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Mathematical Methods for the
Design of Color Scanning Filters

Poorvi L. Vora and H. Joel Trussell, Fellow, IEEE

Abstract—The problem of the design of color scanning filters
is addressed in this paper. The problem is posed within the
framework of the vector space approach to color systems. The
measure of the goodness of a set of color scanning filters presented
in earlier work is used as an optimization criterion to design color
scanning filters modeled in terms of known, smooth, nonnegative
functions. The best filters are then trimmed using the gradient of
the mean square

�������
error to obtain filters with a lower value

of perceptual error. The results obtained demonstrate the utility
of the method.

I. INTRODUCTION

FILTERS used for multiband image recording for the
purpose of color reproduction are referred to as color

scanning filters even though many modern imaging devices
such as charge-coupled device (CCD) arrays do not “scan.”
These filters are a basic component of many color reproduction
systems. The goal of the color scanning process is to obtain
a linear transformation of the Commission Internationale de
L’Eclairage (CIE) tristimulus values [1]. For color correction
applications, CIE tristimulus values for more than one view-
ing illuminant may be needed. For satellite applications, the
“spectral signatures” may be desired. In any multiband image-
recording problem, physical filters need to be designed and
manufactured. In many instances the filters can be chosen from
a bank of existing filters. In other cases, the filters are to be
custom manufactured. The combined effect of the optical path,
the recording illuminant and the detector sensitivity, which
must also be taken into account, often complicates the design
procedure.

This paper formulates the design of a set of three or
more color scanning filters as an optimization problem. The
optimization criterion is the measure of goodness devel-
oped in [14]. This criterion is different from those used by
other researchers [3], [4], [6], [23] in that it measures the
joint performance of the set of filters as a whole and not
the performance of individual filters. Most of the literature
in the design of color scanning filters reports optimization
routines that minimize a norm of the difference between each
constructed filter and the combined effect of the corresponding
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CIE matching function and viewing illuminant [3], [6], [23]
or maximize the -factor (defined by Neugebauer [10]) of the
individual scanning filters [4]. The measure defined in [5] is
the average of the -factors of the individual filters and, hence,
a measure of individual filter performance. There has been no
reported research on the use of a measure of the entire set of
color scanning filters as an optimization criterion.

In the case when the filters are to be chosen from a discrete
set of filters, the problem of finding a filter set with maximum
value of the measure may be solved by an exhaustive
search. When the filters are to be fabricated (as interference
filters, for example), problems of physical realizability lead
to a parametrized optimization problem which may be solved
using existing optimization algorithms. Filters designed thus
may be trimmed using a perceptual error measure like the
mean square error over a data set. The method described
in this paper has proved useful for colorimetric applications,
as demonstrated in Section IV. It can also be used for the
design of filters for other multiband image recording problems,
specifically for the design of filters with applications in satellite
imagery.

The method proposed can be used for any imaging system
for which the sensor characteristic (defined as the combined
effect of the lamps, light path and sensor characteristic) is
known. It is dependent on accurate sensor characterization, as
are all scanning filter design methods. It has been observed
that, even in the absence of precise scanner characterization,
this method provides results far superior to other methods
using the same scanner characterization. The method assumes,
in particular, that the continuous waveforms representing the
viewing and scanning illuminants, the radiant spectrum to be
measured, etc., have been sampled at a sufficiently high rate in
the wavelength domain. This common assumption forms the
basis of the vector space approach to color.

The method presented here does not restrict the number
of samples per spectrum. The experimental results presented
here assume the commonly accepted 10 nm sampling rate for
illustration purposes and for comparison with other methods
[7] that use this rate. This rate may not be sufficient to
characterize, for example, fluorescent illuminants. The effect
of insufficient sampling on color system design has been
discussed in [12] and [13]. The sensitivity of filter performance
to error in scanner characteristic measurement will not be
addressed here.

