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Abstract

In many instances of price discrimination, a seller of an item is in possession of
signals from competing buyers regarding their private valuation for the item. If the
seller uses this information to price discriminate against the buyer, buyers would cor-
respondingly modify their signalling strategy. Our paper shows that the seller can
gain by sometimes strategically ignoring the information contained in the signals and
pricing the item in a non-discriminatory way. This “mixed” strategy induces buyers
to send more informative signals in equilibrium than if the seller were to always price
discriminate. Thus the seller can offset any revenue loss in states where he ignores in-
formation by the gains made in states where he can price discriminate more effectively
due to the larger amount of information now communicated in the signals.
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1 Introduction

Textbook models of first-degree price (or perfect) discrimination assume the seller has prefect

information regarding buyers’ preferences, and uses this information to make a take-it-or-

leave-it price offer (for example, Varian 1989, Section 2.2). However, as noted by Varian

(Section 2.2.2), the perfect information assumption is not likely to hold in the real world. A

seller will typically price an item based on some prior beliefs regarding the distribution of

buyers’ preferences. Between the textbook model based on perfect information, and pricing

based on prior beliefs alone, lies an interesting class of examples that have not hitherto

been analyzed in the literature. These instances of (first-degree) price discrimination are

distinguished by the fact that a seller is in possession of signals from the buyers reflecting

their private valuation. While the information is not perfect, it is also not as coarse as

implied by some unconditional prior regarding the distribution of buyers’ valuations. Some

examples of this phenomenon include the following:

1. The second-chance offer of eBay: Sellers on the auction site eBay collect bids from

potential buyers and then assign the item to the highest bidder. Additional units of the item

may then be sold to the losing set of bidders at an estimate of their valuations (Salmon and

Wilson 2006). Thus sellers on eBay use the information contained in the bids (signals) to

price discriminate among losing bidders.

2. Resale in an open cry auction: The winner of an open cry auction can use information

from losing bids to resell the item to a losing bidder at a discriminatory price (Krishna 2002,

Section 4.4).

3. Phantom signalling in second price auctions: Price discrimination can take a more

subtle form in second-price auctions as noted by Lucking-Reiley (2000). Since submitting a

bid equal to private valuation is a weakly dominant strategy in second-price auctions, the

bids are an accurate signal of each buyer’s private valuation. The seller then price discrim-

inates by interspersing a phantom second bidder with a fictitious valuation just below the

winning bid. The winning bidder thus pays a price higher than the legitimate second-highest

bid.

It seems intuitive that an optimizing seller should strategically exploit all available informa-

tion. However, if buyers are cognizant that any signal they provide to the seller to determine

a winner amongst them will actually be used to price discriminate to their detriment, then

they will incorporate this information into their signalling behavior. Thus, in competitive

situations where there is one item and many buyers, each buyer will confront the follow-

ing trade-off: the dictates of competition will demand that any signal sent be an accurate
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reflection of the actual valuation; on the other hand, the proclivity of the seller to price

discriminate will demand that signals be sufficiently noisy so that a seller cannot capture

all the surplus from the exchange. This tension between information revelation and privacy

raises a number of interesting issues. How do buyers address the conflict between information

revelation due to competition and the concern for privacy due to price discrimination? How

much information do buyers actually transmit to sellers in equilibrium? Is it always optimal

to price discriminate? Or, should the seller sometimes behave in a non-discriminatory man-

ner by strategically ignoring information contained in the signals and committing to a fixed

pricing rule?

In this paper, we show that the case where the seller uses all the information is not opti-

mal, and that seller revenue is greater when he sometimes behaves in a non-discriminatory

manner. The model is described in Section 2. The equilibrium of the price discrimination

game is characterized in Section 3. Section 4 allows non-discriminatory behavior. Section

5 discusses the connection of our work to the literature on optimal auctions. Section 6

concludes.

2 The Model

There are N ex-ante symmetric risk-neutral buyers for an object being offered by a seller.

Buyer i has a private valuation Vi for the object which is iid on the interval [v, v] according

to a distribution function F with associated density f . For a buyer with realized valuation

v, we denote by G(v) = FN−1(v) the probability that all N−1 other buyers will have a lower

valuation. Buyer i sends a signal bi to the seller. Let b = (b1, b2, ..., bN) denote the vector of

signals and b−i denote signals from buyers other than i. The seller assigns the object to the

buyer with the highest signal (and randomly allocates to one of the highest signals in the

event of a tie).

