
reconstruction. As the size of the set decreases, error 
also decreases. This is to be expected and explains the 
pattern of error observeld in Table 1. Further, for the 
10 x 10 image, the MSE using C1 is 0.005084, while 
using the set CZ, of images whose pixels are bounded 
above by 1 and below by 0, the reconstruction is al- 
most perfect. The first set is unbounded, the second is 
bounded. 

The 16 x 16 checker-board image was reconstructed 
using 1) ART and non-negativity, 2) ART, non- 
negativity and the noise variance constraint as MOSP, 
and 3) the noise variance constraint. The MOSP results 
of 2) were far better than the those of l), and the results 
of 3) were comparable to those of 1). This indicates the 
usefullness of the variance constraint. 

MOSP works quite well in non-noisy data situa- 
tions, but its performance deteriorates in noisy situa- 
tions when the variance constraint is not used. MOPP 
performs well in the presence of noise without the vari- 
ance constraint, but it requires a large number of iter- 
ations to assure convergence. This is evident from the 
following graph (Fig. 4) for the ellipse. 

After 50 iterations the MSE in MOPP is less than 
that in MOSP. The main disadvantage of MOPP, how- 
ever, is its poor convergence rate. For the 64 x 64 
brain image, the mean square difference between con- 
secutive iterates for 30 iterations is 0.00954 in MOSP 
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and 0.063154 in MOPP. The final solution for MOSP 
depends upon the sequence with which the projections 
are made onto the sets. This is not the case with MOPP 
where the projections are made on all the sets during 
each iteration and the weighted average of all projec- 
tions is considered as the next estimate. 
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Figure 4: MSE V/s No of iterations in MOSP and 
MOPP for projection data with noise. 

4. CONCLUSIONS 

The use of MOSP and MOPP for tomographic recon- 
struction has been demonstrated. The methods pro- 
vide means of using information of the noise statis- 
tics to reconstruct images from noisy projection data. 
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While more computationally intense than the non-iterative 
methods, these methods provide a means of incorporat- 
ing prior information into the reconstruction procedure 
that the non-iterative methods do not. 
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