
Paperless Independently-Verifiable Voting

David Chaum, Alex Florescu1, Mridul Nandi3, Stefan Popoveniuc, Jan Rubio1, Poorvi
L. Vora1,2, and Filip Zagórski1

1 The George Washington University, Washington D.C.??
2 Indian Institute of Technology, Bombay

3 Indian Statistical Institute, Kolkata

Abstract. We present a new model for polling-booth voting: the voter enters the
polling booth with a computational assistant which helps her verify that her vote
is correctly recorded. The assistant interacts with the voting system while the
voter votes on the machine in the polling booth. We present an independently-
verifiable, coercion-resistant protocol based on this model. Unlike all other
independently-verifiable protocols, this one is completely paperless and does not
require the voter to perform any tasks outside the polling booth. We provide prop-
erty definitions, rigorous claims and a description of a prototype.

1 Introduction

Independently-verifiable protocols were first proposed almost a decade ago, and have
been tried in binding elections, including one small governmental election. All of the
secure independently-verifiable protocols require the use of paper, however, and also
require the voter to perform checks outside the polling booth. This has perhaps slowed
down the adoption of these protocols, which have particularly strong verifiability prop-
erties. Additionally, Direct Recording Electronic (DRE) voting machines—with all their
flaws—enable voters with disabilities to vote independently for the first time ever. The
use of paper hence presents a step backwards for this category of voter. In a first at-
tempt towards rectifying some of these problems, this paper presents an independently-
verifiable polling-booth protocol which is completely paperless.

The protocol is based on a new model for independently-verifiable polling booth
voting: the voter enters the polling booth with a computational assistant that she has
brought with her. This could be, say, a smartphone, or special-purpose hardware. She
puts it into a special docking station where she can see its output behind a transparent
cover (much like the screen used for VVPATs), but cannot provide any input to it. A
blind voter may obtain output through the use of headphones, and be prevented from
providing input by disabling the microphone; again, specially-designed hardware could
be useful. We assume that the voter takes no pictures and votes alone so no one can
watch her vote. An adversary may, however, query her through alternate channels (such
as the scratch-off cards proposed in [13]).
?? This work was done while Nandi was at The George Washington University. Florescu, Rubio

and Vora were supported in part by NSF Award No. 0831149, Nandi and Zagórski by NSF
Award No. 0937267. Zagórski was also supported in part by the Polish Ministry of Science
and Higher Education scientific project - grant N N206 369839

In the protocol, while the voter votes on the machine in the polling booth (this
could be a DRE machine that is capable of performing cryptographic operations), the
assistant interacts with the machine. It performs computations based on the interac-
tion, and provides information to the voter to help her determine if her vote is recorded
correctly. The role of the assistant is to provide the voter the capability to perform dig-
ital signatures and commitments, and to perform the random challenges on behalf of
the voter. The assistant cannot determine the vote from the information it obtains. The
data communicated in both directions between assistant and voting machine is signed
by the sender and verified by the receiver, and made public immediately after the pro-
tocol ends. Hence, as with other independently-verifiable protocols, the encryption-
correctness proof—which is based on the interaction between the computational as-
sistant and the voting machine—can be checked by anyone. In contrast with existing
independently-verifiable protocols, the voter’s tasks are completed inside the polling
booth, and the process is entirely paperless. We do not assume the existence of a ran-
domness beacon.

We present a coercion-resistant independently-verifiable fully-electronic protocol
using this model. We are not aware of any other such protocols that do not require an
external independent randomness beacon.

1.1 Existing Paperless Protocols and Their Limitations

It may be argued that the design of an independently-verifiable paperless protocol has
been the goal of cryptographers since the invention of secure electronic voting in the
early eighties. However, all the existing all-electronic protocols have vulnerabilities.

The classical protocols are vulnerable because the vote is entered through the voter’s
machine which is trusted to keep the vote secret. Malware on the voter’s machine knows
the vote, and can also change it.

The newer, all-electronic independently-verifiable voting systems may be repre-
sented by polling-booth-Helios. While Helios is a remote voting system, it is an all-
electronic simplification of polling-booth protocols Simple-Verifiable-Voting [3] or
Voter-Initiated Poll Station Auditing [4] which provide paper receipts. It is hence easily
modified for polling booth use, and we use it for illustrative purposes. When we refer
to polling-booth-Helios in this paper, we will mean an all-electronic polling-booth pro-
tocol where the voter communicates an electronic vote to the untrusted voting machine,
obtains an electronic hash of her receipt as a commitment from the machine, commu-
nicates electronically whether she wants to cast (or audit) the receipt, and receives an
electronic receipt (or proof of encryption-correctness). We use it to represent a simple
all-electronic independently-verifiable polling-booth system.

Polling-booth-Helios is vulnerable to two types of attacks:

1. Coercive attack: the adversary coerces the voter to make a challenge that is a func-
tion of the receipt hash. Because the voter does not know whether her vote will be
cast or audit when she is entering it, and she knows that there is a possibility it will
be audited, or exposed to the adversary, she has an incentive to vote as directed by
the adversary. Further, if this adversary colludes with the voting system, the latter’s

attempts at cheating cannot be detected because it will know what challenge to ex-
pect. This attack can be avoided if the voter is required to commit to her challenge
bit before she sees any information on the ballot, however a voter cannot commit
to the bit on an all-electronic system without access to trusted computation4.

2. Challenge correctness: the voting system can choose to ignore the challenge and
proceed to cast or audit as it wishes. While the voter knows the system is cheating,
she cannot prove it. The inability to resolve a dispute about the correctness of the
challenge can also allow a voter to falsely claim a voting system is cheating.