A discriminating seller will extract all information from the signals and choose a (take-it-or-

leave-it) price to maximize expected revenue. Let h(vi|bi) denote the conditional expectation

of Vi given bi. For winning bid g, the seller chooses a price p = p∗(b) that maximizes:

R(p, b) = p

∫ v

p

h(x|b)dx (1)

We believe that we would not lose much generality under the restriction that the price

depends only on the winning bid. This is because, for the discriminating seller, signals other

than the winning signal do not provide information on the valuation of the winning buyer.

A buyer i with realized valuation vi and signal bi receives a utility of vi − p∗(b) from

winning the object and zero otherwise. Therefore we can write the expected payoff of buyer
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i as:

u(bi, vi) = W (bi, b−i)(vi − p∗(bi)) (2)

where W (bi, b−i) is the probability of i winning the object given (bi, b−i).

All these facts are common knowledge among the players. We refer to this game as the price

discrimination (PD) game. Given the ex-ante symmetry of the buyers, we restrict attention

to symmetric Bayesian-Nash equilibria. Such an equilibrium consists of a signalling strategy

for the buyers and a pricing rule for the seller which are mutual best responses taking into

account the players’ private information. We first note an important property of equilibrium

signalling strategies.

Lemma 1 Symmetric Bayesian-Nash equilibrium signalling strategies of the PD game can-

not be invertible.

Proof. Suppose α(v) is an invertible symmetric equilibrium strategy. For winning bid b = bi,

h(vi|b) = 1 if vi = α−1(b) and 0 otherwise. Hence the seller’s price from maximizing (1) is

p∗(b) = α−1(b) = vi, and, with strategy α, each buyer’s expected utility is zero. Consider

a single deviating buyer j using the signalling strategy α̂(v) = α
(
v
2

)
. The probability of

winning is G
(vj

2

)
, and the expected utility

vj

2
× G

(vj

2

)
> 0 when vj 6= v. Thus the buyer

has an incentive to unilaterally deviate from α.

What kind of non-invertible strategies are candidates for equilibrium? We draw on the

work of Crawford and Sobel (1982) and consider partition strategies for buyers. Buyers

partition the valuation space into a finite number of disjoint intervals and submit an identical

signal for valuations belonging to the same interval. Let X(M) ≡ {x0, x1, ...xM} denote

a partition of the valuation space [v, v], x0 = v, xM = v, xJ−1 < xJ , J = 1, 2, ...M .

An M -partition strategy is a family of signalling functions {γ(b|v) : v ∈ [v, v]} such that

γ(.|v) is any distribution on the signalling interval [β(xJ−1), β(xJ)) when v ∈ [xJ−1, xJ),

J = 1, 2, ...,M , for distinct (increasing) values β(xJ), J = 1, 2, ...,M . With some abuse

of notation, we will also let X(M) denote the M -partition strategy. One may construe

the partition strategy as an attempt by buyers to distinguish themselves from other (lower

valuation) buyers while shielding their true valuation. The requirement that γ(.|v) be any

distribution on the interval ensures, as noted in Gibbons (1992, pp.216-217), that there are

no signals that are “out of equilibrium”. We denote by sJ the equivalence class of all signals

in the interval [β(xJ−1), β(xJ)), as the seller treats them exactly the same.

4



3 The Discriminating Seller

The seller collects all signals and offers the object to the buyer from the highest interval. If

there is more than one buyer in the highest interval, then one of them is selected randomly

by the seller. If the buyer refuses the seller’s price, then the seller retains the object and the

game ends. If the highest signal b corresponds to the class sJ , then the conditional density

for the highest buyer’s valuation is:

h(v|b ∈ sJ) =

{
f(v)

F (xJ )−F (xJ−1)
, xJ−1 ≤ v < xJ

0, else
(3)

The seller computes the price, pJ , according to (1). It is clear that pJ ≥ xJ−1. Note also

that pJ < xJ , J 6= 0. This is because pJ ≥ xJ gives zero revenue; however a price pJ , such

that xJ−1 ≤ pJ < xJ makes a non-zero revenue of pJ × F (xJ )−F (pJ )
F (xJ )−F (xJ−1)

. We are now ready to

characterize the partition equilibria of the PD game:

Theorem 1 (X∗(M∗), p∗) is a partition equilibrium in the PD game if and only if:

(1) M∗ = 1.

(2) The seller’s price p∗ is a constant and satisfies p∗ = max(v, 1−F (p∗)
f(p∗)

= 1
λ(p∗)

), where λ

denotes the hazard rate.

Remark: Theorem 1 states that when buyers are certain that the seller will price discrim-

inate, then their signals convey no information to the seller. The partition strategy is the

coarsest one given by X∗(M∗) = {0, 1}.

