
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009 611

Scantegrity II: End-to-End Verifiability by Voters of
Optical Scan Elections Through Confirmation Codes

David Chaum, Richard T. Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L. Rivest,
Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L. Vora

Abstract—Scantegrity II is an enhancement for existing paper
ballot systems. It allows voters to verify election integrity—from
their selections on the ballot all the way to the final tally—by
noting codes and checking for them online. Voters mark Scant-
egrity II ballots just as with conventional optical scan, but using
a special ballot marking pen. Marking a selection with this pen
makes legible an otherwise invisible preprinted confirmation
code. Confirmation codes are independent and random for each
potential selection on each ballot. To verify that their individual
votes are recorded correctly, voters can look up their ballot serial
numbers online and verify that their confirmation codes are posted
correctly. The confirmation codes do not allow voters to prove how
they voted. However, the confirmation codes constitute convincing
evidence of error or malfeasance in the event that incorrect codes
are posted online. Correctness of the final tally with respect to
the published codes is proven by election officials in a manner
that can be verified by any interested party. Thus, compromise
of either ballot chain of custody or the software systems cannot
undetectably affect election integrity. Scantegrity II has been
implemented and tested in small elections in which ballots were
scanned either at the polling place or centrally. Preparations for
its use in a public sector election have commenced.

Index Terms—Cryptography, electronic voting, end-to-end veri-
fiability, privacy.

I. INTRODUCTION

P APER ballots dominate elections globally, apart from a
few exceptions such as Brazil and India. In the United

States, optical scan systems and direct recording electronic

Manuscript received February 23, 2009; revised October 07, 2009. First pub-
lished October 20, 2009; current version published November 18, 2009. The
work of J. Clark and A. Essex was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC). The work of S. Popoveniuc
and P. L. Vora was supported by NSF-CNS-0831149. The associate editor co-
ordinating the review of this manuscript and approving it for publication was
Dr. Bart Preneel.

D. Chaum is with the Voting Systems Institute, Los Angeles, CA 90064 USA
(e-mail: info@chaum.com).

R. T. Carback and A. T. Sherman are with the Department of Com-
puter Science and Electrical Engineering, University of Maryland, Balti-
more County, Baltimore, MD 21250 USA (e-mail: carback1@umbc.edu;
sherman@umbc.edu).

J. Clark is with the David R. Cheriton School of Computer Science, Univer-
sity of Waterloo, Waterloo, ON, N2L 3G1, Canada (e-mail: j5clark@cs.uwa-
terloo.ca).

A. Essex is with the School of Information Technology and Engineering, Uni-
versity of Ottawa, ON, K1N 6N5, Canada (e-mail: aesse083@site.uottawa.ca).

S. Popoveniuc and P. L. Vora are with the National Institute of Standards
and Technology, Gaithersburg, MD 20899 USA (e-mail: poste@gwu.edu;
poorvi@gwu.edu).

R. L. Rivest and E. Shen are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: rivest@mit.edu; eshen@csail.mit.edu).

R. Y. A. Ryan is with the Faculte des Sciences, de la Techologie et de la Com-
munication, University of Luxembourg, L-1359, Luxembourg (e-mail: peter.
ryan@uni.lu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2009.2034919

(DRE) voting machines began to replace paper ballots and
lever systems in about 1980 [2]. More recently, however,
due to reliability failures and security vulnerabilities, the
trend has been toward replacing DREs with paper ballot
systems, including optical scan systems [30]. Optical scan,
however, is not without its own demonstrated and inherent
integrity vulnerabilities (see, for example, [29]). Undetected
errors, unintentional or malicious, in the scanning or tallying
software can cause undetected errors in the electronic tally.
Improperly printed ballots enable a variety of attacks on
integrity. Misplaced ballots or breaches in chain-of-custody
render even expensive manual recounts ineffective. Further,
the transparency offered by manual recounts is at best limited
to those officials and observers in attendance. Scantegrity
II is an enhancement for optical scan voting systems that
addresses the above deficiencies, while also providing ballot
secrecy guarantees under reasonable assumptions.

In Scantegrity II, voters mark ballots using a special
ballot-marking pen, which makes legible preprinted confirma-
tion codes corresponding to voter selections. The link between
confirmation codes and voter selections is cryptographically
protected, with the key(s) being shared by election officials.
Voters may note down their confirmation codes onto a chit
that is detachable from the ballot. After the election, all voted
confirmation codes are posted online, where voters may check
them. The final tally is computed in a verifiable manner from
the posted confirmation codes.

The functionality of Scantegrity II is enabled by the use of
several types of ink with special properties, in the following
ways.

1) Confirmation codes and ballot ovals are printed with a spe-
cial ink that darkens when it reacts with the ink in the
ballot-marking pen; the confirmation code ink reacts more
slowly than the ballot oval ink, and hence darkens several
minutes after the oval does. Thus, the code is visible for
several minutes after being marked, during which the voter
may note it on the chit. On the other hand, the confirma-
tion code may be assumed to be indistinguishable from its
background in an unmarked oval. This allows the Scant-
egrity II system to provide a confirmation code to the voter
only after the voter has made the corresponding ballot se-
lection.

2) The Scantegrity II chit bears two serial numbers that are
required of the voter in order to check the confirmation
codes online. These serial numbers are also indistinguish-
able from the background until made legible through the
use of a decoding pen. The ink in the decoding pens is dif-
ferent from the ink in the ballot-marking pens. Poll workers
reveal the serial numbers using a decoding pen after the

1556-6013/$26.00 © 2009 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

612 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

ballot is cast. This prevents voters from falsely claiming
that a valid confirmation code, obtained from an uncast
ballot, came from a cast ballot. When it is not possible to
use the different inks required for chit serial numbers and
decoder pens, it is possible to achieve a similar end, though
with weaker integrity guarantees, by requiring that a record
be kept, by polling officials and observers, of serial num-
bers of spoiled ballots.

Scantegrity II has implemented procedures for printing with the
inks to make it virtually impossible to read unexposed numbers
and codes with the human eye. Further, it is reasonable to as-
sume that voters do not have access to ballots outside the polling
booth, and that they do not have access to specialized equipment
inside the polling booth. The inks thus enable the Scantegrity
II voting system to provide voters with confirmation codes that
correspond exactly to their selections, and serial numbers that
correspond exactly to valid cast ballots.

Scantegrity II, like several other systems (such as Prêt à Voter
[11], Punchscan [15], [16], [26], Scratch & Vote [1]) provides
a mechanism for end-to-end verifiability of election integrity:
voters may verify that their selections are included unmodified
in the collection of selections; additionally, anyone may verify
that the tally is computed correctly from the collection of selec-
tions. Voters and authorized observers may “audit” ballots by re-
quiring the voting system to expose all confirmation codes and
corresponding selections on the audited ballots, and checking
that these correspond to those printed on the ballots. Audited
ballots may not be used for voting.

The verifiability property of Scantegrity II is independent of
voting system software correctness and ballot chain-of-custody
after ballots are cast. The proof of correctness made by those
running an election is based only on 1) the inability of the voting
system to change values once they have been committed to, and
2) the unpredictability of choices made by voters and election
auditors—to verify confirmation codes online, to audit ballots,
and to audit the data provided by the voting system regarding the
processing of confirmation codes to obtain the tally. The ability
of the system to expose false charges of election fraud is based
on the ink properties described above.

Paper ballot systems possess inherent weaknesses with respect
to the requirement of ballot secrecy [20]. For example, a voter
can be identified by a distinctive manner of making marks.
The process of polling place scanning also introduces privacy
vulnerabilities; for example, the timing of voters scanning
ballots can be analyzed to improve an estimate of the voter’s
selections. Further, advances in forensic technology make
it possible to examine fingerprints on ballots. Finally, the
miniaturization of cameras poses challenges to the secrecy
of voter selections in all types of voting systems, whether
paper-based or not.

Scantegrity II is an overlay on paper ballot systems, and
cannot remove the inherent ballot secrecy limitations of the
underlying system. It does, however, attempt to limit any addi-
tional ballot secrecy vulnerabilities. For example, the linking
of confirmation codes to votes requires the collusion of a set
of election officials, or the breaking of the security of crypto-
graphic techniques used. Further, the use of a slow-reacting
ink and a modification to the voting procedure can ensure

that information linking confirmation codes and ballot serial
numbers to voter selections can be removed from ballots a few
minutes after they are marked. As with regular optical scan,
forensic attacks are possible—coercive adversaries could, for
example, use specialized equipment to attempt to read the codes
on the ballots. We assume these are too time-consuming and
unwieldy to be very practical, for two reasons. First, we have
instituted printing procedures to minimize the effectiveness of
such ballot analyses; these are described in Section V. Second,
simpler attacks, based on the fingerprinting of the underlying
paper using commodity scanners [12], are possible against
perforated paper-ballot-based end-to-end voting systems in
general (including Scantegrity and Prêt à Voter).

A. Contributions

Scantegrity II and its predecessor Scantegrity [9] have the fol-
lowing characteristics that distinguish them from other systems
that provide end-to-end verifiability:

1) Compatibility with optical scan equipment: Scantegrity
and Scantegrity II do not require the replacement of any
optical scan polling place equipment. Both systems in-
terface cleanly with the underlying optical scan system,
requiring only a modified ballot and access to the results
from the scanners.

2) Familiar ballot-marking procedure: The ballot-marking
procedure is very similar to that for a conventional optical
scan ballot. Opting into verification of election integrity is
up to the individual voter.

Two properties of Scantegrity II distinguish it from Scant-
egrity.

1) Scantegrity did not use invisible ink; all confirmation codes
were visible on the ballot. This allowed voters to file spu-
rious disputes concerning which codes appear on the web-
site, and required a tedious dispute resolution process to
resolve such issues. If voters cannot guess confirmation
codes or chit serial numbers, a dispute regarding the correct
recording of confirmation codes can be resolved in Scant-
egrity II without the cumbersome physical proof required
by Scantegrity.

2) Scantegrity II makes commitments to multiple Scantegrity
back-ends and uses a new audit procedure.

a) While the Scantegrity audit procedure reveals some
information about individual votes, the Scantegrity II
audits reveal no additional information if the crypto-
graphic techniques used are secure, and election offi-
cials do not collude to violate ballot secrecy.

b) In Scantegrity, the probability that a cheating voting
system is undetected decreases exponentially with
the number of modified votes. In Scantegrity II, this
probability is independent of the number of modified
votes, but decreases exponentially with the number
of back-ends audited.