1.2 Our Contributions

We address the problem of making and checking commitments in an all-electronic pro-
tocol by having the computational assistant perform a more active role than in the cur-
rent independently-verifiable voting systems. The assistant makes and verifies crypto-
graphic commitments and digital signatures on behalf of the voter. We avoid the co-
ercion attacks possible in the classical cryptographic protocols—where too the voter’s
computer performed an active role—by preventing the voter from providing any input
to the assistant. Finally, we make fewer assumptions than in the classical model where
the voter’s computer is trusted to follow instructions. We also do not assume the avail-
ability of a beacon of randomness. Our contributions are as follow:

�We model an Actively-Assisted-Human Interactive Proof (AAHIP). In this model the
voter votes on the voting machine and does not provide any input to the assistant.
The assistant interacts with the voting machine and provides information to the
voter. The interaction between assistant and voting machine takes place over an
authenticated channel, where both assistant and voting machine sign messages and
check signatures. All the data sent over the channel, in both directions, is made
public immediately after the protocol ends. The assistant is allowed to deviate from
protocol, and its memory and logs can be examined by anyone once the vote is cast.
We also allow the assistant to instruct the voter before the protocol begins, and to
query her at any time.

� We provide a rigorous description of a paperless vote-casting protocol based on
a cut-and-choose AAHIP. We provide definitions and rigorous statements of our
results. Space limitations prevent us from providing proofs. We assume the model
of an AAHIP and that either the voting machine or the assistant is honest. We define
soundness and coercion-resistance and demonstrate that the protocol achieves both
given the assumptions. We are not aware of other all-electronic protocols that have
these properties. In particular, note that when the assistant is dishonest the protocol

4 Paper-based systems can enable the voter to make a commitment without using computation–
for example, poll workers may mark the voter’s choice of challenge on her paper ballot before
handing it to her. In an all-electronic voting system, however, without access to any other
computation while voting, the voter is unable to make the commitment. In order to do so, the
commitment would need to be digital and the voter would need access to a trusted computer.
This computer could change the challenge as it wished without informing the voter. An audit
challenge would result in an audit of both the voter and the voting machine. In trying to avoid
one coercive adversary, the Helios voter is exposed to another.

is still coercion-resistant. Classical all-electronic protocols are coercion-resistant
only when the voter’s computer is trusted.

� We describe a simpler challenge-response AAHIP for vote-casting, which is much
like polling-booth-Helios with an assistant. We show that it has weaker coercion-
resistance. Thus the vulnerabilities of polling-booth-Helios are not overcome by
naturally extending it to the AAHIP model. We are not aware of any other work that
observes a distinction between cut-and-choose and challenge-response protocols.

� We describe our prototypes for both challenge-response and cut-and-choose pro-
tocols. An Android-based smartphone performs the role of the computational as-
sistant in the prototypes. Note, of course, that the voter’s device can be a special
hardware device and not a smartphone; at this time, however, we do not have access
to special hardware.

1.3 Comparison With Other Approaches

Our protocol provides the following security improvements over polling-booth-Helios
(note that the remote version also possesses these vulnerabilities, but they may not
be of as much consequence in the elections Helios was designed for). Again, polling-
booth-Helios is being used only for illustrative purposes, as a representative simple
all-electronic system:

� In contrast with polling-booth-Helios, the voter can prove that a challenge bit was
changed if the assistant is honest.

� Further, in contrast with polling-booth-Helios, the voter cannot be coerced if the
voting machine is honest.

We are able to achieve the above two properties because we have constructed a
protocol where the challenge bit is issued by the assistant and not by the voter. One
cannot simply add digital signatures to the challenge bit in Helios to achieve the first
property, because the voter cannot check digital signatures without an assistant. Further,
the second property is not achieved by naturally extending Helios to use a computational
assistant to issue the challenge bit and to make and verify digital signatures. We show
that a protocol that is a natural extension of Helios with a computational assistant is
not coercion resistant, even if it is assumed that the voter does not provide input to
the assistant. That is, it is not possible to achieve the properties achieved by our main
protocol by simply extending Helios to the AAHIP model.

On the other hand, our protocol also shares some of the limitations of polling-booth-
Helios and does not achieve all the security properties of paper-ballot-based voting
systems. If the voting machine is dishonest, an honest assistant can help the voter detect
the cheating, but neither can prove it. In a paper-ballot-based system, the voter and one
of the computational assistants she uses can provide the proof.

Note that one may fault our protocol because, if the assistant and voting machine
are both dishonest and colluding, the voter will not detect an attempt to change the tally.
While this is possibly a consequence of more general results on protocols in which more
than half of the parties are dishonest, note that polling-booth-Helios also has a similar
problem. Consider an adversary colluding with the voting system to change the tally

in our protocol. The adversary prevents the voter from using her chosen assistant and
requires her to use one the adversary provides. This assistant can provide pre-prepared
challenges known to the voting system. This will result in a fraudulent encryption-
correctness proof. The same adversary can use the coercion channel present in polling-
booth-Helios to force the polling-booth-Helios voter to execute a challenge that is a
function of the receipt-hash. In collusion with this adversary, the polling-booth-Helios
voting system can also predict challenges, also resulting in a fraudulent encryption-
correctness proof. However, in our protocol, the coercive adversary cannot coerce the
voter if the voting machine is honest; this is not true with polling-booth-Helios.

1.4 Organization

The paper is organized as follows. Section 2 reviews related work. Section 3 provides an
informal description of the model. Section 4 describes the challenge-response protocol
which is a natural extension of polling-booth-Helios to the AAHIP model, and describes
a simple coercion attack on it. The main protocol is described informally in 5. Section 6
provides a rigorous description of the model and the main protocol. Section 7 provides
a rigorous set of property definitions with theorem statements, and section 8 describes
the prototypes. Section 9 presents our conclusions.

