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ABSTRACT
A previous paper demonstrates that if a seller always uses auction bids to later price discriminate against losing bidders, his revenue decreases dramatically. In this paper, we examine whether the seller obtains an advantage if he randomizes his strategy – that is, if he does not use privacy-infringing information all the time, but only with probability (. Using both Bayesian techniques and genetic algorithm experiments, we determine optimal strategies for bidders and sellers in a two stage game: Stage I is a first price auction used to elicit information on a bidder’s valuation; Stage II is, with probability (, a price discrimination offer, and, a fixed price offer P else. Our results show that the seller does not benefit from randomized price discrimination.  Further, low valuation bidders benefit more from the seller’s use of privacy-infringing information than do the high valuation ones, as they may wish to signal that they cannot afford a high second-stage offer. To our knowledge, our use of genetic algorithm simulations is unique in the privacy literature.  
Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavior Sciences – economics, psychology, sociology. 

General Terms
Economics, experimentation.
Keywords
Randomized strategy, price discrimination, genetic algorithm
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Our approach to privacy is as that in [7]. We treat interactions among entities as stages in a multi-stage game. Information revealed in an earlier stage can typically reduce (or increase) a player’s utility in a later stage; the utility reduction is modeled as a privacy cost. An example of a case of a positive privacy cost is differential pricing – in later stages of the multi-stage game, goods are priced higher for the bidder because it is known she has a high valuation for them. Positive privacy cost represents the situation where information revelation causes a utility reduction for the bidder. 
In this paper, we focus on differential pricing in general, and eBay’s second-chance offer in particular. Several papers have suggested that differential pricing is the goal of privacy invasion and usage tracking [1, 9, 11].  eBay.com’s second chance offer mechanism is an example of differential pricing. It allows sellers to offer non-winning bidders an identical item at the price of their highest failed bid.  While meant to be used when the winning bidder does not pay, or when the Reserve Price has not been met [5] this mechanism can be abused to provide a powerful tool for differential pricing: a bidder’s valuation of the item is learnt from her bid(s) in the auction itself, and used as a price if she loses the auction.  [7] shows that, if the second chance offer is certain, strategic bidders can counter the price discrimination by bidding low in the auction and maximizing their payoffs with a low second chance offer. Hence price discrimination in the form of a second chance offer, when it is certain, is disadvantageous to the seller.  
We examine whether the seller can benefit by randomizing the second chance offer. That is, after one object is sold in a first-price auction in Stage I, the seller offers, in Stage II, either (a) (with probability () a privacy invasive second chance offer to all individual bidders, or (b) (with probability 1-() a privacy-protecting uniform-price offer P. Our contributions are as follows: 
Case I: ( and P form the reputation of the seller and are known to the bidder. 
The values of ( and P may be seen as representing the probability distribution on the seller’s type – his offer in the second stage – which is unknown a priori to the bidder. We examine the Bayesian Nash equilibrium and show that the seller is better off with (b), the uniform price offer, (=0.  This is because bidders compensate, by bidding lower, for even the possibility of privacy invasion. 

Case II: ( and P form the seller’s second-mover strategy and are unknown to the bidder. 

We use genetic algorithm simulations to derive equilibria and find that high valuation bidders benefit most from a fixed-price offer, because price discrimination would have always led to a higher price and a lower payoff.  Low valuation bidders do not always benefit from the privacy protecting fixed-price offer, because the privacy prevents them from signaling, in Stage I, that they cannot afford a high price in Stage II. Most interestingly, there are two equilibria for low valuation bidders: one around low bids, and the other around bids that are close to valuation. To our knowledge, the use of genetic algorithm simulations is a new approach in the examination of privacy in the game-theoretic model.  
The paper is organized as follows. Section 2 presents related work, section 3 preliminaries, and section 4 analytical results when the seller does not have a second mover advantage.  Section 5 presents the results of a genetic algorithm-based simulation of the same game, played repeatedly with sequential moves and the seller playing second. Section 6 concludes
2. RELATED WORK
Knowledge of valuation can enable a fairer distribution of items and an efficient estimation of demand. However, it also enables price discrimination – the practice of charging different amounts for the same item to different customers. Vendors are motivated to reduce consumer privacy in order to improve the accuracy of price discrimination [1, 9]. On the other hand, if customers are rational, they anticipate the availability of information and adjust their strategies to obtain higher payoffs [1, 7], making price discrimination a suboptimal strategy for the seller.  Though experimental results seem to indicate that customers are not rational or do not value their privacy enough [2], it is possible that consumers would behave differently if the costs of behaving rationally were smaller [7].  
The use of genetic algorithms is also known as evolutionary programming and was devised by John Holland in 1992 [6]. A large number of studies have applied genetic algorithms to well-known economic problems. For example, [4] addresses the prisoner’s dilemma and shows that the tit-for-tat strategy evolves in a genetic algorithm simulation of the prisoner’s dilemma game, predicting cooperation among prisoners.  A simple cobweb model [3] can be viewed as a symmetric game with a Nash equilibrium of pure strategies, and is used to analyze supply and demand in a market. The free-riding problem has also been studied using genetic algorithms [10]. 
Our work is different from existing work in three ways. First, we examine randomized strategies for price discrimination; second, we use genetic algorithm simulation to study privacy; and third, we use genetic algorithms to examine a two-stage game, as opposed to the one-shot games treated in the past. 
3. PRELIMINARIES
We model a two stage price discrimination game as follows: 