Scantegrity was described in [9]. Scantegrity II was first de-
scribed at EVT 2008 [8]. The present paper provides a more
detailed description; additionally, the use of chit serial numbers
to improve dispute resolution, the use of multiple back-end in-
stances, the new audit procedure, and a proposal for accessibility
are original to this paper.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 613

B. Organization

In Section II, we provide a nontechnical sketch of the pro-
tocol as viewed by the voters, poll workers, and election admin-
istrators. A complete technical specification of the entire pro-
tocol is provided in Section III. Our security assumptions and
an analysis of the integrity and privacy provided by Scantegrity
II follows in Section IV. We also offer a discussion of the use of
invisible ink in Section V and the accessibility of Scantegrity II
to voters with disabilities in Section VI.

II. SCANTEGRITY II PROCEDURES

Scantegrity II provides integrity guarantees through the use
of a confirmation code provided to each voter for each ballot
selection. All confirmation codes are posted on a website after
the election, and all results are obtained through the processing
of these codes. The Scantegrity II protocol defines the manner
in which participants in the election—voters, election adminis-
trators, and observers—interact with the voting system in order
to ensure that 1) confirmation codes are correctly present on the
ballots, 2) marked confirmation codes are correctly present on
the website, and 3) confirmation codes are correctly processed
to obtain the final tally. The protocol is designed to enable the
detection of election fraud if it has occurred, as well as to prevent
false charges of election fraud. This section provides an (inten-
tionally) informal description of the protocol; its purpose is to
provide a description that is somewhat accessible to voters, poll
workers, and election administrators, and to prepare the reader
for the more formal description in the next section.

A. Vote Casting Procedure

This section describes the vote-casting procedure, which is
very similar to that of a regular optical scan ballot. The slight
differences between the two are as follows. First, the unmarked
ballot itself looks slightly different: it bears a detachable chit
that can be used to note confirmation codes. Second, while
marking the ballot, voters will notice the appearance of confir-
mation codes, which will also disappear after a few minutes.
Third, voters or observers may audit ballots to determine
whether printed confirmation codes correctly reflect voter
selections; such ballots may not then be cast. While we have
simplified the ballot audit procedure considerably, it does not
have a corresponding equivalent in the regular optical scan
protocol, and might appear complicated to voters and officials.
Similarly, spoiled ballots are discarded using a procedure that
is more complex than that used for optical scan. Fourth, voters
interact with a polling official after the vote is successfully cast,
in order to expose serial numbers on the receipt chit.

1) Scantegrity II Ballot: The Scantegrity II ballot consists of
two parts: the main body and the chit (see Fig. 1). Similar to
an optical scan ballot, the main body of a Scantegrity II ballot
contains, for each contest, a list of valid selections printed in
a canonical order predetermined by polling place procedures
(e.g., alphabetical, rotated across precincts, etc.). Next to each
possible selection is a markable region, oval in shape.

Differing from an optical scan ballot, the background of each
oval is printed with a reacting ink. The confirmation code cor-
responding to the selection for the particular ballot is printed
inside the oval. The ink used to print the confirmation code is

Fig. 1. Scantegrity II ballot showing the main body (top) with one marked po-
sition and machine-readable serial number; left chit (bottom left) with a devel-
oped chit serial number and confirmation code written in; and right chit (bottom
right) with an undeveloped chit serial number. This figure is meant to demon-
strate the parts of the ballot and does not represent the actual final state of the
portions after voting.

similar to that used for the oval background, but is slow-reacting.
Both inks look the same when printed on the ballot paper; they
may be assumed to be indistinguishable to the human eye before
the oval is marked with the ballot-marking pen (see Section V
for details on the validity of this assumption). Further, we as-
sume that voters will not be able to take expensive spectral anal-
ysis equipment into the polling booth; such equipment might aid
in the ability to distinguish between background and confirma-
tion number. Thus, we assume that, before marking, the oval
has a single color, and confirmation codes are indistinguishable
from the background of the oval; that is, confirmation codes are
invisible. Additionally, a Scantegrity II ballot contains a ballot
serial number that is machine-readable but not easily read or
memorized by a human (e.g., a two-dimensional barcode).

The chit is attached to the bottom of the ballot via a perfora-
tion, such that it can be easily detached. It has two halves, left
and right; the halves can be detached from each other using a
pair of scissors. On each half is a chit serial number: the left
chit serial number and the right chit serial number. These chit
serial numbers are distinct from each other and from the ballot
serial number; we describe later how they are used to ensure that
voters cannot make false claims regarding confirmation codes
on uncast ballots. Both the left and right chit serial numbers are
printed in invisible ink such that they are neither human nor ma-
chine readable before being decoded using a special decoder
pen. Both the left and right chit serial numbers are assumed to
appear after they are marked with the decoder pen.

2) Ballot Marking: Upon arrival, a voter is authorized to cast
a ballot, and is handed the next one in the pile; it is enclosed in
a privacy sleeve. At this time, she may choose to audit a ballot,
which she may choose from the existing ballot pile. For details
on the ballot audit procedure, see Section II-B1.

In order to vote for a particular selection, the voter fills in the
corresponding oval using a ballot-marking pen. In accordance
with the invisible ink printed on the ballot, the background of
the oval will immediately turn dark, leaving a confirmation code
visible in the foreground. The relative darkness of any marked

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

614 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

ovals to unmarked ones will allow an optical scanner employing
dark mark logic to register the oval as marked. The foreground
of the oval will be human-readable and a voter interested in ver-
ifying that her vote is in the virtual collection of votes to be
tallied may record the code on the chit portion of the ballot. Un-
interested voters may disregard the codes.

The link between a confirmation code and the corresponding
selection on a particular ballot is protected cryptographically.
We omit the details underlying the generation and protection of
the data until the next section. At this stage, however, we do
note the following. The disclosure of a confirmation code does
not reveal the selection, if the cryptographic techniques used
are assumed secure, and election officials are assumed not to
collude to determine the selection.

Although not apparent to the voter, the confirmation code is
printed in a slow-reacting invisible ink that will also turn dark,
but only after the passage of several minutes (e.g., five to seven
minutes). At this time, the oval will be completely dark and
the code will no longer be visible, leaving no human-readable
unique information on the ballot.

As an option, the two-dimensional bar-coded serial number
could also have slow reacting ink in its background such that if
a voter marked it, it would turn solid black.

Section V describes how a masking ink and appropriate
printing techniques may be used to reduce the ability to distin-
guish between the inks, even with the use of microscopes and
spectral equipment. Indeed, it may be assumed that the slow
and fast-reacting invisible inks are, for all practical purposes,
indistinguishable a) before exposure and b) within seconds
after both have been exposed, where is the response time of
the slow-reacting ink. After a period long enough to include
reaction times, a filled-in Scantegrity II ballot provides, for all
practical purposes, an amount of information that is similar
to that on an optical scan ballot, and can be used in a manual
recount with a level of privacy very similar to that of optical
scan.

3) Spoiling the Ballot: If the voter makes an error in marking
a ballot or wishes to register a protest vote through spoiling the
ballot, it is returned to the poll worker. Without seeing the con-
tents of the ballot, the poll worker removes the ballot from the
privacy sleeve and detaches the right side of the chit from the
ballot. The main body and left chit are shredded in view of the
voter. The right chit is retained by the poll worker and used to
verify that the number of ballots issued is identical to the sum
of the number of ballots tallied, print-audited, and spoiled. The
number of spoiled ballots allowed per voter is typically limited
by predetermined polling place procedures.

4) Casting the Ballot: When the voter has satisfactorily
marked a ballot, it is returned to the poll worker. As previously,
the poll worker detaches the chit from the ballot. Further,
with the choices on the ballot still concealed, the poll worker
places the main body of the ballot into the scanner, which
records the ballot serial number and the marked choices. In
the preferred version of the protocol, voters are not allowed to
cast undervoted or overvoted ballots. If a voter does not wish
to vote for a particular candidate, she must make a selection
of “none of the above.” If the scanner detects an undervote
or overvote, the voter is returned her ballot, and will spoil it

and re-enter the issuance procedure. Note that, in the U.S., the
requirement that a voter be notified of undervotes or overvotes
is not uncommon; in fact, the Help America Vote Act requires
that voters be notified of overvotes if electronic equipment is
used. However, requiring that undervoted or overvoted ballots
not be cast is considerably stricter, and decreases the usability
of the voting system. The alternative version of the protocol
does not ban undervotes or overvotes in cast ballots. However,
in this version, a secure chain of custody is required to ensure
that unvoted races were not changed to voted ones, nor voted
races overvoted. Research on requiring neither the restriction
on undervoted and overvoted ballots, nor a secure chain of
custody, is underway.

In order for the scanner to read the serial number, it must be
encoded in a two-dimensional barcode as the scanner can only
recognize marked or unmarked regions.

After a successful scan, the two serial numbers on the chit are
developed by the poll worker. The voter may leave with the chit.
It is expected that public interest groups will make available the
possibility of creating a copy of chits to alleviate the need for
concerned but time-constrained voters to personally participate
in auditing the election.

5) Casting Without Automation: For polling places without
adequate voting technology or in the event of a power failure,
Scantegrity II may still proceed with the voter being issued the
chit in the same manner. The main body of the ballot will, in-
stead of being scanned, be placed into a sealed ballot box that
has been certified as being empty prior to sealing. If scanning
technology is unavailable at the polling place, the ballots may
be transported to a central scanning location.

6) Accounting for Ballots: At the end of the day, poll workers
and official observers make a note of the numbers of spoiled,
voted and audited ballots, and ensure that their sum is equal to
the number of used ballots. These numbers are made publicly
available; this prevents ballot stuffing. Further, they note down
the exposed chit serial numbers of voted, spoiled, and audited
ballots, so these cannot be changed after the election.

B. Election Audit Procedures

A voter may participate in auditing the election in several
ways. In addition to checking the confirmation numbers on her
ballot, she may audit a printed ballot, and check the processing
of confirmation codes. Election observers may also participate
in the latter processing check.