Proof. (Necessity). Consider a partition equilibrium (X∗(M∗), p∗) where p∗ is not necessar-

ily constant, but depends on the signals. We first establish that the probability of winning

is greater with a signal in an interval with a higher index. Denote by WJ the probability

of winning with a signal in the equivalence class sJ . One of the events leading to winning

is the event that all other buyers have a valuation not greater than x∗J−1; its probability is

G(x∗J−1). However, this is not the only event, as a buyer can win the item even if another

buyer is in the same winning interval (in which case the winning buyer is chosen at random).

Hence, WJ > G(x∗J−1). Further, the event that all bidders have valuations smaller than

xJ does not ensure a win, hence WJ < G(x∗J). Now consider two indices, J∗′ < J∗. Then

WJ∗′ < G(x∗J∗′) ≤ G(x∗J∗−1) < WJ∗ .
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Let p∗J∗ denote the price that is charged if the highest signal is from equivalence class sJ∗ .

We claim that in equilibrium p∗J∗ = p∗J∗′ = p∗ for all 1 ≤ J∗′ < J∗ ≤ M∗. Consider buyers

with valuations v ∈ [p∗J∗ ,min(p∗J∗ + w, x∗J∗)), where

w =
p∗J∗ − p∗J∗′
WJ∗ −WJ∗′

WJ∗′

Since WJ∗ > WJ∗′ , w is positive. For these buyers, the payoff from sending a signal from

the lower interval (v − p∗J∗′) ×W ∗
J∗′ is strictly greater than that obtained from sending one

from the higher interval, (v − p∗J∗)×WJ∗ . Hence these buyers have an incentive to deviate,

contradicting the hypothesis that (X∗(M∗), p∗) is an equilibrium. Because xJ > pJ ≥ xJ−1,

p∗J∗ = p∗J∗′ = p∗ is only possible if M∗ = 1, X∗(M∗) = {0, 1}.

(Sufficiency). Given that X∗(M∗) = {0, 1}, no information is conveyed to the seller. Thus

the seller chooses the price p∗ that maximizes p(1 − F (p)). A unilateral deviation by any

buyer does not change payoffs because all signals convey the same coarsest information that

valuations are distributed on [0, 1] according to F .

It is clear that the equilibrium is in general inefficient. There are two sources of inefficiency.

First, the seller may (randomly) allocate the object to a buyer who does not have the highest

valuation. Second, since p∗ may be strictly greater than v, with positive probability the seller

may choose a buyer who will reject the object. Thus the seller will retain the object even

though there are buyers with positive valuations.

4 The λ-Discriminating Seller

In this section we demonstrate that the seller can induce the buyers to divulge more informa-

tion if he chooses not to price discriminate with positive probability. We say that the seller’s

pricing strategy is non-discriminatory if the seller charges a fixed price that is not based

on exploiting the information contained in the winning signal. This is what distinguishes

a non-discriminatory price from a discriminatory one based on extracting information on

valuation from the signals and charging a price to capture all the surplus. Adherence to a

non-exploitative fixed price rule is also precisely what is required from the seller in order to

induce buyers to reveal more private information. The main thrust of the paper is that such

a fixed rule, even though it ignores information contained in the buyers’ signals, can in fact

be revenue enhancing when compared to the case of always utilizing the information.

We will let the non-discriminatory price charged be equal to β(xJ−1) when the highest

signalling interval observed is [β(xJ−1), β(xJ)). The rationale is that all signals in the interval

[β(xJ−1), β(xJ)) are considered equivalent by the seller. The seller accordingly chooses a fixed
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price that does not exclude any buyer signalling in this interval, thus following the model of

the first-price auction when buyer strategies are partition strategies. It is important to note

that such a non-discriminatory price is not arbitrary. The buyers’ signalling strategy, and the

seller’s prices (both discriminatory and non-discriminatory), are endogenously determined

as mutual best responses in the Bayesian-Nash equilibrium of the game described below.

We consider a modified λ-PD game in which the seller once again offers the object to those

with signals in the highest interval. With probability λ, the price charged is discriminatory

and maximizes the seller’s revenue. With probability 1− λ, the price is non-discriminatory

and equal to the lower end of the signalling interval. We do not view the seller as committing

to the value of λ. Instead, we think of the buyers as being able to accurately estimate λ

as part of the seller’s reputation. (For example, eBay might include the fraction of sales

that were second-chance offers in the seller reputation it currently provides.) This may be

formalized by considering λ a seller type known to the buyers. The buyer providing a signal

in class sJ commits to price β(xJ−1), hence β(xJ−1) ≤ xJ−1. Further, the seller will not sell

the object for a price smaller than v, hence β(v) ≥ v. Notice that this implies that β(v) = v.