It is often not possible to fabricate the designed “optimal”
filters exactly. The fabricated filters will not have the specified
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transmissivities, and this perturbation in filter transmissivities
leads to a general degradation of filter performance demon-
strated by larger perceptual errors and smaller values of the
optimization criterion . The problem of sensitivity of the
measure and the perceptual error to errors in filter fabrication
is the subject of a companion paper [17].

The measure used in this paper is based on Euclidean
distances in and is not a perceptual error measure. A
common perceptual error measure is which is the Eu-
clidean distance in the CIE space. The transformation
from the spectral space of to the CIE space is
linear; however, the transformation from to is
nonlinear [24]. Although the measure is not directly related
to the perceptual error, it has been shown to give a good
indication of the average error over standard data sets
[14]. Because the ultimate performance of the filters depends
on perceptual error, the values of the measure are
included in the data reported in this paper to demonstrate the
power of the design method. For this reason, let us define the
terms here.

The color for a radiant spectrum is determined by

(1)

where is an -vector representing the sampled spectrum of a
radiant source, is an matrix representing the CIE color
matching functions and is a 3-vector representing the CIE
tristimulus values. A reflectance spectrum can be measured by
producing a radiant spectrum

where is a reflectance spectrum and is an
diagonal matrix representing the spectrum under which the
reflecting object is viewed. The color matching functions and
the illuminant can be combined in a single matrix, ,
which defines the human visual subspace (HVSS) under the
illuminant .

Let be the actual CIE
tristimulus values for the reflectance signal for the viewing
illuminant, and be the transformed
(actual) tristimulus vector in CIELAB space. Let

be the estimated CIE tristimulus values for the
reflectance signal given a particular viewing illuminant.
Let be the transformed (estimated)
tristimulus vector in CIELAB space [24]. Then , the

error for reflectance spectrum , is given by

The error vector in CIELAB space is not linearly related to
the corresponding error vector in tristimulus space and the
average error over a data set cannot be characterized by
average, or individual, tristimulus error. The characterization
of average error over a data set will involve the actual
calculation of error at each point in the data set and is
thus, data dependent. This average error is given by

(2)

where represents the sum over the spectra in the data set.
While it is possible to use as an optimization function,
it is most unwieldy.

In this paper, Section II introduces notation and presents
the motivation behind posing the filter design problem as
constrained optimization. Section III presents ways of incor-
porating constraints of physical realizability into the problem,
design procedures for designing a set of filters which may be
fabricated and a method of trimming the parametrized optimal
filters to get filters with optimal performance with respect to
the average square error over a data set. Section IV
implements the parametrizations and the trimming method of
Section III for particular scanner characteristics. Conclusions
are presented in Section V.

II. CONSTRAINED OPTIMIZATION PROBLEM

The goal of color measurement is to determine the
values where is the number of
viewing illuminants. When , the problem has ap-
plications in color correction [20], [21]. The problem of
determining the spectral signatures of portions of the earth’s
surface may be expressed as the problem of determining

, where the columns of represent the responses of
sensors used for remote sensing [2], [16]. The problem of
color scanning may, hence, be generalized to the problem of
obtaining the set of s values . Here, is an -
vector and where may represent a
CIE matching function for a particular viewing illuminant as in
color scanning, or the function characterizing a sensor response
in the satellite imaging problem. The vector may be referred
to as the -stimulus vector.

Suppose the diagonal matrix representing the scanner
characteristic is known. Let represent
a set of scanning filters. The matrix represents the
scanning system or the set of effective scanning filters and
is denoted . The scanning measurements are modeled by
the -vector . The scanning system need not replicate the
columns of as it is sufficient to obtain measurements from
which the values may be determined through a linear
transformation. Thus, the filter design problem is formulated as
one of finding a set of vectors which span a desired subspace,
defined as the range space of . As it may not always be
possible to fabricate a perfect set of filters, it is necessary
to have a means of evaluating an imperfect set of filters. A
measure of a set of filters may be used as an optimization
criterion for filter design.