1) Auditing a Printed Ballot: Voters wishing to audit a
printed ballot may choose one from the ballot pile; we refer to
the process of auditing the ballot as the print audit. They will
each be issued a ballot main body and the left or right half of
the chit, with the serial number activated using the decoder pen;
which half is chosen may be determined by a flipped coin. The
other half of the chit is removed and retained by the pollworker
in a clear box on the poll worker table. At her leisure, the voter
fully marks the ballot to reveal all the confirmation codes,
which she may check using the procedure in the following
section.

2) Checking Confirmation Numbers: At a prearranged time
after the polls close, voters who recorded the confirmation codes
associated with the candidates they voted for, or those who wish

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 615

to check the confirmation codes on a print-audited ballot, may
visit a website where they will be prompted for the serial number
on the chit. In the case of voted ballots, the voter will have two
serial numbers—left and right; either is suitable to identify the
ballot uniquely. Upon entering a serial number, the website will
report the confirmation codes in the positions it believes were
marked for voted ballots, but will not report the candidates as-
sociated with these codes. For this reason, providing a copy
of the confirmation codes in no way undermines the secrecy
of the ballot. Voters are encouraged to share their confirmation
codes, share photographs of their chits, or post screen-captures
of the results. In the case of an audited ballot, entering the serial
number will similarly report the confirmation codes that should
appear on the ballot and, only in this case, also reveal the can-
didates associated with each code.

All confirmation codes and their associated candidates are
committed to prior to the election to ensure the values or associa-
tions cannot be changed. Thus, the audited ballots provide prob-
abilistic evidence that the confirmation codes were correctly
printed on the ballots. The correct and full inclusion of con-
firmation codes from a voted ballot provides probabilistic evi-
dence that the votes were properly scanned and not maliciously
altered. Full details are provided in Section III, and the strength
of this evidence is quantified in Section IV.

3) Checking the Processing of Confirmation Numbers: Due
to the commitments to confirmation codes and candidates be-
fore the beginning of the election, it is known that candidates
are mapped to confirmation codes and that this mapping cannot
be changed. Further, through the print audits, voters are assured
that this mapping has been faithfully transposed to the printed
ballots they marked. By checking the inclusion of their confir-
mation codes, they are further assured that the marks they made
for candidates have been faithfully transposed to confirmation
codes consistent with those on the ballot. The final step is to
check that the confirmation codes are properly mapped back to
the correct candidates.

The protocol for achieving this check will be based on an open
specification. Voters may either obtain software from a software
provider they trust, or write their own software, to check the pro-
cessing of the confirmation numbers. All required information
for writing the software (such as the format of the data and what
the data are) is provided by Scantegrity II to all interested par-
ties. Those administering the election are encouraged to appoint
an independent auditor to perform this check so as to provide at
least one audit of the tally computation from confirmation codes.
The details of this check are also provided in Section III.

C. Dispute Resolution Process

If any voters discover incorrect confirmation codes or bal-
lots that are incorrectly designated as voted, print-audited, or
spoiled, they may file disputes. In the case of a confirmation
code being incorrect, they may provide the confirmation code
they believe should be on the ballot. A voter’s knowledge of
a valid confirmation code on the ballot, that is not present on
the website, suggests an error or malfeasance; the validity of
the code can be established since the codes are committed to,
and the likelihood of guessing a correct code can be made low

through the use of longer codes (exact quantification to follow in
Section IV). If a voted ballot is incorrectly designated, the voter
can provide both chit serial numbers to prove that it was voted.
Similarly, if a print-audited ballot is incorrectly designated, the
voter or independent auditor can provide all the confirmation
codes on the ballot to prove that it was print-audited. In the case
when the voter knows all confirmation codes in an overvoted
ballot, this ballot’s designation cannot be changed to print-au-
dited as the voter knows both serial numbers. In order to ensure
that unvoted races are not voted, and that properly voted ballots
are not changed to overvoted ones, a restriction of not allowing
undervotes or overvotes on cast ballots is required.

III. CRYPTOGRAPHIC PROOF OF TALLY

The following describes the method used for proving the cor-
rectness of an election outcome while simultaneously main-
taining voter anonymity. It is based on the protocol introduced
in [9] and [8], adapted to the enhanced polling procedures de-
scribed in Section II.

A. Ballot Definition

For simplicity, we consider a notation based on a single con-
test ballot. Generalization to ballots containing multiple races,
as well as elections containing multiple ballot styles, should be
viewed as multiple independent executions of the single contest
case described herein. Let define a list of
ballot selections (e.g., candidates, choices, etc).

B. Roles

We consider three categories of entities participating in the
election with the acknowledgement that the entities are role-
based and thus an individual might possibly assume any or all
roles.

Voters: Voters are those with the authority to cast a ballot in
the election. We assume that voter authentication (external
to this discussion) is undertaken prior to ballot issuing and
that only authenticated voters are issued ballots. In this
section, we will refer to a particular voter as .
Election Trustees: Let be the set of election trustees,

. The trustees engage in the cryptographic
protocol to setup and generate the correctness proofs of the
election. would generally consist of public officials and,
optionally, candidate representatives. The protocol is in-
tended to proceed when a minimum number of trustees are
present—not requiring the presence of all so as to mitigate
the disruption caused by any individual trustee’s absence
at various stages of the protocol.
Verifier: The set of verifiers consists of all agents ver-
ifying the correctness proofs herein. The intention is that
the tally-correctness be “universally verifiable” as defined
in [28]—meaning that any voter, citizen, or observer can
participate either directly, or through delegation, in the ver-
ification of the tally if they so choose.
Other Entities: Poll workers are responsible for ad-
ministering the voting process, instructing and assisting
voters, as well as enforcing the registration, ballot issuing,
marking, and casting procedures outlined in Section II.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

616 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Finally, we require the existence of a public bulletin board
which implements an append-only public record. In practice, it
might be implemented as a mirrored public website.

C. Functions

In this section, we outline the main functions used in the pro-
tocol. For a positive integer , we use to denote the set
of integers .

The functions consist of the following:
1) A parameter initialization function that, given a security

parameter, provides an election-specific nonce and min-
imum key lengths.

2) A trustee threshold-key generation function that produces
individual trustee keys for trustees and a master key that
can be reconstructed from a minimum threshold number
of trustee keys. This function takes as input the election-
specific nonce, the value of , and input bit strings from
the trustees, the entropy of which provides the entropy of
the keys generated.

3) A master-key reconstruction function that, given a set of
or more trustee keys, reconstructs the master key.

4) A subkey generation function that is a cryptographic
one-way function, accepts a master key and an identifier,
and outputs another key.

5) A keyed permutation function that, given a key and the
value , generates a pseudorandom permutation of inte-
gers in the range .

6) A cryptographic commitment function that is computation-
ally hiding and computationally binding.

7) A ballot generation function that, given the candidate list,
the confirmation code alphabet and length, the election
master key, and the number of ballots required, generates
the master list of ballots.

Details of each of these functions follow.
Parameter Initialization: accepts a
security parameter and outputs a set of functional param-
eters including a unique election-specific nonce se-
lected in accordance with a public convention (not consid-
ered here), and a specification of cryptographic algorithms
used to realize certain cryptographic one-way and trapdoor
functions, as well as specifying their enforced minimum
key lengths. For brevity, we will omit continual reference
to by assuming all following functions accept it as input.
Trustee Threshold-Key Generation:

accepts an arbitrary-length
random bit string, denoted , from each trustee

, as well as a threshold , specifying the number
of trustees needed to reconstruct a unique election master
key . It outputs a distinct key for each of the trustees,

, as well as a master key . We do not consider
the policy guidelines for selecting trustees or in this sec-
tion. is such that, if at least one is uniformly dis-
tributed across all possibilities, will be as well. is also
dependent on the election nonce (so if the same value of

were supplied in a different election, would be dif-
ferent). is only used as private input to other functions.
Each output key is transmitted over an authenticated and

physically untappable channel to the corresponding trustee
.

Election Master Key Reconstruction:
accepts as input a set

of keys and outputs the unique election master
key if and only if .
Otherwise it returns a symbol (denoted by) indicating
the function failed to reconstruct the key.

The assumption for the two preceding algorithms is briefly
stated: given any unbounded adversary , the advantage of
(over a random guess) in guessing , given any set containing
fewer than keys from , is exactly zero. One suitable
construction is due to Pedersen [25], and has been suggested for
use in voting by Benaloh [3]. A suitable notion of an untappable
channel is the one due to Sako and Killian [28].

Sub-key Generation: is a crypto-
graphic one-way function that accepts a master key and
identifier and outputs another key , where de-
fines what key is to be generated.
Keyed Permutation: accepts a key
and list length , and outputs , where
is a permutation selected pseudorandomly from the set of
possible permutations of elements . The function

depends on . We use the notation to
denote the element-wise shuffle of a -element set for

. Finally, we define a special-case null index,
denoted , in which for all .
Cryptographic Commitment: We consider a crypto-
graphic commitment protocol as including the following
pair of functions: accepts a key

and an arbitrary length message to obtain a com-
mitment . accepts a
commitment , key , and message , and outputs 1 if

. Otherwise it outputs 0.
The cryptographic assumptions for these algorithms are

briefly stated: given any probabilistic polynomial time-bounded
producing messages and , and keys and , the prob-

ability that and
is a negligible quantity in the security parameter . That is,
cannot find two distinct messages that produce the same com-
mitment. This is an informal definition of the computationally
binding property of a commitment. Additionally, given any
probabilistic polynomial time-bounded

is a negligible quantity in the security parameter . That is,
cannot distinguish between a commitment to and one to ,
if the commitments use the same key. This is an informal def-
inition of the computationally hiding property of commitment
functions.

Generate Ballots:
accepts ballot selection/candidate list , confirma-
tion-code alphabet (typically the set of alphanumeric
characters), confirmation-code length , election master
key , and the overall number of ballots to be generated
. contains three lists. The first is a list of ballots,

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 617

Fig. 2. Tables �, �, and � when there are two candidates, � � ����� and
� � ���. For example, a vote for ����� on Ballot 0000 would reveal the con-
firmation code 	
�; however, one for ��� would reveal ��. Note that, for pur-
poses of illustration, we show one way in which the� table may be populated
based on votes cast during the election. The function ��
however, initializes all these values to zero. In this example, the votes cast on
Ballots 0000, 0001, 0002, and 0003 were for ���,���, �����, and ���, respec-
tively, and would reveal confirmation codes ��, ��, ���, and �	, respec-
tively. The publicly published versions of tables� and � will contain commit-
ments to the information shown above; this detail is provided in Step 6c of the
setup phase in Section III-E. There is no information in Table � before votes
are cast, and there is no information made public about this table before the
election. (a) Table �; (b) Table �; (c) Table �.

sorted by serial number, each with selections, each
selection associated with a confirmation code in . In
addition to this list, also bears space for the voters’
choices after ballots are filled, and a third list which bears
the corresponding candidates.