Recall that in the PD game (λ = 1), the buyers provide no information at all in their signals,

i.e. there is a single partition in the signalling strategy. However, when λ 6= 1, we show

that a partition signalling strategy with two partitions exists for all λ ∈ (0, 1). This suggests

that the non-zero probability of choosing a non-discriminatory price motivates the buyers to

provide more information to the seller. Let the partition be (v, va, v), where va = v+a(v−v)

for some a ∈ (0, 1). Let p∗(s1) and p∗(s2) be the discriminatory prices charged when the

highest signals are s1 and s2 respectively. Note that p∗(s1) and p∗(s2) are functions of the

partition, parameterized by a. With some abuse of notation, we denote p1(a) = p∗(s1)−v
v−v and

p2(a) = p∗(s2)−v
v−v . Also, we explicitly note the dependence of WJ on the parameter a. The

strategy (β(.), a) will be determined endogenously.

Theorem 2 A symmetric equilibrium signalling strategy with partition M = 2 exists for all

λ ∈ (0, 1).

Proof. Let φ(si, a, v) denote the buyer’s payoff for signal si, partition (v, va, v) and valuation

v. Consider the function ψ(a) = φ(s2, a, va) − φ(s1, a, va), the difference in payoff between

signalling a higher valuation (one in [va, v]) and a lower valuation (one in [v, va)), at the

common point of these intervals, va. Then:

φ(s2, a, va) = (1− λ)(va − β(va))W2(a) + λ(0)

φ(s1, a, va) = {(1− λ)(va − v) + λ(va − p∗(s1))}W1(a)
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and it follows that:

ψ(a) = (1− λ)(va − β(va))W2(a)− (va − (1− λ)v − λp∗(s1))W1(a)

Equating ψ(a) = 0 gives us

β∗(va) = v + (a− (a− λp1(a))W1(a)

(1− λ)W2(a)
)(v − v)

Clearly, β∗(va) ≤ va. Now we show that ∃a = a∗ ∈ (0, 1) such that β∗(va∗) ≥ v. Consider:

ρ(a) = (1− λ)W2(a)−W1(a)

the difference in winning probabilities, for the buyer with valuation va, between signalling in

the higher valuation and the lower valuation. Because W2(va) =
∑N−1

i=0 F i(va)

N
, and W1(va) =

FN−1(va)
N

, ρ(0) = 1−λ
N

and ρ(1) = (1− λ)− 1
N

. As ρ is a continuous function, ∃a = a∗ ∈ (0, 1)

such that ρ(a∗) > 0, and β∗(va∗) > v.

To see that the signalling strategy with partition (v, β∗(va∗), β
∗(v)), corresponding to the

valuation partition (v, va∗ , v) is an equilibrium strategy, consider a deviating buyer. The

difference in expected payoffs of a buyer with valuation va∗ + δ(v − v) is

φ(b2, a
∗, a∗ + δ)− φ(b1, a

∗, a∗ + δ) ≷ 0, δ ≷ 0

Hence a buyer has no incentive to deviate unilaterally.

In order to explore the implications of a two-partition equilibrium, we will now restrict

ourselves to the case of uniformly distributed valuations. Let F (v) = v−v
v−v . Further, suppose

that v ≥ v
2
. Then p∗(si) = xi−1. That is, the discriminatory price is the low end of the

signaled valuation interval. In particular, the discriminatory and non-discriminatory prices

for the lowest interval are both v. For example, in the two buyer case, W2(a) = a+1
2

and

W1(a) = a
2
. β∗(va) = va−

aa
2

(1−λ) 1+a
2

(v−v) which is greater than v when a ≤ 1−λ
λ

(and perhaps

also for other values of a). The buyer does not have an incentive to deviate for these values

of a.

We can now compare the seller’s expected revenue from the 2-partition equilibrium in the

λ-PD game to that in the babbling equilibrium of the PD game. In particular, we show that

the seller gains when he sometimes strategically ignores the information contained in the

signals.
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Proposition 1 Let F (v) = v−v
v−v , v ∈ [v, v], v ≥ v/2,and N = 2. For a 2-partition equilibrium

the expected revenue of the seller in the 2-partition Bayesian-Nash equilibrium of the λ-PD

game is independent of λ and exceeds that in the PD game where the seller always price

discriminates.

Proof. Consider the equilibrium bidding strategy with valuation partition (v, v+a(v−v), v).