A. The Data-Independent Measure

The measure, of a set of scanning filters [14] is used
as an optimization criterion in this paper. This measure is
based on minimizing the mean square error of spectra that
are independent and identically distributed (i.i.d.) at each
wavelength [14], i.e., a data set whose autocorrelation matrix
is a scalar multiple of the identity. While real data sets are
usually correlated, the measure is data independent. Another
motivation for the measure is that it measures the “distance”
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between two subspaces of , the range space of ,
defined by the scanning filters, and the visual space, the range
space of , defined by the visual system. Thus, we write
the measure as a function of these spaces, . An
increase in the measure generally corresponds to a decrease
in average error over common data sets [14], though
there are exceptions.

In order to represent the problem of scanning filter design as
an optimization problem, the measure of the scanning system
may be expressed explicitly in terms of . The expression
for in [14] is

where and are matrices whose columns form an or-
thogonal basis for the range of and , respectively,

represents the th singular value, and and are the
dimensions of the range space of and , respectively.
Substituting for the singular values in the above expression
gives

Trace

Trace

as Trace = Trace . represents the orthogonal
projection onto the range space of , and represents
the orthogonal projection onto the range space of . If the
matrices and are assumed full rank, the projection
operators may be expressed in terms of the matrices and

, respectively, and the expression for the measure is

Trace

(3)

As demonstrated in [14], a value of unity for characterizes
a perfect set of filters. In (3), all matrices except the matrix

are known. The dimension of is where is the
number of scanning filters and is the number of samples
of a visible spectrum between 400–700 nm. In the examples
discussed here, . Without any other restrictions, the
measure is a function of parameters. The goal of filter
design is to maximize the measure with respect to the
parameters.

The measure is related to Neugebauer’s -factor by

where is the -factor with respect to the range space of
, is a set of orthogonal filters spanning the range

space of the matrix , and is the rank of .

Fig. 1. Illuminant 1 or scanner characteristic 1. The combined effect of
a particular scanning illuminant, optical path, and detector sensitivity. This
represents the diagonal values of a particular matrix � used for illustration
and experimental purposes.

B. The Problem of Optimal Filter Design

A simple and straightforward solution to the optimization
problem is

(4)

where is the th element of the vector and

is the normalization constant for the th filter, so that the
maximum transmissivity of each designed scanning filter is
unity. The set of the optimal filters of (4) consists of filters
such that where is a diagonal matrix with
diagonal values . The scanning system will replicate the
vectors exactly.

Consider the actual scanner characteristic shown in Fig. 1
and assume . The three scanning filters defined by
(4) are shown in Fig. 2. Notice that the scanner characteristic
is far from uniform, and that this leads to problems in filter
design. The nonsmoothness of the scanner characteristic is
a characteristic of the illuminant. This characteristic is not
affected by the sampling rate. Smoothness of filter transmis-
sivity curves is an important restriction in the filter fabrication
process, and Fig. 2 indicates that filters designed according to
(4) will not be easy to fabricate exactly. This makes it clear
that each constructable filter does not possess degrees of
freedom and that expressing the measure as a function of
independent variables will not necessarily result in optimal
realizable filters.

III. PHYSICALLY REALIZABLE FILTERS

The measure defined above can be used to select from
among a set of filters or as an optimization function with filter
transmissivities as parameters for custom-designed filters.
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Fig. 2. Filters for the replication of the CIE matching functions with
illuminant 1. Filters which, when installed in a scanner with characteristic
represented by Illuminant 1, will replicate the CIE matching functions. The
highly nonsmooth transmittance curves make these filters difficult to fabricate.

A. An Optimal Subset of a Discrete Set of Filters

A simple formulation of the optimization problem is to
determine the “best” set of filters from a set of existing filters.
Suppose the set is the set of existing filters from which the
best subset of filters is to be chosen. Expression (3)
for the measure may be optimized with respect to subsets of

, of size , by an exhaustive search taking the filters at
a time, each filter representing a scanning filter. If is the
size of set , such a search will involve
evaluations of the measure, where represents the number
of subsets of size of a universal set of size . Heuristic
methods that use specialized knowledge of the filter set, the
scanning problem, or the particular data set could reduce
the computational complexity of the search algorithm. The
results of this approach have been reported in [18] and are
summarized in Section IV.