We deviate slightly from the notation introduced in [8]. Let
denote the canonical “master” list associating codes, candi-

dates, and voter-made marks, which we define as the triple of
-element lists . For all ,

1) is a list of serial numbers and confirmation codes, in-
cluding serial numbers for each ballot, and con-
firmation codes for each selection in a ballot. Let

.
2) will eventually represent the list of scanned voter-made

marks indicating the absence or presence of
a mark (i.e., vote) made for an associated selection. Let

, and let all be initialized to 0.
3) is a list consisting of repetitions of selection/candidate

list . Let .
For notational convenience throughout the rest of this paper,

we will use the index to refer to a given ballot , and its
associated voter-receipt , where . For any

, let , , , if .
Serial numbers shall be selected independently (without

replacement) by a secure pseudorandom number generator
seeded by the election master key . These numbers shall be
selected from range defined by , such that correctly guessing
an unknown or would occur with a small (but not crypto-
graphically negligible) probability.

Finally, confirmation codes will be independently selected
by a pseudorandom generator such that confirmation codes
are not repeated across a given ballot , namely if

, for distinct .
See Fig. 2 for an example of a list of four ballots when there

are two candidates on the ballot, and confirmation codes consist
of three alphanumeric symbols.

D. Trusted Computation Platform

The protocol assumes the existence of a hardware device, re-
ferred to as the trusted computation platform, which the trustees
use to evaluate the various functions described above. This de-
vice relies on the following assumptions related to the preserva-
tion of ballot secrecy:

• Private and authenticated input: the ability to receive
input from authenticated trustees via a physically untap-
pable channel;

• Private evaluation: the ability to evaluate a function such
that the intermediate values cannot be recovered by passive
or active attack of the hardware or software components;
and

• Correctness: the ability to attest that the functions being
evaluated are equivalent to available and predefined source
code.

Note that the correctness assumption enables the trustees to
be certain that the required computations are being computed
correctly, and hence increases the reliability of the computation
from the perspective of the honest trustee. It does not affect the
ability of the voter or the auditor to detect a cheating trustee.

With the failure of any of these trust assumptions, it may be-
come possible for a malicious subset of trustees to recover in-
formation related to the association between voting intent and
ballot serial number. For example, this can be accomplished by
observing a sufficient number of trustee keys, observing inter-
mediate state, or altering the functions to overtly or covertly leak
this information.

None of these assumptions, including the correctness as-
sumption, dictate the soundness of the tally. In the event that
any or all of these assumptions are subverted (or any crypto-
graphic assumption is found not to hold), the correctness of
the final tally can still be ascertained through the independent
verification mechanism described in this section.

E. Protocol

Setup Phase: The trustees in set generate their threshold
trustee keys and initialize the bulletin board using candidate
list , security parameter , number of ballots to be generated
, valid trustee threshold list , code alphabet , code length ,

and a heuristic security parameter , where
is issued to by an external entity not considered herein. The
audit described in this paper, which is different from that de-
scribed in previous publications on Scantegrity or Scantegrity II,
requires the commitment of the voting system to several consis-
tent back-ends, each of which can be used to tally votes from the
confirmation codes. is the number of back-ends constructed by
the system.

Let the notation denote the th element in the of
the th instance of a shuffled list . Additionally, let the nota-
tion , , and denote list shuffled by the composition
of permutations , , and

, respectively.
Using a trusted computing platform, the trustees perform the

following computations:
1) Initialize security parameters: .
2) Initialize bulletin board: Post , and

the specification of all functions to .

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

618 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Fig. 3. Tables � and � for the example of Fig. 2. � is � permuted by
� , which is an upward circular shift of one unit, and � is � permuted by
� �� �� , where � corresponds to an upward circular shift of
two units, and � swaps the last two elements in the list. Note that the con-
firmation numbers of � can be made to match up with the correct candidates
in � if the permutation � � � is applied to � . Note also that we
use simple permutations such as these merely for the purposes of illustration.
For the system itself, we advocate that each permutation be chosen pseudoran-
domly from the set of all possible permutations, without restricting this set to
the set of simple permutations such as cyclic permutations or swaps. (a) Table
� ; (b) Table � .

3) Generate trustee keys: Each trustee contributes entropy
and is issued corresponding trustee key via an

untappable channel with the trusted computing platform
.

4) Generate election key: assuming the trusted platform is
stateful during this phase, the election master key is
generated by the previous step. (Note that key must not
leave or be leaked from the trusted platform during compu-
tation, nor should the trusted platform be stateful between
the setup, result declaration, and audit response phases. A
minimum of keys from can regenerate
all the information required for the result declaration and
audit response phases.)

5) Generate ballots: the trusted platform computes
,

and transmits via a private channel to a trusted printing
service which produces paper ballots with corresponding
serial numbers and confirmation codes in invisible ink.
Note that initially the recorded voter marks table is
empty.

6) Shuffle and cryptographically commit to the shuffles:
The following mixnet-like construction shuffles the two
lists and and posts commitments to the two shuffled
lists and to the shuffles. The shuffles are constructed in a
manner that will make the tally-verification audit simple
to implement, as will be seen later. See Fig. 3 for an il-
lustration on the example of Fig. 2. Note that, in this ex-
ample only, we use cyclic permutations and a swap merely
in an attempt to illustrate the mixnet-like construction in
as simple a manner as possible. We do not advocate the
restriction of permutations to a set of a few permutations,
but, as mentioned below, require that each permutation be
chosen in a pseudorandom manner from the set of all pos-
sible permutations of the respective tables.

a) Generate permutations: For each back-end, the trusted
platform computes three permutations. That is, for

, the trusted platform computes:
i) ''

ii) ''
iii) ''

b) Shuffle lists: For each back-end the trusted platform
computes a single-shuffled instance of and
a triple-shuffled instance of . (Note that the
number of apostrophes denotes the number of shuf-
fles the list has gone through.) That is, for
and , the trusted platform computes:

i)
ii)

c) Commitments: The trusted platform commits to
each back-end—the shuffled confirmation code
numbers, the corresponding candidate lists, and
the permutation values—on an element-by-el-
ement basis. For each single-shuffled code list

, triple-shuffled can-
didate list , and the corresponding
elements of permutations , the trusted plat-
form computes commitments as follows.
For , , and

i) ''
ii) ''

iii) ''
iv) ''
v) ''

vi)
vii)
viii)

'' .
d) The trusted platform publishes all , , and

to .
7) The trusted platform’s internal state is purged.
The mixnet-like construction described in step 6 of the setup

phase is similar to the initial version of Scantegrity II presented
in [8], with a slight functional simplification. The mixnet-like
processing in the initial version was equivalent to the application
of two permutations, and , to and , respectively. The
first permutation shuffled the order of the confirmation numbers,
and the second one was such that positions corresponding to a
single candidate appeared in a single block of consecutive po-
sitions in . The difference we propose in this paper is likely to
be easier to implement.

Voting Phase: A voter , upon being successfully
authenticated by poll workers, is given a ballot

con-
sisting of a serial number printed in an optical-scan readable
“barcode” and selection/candidate list printed
in normal ink. Serial numbers and the corresponding
confirmation codes are printed in
invisible ink.

To vote, marks the optical scan bubble beside the desired
selection using the decoder pen, which reveals the confirma-
tion code .

Upon scanning ballot , the optical scanner
shall produce an “electronic ballot image”

, where if and
only if a darkened region (i.e., a mark) was detected inside
the optical scan bubble beside the th selection . All other

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 619

shall register . The specific electoral system
in use would dictate how many marks (i.e., distinct ’s) are
permissible on a single ballot. can then choose to construct a
vote receipt for each marked.

Instead of voting on a particular ballot, can select it to
be “print-audited” in accordance with the procedures specified
in Section II. All confirmation codes are revealed, and one of

is revealed. The print-audited ballot becomes
. For

example, if Ballot 0001 of Fig. 2 were not voted but were
print-audited, and revealed, the print-audited ballot would
be . (Note that
print-audited ballots cannot be voted.)

Declaring Results: After the polling concludes, a valid subset
of trustees (as defined by) assemble to tally and declare the
results. The trustees also make available data regrading the tally
processing that will be audited in the audit phase. Given the set
of all EBIs recorded during the election, the trustees proceed
using the trusted platform as follows.

1) Regenerate election master key: Each trustee transmits
their trustee key over an untappable channel to the
trusted platform. The election master key is recon-
structed by calling if at least
trustees supply correct keys (where are
keys provided by trustees).

2) Regenerate ballot list: Ballot list is reconstructed by re-
running step 5) of the setup phase.

3) Construct list of recorded marks: For each recorded
during the election, populate by setting

for and . Any unused,
spoiled or print-audited ballot inherently constitutes an

with all .
4) Post voted codes: During the dispute resolution period (de-

scribed in Section II), all voted codes shall be published.
For all post and
corresponding commitment keys.

5) Post results: Using , tabulate the election results and post
them to ,

6) Post double-shuffled marks list for audit purposes:
a) Regenerate permutations: For and

the trusted platform recomputes permutations:
i) ''

ii) ''
.

b) Shuffle lists: For and ,
the trusted platform computes independent double-
shuffled instances of

i) .
c) The trusted platform publishes all to and

purges its internal state.
See Fig. 4 for an illustration using the example of Figs. 2 and 3.

Note that, at this stage, the list is such that, if permuted by
, the votes will be listed as obtained for the candidate list

. Further, if list is permuted by , the confirmation
codes will be listed in the order of the votes .