2 Related Work

The first description of the notion of coercion-resistance is due to Benaloh and Tuinstra
[5]. Their protocol assumes the existence of a randomness beacon, avoiding the coer-
cion avenue created when voters are allowed to issue the challenges. Later protocols
in the classical model, such as that of Juels, Catalano and Jakobsson [11] assume that
the computer used to encrypt the vote may be trusted to do so correctly (or that voters
are Interactive Turing Machines — ITMs). This is clearly not a valid model for polling-
place voting. The first description of a secure voting protocol where voters are not ITMs
is due to Chaum [7]; however this protocol requires the use of visual cryptography and
two transparent layers stacked one on top of the other with very good registration and
is highly impractical. These protocols were quickly followed by several others, such
as MarkPledge [14], Prêt à Voter [16], Punchscan [15], Simple-Voter-Verifiable [3],
Votebox [17], Helios [2] and Scantegrity [8].

Of the independently-verifiable protocols, most are paper-based. Votebox and Helios,
based on Simple-Voter-Verifiable, are fully-electronic, but limit themselves to elections
where coercion is not a concern.

The protocols we describe and study in this paper were first informally proposed
by Chaum, Popoveniuc and Vora [9]. We present slightly modified versions in this pa-
per. The original paper does not contain rigorous descriptions or proofs and they do
not present any information on prototypes. Additionally, the original paper was not pre-
sented at a venue with proceedings.

Our notion of an AAHIP extends Adida’s work on AHIPs [1].

3 The Informal Model

In our protocols, we use the notion of a commitment, and that of oblivious transfer. A
cryptographic commitment scheme enables a sender to “commit” to a value M without
revealing it. It does so by providing a “commitment”, comM , to the receiver. At a later
stage, the sender can “open” the commitment and revealM to the receiver. The receiver
can verify that M is the original value committed to. 1-out-of-2 oblivious transfer is a
protocol between a sender and a receiver by which the receiver can obtain only one of
two secret elements K0 and K1 from the sender. The sender is oblivious of which of
the two values the receiver received.

In all the protocols described here, there are three participants: voter, voting ma-
chine and computational assistant. The voter is human. Its computational capability is
limited to the ability to compare small strings. The voting machine and computational
assistant are Probabilistic Polynomial Time (PPT) Interactive Turing Machines (ITMs)
with authenticated write access to a secure append-only bulletin board that can be read
by anyone.

The general purpose of all the participants is as in other independently-verifiable
voting systems, except for two important distinctions: the computational assistant is an
interactive participant in the protocol and does not receive any input from the voter. All
its input is provided by the voting machine.

We provide more detail on the similarities. As before, the voting machine presents
the voter with a ballot. The voter votes on the voting machine, which provides a string
which it claims is the encryption of the vote. The voting machine provides an interac-
tive proof supporting this claim. The computational assistant checks the correctness of
the proof transcript without knowing how the voter voted. The voter performs a check
inside the booth. The voting machine is said to provide a correct encryption only when
both checks are passed.

Details on the distinctions are as follow.

� The computational assistant (and not the voter) obtains the vote encryption and pro-
vides challenges to the voting machine to obtain a proof that the encryption is cor-
rect.

� The assistant provides information to the voter based on how the voting system
responds to the challenges. This information may consist of more than the binary
outcome of its checks. It may also include information on what should be on the
ballot (for example, the correct ordering of candidates, or the correct association of
candidates with dummy variables). The voter compares this information to that on
the ballot presented to her by the voting machine. If the information matches, she
accepts that the encryption is correct.

� The voter does not provide any information to the assistant and only receives infor-
mation from it.

� The voter has to choose a single assistant to participate in the protocol (in an AHIP,
the voter can present her receipt to several distinct assistants asking each to check
for her).

All interaction between the two ITMs is signed and verified. If a signature does not
verify, the recipient party requests a resend and aborts after a pre-determined fixed num-

ber of failed attempts to verify. Similarly, when a commitment is not opened correctly,
the aggrieved ITM can abort the protocol. Thus, either party can perform a denial-of-
service. As this possibility exists in the use of all computational devices, we do not
consider it any further. Note that, because information between the two ITMs is signed
and published after the protocol ends, the channel between the two parties is much like a
public append-only channel. The data across this channel will demonstrate which party
has cheated.

The voter can also abort the protocol if she catches a party behaving dishonestly.
However, because he is not an ITM, she cannot sign and verify signatures and hence
does not share a verifiable tape with any party. Hence she is typically not able to prove
certain types of dishonest behavior.

The assistant would typically be provided by an individual or organization the voter
chose. This is not to say the individual or organization is not malicious or dishonest
and will not attempt to coerce the voter to vote in a certain manner. Our main protocol
is coercion-resistant if at least one of the voting machine or assistant is honest and the
voter does not provide any input to the assistant during the protocol. This is true even
if the adversary can query the voter and examine the memory and logs of the assistant
after the vote is cast and if the assistant is allowed to deviate from protocol.

4 The Challenge-Response Protocol and a Weakness

In this section we present a slight generalization of the protocol named eTegrity in
[9]—a challenge-response-style protocol which is the natural extension of Helios to
the AAHIP model. The voter familiar with the ballot audits of Prêt à Voter [16] or
Scantegrity [6] will notice the similarity with ballot audits. We name the generalized
protocol eChallengeResponse. The protocol uses the assistant to make and verify com-
mitments and digital signatures in a straightforward manner. Its simplicity makes it easy
to use. Space restrictions prevent us from going into more detail. We describe a coer-
cive attack on this protocol, illustrating the difficulty of designing a coercion-resistant
all-electronic protocol.