· Stage I: N bidders join a first-price sealed-bid auction. All bidders simultaneously and independently make bids. The bidder with the highest bid wins the auction. On the occurrence of a tie, the winner is chosen at random.  The remaining N-1 bidders enter Stage II.
· Stage II: The seller offers an identical item to all the remaining bidders:  (1) The failed bid (privacy-infringing) option: With probability (, the price is the bidder’s highest bid in Stage I. (2) The uniform price(privacy-protecting) option With probability 1-(, the price is a uniform price for all bidders. The bidders can reject or accept either offer.  
Each bidder’s payoff is calculated as the difference between the prices paid for the item and the bidder’s valuation.  The valuations of all the bidders are modeled as being uniformly and independently distributed.  
We examine two cases. In Case I, ( and P represent the seller’s reputation and are known to the bidder. The seller’s second move is not strategy, but determined by his type, which is characterized by probability ( and fixed price P. In Case II, ( and P represent the seller’s second-mover strategy and are unknown to the bidder.

We denote the (private) valuation by x, the bid by b, the optimal bidding function by (, and the number of bidders by N. For the symmetric Nash equilibrium we assume, as is standard, that bidder strategies are identical, and all strategies are known to all players. G(x) denotes the probability that a given valuation x is the highest among N bidders.  

4. Case I: ( and P Known to Bidder
Consider a simplified version of the game, where the bidder knows the sellers’ values of the probability ( and the uniform price P prior to the start of the auction. This may be thought of as a steady state setting in a repeated game, where the seller has chosen optimal values of ( and P, and the bidder has learnt them over repeated interactions. ( and P represent the reputation of the seller, and we may consider them as representing the distribution on the type of the seller. Just as the distribution on the bidder’s valuation is known to the seller, so also the parameter ( is known to the bidder, along with P. The bidders submit bids in the first stage, and, after the auction ends, the system flips a coin, biased according to the value of (, to choose between the uniform price option and the failed bid option. The result of the coin flip may be viewed as the type of the seller – much as the valuation x represents the type of the bidder – and is similarly unknown, a priori, to the other players.
It can be shown that there is no dominant deterministic strategy for bidders.  The symmetric Bayesian Nash equilibrium strategy is stated in equation (1) but not derived here due to space constraints.  
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When ( = 0, bidders with valuations less than P can never obtain the item in the second stage. Low valuation bidders see the first stage as a simple first-price auction. On the other hand, bidders with valuations greater than P will never bid more than P in the first stage because they are guaranteed to be able to afford the price in Stage II. Given this response, it appears best for the seller to divide the bidders into two sets of roughly equal size, using P=0.5 (as valuations are uniformly distributed), and to never price discriminate. This is confirmed in Figure 1. 
Figure 1 shows the expected revenue computed from equation (1) as a function of ( and P.  The computation assumes uniformly distributed valuations, N=20 bidders, and averages over 10 instances. It is clear that (=0 and P=0.5 provide the optimal seller reputation, that is, the reputation at which the seller obtains the highest expected revenue. Note that (=0 and P=0.5 provides a higher revenue than (=0 and P=1, which is a first-price auction. This difference in revenue is largely due to the fact that P=0.5 sells more items. 
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5. CASE II: ( and P UNKnown to Bidder

In a less constrained situation, the two-stage game would be played sequentially, with the seller moving later than the bidders. That is, the seller would determine the values of ( and P after receiving all the submitted bids.  The sequential game may be approached as an asymmetric, incomplete information game. 

In the next section, we approach the game with a genetic-algorithm based simulation.  Assuming the game is played repeatedly, we examine how the seller and different types of bidders evolve over generations.  

5.1 Genetic-Algorithm Based Simulation

5.1.1 Simulation Method

A genetic algorithm is an optimization algorithm that uses ideas from natural evolutionary theory.  The optimization parameters are modeled as chromosomes.  In our case, the chromosomes represent the bidder’s estimates of ( and P for the fitness function expected payoff, and the seller’s values of ( and P for the fitness function expected revenue. The bidder’s chromosome is coded as a pair of real numbers ( and P.  It represents the bidder’s type, i.e. the bidder’s assumed values of price discrimination probability (, and the uniform price P.  The seller’s chromosome is also coded as a pair of real numbers ( and P. It represents the seller’s action after Stage I ends. 