Audit Challenge and Response: In order to ensure robust,
correct behavior by the trustees and in turn, the correctness of
the election outcome, two audits are carried out. We first de-

Fig. 4. The revealed confirmation numbers (entries in �) and revealed table
� , which is a shuffled version of �, using the permutation � � � ,
where � is an upward circular shift of one unit, and � corresponds to
an upward circular shift of two units. The tally will be “three votes for �����
and one vote for ���.” The permutations used are secret. Note that, if � is
permuted by � , the votes will be listed wrt candidate list � of Fig. 3. If
list� of the same figure is permuted by � , the confirmation codes will be
listed as corresponding to the choices of� above. Note also that we use simple
permutations for the purposes of illustration. For the system itself, we advocate
that each permutation be chosen pseudorandomly from the set of all possible
permutations, without restricting this set to the set of simple permutations such
as cyclic permutations or swaps. (a) Revealed values of Table�; (b) Table� .

scribe the tally computation audit. For each back-end committed
to by the trustee, a coin flip determines whether the trustees will
demonstrate that the ballot marks of the corresponding public
table correspond correctly to (a) the announced tally or
(b) the public confirmation codes for voted ballots. This is done
by opening the commitments to the permutation or
to the permutation , respectively. Second, we de-
scribe the print audit. For values of , in the original ballot list

, corresponding to print-audited ballots, permutation values
and are opened . We now describe these

audits in more detail.
1) Public challenge of trustees: some time after the trustees

have completed declaring the results and posting the shuf-
fled marks lists, each instance of is challenged
to be partially revealed for the purposes of auditing. A fair
public coin is tossed times providing a series of audit
challenges , which are posted to .

2) For the tally computation audit. For and
, the trusted platform performs the following

actions:
a) If , regenerate and publish the confirmation

codes and the association between and .
That is, regenerate and publish the following:

i) the second permutation ;
ii) the commitment subkeys of

'' ;
iii) the commitment subkeys to all elements of

'' , where
.

b) If , regenerate and publish the permuted can-
didate list , as well as the association between
and . That is, regenerate and publish the following:

i) the third permutation ;
ii) the commitment subkeys of

'' ;
iii) the commitment subkeys to all elements of

'' .

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

620 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

3) For the ballot audit, compute all permutation elements and
commitment keys not computed in tally audit and required
for the purposes of demonstrating the entire path of the
ballot through the mixnet-like construction. That is, the
trusted computing platform does the following for

.
a) If :

• Regenerate (do not publish it).
• For each ballot

that is print-audited:
i) Search for all elements in such that

the second component is . If there
is no such element, search for all ele-
ments in such that the third compo-
nent is . That is, find all such that

failing which find all
such that . For all

such :
— Compute , where

has already been computed in
the tally computation audit.

— Publish . Compute and
publish the subkey used to commit
to

'' .
— Publish . Compute and publish

the commitment subkey for this value:
'' .

b) If :
• Regenerate (do not publish it).
• For each ballot

that is print-audited:
i) Search for all elements in such that

the second component is . If there
is no such element, search for all ele-
ments in such that the third compo-
nent is . That is, find all such that

failing which find all
such that . For all

such :
— Compute . Note that

has already been com-
puted in the tally computation audit.

— Publish . Compute and publish
the subkey used to commit to

'' .
— Publish . Compute and publish

the commitment subkey for this value:
'' where

.

F. Correctness Proofs

We summarize the proofs of correctness that verifying agents
can perform and explicitly state conditions under which the

proof completes successfully. Note that in general the best prac-
tice response to proofs that do not complete successfully (i.e.,

fail) is an open policy question, and not considered here. Specif-
ically in case of voter receipts, however, a failed receipt check
has a dispute resolution process described in Section II-C.

Note that, for the print audit and tally check correctness
proofs, will verify commitments. In particular, will
confirm that all commitment keys that were challenged as a
result of the challenge coin-tosses and the print-audit were
responded to (i.e., published on) during steps 2 and 3 in
the previous section. For all commitment keys to mes-
sage posted to during the audit, searches for the
corresponding message and commitment value , and tests
whether outputs 1 (valid). This verifica-
tion step is successful if and only if all of ’s executions of

output 1.
Receipt Check: For all challenges and

, locates permutations , code lists , and recorded
mark lists on . reconstructs the assertion of the voting
system, that is marked or not marked as indicated by the
mark value .

This verification step successfully verifies voter-receipt
if and only if is able to conclude

that all reconstructed assertions agree with . Specifi-
cally for , is said to agree with the assertions if

exists at position in , if ,
and if all other occurrences of and (that is, all
other values of tuples found at positions
correspondingly show recorded mark .

Print Audit: reconstructs assertions of the code-can-
didate associations of each print-audited ballot. For
all , , and for each print-audited ballot

1) searches for all elements in such that the second
component is . If there is no such element, searches for
all elements in such that the third component is . That
is, finds all such that failing
which finds all such that . For
all such :

a) locates permutation element , com-
putes , locates permutation element

, computes ;
b) locates and ;
c) The assertion is that is the confirmation

number corresponding to the candidate and
that the unique ballot with one serial number has
not been voted.

2) This verification step successfully verifies the print-audited
ballot if it agrees with the assertions. That is, if is able
to obtain values of and conclude that, :

a) the corresponding commitments were opened cor-
rectly;

b) for some such that
and that each value of corresponds to exactly

one value of ;
c) ;
d) .

Tally Check:
1) will check that the corresponding commitments were

opened correctly.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 621

2) will verify self-consistency:
a) For all challenges and , lo-

cates permutations , code lists and recorded
mark lists on . reconstructs the assertion of
the voting system, that is marked or not marked
as indicated by the mark value . This
verification step successfully verifies self-consis-
tency if all public voted confirmation numbers corre-
spond exactly to .

b) For all , locates , , and on
. For all , reconstructs the assertion of recorded

mark made for candidate , and
computes the election outcome by tallying each of
these assertions. He checks the declared tally against
the computed tally. This verification step successfully
verifies self-consistency if the two tallies are iden-
tical.

IV. SECURITY ANALYSIS

In Section III, we described the verification proofs for receipt
checks, the tally check, and print-audited ballots. In this sec-
tion, we both quantify the effectiveness of the verification and
consider the security of the Scantegrity II to additional attacks,
most involving a procedural element not easily captured by a
cryptographic description. Thus, the goal of this analysis is to
sketch the security heuristics underlying the design, and not to
rigorously prove security properties in a formal cryptographic
model.

We consider three categories of attacks. The first category is
manipulation attacks, in which the goal of the attacker is to ma-
nipulate the final tally so that the election’s outcome is more
favorable to the attacker’s preferred candidate(s). The second is
identification attacks, where the goal of the attacker is to form a
link between voting intent and ballot receipts. The final category
is disruption attacks, in which the attacker wishes to prevent the
completion or certification of the election. Since, in general, dis-
ruption attacks are applicable in any voting system, and difficult
to prevent, we will only consider a special-case of disruption in-
volving the prevention of certification of any tally in the event
the attacker feels the results may be unfavorable.

In order to best frame this discussion we note that, as an
enhancement to optical scan, Scantegrity II is inherently con-
strained by our design goal of noninterference with the under-
lying optical scan processes. For this reason, Scantegrity II is
designed to be a strict improvement over optical scan systems
with manual recounts. However, components which cannot be
secured without intervening in the underlying processes of op-
tical scan are not pursued.

A. Assumptions

The level of security of Scantegrity II depends on the nature of
the attack. Critical components offer probabilistic security that
is invariant to the adversary’s computational power, while other
components premise their security on one or more assumptions,
both procedural and cryptographic in nature. The security set-
ting of our analysis includes the following assumptions:

1) the existence of a trusted computing platform for use by
election officials (contra identification attacks);

2) the set of collusive officials in the election authority does
not satisfy the threshold requirement for recovery of the
master key (identification and disruption);

3) chain-of-custody over the printed ballots prior to voting
day (identification);

4) the inability of voters and others to read codes printed in
invisible ink (manipulation, identification);

5) proper balancing of the pollbook (manipulation);
6) the intractability of obtaining information about a mes-

sage given only its cryptographic commitment (identifica-
tion);and

7) the intractability of opening a cryptographic commitment
of a message differing from that message initially com-
mitted to (manipulation).

In our view, most of these assumptions are reasonable and
standard in the literature. The trusted platform is a scaled-down
computing device, with no external memory, running software
attested by the trustees that performs the cryptographic opera-
tions. To avoid collusion among trustees, they could be selected
from competing political parties. Using a threshold scheme al-
lows the election to proceed even if a group of trustees is unable,
or refuses, to supply their key share. Prior to the election, printed
ballots must be protected against an adversary revealing codes
and reprinting substitute ballots. Assumption 4 is unique to our
approach and we provide justification for it in Section V. “Bal-
ancing the pollbook” refers to the assumption that the sum of
the number of voted, tallied,and spoiled ballots is equal to the
number of cast ballots, which is not larger than the number of
voters. Assumptions 6 and 7 are referred to as the hiding and
binding properties of commitments respectively in the previous
section.

B. Manipulation Attacks

1) Printing: An adversary may misprint ballot , so that
the code associated with candidate in the master list

is printed beside a different candidate (or all candidates)
on the same ballot. If the adversary then modifies any
associated with such a misprinted ballot such that
and , the system will count the vote for and report

as the confirmation code, which is consistent with what
appears on the ballot.

The print audit mechanism, described in Section III, is de-
signed to make such an attack detectable by revealing discrep-
ancies between printed ballots and , using commitments
under assumption 7. If the number of ballots chosen to be print-
audited is ,where is the number of ballots in
the election overall, the probability of detecting at least 1 of

misprinted ballots is

(1)

2) Voting: One line of manipulation attack can exist in sys-
tems that are not diligent in spoiling ballots [4], [21]. If an at-
tacker has a line of communication with the voter, the voter can

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

622 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

be instructed to mark her ballot and wait for further instruction.
The attacker then communicates to the voter to either spoil the
ballot or cast it. If the spoiled ballot is not protected or destroyed,
the attacker may consult it to see how the voter would have voted
had the attacker instructed the voter to cast the ballot. The line
of communication can be eliminated by using random material
on the ballots to determine the instruction, in a way analogous
to the approach of making interactive protocols noninteractive.
Scantegrity II avoids this line of attack by having spoiled ballots
shredded in front of the voter, without the poll worker seeing the
contents of the ballot.

A second line of manipulation attack can exploit the presence
of undervoted ballots. An attacker may add additional marks to
a contest left empty by the voter during a recount or appropri-
ately modify the digital records.1 This attack is not introduced
by Scantegrity II and exists is any optical scan voting system.
One method of prevention is to require each voter to mark a
“none of the above” selection when denoting an undervote. Sim-
ilarly, an attacker might try to prevent a correctly cast ballot from
being tallied by overvoting it; this attack is prevented by not al-
lowing any overvoted ballots to be cast.