In this protocol, the assistant first commits to the challenge bit on behalf of the voter.
It sends the challenge bit to the voter, and the commitment to the voting machine. The
voter enters her vote and the voting machine sends the vote-encryption to the assistant.
The assistant opens its commitment and the voting machine audits or casts the encryp-
tion based on what the challenge bit is. The assistant checks encryption-correctness if
the challenge corresponds to an audit. After describing the protocol we describe a sim-
ple coercive attack, thus motivating the somewhat more complicated protocol which
is our main contribution. The challenge-response protocol and the coercive attack are
interesting because they illustrate the subtle problems involved in designing an inco-
ercible protocol.

4.1 eChallengeResponse: Informal Description

In general, an independently-verifiable voting system will provide a receipt which func-
tions as an encryption of the vote. We will denote by Es the cipher for the ballot with

serial number s. That is, whether Es is implemented as a cipher or a look-up table, it
has the properties of a secure cipher. In order to vote, a voter walks into a polling booth
with a computational assistant.

To begin the protocol, the assistant and the voting machine set up a communication
link. Before the voter and voting machine interact, the assistant performs a crypto-
graphic commitment to a uniformly-distributed bit b representing whether or not it will
audit the upcoming encryption. It sends b to the human voter and the commitment cb to
the voting machine. Note that it has not been possible to perform this step electronically
in an AHIP, and independently-verifiable voting systems have required a combination
of paper and procedures for this step 5.

The voting machine sends to the assistant the serial number s of the ballot it will
use. After the assistant checks that s is fresh, the voting machine presents the fresh
ballot with serial number s to the voter. The voter selects her candidate, v, on the voting
machine and confirms her vote. The voting machine then presents the signed pair of
the serial number and encrypted vote, (serial, encryption), to the assistant. In correct
instances of the protocol, (serial, encryption) := (s, Es(v)).

The assistant opens cb to reveal b to the voting machine.

� If the commitment verifies and corresponds to a choice of “cast”, the vote is cast.
Both voting machine and assistant post the signed pair (serial, encryption) in the
list of verified votes on the secure bulletin board. The protocol ends.

� If the commitment verifies and corresponds to a choice of “audit”, the voting ma-
chine reveals the vote it encrypted, vote, and the encryption parameters. Both vot-
ing machine and assistant post the signed pair (serial, encryption) in the list of au-
dited votes on the secure bulletin board. The assistant provides the value of serial
and vote to the voter. If vote is the vote she cast, ı.e. if vote = v, and serial is the
serial number of the ballot presented to her, ı.e. if s = serial, the voter knows the
encryption was correctly performed.

The voter may repeat the above protocol many times if she desires, at different times
during the day, and at different voting machines.

4.2 A Coercive Attack

We now describe a simple coercion attack when the voting machine is honest but the
assistant is not. This motivates the use of the more complicated cut-and-choose protocol
we describe next, which is not vulnerable to this attack. The coercer tells the voter to
vote for candidate i and provides her with the assistant. An examination of the assistant
after the vote is cast will demonstrate to the coercer whether the voter used it or not,

5 As in an AHIP, the voter may choose b and communicate it to the assistant. However, because
the assistant commits to b, any security analysis must assume that the assistant chooses b.
Further, the coercion-resistance analysis also requires that the voter not be allowed to provide
input to the assistant, so, if the voter were allowed to choose this bit, she should not be allowed
to provide any other information to the assistant. This bit itself does not provide any informa-
tion because it could as well have been communicated outside the booth. (It is obtained from
the voter before she herself has been provided any information in the polling booth).

so the voter cannot use another assistant. The assistant is programmed to perform the
correct protocol, except for the fact that it provides no information to the voter in the
first step (when it is supposed to send her the challenge bit). The voter will always
vote for candidate i because she does not know when her commitment to her vote (the
encrypted vote) will be audited by the coercer (assistant).

We now propose the following, more complicated protocol, based on a cut-and-
choose approach which we implement with the use of 1-out-of-2 Oblivious Transfer.

5 The Cut-and-Choose Protocol

In this section we informally describe the protocol named ePunchscan in [9] with a few
modifications; our protocol is named eCutAndChoose. It is a cut-and-choose protocol
for a commitment-based cryptographic voting system. It uses a mix of ideas from Prêt à
Voter, Punchscan and Scantegrity. Its most striking aspect, the use of oblivious transfer,
is, however, common only to Punchscan among the independently-verifiable protocols
that have been used in real elections.

The ballot consists of a serial number s and two ballot parts: (i) Part0 contains
a permutation πs of the c candidates, reflecting the order in which candidates will be
presented to the voter (ii) Part1 consists of a list of Scantegrity codes, one for each
of c candidate positions. Each part bears the serial number s. Part0 also bears another
serial number, sL.

Assistant

Voter

1. Commitment to ballot-part choice, cb →
2. Serial Number s, Encrypted Files ←
3. OT Kb ←
6. (s, εs(v)) ←
8. b, Kb, Opens cb →

7. Partb, (s, εs(v)) ↑

Voting
Machine

4. Part0 ←
5. Vote v →

6. Part1 , (s, ε
s (v)) ←

9. b ends ←

Fig. 1. The Cut-And-Choose Protocol. Arrows denote direction of communication.

5.1 Protocol Description

Before the election starts, the voting system makes cryptographic commitments to the
two ballot parts separately, as well as to the commitments required by a Scantegrity

back-end that will obtain vote tallies from confirmation codes. To begin, a voter walks
into a polling booth with a computational assistant. The assistant and the voting machine
set up a communication link.
Commitment to Choice Of Ballot Part: [Step 1 in Figure 1] The assistant performs a
cryptographic commitment to a bit b representing the ballot part it will choose to get by
Oblivious Transfer. It sends b to the human voter and the commitment cb to the voting
machine. Let us say the voter gets bit. In correct instances of the protocol, bit := b.
Note that, in AHIP-based Punchscan, this step is performed using a combination of pa-
per and polling procedures. Polling officials note down whether a voter will take home
the top or bottom layer before the voter is allowed to see the ballot6.