5.1.2 Basic Steps

The genetic-algorithm based simulation has the following basic steps: (1) create the initial population; (2) evaluate the current population; (3) reproduce: selection, crossover and mutation; (4) repeat steps 2-3 until the stop condition is reached. 
We stop our simulation when the number of generations is 10,000.  The initial population is set at 100 sellers, and 100 distinct bidders for each seller.  Bidder chromosomes are randomly generated at the beginning of the simulation.  Bidder valuations are randomly generated each generation.   The tournament selection method is used for reproduction: two chromosomes will be randomly drawn from the population pool.  The chromosome with the higher fitness score will be copied to the new population representing the next generation. It will stay in the pool for further tournaments, and the process continues until the new population has the same size as the previous one.  The crossover process combines chromosomes from two parents, at random.  The optimal mutation rate is set to be equal to 1/4 as suggested in [13] because there are 4 different variables in the sellers and bidders chromosomes.  We also implement the mutation operator suggested in [13]. 

5.1.3 Detailed Steps

After the population is initialized, each bidder submits a bid by substituting its chromosomes into equation (1).  Notice that, if the bidder’s assumptions are correct, this is indeed an optimal bid.  The seller’s fitness score is the total revenue over both stages, while that of the bidder is the individual payoff after the two stages.  The bidder’s payoff is calculated as the difference between its purchasing price — either its submitted bid at stage I or a fixed price offer — and its valuation.  If the seller offers a fixed price higher than the bidder’s valuation, the offer is rejected, and does not contribute to the seller’s revenue, and the bidder’s payoff is zero. The fitness function takes inputs from the chromosomes of both sellers and bidders.  Sellers and bidders can be viewed as two species that affect each other while evolving over generations. 
5.2 Simulation Results
In the experiment, we divide the bidders into two groups: low valuation bidders and high valuation bidders.  Group one contains bidders with low valuations, that is, valuations uniformly distributed between 0 and 0.5; group two contains bidders with high valuations, that is, valuations uniformly distributed between 0.5 and 1.  The mutation rate is 1/4 from generation 0~5000 and 0.05*(1/4) afterwards.  Bidders are assigned a randomly generated valuation every generation according to their group.
Table 1. Experiment Results
	
	Experiment 4: 100 Bidders

	
	Mean
	Variance

	Sellers’ (
	0.0
	0.0

	Seller’s P
	0.5101
	1.5660e-008

	Low Valuation Bidder’s (
	0.4297
	0.1188

	Low Valuation Bidder’s P
	0.4434
	0.1125

	High Valuation Bidder’s (
	0.5866
	0.1096

	High Valuation Bidder’s P
	0.4155
	0.1273


We find that the population of the seller’s chromosome is converged.  However, neither the low valuation bidders’ nor the high valuation bidders’ chromosomes are converged to any distinct pairs of ((, P).   Table 1 summarizes the results of this experiment.   Figures 2 and 3 illustrate the bid distributions for high valuation bidders and low valuation bidders.  The high valuation bidders’ bids clearly converge to approximately zero.  The low valuation bidders’ population enters a stable stage since no significant change in population variance is found over generations. The only explanation for this result is that two Nash equilibria exist in this two stage game. 
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5.3 Observations

Seller’s Best Response: The Bayesian analysis and all four genetic algorithm simulation experiments show a single result: the seller’s best strategy is to charge the midpoint in Stage II, P=0.5, and to never price discriminate, i.e. (=0. Thus, privacy infringement, even at random, does not pay. Further, there is no second-mover advantage for the seller, because bidders can learn and predict a second mover strategy disadvantageous to them.  
Bidder’s Best Response: There are two Nash equilibria for the low valuation bidders: bidding zero or upto (n-1)/n of their valuation; the second one is the same as the best response in a first price auction.  However, it is worth noting that these two Nash equilibria do not coexist in a bidder group, the whole group either all bids zero or all bid up to their valuation.  In other words, these two Nash equilibria are evolutionarily stable because any bidder that deviates from its Nash equilibrium does not survive in the group over the generations.  In other words, populations that value privacy do not survive among those who do not, and vice versa, among bidders with low valuations. 

For high valuation bidders, it is a Nash equilibrium strategy to submit a zero bid, because any other bid would reveal information about the valuation, resulting in a higher price in Stage II if the seller price discriminates.   Further, low valuation bidders often also bid zero, thus reducing the value of the competing bids.

Impact on Privacy of Bidders’ Valuations: The consequences of privacy infringement – a higher price than P in Stage II – are greater for high valuation bidders, and they respond by greatly reducing their bids, to as low as zero, thus preserving their privacy. Similarly, the privacy of the group of low valuation bidders that bid zero is also preserved. 
The low valuation bidders that do not bid zero obtain a benefit from signaling a low valuation – for the possibility of a low price offer in Stage II – and are not as averse as high valuation bidders to price discrimination or to the corresponding privacy infringement.  

6. CONCLUSION
We have shown that, when sufficient items are available in repeated games, it does not benefit the seller to price discriminate, even if he does so at random, whether or not the bidder knows the probability of price discrimination. We have also shown that, when the seller has the second move, two distinct Nash equilibrium exist for bidders with valuation smaller than 0.5, and one for sellers and for high valuation bidders.  We further show that price discrimination is more of a disadvantage to the high valuation bidders.
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Figure 2. Distribution of High Valuation Bidder’s Bids 
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Figure 3. Distribution of Low Valuation Bidder’s Bids 
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Figure 1: Seller’s revenue as a function of ( and P
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