3) Auditing: Consider a manipulation attack based on swap-
ping voter-made marks in from one candidate to the at-
tacker’s preferred candidate. To prevent this attack, with prob-
ability 1/2, each back-end will be challenged to open the cor-
respondence between the lists and , and any modified
mark states for these instances will be incongruent with the voter
receipts. The attacker may gamble, only modifying marks in
roughly half of the back-end instances in the hope that exactly
these will have challenge and thus that, instead, the
correspondence between the lists and is instead revealed
in the modified instances . The probability of doing so is .
However, if a different subset is revealed, the tallies across the
subsets will differ and the attack is detectable. Alternatively, the
attacker might modify for all instances , which
guarantees self-consistent tallies but also guarantees the attack
is detectable by the receipt check protocol. At first glance this
may seem to be an irrational strategy until one considers the pos-
sibility of only a small subset of voters actually checking their
receipts. With instances, ballots actually cast, ballot
receipts checked, and modifications to each , the proba-
bility of detection is . The
adversary will choose the least detectable of the two strategies,
thus,

(2)

By estimating and bounding as half of the smallest
margin of victory for which we can certify an election, we can
use this equation to determine a suitable for our implementa-
tion such that the first term exceeds the estimated value of the
second. In most instances, is suitable.

A second approach to manipulating the tally is to change
the final state of the ballots. Ballots can have one of three

1Although this issue was previously known to the authors, we acknowledge
David Wagner for raising it in private correspondence.

states: voted, print-audited, or spoiled. Under assumption 5, we
assume that modifications must preserve the number of ballots
in each state. If a voted ballot is maliciously modified to be
spoiled, a spoiled ballot must be converted into a voted ballot.
To prevent these transitions, the voter retains positive evidence
of ballots being in a voted state: knowledge of both serial
numbers, . Alternatively, for a print-audited ballot,
the voter retains positive evidence a ballot was print-audited
via knowledge of all the confirmation codes on the ballot,

but only one of . Both pieces
of information would be unknown to the voter if the ballot were
in any other state when the voter left the polling place.

In the case of spoiled ballots, the voter does not retain any-
thing. However, if a spoiled ballot is maliciously converted into
a voted ballot, a voted ballot will need to be spoiled, and the
corresponding voter can prove malfeasance through knowledge
of both chit serial numbers.

The transition from a spoiled to print-audited state is impor-
tant for different reasons. This transition does not change the
tally directly; however, it is indirectly useful in facilitating the
first manipulation attack presented in Section IV-B2. By misre-
porting a spoiled ballot as print-audited, the confirmation codes
on the ballot would be released during the verification process
allowing a coercer to see if the ballot matched the conditions
of the contract for spoiling the ballot. Under assumption 5, this
attack will be detectable as it requires a print-audited ballot to
be made into a spoiled ballot. To prevent this attack, the trustees
could first publish a list of ostensibly spoiled ballots prior to
releasing the print audit confirmation codes. If an auditor dis-
covers her print-audited ballot is in the wrong state, the discrep-
ancy can be caught prior to releasing the codes.

C. Identification Attacks

1) Initialization: The earliest opportunity for identification
occurs during the election initialization process. Successfully
changing or introducing faults into the initialization protocol
could generate a permutation of or subsequent lists that is
known to the attacker. This is not possible if the protocol is
run on a trusted computing platform and assumption 1 holds.
Without direct interference with the protocol, the attacker may
provide structured data instead of randomness in the protocol.
However, under assumption 2 and the construction of the
threshold key generation scheme, any amount less than the
minimum threshold of shares leaks negligible information for
the purposes of determining the key.

2) Printing: After the ballots are printed, a number of iden-
tification attacks may be conducted including the addition of
revealing marks on the ballots or revealing the codes on the bal-
lots, recording these codes, and reprinting the ballots with unre-
vealed ink. The prevention of these attacks is based on assump-
tion 3.

3) Auditing: After the election has concluded, the data gen-
erated and published for voter-verification of the tally must meet
the requisite ballot secrecy. Given no information other than the
tally, a certain level of information can be obtained about which
candidate a voter selected. The tally provides a probability dis-
tribution for the possible selections and may even exclude selec-
tions, based, for example, on a candidate receiving zero votes.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 623

This level of information is often legally required and thus ac-
ceptable. If the attacker is provided, in addition, with the infor-
mation on each voter’s receipt, further information is revealed:
how many marks the voter made and the codes associated with
these marks. Our assertion of ballot secrecy is that no additional
information is leaked about the association between a mark and
code on a receipt and any element in the set of selections in the
tally.

Opening only one of the commitments to either a) the cor-
respondence between confirmation codes and voter marks

or b) the correspondence between voter marks and can-
didates reveals negligible information about permutations

or , respectively. Hence, the association between
and is always hidden by one cryptographic permutation. The
commitment to the permutation key, if binding, uniquely identi-
fies the permutation, however, reversing the commitment is as-
sumed intractable by assumption 6.

D. Disruption Attacks

In general, disruption attacks are easy to detect but difficult
to prevent. Many of the manipulation attacks could be recon-
structed as disruption attacks, and the same mechanisms would
detect them. However, as stated, we limit our consideration to
disruption for the purpose of preventing the certification of an
undesired tally (or an expected undesired tally, if the informa-
tion is based on exit polls for example).

1) Initialization: During the initialization phase, each trustee
in the election authority supplies entropy to seed the random
number generator used to generate all the permutation keys and
commitment secrets needed in the election. Instead of main-
taining state, since the state information would need to remain
private, when the tally and audit challenge/response phases are
entered, the trustees re-enter their key shares to recreate all the
necessary data. To prevent a malicious trustee from withholding
their entropy or supplying the wrong entropy, we use a threshold
key generation scheme (optionally with robustness to a finite
number of errors). Under assumption 2, a suitable threshold will
allow the reconstruction of the data despite malicious trustees.

2) Auditing: During the auditing phase, an attacker may file
a spurious dispute about the results of a receipt-check. Since
the election authority has committed to the confirmation codes
that appeared on the ballot, it can rule out any claimed codes
that did appear on the ballot. Thus, filing a spurious but plau-
sible dispute reduces to randomly guessing another code on
the ballot. The election authority can quantify the probability
of this and create an appropriate statistical trigger that predicts
actual receipt-check problems. Let be the number of candi-
dates on a candidate list for a particular race and let be
the cardinality of the set of unique confirmation codes. The
probability of guessing a plausible code on a voted ballot is

. If disputes are filed and are con-
sidered plausible, the expected value of , if disputes are fab-
ricated, is . We set the trigger value such that the
probability of obtaining at least plausible discrepancies if all
filed disputes are random guesses is less than 1%. We can use
the following bound on the right tail of the binomial distribution
[13]. For any , .

For example, for 5 candidates, 8000 possible codes, and 1000
disputes filed, assuming no scanning error,

and . Using we get
, so we can

set . If at least 5 out of the 1000 disputes filed are plau-
sible discrepancies, then an investigation should be instigated.
To allow for up to some acceptable rate of scanning error, we
can incorporate into the probability of guessing a correct
code and compute the statistical trigger as above with the new
value of .

V. INVISIBLE INK DETAILS

In this section, we describe the main categories of threats that
might take advantage of the properties of invisible ink, our as-
sumptions about ink properties, and the procedures for printing
the inks on the ballot. Greater detail is available in [5].

A. Threats

Note that the only threats to Scantegrity II that take advan-
tage of the limitations of the ink are those that are based on the
following.

1) Distinguishing between confirmation codes and their back-
grounds.
The ability to distinguish would allow:

a) voters to falsely claim election fraud; and
b) anyone with access to ballots to violate ballot secrecy

by connecting confirmation codes to selections.
2) Distinguishing between chit serial numbers and back-

grounds.
The ability to distinguish would allow

a) voters to claim that an uncast ballot was cast;
b) anyone with access to uncast ballots to connect chit

serial numbers and confirmation codes with voter se-
lections [in combination with (1)].

3) Distinguishing between the two-dimensional barcode and
background.
The ability to distinguish would allow anyone with access
to marked ballots to connect two-dimensional bar-codes
with voter selections

B. Assumptions

The main security assumption about the inks is that the slow-
and fast-reacting inks used for printing confirmation codes and
oval backgrounds, respectively, are not distinguishable before,
and sufficiently after, they have been marked with the ballot-
marking pen (“sufficiently after” is taken to mean that the time
period is long enough to allow the slow-reacting ink to react).
We make a similar assumption about the indistinguishability of
the chit serial numbers and the two-dimensional barcode from
their background.

Note also that the assumptions we make are about physical
properties of chemicals, and the detectability of differences.
Clearly, most chemicals (if not all) can be distinguished from
one another through a sufficiently sophisticated test; our ar-
guments are that, for all practical purposes, our assumption
holds, and we describe here our efforts to make it more difficult
to distinguish among the inks, particularly by the naked or
microscopically aided human eye.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

624 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Finally, the ability to distinguish enables voters to make false
charges of election fraud, and anyone to connect information
about ballot choices with confirmation codes and serial num-
bers. If voters are assumed to not have access to ballots out-
side the polling booths, or to specialized equipment (including
the decoding pen) inside the booth, the indistinguishability as-
sumption is only required to hold with respect to the human eye
in order to prevent false charges of election fraud.

C. Procedures Used for Printing With the Inks

In this section, we describe ways in which the indistinguisha-
bility assumptions may be defeated, and our efforts to preserve
indistinguishability. Note that the inks proposed for printing on
ballots can be used in regular ink-jet printers.

1) To Prevent the Soaking of Paper: Any type of ink used
by inkjet printers soaks into the paper. Even if the ink used to
print the codes would be completely invisible, the soaked paper
would allow the codes to be easily read. To avoid this, we use
two types of ink: a reacting ink used to print the background
of the oval and a slow-reactive ink used to print the confirma-
tion codes. Both inks have the same color (a light yellow) if
printed on the same piece of paper. The reacting ink turns black
immediately when it interacts with the ink of the marking pen,
while the ink used for the codes undergoes the same reaction
at a slower pace. Thus, the immediate result is a yellow con-
firmation code inside a black oval—the highest contrast color
combination. After several minutes, the slow reacting ink will
have reacted leaving the oval completely black.