Ballot Preparation: [Step 2] The voting machine sends to the assistant the serial num-
ber s of the ballot it will use, and the assistant checks that s is fresh. The voting machine
creates two ciphertexts. The ith ciphertext, i = 0, 1 is a symmetric-key encryption of
Filei, which consists of Parti and the information required to verify its published com-
mitments. Filei is encrypted with symmetric-key encryption using key Ki for i = 0, 1.
Each key is pseudo-randomly generated afresh for each ballot.
Oblivious Transfer: [Step 3] The assistant obtains Kb from the voting machine by
oblivious transfer, obtains Fileb by decrypting the appropriate ciphertext, and checks
the commitments to Parti.

Displayed on Voting Machine Displayed on Assistant if
Assistant obtains Ballot Part0

Displayed on Assistant if
Assistant obtains Ballot Part1

35967

Bob

Alice

Carol

Confirmation Code 447

35967

293

447

530

Confirmation Code 447

35967

Bob 293

Alice 447

Carol 530

Confirmation Code 447

Fig. 2. Voter’s View of the Ballot After Casting a Vote for Alice

Ballot Presentation: [Step 4] The voting machine presents Part0 of the ballot with
serial number s to the voter. This looks much like a Prêt à Voter ballot.
Voting: [Steps 5] The voter enters her vote v on the voting machine and confirms it.
Receipt: [Step 6] The voting machine now presentsPart1 and the traditional Scantegrity
confirmation number, Es(v), to the voter. It also presents the signed confirmation num-
ber to the assistant.
Receipt: [Step 7] The assistant presents Partb and the confirmation code to the voter.
The voter checks that the ballot part and confirmation number presented by the assis-

6 As in an AHIP, the voter may choose b and communicate it to the assistant. However, because
it is the assistant that performs the cryptographic commitment to b, any security analysis must
assume that the assistant chooses b. Further, as in eChallengeResponse, the voter must not be
allowed to provide any other information to the assistant during the protocol.

tant matches the corresponding part and confirmation number presented by the voting
machine. (See Figure 2.)
Closing: [Steps 8-9] The assistant opens its commitment to bit b for the Voting Machine
and also provides Kb. The Voting Machine provides bit b to the voter, so it may know
how to lie about the ballot half the assistant does not have if coerced by the assistant.
The voting machine casts the vote by posting the signed pair of serial number and vote
encryption in the list of cast votes on the secure bulletin board. It informs the voter and
assistant that the vote is cast. The assistant posts the signed pair of serial number and
vote encryption it received from the voting machine in Step 6 in the list of verified votes
on the secure bulletin board. The protocol ends.

5.2 Dispute Resolution

Notice that, if the voter and the voting machine disagree about what transpired between
them over their private channel, it is not possible to resolve the dispute except through
physical observation. So, for example, the voting machine might constantly behave as
though the voter voted v′ 6= v, or might refuse to abort when instructed to, etc. While
the voter would be aware that the voting machine was cheating, she would not be able to
prove it as the tape between the two parties is not verifiable and can be easily overwritten
by the voting machine. While this is not as bad as the original problem with Direct
Recording Electronic voting machines, it demonstrates the difference between the use
of electronic and paper tapes (paper ballots) between voting machines and voters. Every
interaction between voter and voting system in paper ballot independently-verifiable
systems such as Prêt à Voter and Scantegrity is on an append-only write-once tape
such as a paper ballot or through physical processes. This allows the voter to provide
evidence when the voting system does not follow protocol. Notice that this can be a
problem even if the voting system is honest, when the voter is dishonest. A small group
of vocal dishonest voters can call into question an honest election by accusing the voting
machine of not following protocol.

A possible solution to this problem is to allow the voter to interact with the assistant
to obtain a blind signature on her confirmation code and to vote by casting the blinded
confirmation code, through the assistant. The voting machine then will not know what
the vote is and cannot change it. It is not clear whether this opens the voter up to more
coercion-attacks, and whether there are verifiability and security problems with this
protocol that are similar to those found in the past with blind-signature-based protocols.

6 Rigorous Description: eCutAndChoose

In this section, we provide a rigorous description of the model and of the informally-
described cut-and-choose protocol in [9], where it is referred to as ePunchscan. We
describe only set-up and vote-casting; vote tallying proceeds as with Scantegrity.

6.1 The AAHIP Model

We do not describe the most general version of this model here. We focus only on
the specific case when a voting machine seeks to prove to a voter that a string x is an

encryption of her vote v using a cipher E . There are three participants in the protocol: the
voter V; the voting machine VM and the assistantA. V is a human whose computational
capability is limited to the comparison of strings of size n bits. VM and A are PPT
ITMs. There are the following channels among the participants:

1. A two-way private channel between V and VM provided by the poll booth. No one
other than V or VM can read from, or write to, this channel.

2. A two-way authenticated channel between A and VM made append-only through
the use of digital signatures. This channel can be read by anyone at any time. Only
A and VM have read-write access to it.

3. A one-way channel from A to V which is private during the voting process and
public thereafter. Only A can write to it.

Note that there is no channel from V to A during the protocol; however, A may query
V after the vote is cast.

The view of participant X is denoted viewX . The transcript of the interaction be-
tween participants X and Y is denoted TapeX ,Y .