B. Parametrization of Filter Characteristics

One way of incorporating a manageable dynamic range
and smoothness for filters is by modeling each filter in
terms of smooth, nonnegative functions of a few parameters.
This section discusses the modeling of the filters as single
Gaussians and as the sum of two Gaussians to illustrate the
general procedure of parametrized optimization for scanning
filter design. Other functions, such as raised-cosines, sums of
raised-cosines, and exponential raised-cosines have been used
[16]. The results obtained are not substantially different from
those obtained using the Gaussian functions, and are hence
not presented here. The total number of parameters is less
than in each case, resulting in tractable formulations of
the optimization problem and in physically realizable filters.
The functions were chosen for ease of implementation and
efficiency of the optimization routine.

The functional form of the measure in terms of the
parameters is not simple, and it would be very difficult to find
a closed-form solution to the resulting optimization problem.

Fig. 3. Illuminant or scanner characteristic 2. The combined effect of another
particular scanning illuminant, optical path, and detector sensitivity. This
represents the diagonal values of a particular matrix � used for illustration
and experimental purposes.

It may be possible with current symbolic math software.
Various existing optimization algorithms may be used to find
points of local extrema of the measure with respect to the
parameters. It is not, in general, possible to find global extrema
for functions such as the measure . A common solution is to
obtain a number of local extrema and take the best one among
these as the estimate. In general, the local extremum obtained
depends on the initialization of the optimization algorithm.

If each filter is modeled as a weighted sum of Gaussian
functions of means and , standard deviations and

and weighting factor , the normalized filter vectors
are

(5)

where depends on the sampling of the spectra. Each filter
is a function of five independent variables, and the measure

is a function of independent variables. The resulting
“optimal” filters will be sums of Gaussians and, hence, easy
to fabricate. The number of parameters may be reduced to
by considering , i.e., single Gaussian functions. While
the smaller number of parameters makes finding the optimal
values easier, it is shown in Section IV that this limitation
results in poor performance. The results for the Gaussian filter
models and the scanner characteristic in Fig. 1 and another
actual characteristic shown in Fig. 3 are presented in Section
IV.

C. Trimming Optimal Results

Often, it is desirable to obtain filters that are optimal with
respect to a perceptual error measure such as the error.
Once a set of “optimal” (with respect to the measure ) filters
are found, it is feasible to “trim” these filters using a perceptual
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error. The average square error

(6)

is preferable to (2) as a criterion for trimming because it
is easier to manipulate mathematically as mentioned in Section
I. Note that is used for comparison in the tables.

Trimming involves finding a local minimum of over a
particular data set, using optimal filters with respect to measure

as the starting point for a steepest-descent algorithm [8, p.
285]. During trimming, it is not necessary to use parametrized
models, and the filter transmittances at each wavelength are
free variables. In the terminology of this paper, trimming is
optimization of over a particular data set with respect
to parameters. Allowing the filter transmittances at each
wavelength to be free variables is not expected to affect
smoothness and nonnegativity of the filters greatly because the
trimmed filters ought to be close to the optimal parametrized
filters, which are smooth and nonnegative.

A mathematical expression for the average square error
over a particular data set was obtained. This scalar expression
was differentiated with respect to each of the variables.
The gradient was used to approach a local minimum. Details
of gradient calculation, as well as the final expression, can be
found in [16].

IV. EXPERIMENTAL RESULTS

The measure is first used to choose the best set of three
commercial filters. While this solution is straightforward, it is
also extremely practical and economical. The measure is then
used to design custom interference filters for actual scanners.
The optimal results thus obtained are trimmed as described in
Section III-C.