2) To Avoid the Overlapping of Inks: We divide the oval in
small square tiles called texels. Each texel is entirely printed
with either reactive or slow-reactive ink, but never with a com-
bination of them. A small constant-sized gap is left between any
two adjacent texels, such that when two adjacent tiles are printed
with different inks, the two inks never overlap even if they dif-
fuse outward as they absorb into the paper. Without such a gap,
a border of overlapping types of ink could emerge, under a mi-
crosocope, for example, making the border easier to detect. Ad-
ditionally, we ensure that the position of the code in the oval is
not fixed; the codes can be shifted left or right.

3) The Addition of Confusing Fluorescence: The use of spe-
cial types of radiation can expose invisible inks. We apply a third
type of ink that we call a masking ink. It is colorless but has
high fluorescence. Masking ink is the last ink sprayed onto the
paper. We add random amounts of masking ink to all texels of
the oval. This is designed to mask the eventual difference in flu-
orescence between the reactive ink and slow reactive ink used
for the codes, as well as a cover to prevent lifting particles from
the paper with tape.

4) Ballot-Marking Pens: While this paragraph is not about
security properties of the inks used, it is relevant to the discus-
sion of Scantegrity II procedures with respect to inks, and is
hence described here. The ballot-marking pens that we use to
mark the ovals have a tip that is wider than the height of the
oval. A voter can mark the entire oval using a single strike of
the pen which is faster than penciling in the mark. Even if the
voter pens in more than the oval, the result is a clean, perfectly
filled oval. The use of invisible ink also deters stray dark marks
that can confuse scanners, although the light yellow hue of the

ink could still be visible. The portion of the chit reserved for
the voter to record the confirmation codes can also have a solid
layer of the same reacting ink, so that the voter may record the
codes with the same pen.

VI. SCANTEGRITY II FOR VOTERS WITH DISABILITIES

In this section, we describe modifications to Scantegrity II
to allow its use by those voters who have visual or motor dis-
abilities, and hence cannot mark a Scantegrity II paper ballot.
These modifications are inspired by those for Punchscan and
Prêt à Voter described in [10]. In our approach, the voter is pre-
sented with an audio ballot and interacts with the voting system
using a microphone and headphones. The voting system prints
the vote on a Scantegrity II ballot. The voter with visual disabil-
ities also has access to a trusted interactive device that trans-
lates a visual signal into another type of signal, such as an audio
signal; this device is used to check a marked ballot. Finally, all
voters using the audio interface have access to a personal voice
recorder used to record the confirmation number. Details of our
approach follow.

Filling a Ballot: The voter is presented the choices for each
race through the headphones, and communicates her choice to
the voting system through the microphone. The voting system
communicates the vote to a printer. The printer prints, on a
Scantegrity II ballot, with the ink also used in the Scantegrity
II pen, a blob on the corresponding oval, exposing the code as
with ballots for other voters. Assistive devices that have been
used in the past to help voters with visual or motor disabili-
ties may also be modified for the purpose of filling a Scant-
egrity II ballot. Examples of such devices include Tactile Ballots
which have been used in elections in Rhode Island [17], and the
Voting-on-Paper Assistive Devices (Vote-PADs),2 which consist
of a plastic ballot-sleeve, tactile indicators, and an audio tape
recording, customized for each election and ballot design.

Checking a Marked Ballot for Correctness: The voter who
does not have visual disabilities, but has motor disabilities that
make it difficult to mark ballots, may check the correctness of
the filled ballot, and dictate the confirmation code into a personal
(trusted) voice recorder.

The voter with visual disabilities will use a trusted interactive
device—consisting of a trusted scanner with optical character
recognition (OCR) and speakers—to check that the ballot is cor-
rectly marked. The voter may bring such a device with her to the
booth, or may be provided one by a trusted third party, such as a
public interest group. With the aid of this device, the voter may
translate a marked Scantegrity II ballot into an audio signal, and
determine if it has been correctly marked. Additionally, this de-
vice would read aloud the confirmation number, which could be
taped into a personal (trusted) voice recorder.

Casting the Ballot: Once a ballot has been correctly marked,
it may be processed like any other marked Scantegrity II ballot.

Print Audits: If ballots given to voters using this procedure to
vote are drawn at random from the pile of ballots for all voters,
print audits are applicable to a ballot marked as described above.
Further, a voter with visual or motor disabilities can also per-
form a print audit by marking audit ballots as described above.

2Accessible voting without computers. http://www.vote-pad.us/.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 625

Security Properties: This approach does not provide the
same security guarantees to voters with visual disabilities as
those provided to other voters, who need not rely on a trusted
device in the polling booth. A compromise of the trusted device
can result in a compromise of the integrity of the vote, as well
as in an opportunity for a coercive adversary. On the other
hand, the only implemented voting systems that are usable
by voters with visual disabilities—DREs, optical scan ballot
systems with assistive devices, or Prime III [14]—require that
the voter either trusts the voting system itself, or the chain of
custody on the ballot box or a paper/audio audit trail. These
are stronger assumptions than the requirement that a personal
device be trusted by a voter. Thus, the above modification
of Scantegrity II, like those of Punchscan and Prêt à Voter
described in [10], provides a much-needed accessible version
of voter verifiability—where the voter may determine that her
vote is among those tallied, and that the collection of votes is
tallied correctly—without having to trust a device provided by
election officials.

VII. RELATED WORK

The use of cryptography in voting originates in 1981 with
Chaum [6]. The ensuing decades saw the introduction of
many electronic voting systems using cryptography to achieve
both privacy and integrity. Only more recently have schemes
emerged where voters use paper ballots and/or obtain paper
receipts; for example, Prêt à Voter [11], Punchscan [15], [16],
[26], Scratch & Vote [1], ThreeBallot [27], Simple Verifiable
Voting [3], Split-Ballot Voting [22], and the protocol of Neff
[24]. Public key techniques have dominated the cryptographic
verification of tally computation; for example, the universally
verifiable mixnet of Sako and Kilian [28], and the tally correct-
ness proofs of Furukawa and Sako [18], and Neff [23].

A scheme by Chaum [7] was the first to provide the voter with
a receipt for the purposes of verifying the presence of her vote
in the vote collection, without requiring her to have access to
trusted computational power while casting her vote. The first use
of a perforated ballot, where a voter can take a perforated part
of the ballot out of the polling booth as a receipt, appears in Prêt
à Voter. ThreeBallot [27] also uses a perforated ballot. Scratch
& Vote was the first to provide a string to the voter that was
obtained only after the voter performed an action on the ballot
(scratching off a layer), it was also the first to use two-dimen-
sional barcodes. The light use of cryptography is inspired by the
verification protocols in previous systems including “Votegrity”
[7] and Punchscan, combined with the mixnet auditing tech-
nique of randomized partial checking [19]. The approach to-
wards providing accessibility draws from [10].

VIII. CONCLUDING REMARKS

We have demonstrated a simple and effective way to dramati-
cally increase the transparency of elections that use optical scan
voting systems. It is our hope that its adoption will help prevent
the manipulation of election outcomes, and that it may lead to
renewed confidence and participation in democracy.

REFERENCES

[1] B. Adida and R. L. Rivest, “Scratch & vote: Self-contained paper-based
cryptographic voting,” in Proc. the 5th ACM Workshop on Privacy in
Electronic Society (WPES), 2006, pp. 29–40.

[2] S. Ansolabehere and C. Stewart, “Residual votes attributable to tech-
nology,” J. Politics, vol. 67, pp. 365–389, 2005.

[3] J. Benaloh, “Simple verifiable elections,” in Proc. 2006 USENIX/AC-
CURATE Electronic Voting Technology Workshop (EVT), Vancouver,
Canada, 2006.

[4] J. Benaloh, “Ballot casting assurance via voter-initiated poll station au-
diting,” in Proc. 2007 USENIX/ACCURATE Electronic Voting Tech-
nology Workshop (EVT), Boston, MA, 2007.

[5] R. T. Carback, Printing Secure Automatic Receipts With Activating Ink
Tech. Rep., 2009 [Online]. Available: http://scantegrity.org/~carback1/
ink/ink.pdf

[6] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[7] D. Chaum, “Secret-ballot receipts: True voter-verifiable elections,”
IEEE Security Privacy, vol. 2, no. 1, pp. 38–47, Jan./Feb. 2004.

[8] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest,
P. Y. A. Ryan, E. Shen, and A. T. Sherman, “Scantegrity II: End-to-end
verifiability for optical scan election systems using invisible ink confir-
mation codes,” in Proc. 2008 USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT), San Jose, CA, 2008.

[9] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. T.
Sherman, and P. Vora, “Scantegrity: End-to-end voter verifiable
optical-scan voting,” IEEE Security Privacy, vol. 6, no. 3, pp. 40–46,
May/Jun. 2008.

[10] D. Chaum, B. Hosp, S. Popoveniuc, and P. L. Vora, “Accessible voter
verifiability,” Cryptologia, vol. 33, no. 3, pp. 283–291, 2009.

[11] D. Chaum, P. Y. Ryan, and S. A. Schneider, A Practical, Voter-Verifi-
able, Election Scheme University of Newcastle Upon Tyne, Tech. Rep.
Series CS-TR-880, Dec. 2004.

[12] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. A. Hal-
derman, and E. W. Felten, “Fingerprinting blank paper using
commodity scanners,” in Proc. 30th IEEE Symp. Security and Privacy,
2009, pp. 301–314.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd Edition. Cambridge, MA: MIT Press, McGraw-
Hill Book Company, 2000.

[14] E. V. Cross, II, Y. McMillian, P. Gupta, P. Williams, K. Nobles, and
J. E. Gilbert, “Prime III: A user centered voting system,” in Proc.
2007 Conf. Human Factors in Computing Systems (CHI), 2007, pp.
2351–2356.

[15] A. Essex, J. Clark, R. T. Carback, and S. Popoveniuc, “Punchscan in
practice: An E2E election case study,” in Proc. 2007 IAVoSS Workshop
on Trustworthy Elections (WOTE), Ottawa, Canada, 2007.

[16] K. Fisher, R. Carback, and A. T. Sherman, “Punchscan: Introduction
and system definition of a high-integrity election system,” in Proc. 2006
IAVoSS Workshop on Trustworthy Elections (WOTE), Cambridge, U.K.,
2006.