Since v ≥ v/2, p∗(s2) = va and p∗(s1) = v. The seller’s revenue R is:

R = v + (v − v)
(
1− a2

)
(λa+ (1− λ)

[
a−

(a)a
2

(1− λ)1+a
2

]
) = v + (v − v)a(1− a)

which has a maximum at a = 1
2
. This maximum value is R∗ = v + v−v

4
. In this case, the

revenue of the PD game would have been v.

5 Optimal Auctions

We now discuss our results in the context of the literature on optimal auctions which seek

to maximize the seller’s expected revenue.1 The set of allocation rules over which the seller

can search is in principle extremely large and complex because it can include virtually any

manner of allocation and pricing. The seminal paper of Myerson (1981) simplified the

problem considerably by restricting attention to direct mechanisms in which bidders directly

report their valuations to the seller. The seller commits to allocation and pricing rules

which are functions of the reports and which induce the bidders to voluntarily participate in

the mechanism (individual rationality) and truthfully report their valuation in equilibrium

(incentive compatibility, or IC). The solution with symmetric bidders (and some regularity

restrictions) is a second-price auction with discriminatory reserve prices derived from the

virtual valuations of the bidders (Krishna 2002, Proposition 5.4). The analogy with our

framework arises because the optimal auction can be understood as optimal third degree

price discrimination by the seller (Bulow and Roberts 1989, Cairns 1993). The good is

assigned to the buyer with the highest positive marginal revenue who then pays a price

corresponding to the larger of the reserve price and the second highest marginal revenue.

The seller retains the item if the highest marginal revenue is negative. The amount paid

by the winning buyer is less than the valuation, and this positive “informational rent” is

conceded by the seller in order to induce truthful revelation of private valuations.

The key difference between our model and the optimal auction literature is that we do not

impose IC. This can also be seen by the fact that IC is equivalent to the ex-ante proba-

bility of winning the object strictly increasing in the buyer’s report. This is not true in

1We are very grateful to a referee for pointing out the similarities between our model and optimal auctions.
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our model where the seller picks any one buyer whose signal lies in the highest signalling

interval. Our relaxation of IC is prompted by real world evidence on second-chance offers

or phantom bidding through which sellers seek to dilute their committment and reduce the

informational rents that have to be paid out. Once IC is eliminated, buyers have an incentive

to hide their true valuation. This leads to the next point of difference from optimal auctions:

buyer strategies are no longer strictly increasing (invertible) in valuations. Drawing on the

literature on strategic information transmission, we limit the buyers to partition strategies.

The reason is that this seems to be the most general, yet tractable, way of modeling how

the incentive of buyers to provide information varies with the degree of credibility that the

seller will abide by the given price and allocation rule. Truthful revelation under IC is of

course a special case when the partition is the finest.

Since we do not impose IC, the optimal auction in our model is not the second-price auction

with discriminatory reserve prices. However some of our results bear similarity to classical

optimal auctions. When the seller does not make any committment to a fixed price (PD

game), then the “optimal auction” we derive is one where the seller offers the object to a

randomly chosen bidder at a price equal to the reserve price obtained in standard auctions

(for instance, Krishna 2002, p. 26).2 When the seller partially commits to a fixed price (λ-PD

game), then in our “optimal auction” one of the bidders signalling in the highest interval is

randomly chosen as the winner. When the seller is non-discriminatory with probability λ, the

winner pays a price equal to the lower end of the signalling interval and earns informational

rents. This is analogous to classical optimal auctions because the bidder obtaining the item

pays the smallest amount that is required for being one of the winners. Also, similar to

optimal auctions, the seller retains the item if the bid falls below this minimum amount.

6 Conclusion

This paper examined a first-degree price discrimination model in which buyers sent (possibly

noisy) signals to the seller regarding their private valuation. We demonstrated that it was

sometimes in the interest of the seller to strategically ignore price discrimination and instead

adhere to a non-discriminatory pricing rule. An interesting unanswered question is whether

there is any partition for which the seller’s revenue is greater than or equal to that implied

2In fact it is interesting to note that this outcome is identical to the one obtained for an all-inclusive
cartel in a first-price auction when the inverse of the hazard rate is monotonically increasing. McAfee and
McMillan (1992) show that in the optimal auction all bidders submit a bid equal to the reserve price and
the seller randomly allocates the object to one of the bidders.
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by revenue equivalence (which holds for invertible strategies). A complete characterization

of partition equilibria, and the role of risk aversion and ex-ante buyer heterogeneity, remain

productive avenues for future research.
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