A. A Subset of a Discrete Set

The Kodak Wratten filters, whose transmissivities are pub-
lished, form the basic collection. The size of the Wratten filter
set is approximately 100. This implies that the number of sets
involved in finding the best set of three filters is
or approximately . Results for an exhaustive search
of the Wrattens to obtain the “best” set of three filters for

and the scanner characteristic of Fig. 3
are tabulated. Table I shows the Wratten filter numbers for
the optimal set and two other “good” sets, the value of the
measure, , and the average error of the
corrected measurements [14] over a 64 data-point subset of
the set of standard Munsell color chips [22]. is the
predicted value of expression (2) for the Munsell chip set,
using tristimulus values calculated using knowledge of the
spectra of the data set. The white point used for the data set
was the white Munsell sample. Filter set 1 was installed in

TABLE I
OPTIMAL SUBSETS OF THE WRATTEN FILTER SET

a scanner with the characteristic shown in Fig. 3 and used
to scan the Munsell chip set. The resulting actual measured
average error, calculated from (2) using tristimulus
values estimated from actual scanner measurements, was 3.02.
The difference from the predicted value of 2.04 may be
attributed to errors in the estimated scanner characteristic.
Even with this difference, the results are a large improvement
compared to an value of 4.5 obtained with the previously
installed set designed by using the standard -factor. These
results have been reported in [18] and are included here for
completeness.

B. Parametrized Filter Models

For the particular scanner characteristics of Figs. 1 and 3,
the parametrizations suggested in Section III-B were imple-
mented to obtain the “best” set of three color scanning filters.
The viewing illuminant was assumed uniform, i.e., . To
test the performance of the filters, the scanning process was
simulated using the set of Munsell chips.

For all parametrizations, the MATLAB [25] function
“fmins” was used to find optimal filters. This function is
an implementation of the Nelder–Meade simplex algorithm.
Clearly, the measure does not have one global maximum as,
for example, the filters in a different order will give a different
point in parameter space but the same value of the measure.
To minimize this effect, several different initial points were
used. The resulting filters gave varying but similar results
(within 5%). Occasionally, the function returned a value that
was clearly not optimal, e.g., , which was easily
recognized and discarded.

The parameters for the single-Gaussian model were calcu-
lated for the scanner characteristics shown in Figs. 1 and 3.
Table II shows the measure of the resulting optimal set of
filters, the parameters defining each filter, and the average and
maximum predicted errors and over the
subset of Munsell chips.

Barr Associates, a filter manufacturer, provided an estimate
of the closest interference filters they could manufacture given
the specifications for filter set 1 of Table II. Note that these
filters were not manufactured and, hence, all errors reported
here are estimated. This estimated realizable filter set had a
measure of 0.9478, a value of 0.86, and a value
of 2.5. The sensitivity of the average square error to
filter fabrication errors is discussed in [17].

The parameter values obtained for the sum-of-Gaussian
filter model of (5) are tabulated in Table III. The designed
filters of set 2 are plotted as solid lines and the estimated
filters (from Barr) are plotted as dotted lines in Figs. 4–6.
The measure of the set estimated is 0.9900, is 0.50
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TABLE II
1 PARAMETERS FOR SINGLE-GAUSSIAN MODEL

TABLE III
PARAMETERS FOR DOUBLE-GAUSSIAN FILTER MODEL

Fig. 4. Designed and estimated (blue) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

and is 1.95. This indicates that the design method
can produce excellent practical results. The effective scanning
filters of set 1, i.e., the combined effect of the designed Filter
set 1 and Illuminant 1, are plotted in Fig. 7. These plots
illustrate that the effective filter set need not be “close” to
the CIE matching functions for a “good” filter set.

Results of the method for a set of thin-film filters that
were actually fabricated are presented in [19]. The filters were
designed for the scanner with illuminant 2. The predicted
was 1.25 for the designed set, 1.99 for the fabricated set.
The measured was 2.66. The result was higher than the
prediction but still a significant improvement over the best
Wratten set of Section IV-A.