[17] M. Fresolone, Tactile Ballots: Alternative Voting Method for the Blind
Tech. Rep. [Online]. Available: http://www.votersunite.org/info/tac-
tileballots.asp

[18] J. Furukawa and K. Sako, “An efficient scheme for proving a shuffle,” in
Proc. 21st Conf. Advances in Cryptology (CRYPTO), 2001, vol. LNCS
2139, pp. 368–387.

[19] M. Jakobsson, A. Juels, and R. L. Rivest, “Making mix nets robust
for electronic voting by randomized partial checking,” in Proc. 11th
USENIX Security Symp., 2002, pp. 339–353.

[20] D. Jones, Voting on Paper Ballots [Online]. Available: http://www.cs.
uiowa.edu/~jones/voting/paper.html

[21] J. Kelsey, A. Regenscheid, T. Moran, and D. Chaum, “Hacking paper:
Some random attacks on paper-based E2E systems,” presented at the
Frontiers of Electronic Voting Dagstuhl, Germany, 2007.

[22] T. Moran and M. Naor, “Split-ballot voting: Everlasting privacy with
distributed trust,” in Proc. 14th ACM Conf. Computer and Communi-
cations Security (CCS), 2007, pp. 246–255.

[23] C. A. Neff, “A verifiable secret shuffle and its application to e-voting,”
in Proc. 8th ACM Conf. Computer and Communications Security
(CCS), 2001, pp. 116–125.

[24] C. A. Neff, Practical High Certainty Intent Verification for En-
crypted Votes Tech. Rep., 2004 [Online]. Available: www.vote-
here.net/old/vhti/documentation/vsv-2.0.3638.pdf

[25] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Proc. 1991 Workshop on the Theory and Application of Cryptographic
Techniques (EUROCRYPT), 1991, vol. LNCS 547, pp. 522–526.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

626 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

[26] S. Popoveniuc and B. Hosp, “An introduction to Punchscan,” in Proc.
2006 IAVoSS Workshop on Trustworthy Elections (WOTE), Cambridge,
U.K., 2006.

[27] R. L. Rivest and W. D. Smith, “Three voting protocols: ThreeBallot,
VAV, and Twin,” in Proc. 2007 USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT), Boston, MA, 2007.

[28] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme: A prac-
tical solution to the implementation of a voting booth,” in Proc. 1991
Workshop on the Theory and Application of Cryptographic Techniques
(EUROCRYPT), 1995, vol. LNCS 921, pp. 393–403.

[29] R. Saltman, Accuracy, Integrity, and Security in Computerized Vote-
Tallying Tech. Rep. NIST SP 500-158, Aug. 1988.

[30] T. R. Weiss, As Primary Season Ramps Up, An E-Voting Snapshot
Computerworld, Jan. 8, 2008.

David Chaum received the M.S. degree and the
Ph.D. degree in computer science from the Uni-
versity of California, Berkeley, in 1980 and 1983,
respectively.

He founded DigiCash, Inc., where he was CEO
from 1993 to 1998. Before that, he built and lead the
Cryptography Group at Centrum voor Wiskunde en
Informatica (Center for Mathematics and Computer
Science), Amsterdam, The Netherlands, from 1985
to 1992. He has also held positions at University of
California Santa Barbara and at New York Univer-

sity Graduate School of Business. He has published over 45 original technical
articles and received over 17 U.S. patents. He is widely considered to have in-
vented secure electronic voting, with a paper describing a technique for anony-
mous electronic voting in 1981, and several papers since. He is also generally
associated with the invention of electronic money and anonymous credentials.
He was the first to propose: mix networks, dining-cryptography networks, blind
signatures, untraceable credentials, minimum disclosure, group and undeniable
signatures. He has also made early and fundamental contributions to the area of
multiparty computations.

Dr. Chaum is founder of the International Association for Cryptographic Re-
search (IACR) and cofounder of Workshop on Trustworthy Elections (WOTE),
a series of conferences and its sponsoring organization the International Asso-
ciation for Voting Systems Sciences (IAVOSS).

Richard T. Carback was born in Baltimore, MD.
He received the Master’s degree in computer science
from the University of Maryland, Baltimore County
(UMBC), in May 2008. He is currently pursuing the
Ph.D. degree in computer science at UMBC.

He is a Research Associate for Convergent
Technologies Incorporated, Baltimore, MD, sup-
porting computer security development and training
efforts. Previously, he has worked as a Research
and Teaching Assistant at UMBC, and a Software
Engineer at L-3 GSI, Inc. His research interests

include end-to-end election systems, privacy enhancing technologies, virtual
systems security, computer network operations, cryptology, and other topics in
computer security and information assurance.

Jeremy Clark received the B.E.Sc. in computer
engineering from the University of Western Ontario,
Canada, in 2004, and the M.A.Sc. degree in elec-
trical engineering from the University of Ottawa
in 2007. He is currently pursuing the Ph.D. degree
in computer science at the University of Waterloo,
Waterloo, ON, Canada.

He is a member of the Centre for Applied Cryp-
tographic Research (CACR) and the Cryptography,
Security and Privacy (CrySP) research group. His re-
search interests are in applied cryptography and game

theory.
Mr. Clark is a recipient of the Alexander Graham Bell Canada Research

Scholarship.

Aleksander Essex received the B.E.Sc. degree
in computer engineering from the University of
Western Ontario, Canada, in 2004, and the M.A.Sc.
degree in electrical engineering from the University
of Ottawa in 2008. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
at the University of Ottawa, Canada.

He is a member of the Information Security Re-
search Group, University of Ottawa. His research in-
terests are in applied cryptography, engineering de-
sign, and voting technologies.

Stefan Popoveniuc received the Ph.D. degree
from The George Washington University, where he
focused on computer security and privacy in general
and on electronic voting in particular. His thesis
provided a general framework that allows election
officials to evaluate and take informed decisions
when purchasing end-to-end voting systems.

He is a founding member of the PunchScan
team; he has fully implemented a number of voting
systems, PunchScan, Scantegrity, and Scantegrity II
being just three of them. Currently, he is an election

technology consultant in the Washington, D.C., area.

Ronald L. Rivest received the B.A. degree in math-
ematics from Yale University in 1969, and the Ph.D.
degree in computer science from Stanford University
in 1974.

He is the Viterbi Professor of Computer Science in
the Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology
(MIT). He is a member of MIT’s Computer Science
and Artificial Intelligence Laboratory (CSAIL), a
member of the lab’s Theory of Computation Group,
and is a leader of its Cryptography and Information

Security Group. His research interests are in cryptography, computer and
network security, algorithms, and voting systems. He is an inventor of the RSA
public-key cryptosystem, and has extensive experience in cryptographic design
and cryptanalysis. He is a founder of RSA Data Security and a cofounder of
Verisign and of Peppercoin.

Prof. Rivest is a member of the National Academy of Engineering, the Na-
tional Academy of Sciences, and is a Fellow of the Association for Computing
Machinery, the International Association for Cryptographic Research, and the
American Academy of Arts and Sciences. He also serves on the EPIC Advisory
Board. Together with Prof. Adi Shamir and Prof. Len Adleman, he has been
awarded the 2002 ACM Turing Award. He has received an honorary degree
(the “laurea honoris causa”) from the University of Rome. In 2005, he received
the MITX Lifetime Achievement Award; in 2007, he received both the Com-
puters, Freedom and Privacy Conference “Distinguished Innovator” award, and
the Marconi Prize. He has served as a Director of the International Association
for Cryptologic Research, and of the Financial Cryptography Association. Most
recently, he has served on the Technical Guidelines Development Committee,
an advisory board to the U.S. Election Assistance Commission.

Peter Y. A. Ryan received the Ph.D. degree in theo-
retical physics from the University of London, U.K.

Since February 2009, he is Professor of Infor-
mation Security at the University of Luxembourg.
Before moving to Luxembourg, he was a professor
at Newcastle University. His research interests
include cryptography, modeling and verification
of cryptographic protocols and secure systems,
verifiable voting systems, and quantum information
assurance. He has served on the PC of many security
conferences and has served as program chair for

several. He was the chair of the Steering Committee of ESORICS from 1999
to 2007.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

CHAUM et al.: SCANTEGRITY II: END-TO-END VERIFIABILITY BY VOTERS OF OPTICAL SCAN ELECTIONS 627

Emily Shen received the B.S. degree in computer sci-
ence from Stanford University, in 2006, and the S.M.
degree in electrical engineering and computer science
from Massachusetts Institute of Technology (MIT),
in 2008. She is currently pursuing the Ph.D. degree in
electrical engineering and computer science at MIT.

She is a recipient of the Bell Laboratories Grad-
uate Research Fellowship. Her research interests are
in cryptography and computer security.

Alan T. Sherman received the Ph.D. degree in com-
puter science from Massachusetts Institute of Tech-
nology (MIT) studying under Ronald L. Rivest, the
S.M. degree in electrical engineering and computer
science from MIT, and the Sc.B. degree in mathe-
matics (magna cum laude) from Brown University.

He is an Associate Professor of Computer Science
at the University of Maryland, Baltimore County
(UMBC) in the CSEE Department, Director of
UMBC’s Center for Information Security and As-
surance, and a member of the National Center for the

Study of Elections at UMBC. His main research interest is high-security voting
systems. He has carried out research in election systems, algorithm design,
cryptanalysis, theoretical foundations for cryptography, and applications of
cryptography.

Dr. Sherman is also a private consultant performing security analyses, an ed-
itor for Cryptologia, and a member of Phi Beta Kappa and Sigma Xi.

Poorvi L. Vora received the B.Tech. degree in
electrical and electronic engineering from IIT
Mumbai, in 1986, the M.S. and Ph.D. degrees in
electrical engineering from North Carolina State
University (NCSU), in 1988 and 1993, and the M.S.
in mathematics from Cornell University, in 1990.

She is an Associate Professor in the Department
of Computer Science at The George Washington
University, Washington, D.C., where she has been on
the faculty since 2003. Before 2003, she worked at
Hewlett-Packard (HP) Company in various positions

in HP Laboratories, as well as in the Imaging and Printing Group (IPG). Her
current research interests are in the application of ideas from communication
theory and signal processing to problems in security, such as electronic voting,
cryptology, and counterfeit deterrence.

Authorized licensed use limited to: The George Washington University. Downloaded on November 24, 2009 at 13:52 from IEEE Xplore. Restrictions apply.