The protocol takes as input (private) vote v from V and (public) challenge bit b from
A. We denote it AAHIP (V(v),A(b)). It produces the following output:

1. The receipt, public output from VM :

(Receipts, ReceiptE , ReceiptP) :=

Receipt(v, b) = (s, Es(v), Proof(Es(v), b))
where s is the serial number of the ballot, Es(v) the claimed encryption of the vote,
and Proof(Es(v), b) the proof that Es(v) is correctly constructed, for challenge b.
It consists of the transcript between VM and A.

2. The check of the assistant, public output (True or False) from A:

CheckProof(Receipt(v, b))

indicating whether the commitments are correctly opened by VM in Receipt. This
is similar to the output produced by A in an AHIP.

3. The ballot-part, (private during the protocol but public after the vote is cast) from
A to V:

Part(viewA)

which represents what A has learnt about the manner in which Es(v) was con-
structed by VM . In our cut-and-choose protocol, Part(viewA) is the ballot part
obtained by oblivious transfer.

4. The check of the voter, public output (True or False) from V:

CheckPart(Part(viewA), viewV)

which indicates whether Part(viewA) is consistent with what V observes in the
private channel with VM . In our cut-and-choose protocol, CheckPart indicates
whether the chosen part—as determined by the assistant through the opening of the
original commitments—matches the corresponding part in the ballot displayed to
the voter.

6.2 Initial Set-Up by Election Officials

Let C define the Scantegrity code-space; that is, it is the set of all possible Scantegrity
confirmation codes. It can be any set such that (a) individual elements of the set can be
compared by humans (that is, each code is no longer than n bits long) and (b) the size
of C is large enough so that probability ε := |C|−1 is small enough.

We consider each race separately. Let c be the number of candidates in the race and
N the number of ballots to be generated. Election officials (EOs) perform the following
tasks prior to the election:

1. Generate confirmation codes codes,i, for all serial numbers 1 ≤ s ≤ N and candi-
dates i ∈ Zc. The c confirmation codes on a single ballot are distinct. That is,

codes,i 6= codes,j i 6= j, i, j,∈ Zc 1 ≤ s ≤ N

Informally speaking, codes,i should be the secure symmetric-key encryption of
i corresponding to ballot s. That is, the function f : {0, 1, 2, .., N} × Zc → C
with f(s, i) = codes,i should have the properties of a symmetric-key encryption
(with keyspace {0, 1, 2, .., N}, message space Zc and ciphertext space C) where
the key is a secret function of s. The scheme should be such that the advantage of a
PPT adversary in the eavesdropping indistinguishability experiment [12, page 63]
is negligible in the length of s.

2. Generate a secret pseudo-random permutation πs(.) of Zc (the candidates) which
is independent of f(s, .) ∀s.

3. Generate the ballots, as pairs. For each serial number s, generate the ballot: (s, Part0, Part1)
where Part0 = πs and Part1 = πs(〈codes,i〉i∈Zc

).
4. Generate commitments to the correspondence between candidate and confirmation

code for each ballot and candidate separately, as well as commitments to both parts
separately for each ballot using commitment scheme C (see Appendix for defini-
tion)

(coms,i, opens,i) = CEO(s, codes,i) ∀ s, i ∈ Zc

(coms,part0 , opens,part0) = CEO(s, part0) ∀ s

and
(coms,part0 , opens,part0) = CEO(s, part0) ∀ s

5. Keep a secret record of

(opens,part0 , opens,part1 , opens,0, opens,1, ...

..., opens,i, ..., opens,c−1) ∀ s

and publish the values of

(coms,part0 , coms,part1 , coms,0, coms,1, ...

..., coms,i, ..., coms,c−1)∀ s

on a secure public bulletin board.

6.3 Casting a Vote

As with eChallengeResponse, this protocol is interactive among three parties: voter V ,
voting machine VM and assistant A. The steps below are numbered as in Figure 1.
Note that any time a party finds that a commitment is not opened correctly, or finds
that a signature is not verified, or notices that another party fails a check, it aborts the
protocol.

1. A chooses b ∈ {0, 1} (b = i implies that A will check Parti). A sends signed
commitment cb to VM where (cb, ob)← CA(b‖b).

2. VM verifies signature on cb. VM chooses a fresh serial number s at random
and generates two secret encryption-keys K0,K1 at random. VM sends a signed
message to A consisting of the serial number s and the ciphertext of two files
Ci = E(Ki, F ilei), i = 0, 1, where Filei = (Parti‖opens,parti). E denotes
a secure symmetric-key encryption scheme.

3. A verifies the signature and checks on the secure bulletin board that s is unused.
A performs an oblivious transfer with VM to obtain Kb: OTA,VM (b,K0,K1). A
decrypts Fileb with Kb and verifies the opened commitments in Fileb. A sends
the “ready” signal to V .

4. VM presents File0 with serial number s to V .
5. V sends vote v to VM .
6. VM sends the signed pair (serial, code) := (s, codes,v)—signed serial number

and confirmation code—to A and to V . It also sends Part1 to V .
7. A verifies the signature and that serial = s. A presents Partb and the pair

(serial, code) to V . V checks that Partb as presented by VM is identical to
Partb as presented byA, and that the confirmation and serial numbers presented by
both match. If they match, V sets CPart := CheckPart(Part(viewA), viewV) =
“True”. Practically speaking, this is conveyed when V leaves the polling site with-
out complaint. We denote the two identical parts as seen by the voter as ObservedPartb.

8. A opens commitment cb and sends signed values of b andKb to VM which verifies
both. VM now knows the value of b.

9. VM sends b to V . The vote v is cast for the ballot and VM publishes the signed
pair (s, codes,v) in the list of cast ballots on the public bulletin board. A publishes
the signed pair (s, code) in the list of verified ballots on the public bulletin board.
Discrepancies in the list are resolved by the examination of the public transcript
between the two ITMs.