Fig. 5. Designed and estimated (green) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

In general, an increase in the number of parameters used
to define the filters should give better results. Experiments
were performed to obtain the best sum-of-three-Gaussians for
the two illuminants. Using the optimal results for sum-of-two-
Gaussians presented in the previous section as initial estimates
did not result in substantially different filters. Other initial
points provided slightly higher values. Representative results
for one final point for each scanner characteristic are presented
in Table IV. Note that the values of the measure are larger
than the corresponding values of the measure listed in Table
III for the sum-of-Gaussian model for either illuminant, and
that the values of and are considerably smaller for
illuminant 2. The fact that the errors are below vision
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TABLE IV
PARAMETERS FOR SUM-OF-THREE-GAUSSIAN FILTER MODEL

Fig. 6. Designed and estimated (red) filter for double-Gaussian model and
illuminant 2. Solid: Designed filters. Dashed: Estimated filters.

perception [11] implies that it may not be necessary to increase
the number of parameters further. Furthermore, the sum of a
larger number of Gaussians could result in a multimodal curve,
which might be difficult to fabricate.

C. Filter Trimming

The gradient of (6) over the Munsell chip set was used
to trim the single-Gaussian designs for illuminants 1 and 2 and
the double-Gaussian for illuminant 2 [16]. The trimming was
performed using steepest descent programmed in MATLAB
using the mathematical expression for the gradient derived
in [16]. The step size for the steepest descent was chosen
heuristically, between 0.1 and 0.001, and decreased as the
algorithm progressed. The iterative procedure was terminated
when small-valued peaks started appearing in the filter trans-
mittance curves, at wavelengths where filter transmittance
values for the starting point of the gradient descent were close
to zero.

Fig. 7. Designed effective scanning filters for double-Gaussian model and
illuminant 1. Combined effect of scanning filters and scanner characteristic.
If the filters replicated the CIE matching functions, as those in Fig. 2, the
effective scanning filters would be the CIE matching functions themselves. It
is clear from these that good filters need not be close to the CIE matching
functions.

The results of trimming the single-Gaussian filters are
shown in Figs. 8–10. Note that the filter shape has changed
sufficiently so that the trimmed filters may no longer be
modeled as single Gaussians, though the trimmed filters retain
the smoothness of the original designs.

Table V lists the different error measures before and after
trimming. The root mean square error over the Munsell
chip set is denoted RMS. It is not identical to . The value
of RMS is indicative of the improvement in . It is clear that
trimming improves the general performance of the filter set.
The single-Gaussian filter sets have shown more improvement
than the sum-of-Gaussian set because the sum-of-Gaussian set
was a better set initially. Note that the measure may decrease
slightly due to trimming, since the trimming is based on
decreasing the data-dependent error. While increasing
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TABLE V
COMPARISON BETWEEN ERRORS BEFORE AND AFTER FILTER-TRIMMING

Fig. 8. Trimmed blue filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

Fig. 9. Trimmed green filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

is highly correlated to decreasing , the relation is not
deterministic. Trimming is data dependent because it uses the
data-dependent as an optimization criterion. This provides
a closer-to-optimal solution with respect to perceptual error,
for the particular data set.

V. CONCLUSIONS

The measure of goodness of a set of color filters [14] may be
used to define an optimization criterion. The direct application
is used to choose the best set from a collection of filters
and hardware implementation indicates that this method is

Fig. 10. Trimmed red filter for single-Gaussian model and illuminant 1.
Solid: Designed filters. Dashed: Trimmed filters.

very useful for choosing filters for colorimetric applications.
The modeling of the filters results in a parametrization of
the filter design problem. This problem may be satisfactorily
solved by standard minimization (or maximization) routines
to give filters with fairly high measures . It was shown that
solutions for real scanner characteristics could be fabricated
as interference filters with negligible performance degradation.
The gradient of the average square error may be used
to trim the optimal solutions to significantly improve the
parametrized solutions to produce smooth filters with low

errors.
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