If a participant observes dishonest behavior by another participant, it aborts. When
V aborts, she sets CPart := “False” (that is, she makes a complaint to a polling official).
When A aborts, it sets CProof := “False”.

The outputs are as follow:

1. The receipt:
Receipt(v, b) =

(Receipts, ReceiptE , ReceiptP)

:= (s, code, TapeA,VM)

2. The check of the assistant: CProof := CheckProof(Receipt(v, b)) is “True” if
A publishes the signed pair (Receipts, ReceiptE) in the list of verified votes, and
is “False” else.

3. The ballot-part, sent by A to V: ObservedPartb
4. The check of the voter: if CPart 6= “True” then CPart := “False”.

7 Properties of the eCutAndChoose Protocol

In this section we provide rigorous statements for properties of the eCutAndChoose
protocol, proof sketches may be found in the appendix. We model these properties on
the more general ones for an AHIP in [1]. We assume that all cryptographic primitives
used are secure and all adversaries are PPT.

Theorem 1 (COMPLETENESS). If all three parties are honest, ReceiptE = Es(v),
CProof = “True” and CPart := “True”.

Lemma 1. If ReceiptE 6= Es(v) and A and V are honest,

Pr[CProof = False OR CPart = False] ≥ 1

2
− α

for some small value α

Lemma 2. There is no means by which A can change a vote without colluding with
VM .

Theorem 2 (SOUNDNESS). If at least one of A and VM is honest and ReceiptE 6=
Es(v),

Pr[CProof = False OR CPart = False] ≥ 1

2
− α

Theorem 3 (PRIVACY). A public transcript for vote v is computationally indistin-
guishable from one for vote v′ for all pairs (v, v′).

We denote the protocol P . Consider a dishonest A, denoted Adv desiring to coerce
voter V to vote v. Suppose Adv designs a new interaction with V during the protocol,
instructs V to vote v before or during the protocol, and queries V after the protocol
is over. The purpose of this would be to coerce V into voting in a certain manner.
Let us denote the new protocol P ′, and the view of original participant X in P ′ as
viewP′,X . Note that, from the perspective of VM , the protocol is identical to P . We
denote by Vcoerced,P′ the voter in P ′ obeying the instructions of A. We say a protocol
is coercion-resistant if there exists a strategy V∗ for the voter which is indistinguishable
from Vcoerced,P′ for Adv in protocol P ′.

Theorem 4 (COERCION-RESISTANT). If VM is an honest participant in protocol P ,
∃ PPT V∗ such that viewP′,Adv when interacting with V∗(v′) in protocol P ′ is compu-
tationally indistinguishable from viewP′,Adv when interacting with Vcoerced,P′(v).

8 Prototypes

We have implemented proofs of concept which are fully functional for both eChallengeResponse
and eCutAndChoose, and for both the voting machine and the personal assistant. Our
implementation uses parts of the open-source Scantegrity II code. We use the Scantegrity
II back-end implementation (which is actually a modified version of the Punchscan
back-end [6]) to perform a verifiable-tally.

The prototype implements two modules:DRE (the voting machine) and smartphone
(the computational assistant), which handle their own network communication.

The implementation of the DRE module is in Java 1.5, and has an interactive voice
control system, as well as a synchronized visual interface. The two interfaces can be
checked for consistency using observational testing. Full functionality for the DREmod-
ule has been tested to date on Microsoft Windows XP, Microsoft Windows 7 and Mac
OS X Snow Leopard; there are some known problems on Linux systems that currently
prevent full functionality. In our implementation, each instance of the DREmodule posts
confirmation codes directly online, to a secure public bulletin board (which we assume
exists, but did not implement).

The smartphone module is implemented on an Android 1.6 platform, using Java
1.5 and the Bouncy Castle cryptographic library. We have successfully tested it on the
HTC Hero and the Nexus One. Our security model assumes that the smartphone
module take no input from the voter. For research and testing reasons, however, our cur-
rent implementation allows the voter to choose whether to cast or audit (eChallengeResponse)
or whether the left or right ballot half is opened (eCutAndChoose). As we describe in
section 5, this has no impact on security results as long as the voter does not provide
any other information to the smartphone module during the protocol. The applica-
tion design assumes a touchscreen front-end and does not use any other type of input
device (such as a hardware keyboard).

An essential part of the project is communication between DRE and smartphone.
We connected the two using USB and we used the Android Debug Bridge, a tool con-
tained in the Android SDK. Using adb we were able to initiate port forwarding on
the host, meaning that all communication aimed at a certain port on the localhost is
automatically forwarded to the smartphone through the USB connection. We then im-
plemented sockets on top of this to achieve network communication between the two
devices. Newer versions of Android, starting with 2.0, have added better support for
networking over bluetooth so this could be a new approach in a future version.

In addition to standard libraries, we also used open source code from the Helios and
Scantegrity codebases. To commit to a single bit, we use Pedersen bit-commitments,
and to commit to larger messages we use Scantegrity commitments. We use the 1-2
oblivious transfer protocol of Even, Goldreich and Lempel [10].

8.1 Network Access

One of the major real-world threats for a voting system like ours is to be online. Voting
machines can be hacked, and the leakage of cryptographic keys can lead to unauthorized
ballot casting. On the other hand, if we choose to be offline we face two important
issues. First, the assistant cannot check if a given ballot is fresh. Second, the assistant

is required to verify the opening of commitments against those published before the
election.

A solution to the first problem is to pre-distribute ballots among voting machines. A
voting machine that reuses a ballot is caught because it signs the serial number when it
offers the ballot to the assistant. A solution to the second problem is for the assistant to
maintain a root of a Merkle tree (hash tree) of the commitments so it can verify commit-
ments offline. The voting machine is required not only to open audited commitments
but also to show the hash path. This is preferable to storing all commitments locally
on the assistant. It allows us to perform ballot casting offline at the cost of increasing
the communication complexity between the voting machine and assistant by O(logN)
where N is the number of ballots.

8.2 Security of the Implemented Protocols

We describe common security concerns in implementations. First, there is the possibil-
ity of an attacker tapping the communication between the devices. This is not a concern
for us because the transcripts between the two devices are assumed public. Second, there
is the possibility of an attacker changing the communication. All messages between the
two devices are hence digitally signed. Third, the smartphone is not an output-only
device. However, in our implementation, the smartphone will have to be in a special
docking station while the protocol is on. In the station, it is is protected by a transparent
casing or sheet, so that the voter may obtain information from it, but not provide it any
input. The voter can only provide input when it is not in the station, and if it is removed
from the station the voting system aborts the protocol.

8.3 Ongoing Work

Scantegrity’s back-end does not explicitly commit to the correspondence between can-
didates and confirmation codes; this correspondence may be deduced from other com-
mitments made by the back-end. We are in the process of writing code to generate
these commitments ourselves for use with eChallengeResponse. Since the system uses
an electronic voting machine instead of a paper ballot, some sort of voter authorization
mechanism should be used to ensure that each voter casts only one ballot, but is allowed
to audit multiple ballots in eChallengeResponse. Such functionality has been discussed,
but is not yet implemented—the voter would use a one-time password when she wished
to cast a vote. An open-source release of the current version of our code will soon be
complete.

9 Conclusions

We have described a paperless vote-casting protocol where the voter uses a compu-
tational assistant that participates in an interactive protocol with the voting machine.
We propose the Actively-Assisted Human Interactive Proof model to study these types
of protocols. We have rigorously described the AAHIP and demonstrated its security

properties, assuming that the voting system and assistant do not collude and that com-
munication is synchronous. The assistant may be malicious, however, and provide false
values or refuse to provide them. Its memory and logs may be examined by anyone
after the vote is cast. We also show that a simple challenge-response-style AAHIP has
weaker coercion-resistance. We have described our prototypes of both protocols, using
a smartphone for the assistant.

Some interesting questions remain open. Is the cut-and-choose protocol secure against
stronger adversarial models—for example, if communication is asynchronous? What is
the most security one can obtain in the AAHIP model? Does the blind-signature-based
protocol solve the problem of dispute resolution in paperless protocols?

References

1. ADIDA, B. Advances in Cryptographic Voting Systems. PhD thesis, MIT, 2006.
2. ADIDA, B. Helios: Web-based Open-Audit Voting. In Usenix Security Symposium (2008).
3. BENALOH, J. Simple verifiable elections. In USENIX/Accurate Electronic Voting Technol-

ogy Workshop (2006).
4. BENALOH, J. Ballot casting assurance via voter-initiated poll station auditing. In

USENIX/Accurate Electronic Voting Technology Workshop (2007).
5. BENALOH, J., AND TUINSTRA, D. Receipt-free secret-ballot elections. In ACM Symposium

on Theory of Computing (1994).
6. CARBACK, R., CHAUM, D., CLARK, J., ESSEX, A., MAYBERRY, T., POPOVENIUC, S.,

RIVEST, R. L., SHEN, E., SHERMAN, A. T., AND VORA, P. L. Scantegrity II Municipal
Election at Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy.
In Usenix Security Symposium (2010).

7. CHAUM, D. Secret-ballot receipts: True voter-verifiable elections. IEEE Security and Pri-
vacy (January/February 2004), 38–47.

8. CHAUM, D., CARBACK, R., CLARK, J., ESSEX, A., POPOVENIUC, S., RIVEST, R. L.,
RYAN, P. Y. A., SHEN, E., SHERMAN, A. T., AND VORA, P. L. Scantegrity: End-to-end
verifiability for optical scan elections. IEEE Transactions On Information Forensics And
Security: Special Issue On Electronic Voting 4, 4 (2009), 611–627.

9. CHAUM, D., POPOVENIUC, S., AND VORA, P. L. eTegrity and ePunchscan. NIST End-
to-End Voting Systems Workshop, October 2009. http://csrc.nist.gov/groups/
ST/e2evoting/documents/papers/Popoveniuc_PaperlessVoting.pdf.

10. EVEN, S., GOLDREICH, O., AND LEMPEL, A. A randomized protocol for signing contracts.
Communications of the ACM 28, 6 (1985), 637–647.

11. JUELS, A., CATALANO, D., AND JAKOBSSON, M. Coercion-resistant electronic elections.
In Workshop on Privacy in the Electronic Society WPES (2005).

12. KATZ, J., AND LINDELL, Y. Introduction to Modern Cryptography. Chapman & Hall/CRC,
2008.

13. KELSEY, J., REGENSCHEID, A., MORAN, T., AND CHAUM, D. Attacking paper-based e2e
voting systems. In Towards Trustworthy Elections (2010), pp. 370–387.

14. NEFF, C. A. Practical high certainty intent verification for encrypted votes, 2004.
15. POPOVENIUC, S., AND HOSP, B. An introduction to PunchScan. In IAVoSS Workshop On

Trustworthy Elections (2006).
16. RYAN, P. Y. A. A variant of the Chaum voter-verifiable scheme. Tech. Rep. CS-TR: 864,

School of Computing Science, Newcastle University, 2004.
17. SANDLER, D. R., DERR, K., AND WALLACH, D. S. VoteBox: a tamper-evident, verifiable

electronic voting system. In USENIX Security Symposium (2008).

